
Numerical Neural Network

Jinchao Xu

Penn State University

xu@math.psu.edu http://www.math.psu.edu/xu/

NEMESIS, June 14, 2021

(NEw generation MEthods for numerical SImulationS)

NSF: DMS-1819157

J. Xu (PSU) Numerical Neural Networks June 14, 2021 1 / 58

1 Finite element methods and neural networks

2 Approximation properties

3 Application to elliptic boundary value problems

4 Numerical experiments

5 Summary and Further Research

J. Xu (PSU) Numerical Neural Networks June 14, 2021 2 / 58

Finite element: Piecewise linear functions

Uniform grid Th

0 = x0 < x1 < · · · < xN+1 = 1, xj =
j

N + 1
(j = 0 : N + 1).

x0 xj xN+1

Figure: 1D uniform grid

Linear finite element space

Vh = {v : v is continuous and piecewise linear w.r.t. Th }.

0

1/9

2/9

1/3

4/9

5/9

2/3

7/9

8/9

J. Xu (PSU) Numerical Neural Networks June 14, 2021 3 / 58

Finite element: Piecewise linear functions
Uniform grid Th

0 = x0 < x1 < · · · < xN+1 = 1, xj =
j

N + 1
(j = 0 : N + 1).

x0 xj xN+1

Figure: 1D uniform grid

Linear finite element space

Vh = {v : v is continuous and piecewise linear w.r.t. Th }.

0

1/9

2/9

1/3

4/9

5/9

2/3

7/9

8/9

J. Xu (PSU) Numerical Neural Networks June 14, 2021 3 / 58

Finite element: Piecewise linear functions
Uniform grid Th

0 = x0 < x1 < · · · < xN+1 = 1, xj =
j

N + 1
(j = 0 : N + 1).

x0 xj xN+1

Figure: 1D uniform grid

Linear finite element space

Vh = {v : v is continuous and piecewise linear w.r.t. Th }.

0

1/9

2/9

1/3

4/9

5/9

2/3

7/9

8/9

J. Xu (PSU) Numerical Neural Networks June 14, 2021 3 / 58

Finite element in multi-dimensions
(k = 1)

w1x + b w1x1 + w2x2 + b w1x1 + w2x2 + w3x3 + b · · ·

xix

1

J. Xu (PSU) Numerical Neural Networks June 14, 2021 4 / 58

FEM basis function in 1D

Denote the basis function in T1

ϕ(x) =


2x x ∈ [0, 1

2]

2(1− x) x ∈ [1
2 , 1]

0, others
. (1)

All basis functions ϕi can be written as

ϕi = ϕ(
x − xi−1

2h
) = ϕ(whx + bi). (2)

with wh = 1
2h , bi = −(i−1)

2 .

Let x+ = max(0, x) = ReLU(x),

ϕ(x) = 2x+ − 4(x − 1/2)+ + 2(x − 1)+.

ϕi ∈ span
{

(wx + b)+,w , b ∈ R1}

J. Xu (PSU) Numerical Neural Networks June 14, 2021 5 / 58

FEM basis function in 1D

Denote the basis function in T1

ϕ(x) =


2x x ∈ [0, 1

2]

2(1− x) x ∈ [1
2 , 1]

0, others
. (1)

All basis functions ϕi can be written as

ϕi = ϕ(
x − xi−1

2h
) = ϕ(whx + bi). (2)

with wh = 1
2h , bi = −(i−1)

2 .

Let x+ = max(0, x) = ReLU(x),

ϕ(x) = 2x+ − 4(x − 1/2)+ + 2(x − 1)+.

ϕi ∈ span
{

(wx + b)+,w , b ∈ R1}

J. Xu (PSU) Numerical Neural Networks June 14, 2021 5 / 58

FEM basis function in 1D

Denote the basis function in T1

ϕ(x) =


2x x ∈ [0, 1

2]

2(1− x) x ∈ [1
2 , 1]

0, others
. (1)

All basis functions ϕi can be written as

ϕi = ϕ(
x − xi−1

2h
) = ϕ(whx + bi). (2)

with wh = 1
2h , bi = −(i−1)

2 .

Let x+ = max(0, x) = ReLU(x),

ϕ(x) = 2x+ − 4(x − 1/2)+ + 2(x − 1)+.

ϕi ∈ span
{

(wx + b)+,w , b ∈ R1}

J. Xu (PSU) Numerical Neural Networks June 14, 2021 5 / 58

FEM =⇒ Σ1
n

FEM =⇒ Σ1
n (make wh and bi arbitrary)

FEM ⊂ span
{

(wx + b)+,w , b ∈ R1
}

= Σ1
n.

Example:

f ∈ span
{

(wx + b)+, w , b ∈ R1
}
←→ f =

n∑
j=1

aj (wj x + bj)+. (3)

f is one hidden layer “deep” neural network with activation function ReLU, n neurons.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 6 / 58

FEM =⇒ Σ1
n

FEM =⇒ Σ1
n (make wh and bi arbitrary)

FEM ⊂ span
{

(wx + b)+,w , b ∈ R1
}

= Σ1
n.

Example:

f ∈ span
{

(wx + b)+, w , b ∈ R1
}
←→ f =

n∑
j=1

aj (wj x + bj)+. (3)

f is one hidden layer “deep” neural network with activation function ReLU, n neurons.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 6 / 58

FEM =⇒ Σ1
n

FEM =⇒ Σ1
n (make wh and bi arbitrary)

FEM ⊂ span
{

(wx + b)+,w , b ∈ R1
}

= Σ1
n.

Example:

f ∈ span
{

(wx + b)+, w , b ∈ R1
}
←→ f =

n∑
j=1

aj (wj x + bj)+. (3)

f is one hidden layer “deep” neural network with activation function ReLU, n neurons.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 6 / 58

FEM =⇒ Σ1
n

FEM =⇒ Σ1
n (make wh and bi arbitrary)

FEM ⊂ span
{

(wx + b)+,w , b ∈ R1
}

= Σ1
n.

Example:

f ∈ span
{

(wx + b)+, w , b ∈ R1
}
←→ f =

n∑
j=1

aj (wj x + bj)+. (3)

f is one hidden layer “deep” neural network with activation function ReLU, n neurons.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 6 / 58

Generalization to multi-dimension:
Higher dimension d ≥ 1

Σ1
n =

{ n∑
i=1

ai (ωi · x + bi)+ : ωi ∈ Rd , bi ∈ R

}
(4)

Shallow Neural Network: General activation function: σ : R1 7→ R1, namely

Σσn =

{ n∑
i=1

aiσ(ωi · x + bi) : ωi ∈ Rd , bi ∈ R

}
(5)

Common activation functions:

Heaviside σ =

{
0 x ≤ 0
1 x > 0

Sigmoidal σ = (1 + e−x)−1

Rectified Linear with σ = max(0, x)

Power of a ReLU σ = [max(0, x)]k

Cosine σ = cos(x)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 7 / 58

Generalization to multi-dimension:
Higher dimension d ≥ 1

Σ1
n =

{ n∑
i=1

ai (ωi · x + bi)+ : ωi ∈ Rd , bi ∈ R

}
(4)

Shallow Neural Network: General activation function: σ : R1 7→ R1, namely

Σσn =

{ n∑
i=1

aiσ(ωi · x + bi) : ωi ∈ Rd , bi ∈ R

}
(5)

Common activation functions:

Heaviside σ =

{
0 x ≤ 0
1 x > 0

Sigmoidal σ = (1 + e−x)−1

Rectified Linear with σ = max(0, x)

Power of a ReLU σ = [max(0, x)]k

Cosine σ = cos(x)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 7 / 58

Generalization to multi-dimension:
Higher dimension d ≥ 1

Σ1
n =

{ n∑
i=1

ai (ωi · x + bi)+ : ωi ∈ Rd , bi ∈ R

}
(4)

Shallow Neural Network: General activation function: σ : R1 7→ R1, namely

Σσn =

{ n∑
i=1

aiσ(ωi · x + bi) : ωi ∈ Rd , bi ∈ R

}
(5)

Common activation functions:

Heaviside σ =

{
0 x ≤ 0
1 x > 0

Sigmoidal σ = (1 + e−x)−1

Rectified Linear with σ = max(0, x)

Power of a ReLU σ = [max(0, x)]k

Cosine σ = cos(x)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 7 / 58

σ-DNN: Linears, activation and composition

1 Start from a linear function
W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

σ-DNN: Linears, activation and composition
1 Start from a linear function

W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

σ-DNN: Linears, activation and composition
1 Start from a linear function

W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

σ-DNN: Linears, activation and composition
1 Start from a linear function

W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

σ-DNN: Linears, activation and composition
1 Start from a linear function

W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

σ-DNN: Linears, activation and composition
1 Start from a linear function

W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

σ-DNN: Linears, activation and composition
1 Start from a linear function

W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

σ-DNN: Linears, activation and composition
1 Start from a linear function

W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

σ-DNN: Linears, activation and composition
1 Start from a linear function

W 0x + b0

2 Compose with the activation function:
x(1) = σ(W 0x + b0)

3 Compose with another linear function:
W 1x(1) + b1

4 Compose with the activation function:
x(2) = σ(W 1x(1) + b1)

5 Compose with another linear function
f (x ; Θ) = W 2x(2) + b2

6 . . .

Deep neural network functions with `-hidden layers

Σσn1:`
= {W `x (`) + b`, W i ∈ Rni , bi ∈ R}

Σk
n1:`

= ΣReLUk

n1:`
.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 8 / 58

What does a function in ReLU-DNN look like?

Obviously:
Σ1

n1:`
= a space of continuous piecewise linear functions!

Figure: ` = 1 and ` = 2

J. Xu (PSU) Numerical Neural Networks June 14, 2021 9 / 58

What does a function in ReLU-DNN look like?

Obviously:
Σ1

n1:`
= a space of continuous piecewise linear functions!

Figure: ` = 1 and ` = 2

J. Xu (PSU) Numerical Neural Networks June 14, 2021 9 / 58

How is N 1
` compared with (adaptive) linear FEM?

Figure: (40,40) Figure: Adaptive Grid

J. Xu (PSU) Numerical Neural Networks June 14, 2021 10 / 58

Connection of ReLU DNN and Linear FEM

1 d = 1,
FE ⊂ Σ1

n.

2 d ≥ 2,
FE * Σ1

n.

3 d ≥ 2,
FE ⊂ Σ1

n1:`
for some ` > 1.

Refs: R. Arora, A. Basu, P. Mianjy & A. Mukherjee, 2016, J. He, L. Li, J. Xu & C. Zheng, 2018

J. Xu (PSU) Numerical Neural Networks June 14, 2021 11 / 58

Connection of ReLU DNN and Linear FEM

1 d = 1,
FE ⊂ Σ1

n.

2 d ≥ 2,
FE * Σ1

n.

3 d ≥ 2,
FE ⊂ Σ1

n1:`
for some ` > 1.

Refs: R. Arora, A. Basu, P. Mianjy & A. Mukherjee, 2016, J. He, L. Li, J. Xu & C. Zheng, 2018

J. Xu (PSU) Numerical Neural Networks June 14, 2021 11 / 58

Connection of ReLU DNN and Linear FEM

1 d = 1,
FE ⊂ Σ1

n.

2 d ≥ 2,
FE * Σ1

n.

3 d ≥ 2,
FE ⊂ Σ1

n1:`
for some ` > 1.

Refs: R. Arora, A. Basu, P. Mianjy & A. Mukherjee, 2016, J. He, L. Li, J. Xu & C. Zheng, 2018

J. Xu (PSU) Numerical Neural Networks June 14, 2021 11 / 58

A 2D example: FE basis function
Consider a 2D FE basis function, φ(x):

12 1 Examples of PDEs and Discretizations

�i(x j) = �i j =

8>><>>:
1, i = j,
0, otherwise.

1  i, j  N.

For d = 1, we have for i = 1,2, · · · ,N

�i(x) =

8>>><>>>:

x�xi�1
h , x 2 [xi�1, xi];

xi+1�x
h , x 2 [xi, xi+1];
0, elsewhere.

A typical profile of � is as shown in the figure in Figure ??.
For d = 2, the expression for each � is a little bit involved, but a typical profile

is shown in Figure 1.4. For any continuous function u, we define its finite element

. ..
. . .

.

.

ϕ

N

.
.

..

.

j

j

Fig. 1.4: A typical nodal basis function2dfem-basis

interpolation, uI 2 Vh, as follows:

u-interpu-interp (1.2.17) uI(x) =
NX

i=1

u(xi)�i(x).

For any v 2 Vh, we can obviously write

v(x) =
NX

i=1

v(xi)�i(x).

The finite element approximation of (1.2.16) is defined as follows: find uh 2Vh, such
that

vphvph (1.2.18) a(uh,vh) = (f ,vh) 8 vh 2 Vh.

Note that

Here gi is linear in Domain i , and x7 = x1, satisfying

gi (x0) = 1 gi (xi) = 0 gi (xi+1) = 0

φ(x) =

{
gi (x), x ∈ Domain i

0. x ∈ R2 − x1x2x3x4x5x6
(6)

It is non-obvious, but in fact we have1

φ(x) ∈ DNN2(ReLU) (7)

1Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3
(2020), pp. 502–527, Raman Arora et al. “Understanding deep neural networks with rectified linear units”. In: arXiv preprint
arXiv:1611.01491 (2016).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 12 / 58

A 2D example: FE basis function
Consider a 2D FE basis function, φ(x):

12 1 Examples of PDEs and Discretizations

�i(x j) = �i j =

8>><>>:
1, i = j,
0, otherwise.

1  i, j  N.

For d = 1, we have for i = 1,2, · · · ,N

�i(x) =

8>>><>>>:

x�xi�1
h , x 2 [xi�1, xi];

xi+1�x
h , x 2 [xi, xi+1];
0, elsewhere.

A typical profile of � is as shown in the figure in Figure ??.
For d = 2, the expression for each � is a little bit involved, but a typical profile

is shown in Figure 1.4. For any continuous function u, we define its finite element

. ..
. . .

.

.

ϕ

N

.
.

..

.

j

j

Fig. 1.4: A typical nodal basis function2dfem-basis

interpolation, uI 2 Vh, as follows:

u-interpu-interp (1.2.17) uI(x) =
NX

i=1

u(xi)�i(x).

For any v 2 Vh, we can obviously write

v(x) =
NX

i=1

v(xi)�i(x).

The finite element approximation of (1.2.16) is defined as follows: find uh 2Vh, such
that

vphvph (1.2.18) a(uh,vh) = (f ,vh) 8 vh 2 Vh.

Note that

Here gi is linear in Domain i , and x7 = x1, satisfying

gi (x0) = 1 gi (xi) = 0 gi (xi+1) = 0

φ(x) =

{
gi (x), x ∈ Domain i

0. x ∈ R2 − x1x2x3x4x5x6
(6)

It is non-obvious, but in fact we have1

φ(x) ∈ DNN2(ReLU) (7)

1Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3
(2020), pp. 502–527, Raman Arora et al. “Understanding deep neural networks with rectified linear units”. In: arXiv preprint
arXiv:1611.01491 (2016).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 12 / 58

A 2D example: FE basis function
Consider a 2D FE basis function, φ(x):

12 1 Examples of PDEs and Discretizations

�i(x j) = �i j =

8>><>>:
1, i = j,
0, otherwise.

1  i, j  N.

For d = 1, we have for i = 1,2, · · · ,N

�i(x) =

8>>><>>>:

x�xi�1
h , x 2 [xi�1, xi];

xi+1�x
h , x 2 [xi, xi+1];
0, elsewhere.

A typical profile of � is as shown in the figure in Figure ??.
For d = 2, the expression for each � is a little bit involved, but a typical profile

is shown in Figure 1.4. For any continuous function u, we define its finite element

. ..
. . .

.

.

ϕ

N

.
.

..

.

j

j

Fig. 1.4: A typical nodal basis function2dfem-basis

interpolation, uI 2 Vh, as follows:

u-interpu-interp (1.2.17) uI(x) =
NX

i=1

u(xi)�i(x).

For any v 2 Vh, we can obviously write

v(x) =
NX

i=1

v(xi)�i(x).

The finite element approximation of (1.2.16) is defined as follows: find uh 2Vh, such
that

vphvph (1.2.18) a(uh,vh) = (f ,vh) 8 vh 2 Vh.

Note that

Here gi is linear in Domain i , and x7 = x1, satisfying

gi (x0) = 1 gi (xi) = 0 gi (xi+1) = 0

φ(x) =

{
gi (x), x ∈ Domain i

0. x ∈ R2 − x1x2x3x4x5x6
(6)

It is non-obvious, but in fact we have1

φ(x) ∈ DNN2(ReLU) (7)

1Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3
(2020), pp. 502–527, Raman Arora et al. “Understanding deep neural networks with rectified linear units”. In: arXiv preprint
arXiv:1611.01491 (2016).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 12 / 58

ReLU-DNN and Linear FEM for H1

ReLU-DNN = Σ1
n1:`

= Linear FEM ⊂ H1(Ω)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 13 / 58

ReLU-DNN and Linear FEM for H1

ReLU-DNN = Σ1
n1:`

= Linear FEM ⊂ H1(Ω)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 13 / 58

1 Finite element methods and neural networks

2 Approximation properties

3 Application to elliptic boundary value problems

4 Numerical experiments

5 Summary and Further Research

J. Xu (PSU) Numerical Neural Networks June 14, 2021 14 / 58

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?

Let

Σσn :=

{ n∑
i=1

aiσ(ωi · x + bi), ai ∈ R, ωi ∈ Rd , bi ∈ R

}

Is
∞⋃

n=1

Σσn (8)

dense in L2(Ω) or Ck ?

Yes, if and only if σ is NOT a polynomial!

Our interest: When can this approximation be done in a stable manner?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 15 / 58

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?
Let

Σσn :=

{ n∑
i=1

aiσ(ωi · x + bi), ai ∈ R, ωi ∈ Rd , bi ∈ R

}

Is
∞⋃

n=1

Σσn (8)

dense in L2(Ω) or Ck ?

Yes, if and only if σ is NOT a polynomial!

Our interest: When can this approximation be done in a stable manner?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 15 / 58

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?
Let

Σσn :=

{ n∑
i=1

aiσ(ωi · x + bi), ai ∈ R, ωi ∈ Rd , bi ∈ R

}

Is
∞⋃

n=1

Σσn (8)

dense in L2(Ω) or Ck ?

Yes, if and only if σ is NOT a polynomial!

Our interest: When can this approximation be done in a stable manner?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 15 / 58

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?
Let

Σσn :=

{ n∑
i=1

aiσ(ωi · x + bi), ai ∈ R, ωi ∈ Rd , bi ∈ R

}

Is
∞⋃

n=1

Σσn (8)

dense in L2(Ω) or Ck ?

Yes, if and only if σ is NOT a polynomial!

Our interest: When can this approximation be done in a stable manner?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 15 / 58

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?
Let

Σσn :=

{ n∑
i=1

aiσ(ωi · x + bi), ai ∈ R, ωi ∈ Rd , bi ∈ R

}

Is
∞⋃

n=1

Σσn (8)

dense in L2(Ω) or Ck ?

Yes, if and only if σ is NOT a polynomial!

Our interest: When can this approximation be done in a stable manner?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 15 / 58

Stable Neural Network Approximation

Consider approximation from the class

Σσn,M :=

{ n∑
i=1

aiσ(ωi · x + bi), ωi ∈ Rd , bi ∈ R,
n∑

i=1

|ai | ≤ M

}
(9)

of neural networks with `1-bounded outer coefficients.

More generally for a dictionary D ⊂ H = L2(Ω), consider

Σn,M (D) =

{ n∑
i=1

ai hi , hi ∈ D,
n∑

i=1

|ai | ≤ M

}
(10)

Let M <∞ be fixed and consider approximation as n→∞.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 16 / 58

Stable Neural Network Approximation

Consider approximation from the class

Σσn,M :=

{ n∑
i=1

aiσ(ωi · x + bi), ωi ∈ Rd , bi ∈ R,
n∑

i=1

|ai | ≤ M

}
(9)

of neural networks with `1-bounded outer coefficients.

More generally for a dictionary D ⊂ H = L2(Ω), consider

Σn,M (D) =

{ n∑
i=1

ai hi , hi ∈ D,
n∑

i=1

|ai | ≤ M

}
(10)

Let M <∞ be fixed and consider approximation as n→∞.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 16 / 58

Stable Neural Network Approximation

Consider approximation from the class

Σσn,M :=

{ n∑
i=1

aiσ(ωi · x + bi), ωi ∈ Rd , bi ∈ R,
n∑

i=1

|ai | ≤ M

}
(9)

of neural networks with `1-bounded outer coefficients.

More generally for a dictionary D ⊂ H = L2(Ω), consider

Σn,M (D) =

{ n∑
i=1

ai hi , hi ∈ D,
n∑

i=1

|ai | ≤ M

}
(10)

Let M <∞ be fixed and consider approximation as n→∞.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 16 / 58

Stable Dictionary Approximation Space
Siegel & Xu, 20212:

Define a closed convex hull of ±D:

B1(D) =


n∑

j=1

aj hj : n ∈ N, hj ∈ D,
n∑

i=1

|ai | ≤ 1

, (11)

Define a norm
‖f‖K1(D) = inf{r > 0 : f ∈ rB1(D)}, (12)

as the guage of the set B1(D).

The unit ball is
{f ∈ H : ‖f‖K1(D) ≤ 1} = B1(D). (13)

We have
{f ∈ H : ‖f‖K1(D) <∞} (14)

is a Banach space.

2Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 17 / 58

Stable Dictionary Approximation Space
Siegel & Xu, 20212:

Define a closed convex hull of ±D:

B1(D) =


n∑

j=1

aj hj : n ∈ N, hj ∈ D,
n∑

i=1

|ai | ≤ 1

, (11)

Define a norm
‖f‖K1(D) = inf{r > 0 : f ∈ rB1(D)}, (12)

as the guage of the set B1(D).

The unit ball is
{f ∈ H : ‖f‖K1(D) ≤ 1} = B1(D). (13)

We have
{f ∈ H : ‖f‖K1(D) <∞} (14)

is a Banach space.

2Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 17 / 58

Stable Dictionary Approximation Space
Siegel & Xu, 20212:

Define a closed convex hull of ±D:

B1(D) =


n∑

j=1

aj hj : n ∈ N, hj ∈ D,
n∑

i=1

|ai | ≤ 1

, (11)

Define a norm
‖f‖K1(D) = inf{r > 0 : f ∈ rB1(D)}, (12)

as the guage of the set B1(D).

The unit ball is
{f ∈ H : ‖f‖K1(D) ≤ 1} = B1(D). (13)

We have
{f ∈ H : ‖f‖K1(D) <∞} (14)

is a Banach space.

2Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 17 / 58

Stable Dictionary Approximation Space
Siegel & Xu, 20212:

Define a closed convex hull of ±D:

B1(D) =


n∑

j=1

aj hj : n ∈ N, hj ∈ D,
n∑

i=1

|ai | ≤ 1

, (11)

Define a norm
‖f‖K1(D) = inf{r > 0 : f ∈ rB1(D)}, (12)

as the guage of the set B1(D).

The unit ball is
{f ∈ H : ‖f‖K1(D) ≤ 1} = B1(D). (13)

We have
{f ∈ H : ‖f‖K1(D) <∞} (14)

is a Banach space.

2Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 17 / 58

Example: H = `2

Let H = `2, D = {e1, e2,}.
What is B1(D)?

The convex hull of ±D is

B1(D) = {(a1, a2, ...) ∈ `2 :
∞∑
i=1

|ai | ≤ 1} (15)

Thus the norm is given by
K1(D) = `1 ⊂ `2. (16)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 18 / 58

Example: H = `2

Let H = `2, D = {e1, e2,}.
What is B1(D)?

The convex hull of ±D is

B1(D) = {(a1, a2, ...) ∈ `2 :
∞∑
i=1

|ai | ≤ 1} (15)

Thus the norm is given by
K1(D) = `1 ⊂ `2. (16)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 18 / 58

Example: H = `2

Let H = `2, D = {e1, e2,}.
What is B1(D)?

The convex hull of ±D is

B1(D) = {(a1, a2, ...) ∈ `2 :
∞∑
i=1

|ai | ≤ 1} (15)

Thus the norm is given by
K1(D) = `1 ⊂ `2. (16)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 18 / 58

Stable Dictionary Approximation Space

Theorem (Siegel & Xu 2021)
A function f ∈ H = L2(Ω) can be approximated at all, i.e.

lim
n→∞

inf
fn∈Σn,M (D)

‖f − fn‖H = 0, (17)

for a fixed M <∞ if and only if
f ∈ MB1(D) ⊂ K1(D).

Furthermore, if
‖D‖ ≡ sup

h∈D
‖h‖H <∞

we have
inf

fn∈Σn,M (D)
‖f − fn‖H ≤ n−

1
2 ‖D‖‖f‖K1(D). (18)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 19 / 58

Stable Dictionary Approximation Space

Theorem (Siegel & Xu 2021)
A function f ∈ H = L2(Ω) can be approximated at all, i.e.

lim
n→∞

inf
fn∈Σn,M (D)

‖f − fn‖H = 0, (17)

for a fixed M <∞ if and only if
f ∈ MB1(D) ⊂ K1(D).

Furthermore, if
‖D‖ ≡ sup

h∈D
‖h‖H <∞

we have
inf

fn∈Σn,M (D)
‖f − fn‖H ≤ n−

1
2 ‖D‖‖f‖K1(D). (18)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 19 / 58

The Spectral Barron Space

Let f ∈ B1(D), H = L2(Ω), Ω = Bd
1 = {x ∈ Rd : |x | ≤ 1}, and

D = Fd
s := {(1 + |ω|)−se2πiω·x : ω ∈ Rd} (19)

In this case the norm is characterized by3

‖f‖K1(Fd
s) = inf

fe|Bd
1

=f

∫
Rd

(1 + |ξ|)s |̂fe(ξ)|dξ, (20)

where the infimum is taken over all extensions fe ∈ L1(Rd).

Property:
Hs+ d

2 +ε(Ω) ↪→ Bs(Ω) ↪→ W s,∞(Ω). (21)

3Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 20 / 58

The Spectral Barron Space

Let f ∈ B1(D), H = L2(Ω), Ω = Bd
1 = {x ∈ Rd : |x | ≤ 1}, and

D = Fd
s := {(1 + |ω|)−se2πiω·x : ω ∈ Rd} (19)

In this case the norm is characterized by3

‖f‖K1(Fd
s) = inf

fe|Bd
1

=f

∫
Rd

(1 + |ξ|)s |̂fe(ξ)|dξ, (20)

where the infimum is taken over all extensions fe ∈ L1(Rd).

Property:
Hs+ d

2 +ε(Ω) ↪→ Bs(Ω) ↪→ W s,∞(Ω). (21)

3Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 20 / 58

The Spectral Barron Space

Let f ∈ B1(D), H = L2(Ω), Ω = Bd
1 = {x ∈ Rd : |x | ≤ 1}, and

D = Fd
s := {(1 + |ω|)−se2πiω·x : ω ∈ Rd} (19)

In this case the norm is characterized by3

‖f‖K1(Fd
s) = inf

fe|Bd
1

=f

∫
Rd

(1 + |ξ|)s |̂fe(ξ)|dξ, (20)

where the infimum is taken over all extensions fe ∈ L1(Rd).

Property:
Hs+ d

2 +ε(Ω) ↪→ Bs(Ω) ↪→ W s,∞(Ω). (21)

3Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 20 / 58

The Barron Space

The results are proved in Siegel and Xu 20214

Let H = L2(Ω), Ω = Bd
1 = {x ∈ Rd : |x | ≤ 1}, and

D = Pd
k := {σk (ω · x + b) : ω ∈ Sd−1, b ∈ [−2, 2]}, (22)

where σk = [max(0, x)]k .

When k = 1, K1(Pd
k) is equivalentto the Barron space (introduced in5).

When k = 0, d = 1, K1(Pd
k) = BV ([−1, 1]).

We haveK1(Pd
k) ⊃ K1(Fd

k+1) (for k = 0, Barron 19936)

4Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.
5W. E, Chao Ma, and Lei Wu. “Barron spaces and the compositional function spaces for neural network models”. In: arXiv

preprint arXiv:1906.08039 (2019).
6Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: IEEE Transactions on

Information theory 39.3 (1993), pp. 930–945.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 21 / 58

The Barron Space

The results are proved in Siegel and Xu 20214

Let H = L2(Ω), Ω = Bd
1 = {x ∈ Rd : |x | ≤ 1}, and

D = Pd
k := {σk (ω · x + b) : ω ∈ Sd−1, b ∈ [−2, 2]}, (22)

where σk = [max(0, x)]k .

When k = 1, K1(Pd
k) is equivalentto the Barron space (introduced in5).

When k = 0, d = 1, K1(Pd
k) = BV ([−1, 1]).

We haveK1(Pd
k) ⊃ K1(Fd

k+1) (for k = 0, Barron 19936)

4Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.
5W. E, Chao Ma, and Lei Wu. “Barron spaces and the compositional function spaces for neural network models”. In: arXiv

preprint arXiv:1906.08039 (2019).
6Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: IEEE Transactions on

Information theory 39.3 (1993), pp. 930–945.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 21 / 58

The Barron Space

The results are proved in Siegel and Xu 20214

Let H = L2(Ω), Ω = Bd
1 = {x ∈ Rd : |x | ≤ 1}, and

D = Pd
k := {σk (ω · x + b) : ω ∈ Sd−1, b ∈ [−2, 2]}, (22)

where σk = [max(0, x)]k .

When k = 1, K1(Pd
k) is equivalentto the Barron space (introduced in5).

When k = 0, d = 1, K1(Pd
k) = BV ([−1, 1]).

We haveK1(Pd
k) ⊃ K1(Fd

k+1) (for k = 0, Barron 19936)

4Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.
5W. E, Chao Ma, and Lei Wu. “Barron spaces and the compositional function spaces for neural network models”. In: arXiv

preprint arXiv:1906.08039 (2019).
6Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: IEEE Transactions on

Information theory 39.3 (1993), pp. 930–945.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 21 / 58

The Barron Space

The results are proved in Siegel and Xu 20214

Let H = L2(Ω), Ω = Bd
1 = {x ∈ Rd : |x | ≤ 1}, and

D = Pd
k := {σk (ω · x + b) : ω ∈ Sd−1, b ∈ [−2, 2]}, (22)

where σk = [max(0, x)]k .

When k = 1, K1(Pd
k) is equivalentto the Barron space (introduced in5).

When k = 0, d = 1, K1(Pd
k) = BV ([−1, 1]).

We haveK1(Pd
k) ⊃ K1(Fd

k+1) (for k = 0, Barron 19936)

4Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.
5W. E, Chao Ma, and Lei Wu. “Barron spaces and the compositional function spaces for neural network models”. In: arXiv

preprint arXiv:1906.08039 (2019).
6Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: IEEE Transactions on

Information theory 39.3 (1993), pp. 930–945.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 21 / 58

Previous State-of-the-art Results

For some dictionaries D, the n−
1
2 approximation rate can be improved!

For D = Pd
0 , we have7

sup
f∈B1(D)

inf
fn∈Σn,M

‖f − fn‖L2(Bd
1) . n−

1
2−

1
2d . (23)

For D = Pd
k for k ≥ 1, we have8,9, if f is in some spectral Barron space:

inf
fn∈Σn,M

‖f − fn‖L2(Bd
1) . n−

1
2−

1
d . (24)

What are the optimal approximation rates?

7Yuly Makovoz. “Random approximants and neural networks”. In: Journal of Approximation Theory 85.1 (1996), pp. 98–109.
8Jason M Klusowski and Andrew R Barron. “Approximation by Combinations of ReLU and Squared ReLU Ridge Functions

With `1 and `0 Controls”. In: IEEE Transactions on Information Theory 64.12 (2018), pp. 7649–7656.
9Jinchao Xu. “Finite Neuron Method and Convergence Analysis”. In: Communications in Computational Physics 28.5 (2020),

pp. 1707–1745.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 22 / 58

Previous State-of-the-art Results

For some dictionaries D, the n−
1
2 approximation rate can be improved!

For D = Pd
0 , we have7

sup
f∈B1(D)

inf
fn∈Σn,M

‖f − fn‖L2(Bd
1) . n−

1
2−

1
2d . (23)

For D = Pd
k for k ≥ 1, we have8,9, if f is in some spectral Barron space:

inf
fn∈Σn,M

‖f − fn‖L2(Bd
1) . n−

1
2−

1
d . (24)

What are the optimal approximation rates?

7Yuly Makovoz. “Random approximants and neural networks”. In: Journal of Approximation Theory 85.1 (1996), pp. 98–109.
8Jason M Klusowski and Andrew R Barron. “Approximation by Combinations of ReLU and Squared ReLU Ridge Functions

With `1 and `0 Controls”. In: IEEE Transactions on Information Theory 64.12 (2018), pp. 7649–7656.
9Jinchao Xu. “Finite Neuron Method and Convergence Analysis”. In: Communications in Computational Physics 28.5 (2020),

pp. 1707–1745.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 22 / 58

New Optimal Bounds10

Theorem
For D = Pd

k for k ≥ 1, we have

n−
1
2−

2k+1
2d . sup

f∈B1(D)
inf

fn∈Σn,M
‖f − fn‖L2(Ω) . n−

1
2−

2k+1
2d (25)

In comparison: optimal bound for finite elements

Theorem
Assume that V k

h is a finite element of degree k on quasi-uniform mesh {Th} of O(N) elements.
Assume u is sufficiently smooth and not piecewise polynomials, then we have

c(u)n−
k
d ≤ inf

vh∈V k
h

‖u − vh‖L2(Ω) ≤ C(u)n−
k
d = O(hk). (26)

Ref: Q. Lin, H. Xie and J. Xu , Lower Bounds of the Discretization Error for Piecewise
Polynomials, Math. Comp., 83, 1-13 (2014)

10Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 23 / 58

New Optimal Bounds10

Theorem
For D = Pd

k for k ≥ 1, we have

n−
1
2−

2k+1
2d . sup

f∈B1(D)
inf

fn∈Σn,M
‖f − fn‖L2(Ω) . n−

1
2−

2k+1
2d (25)

In comparison: optimal bound for finite elements

Theorem
Assume that V k

h is a finite element of degree k on quasi-uniform mesh {Th} of O(N) elements.
Assume u is sufficiently smooth and not piecewise polynomials, then we have

c(u)n−
k
d ≤ inf

vh∈V k
h

‖u − vh‖L2(Ω) ≤ C(u)n−
k
d = O(hk). (26)

Ref: Q. Lin, H. Xie and J. Xu , Lower Bounds of the Discretization Error for Piecewise
Polynomials, Math. Comp., 83, 1-13 (2014)

10Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 23 / 58

Removing12 the constraint that
∑n

i=1 |ai | ≤ M
Define

Σk
n :=

{ n∑
i=1

aiσk (ωi · x + bi), ωi ∈ Rd , bi ∈ R,

}
(27)

Theorem (Siegel and Xu)

inf
fn∈Σk

n

‖f − fn‖Ω .

{
n−

1
2 ‖f‖K1(Fd

s) if s = 1
2

n−(k+1) log n ‖f‖K1(Fd
s) for some s > 1

(28)

Improves result of Barron11 by relaxing condition on f

Shows that very high order approximation rates can be attained with sufficient smoothness

Comparison with FEM:

inf
w∈V k

n (NN)
‖u − w‖ ≈

{
inf

v∈V k
n (FE)

‖u − v‖
}d

.

11Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: IEEE Transactions on
Information theory 39.3 (1993), pp. 930–945.

12Jonathan W Siegel and Jinchao Xu. “High-Order Approximation Rates for Neural Networks with ReLUk Activation Functions”.
In: arXiv preprint arXiv:2012.07205 (2020).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 24 / 58

Removing12 the constraint that
∑n

i=1 |ai | ≤ M
Define

Σk
n :=

{ n∑
i=1

aiσk (ωi · x + bi), ωi ∈ Rd , bi ∈ R,

}
(27)

Theorem (Siegel and Xu)

inf
fn∈Σk

n

‖f − fn‖Ω .

{
n−

1
2 ‖f‖K1(Fd

s) if s = 1
2

n−(k+1) log n ‖f‖K1(Fd
s) for some s > 1

(28)

Improves result of Barron11 by relaxing condition on f

Shows that very high order approximation rates can be attained with sufficient smoothness

Comparison with FEM:

inf
w∈V k

n (NN)
‖u − w‖ ≈

{
inf

v∈V k
n (FE)

‖u − v‖
}d

.

11Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: IEEE Transactions on
Information theory 39.3 (1993), pp. 930–945.

12Jonathan W Siegel and Jinchao Xu. “High-Order Approximation Rates for Neural Networks with ReLUk Activation Functions”.
In: arXiv preprint arXiv:2012.07205 (2020).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 24 / 58

Removing12 the constraint that
∑n

i=1 |ai | ≤ M
Define

Σk
n :=

{ n∑
i=1

aiσk (ωi · x + bi), ωi ∈ Rd , bi ∈ R,

}
(27)

Theorem (Siegel and Xu)

inf
fn∈Σk

n

‖f − fn‖Ω .

{
n−

1
2 ‖f‖K1(Fd

s) if s = 1
2

n−(k+1) log n ‖f‖K1(Fd
s) for some s > 1

(28)

Improves result of Barron11 by relaxing condition on f

Shows that very high order approximation rates can be attained with sufficient smoothness

Comparison with FEM:

inf
w∈V k

n (NN)
‖u − w‖ ≈

{
inf

v∈V k
n (FE)

‖u − v‖
}d

.

11Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: IEEE Transactions on
Information theory 39.3 (1993), pp. 930–945.

12Jonathan W Siegel and Jinchao Xu. “High-Order Approximation Rates for Neural Networks with ReLUk Activation Functions”.
In: arXiv preprint arXiv:2012.07205 (2020).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 24 / 58

1 Finite element methods and neural networks

2 Approximation properties

3 Application to elliptic boundary value problems

4 Numerical experiments

5 Summary and Further Research

J. Xu (PSU) Numerical Neural Networks June 14, 2021 25 / 58

Model problem
(for any d ≥ 1,m ≥ 1)

Given Ω ⊂ Rd , consider a 2m-th order elliptic problems∑
|α|=m

(−1)m∂α(aα(x) ∂α u) + u = f in Ω.

Special cases:
−∆u = f (m = 1), ∆2u = f (m = 2).

Open Problem: For any m, d ≥ 1, how to construct conforming finite element space

Vh ⊂ Hm(Ω)⇐⇒ Vh ⊂ Cm−1(Ω)?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 26 / 58

Model problem
(for any d ≥ 1,m ≥ 1)

Given Ω ⊂ Rd , consider a 2m-th order elliptic problems∑
|α|=m

(−1)m∂α(aα(x) ∂α u) + u = f in Ω.

Special cases:

−∆u = f (m = 1), ∆2u = f (m = 2).

Open Problem: For any m, d ≥ 1, how to construct conforming finite element space

Vh ⊂ Hm(Ω)⇐⇒ Vh ⊂ Cm−1(Ω)?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 26 / 58

Model problem
(for any d ≥ 1,m ≥ 1)

Given Ω ⊂ Rd , consider a 2m-th order elliptic problems∑
|α|=m

(−1)m∂α(aα(x) ∂α u) + u = f in Ω.

Special cases:
−∆u = f (m = 1),

∆2u = f (m = 2).

Open Problem: For any m, d ≥ 1, how to construct conforming finite element space

Vh ⊂ Hm(Ω)⇐⇒ Vh ⊂ Cm−1(Ω)?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 26 / 58

Model problem
(for any d ≥ 1,m ≥ 1)

Given Ω ⊂ Rd , consider a 2m-th order elliptic problems∑
|α|=m

(−1)m∂α(aα(x) ∂α u) + u = f in Ω.

Special cases:
−∆u = f (m = 1), ∆2u = f (m = 2).

Open Problem: For any m, d ≥ 1, how to construct conforming finite element space

Vh ⊂ Hm(Ω)⇐⇒ Vh ⊂ Cm−1(Ω)?

J. Xu (PSU) Numerical Neural Networks June 14, 2021 26 / 58

Nonconforming finite element method

Variational “crime”:
Vh * V

Bilinear form (with piecewise derivatives: ∂αh vh)

ah(uh, vh) :=
∑
|α|=m

∑
K∈Th

(aα∂αuh, ∂
αvh)0,K + (uh, vh).

Find uh ∈ Vh such that
ah(uh, vh) = (f , vh) ∀vh ∈ Vh.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 27 / 58

Nonconforming finite element method

Variational “crime”:
Vh * V

Bilinear form (with piecewise derivatives: ∂αh vh)

ah(uh, vh) :=
∑
|α|=m

∑
K∈Th

(aα∂αuh, ∂
αvh)0,K + (uh, vh).

Find uh ∈ Vh such that
ah(uh, vh) = (f , vh) ∀vh ∈ Vh.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 27 / 58

Nonconforming finite element method

Variational “crime”:
Vh * V

Bilinear form (with piecewise derivatives: ∂αh vh)

ah(uh, vh) :=
∑
|α|=m

∑
K∈Th

(aα∂αuh, ∂
αvh)0,K + (uh, vh).

Find uh ∈ Vh such that
ah(uh, vh) = (f , vh) ∀vh ∈ Vh.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 27 / 58

Nonconforming finite element method

Variational “crime”:
Vh * V

Bilinear form (with piecewise derivatives: ∂αh vh)

ah(uh, vh) :=
∑
|α|=m

∑
K∈Th

(aα∂αuh, ∂
αvh)0,K + (uh, vh).

Find uh ∈ Vh such that
ah(uh, vh) = (f , vh) ∀vh ∈ Vh.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 27 / 58

Lowest order Pm nonconforming and DG with minimal stabilization
Universal construction

m\d 1 2 3

0

1

2

3

4

References:

1 m ≤ d : Wang, and Xu, 2013
I Minimal finite element spaces for

2m-th-order partial differential
equations inRn , Mathematics of
Computation. 82, 25-43, 2013.

2 m > d : Wu, and Xu 2017-2020
I Pm interior penalty nonconforming

finite element methods for 2m-th
Order PDEs in Rn ,
arXiv:1710.07678.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 28 / 58

Lowest order Pm nonconforming and DG with minimal stabilization
Universal construction

m\d 1 2 3

0

1

2

3

4

References:

1 m ≤ d : Wang, and Xu, 2013
I Minimal finite element spaces for

2m-th-order partial differential
equations inRn , Mathematics of
Computation. 82, 25-43, 2013.

2 m > d : Wu, and Xu 2017-2020
I Pm interior penalty nonconforming

finite element methods for 2m-th
Order PDEs in Rn ,
arXiv:1710.07678.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 28 / 58

Lowest order Pm nonconforming and DG with minimal stabilization
Universal construction

m\d 1 2 3

0

1

2

3

4

References:

1 m ≤ d : Wang, and Xu, 2013
I Minimal finite element spaces for

2m-th-order partial differential
equations inRn , Mathematics of
Computation. 82, 25-43, 2013.

2 m > d : Wu, and Xu 2017-2020
I Pm interior penalty nonconforming

finite element methods for 2m-th
Order PDEs in Rn ,
arXiv:1710.07678.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 28 / 58

Example: n = d = 2, m = 3
DOF at different levels:

= +

level 1 level 0

The highest level (l = 1): preserve the crucial property∫
F

[∇m−1u] = 0.

NO weak continuity for the point value⇒ interior-element-boundary penalty

(∇3
huh,∇3

hvh) + η
∑

e∈Eh

h−5
e

∫
e
JuhK · JvhK = (f , vh) ∀vh ∈ Vh.

(Arnold 1982)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 29 / 58

On the construction of smooth FEM

Question: For any m, d ≥ 1, how to construct conforming finite element space

Vh ⊂ Hm(Ω)⇐⇒ Vh ⊂ Cm−1(Ω)?

Refs: Argyris et al., (1968); Bramble & Zlámal, (1970); Zhang (2009); Hu & Zhang (2015);
Fu, Guzmán & Neilan (2020).

Answer: mostly open, especially when m ≥ 3, d ≥ 3 until recently (2021)

.

Theorem (Hu, Lin, & Wu 2021, ArXiv: 2103.14924))
For any d ≥ 1, r ≥ 0, a globally Cr finite element of degree k ≥ 2d r + 1 can be constructed on
any simplicial mesh with locally defined DOF.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 30 / 58

On the construction of smooth FEM

Question: For any m, d ≥ 1, how to construct conforming finite element space

Vh ⊂ Hm(Ω)⇐⇒ Vh ⊂ Cm−1(Ω)?

Refs: Argyris et al., (1968); Bramble & Zlámal, (1970); Zhang (2009); Hu & Zhang (2015);
Fu, Guzmán & Neilan (2020).

Answer: mostly open, especially when m ≥ 3, d ≥ 3 until recently (2021)

.

Theorem (Hu, Lin, & Wu 2021, ArXiv: 2103.14924))
For any d ≥ 1, r ≥ 0, a globally Cr finite element of degree k ≥ 2d r + 1 can be constructed on
any simplicial mesh with locally defined DOF.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 30 / 58

On the construction of smooth FEM

Question: For any m, d ≥ 1, how to construct conforming finite element space

Vh ⊂ Hm(Ω)⇐⇒ Vh ⊂ Cm−1(Ω)?

Refs: Argyris et al., (1968); Bramble & Zlámal, (1970); Zhang (2009); Hu & Zhang (2015);
Fu, Guzmán & Neilan (2020).

Answer: mostly open, especially when m ≥ 3, d ≥ 3 until recently (2021)

.

Theorem (Hu, Lin, & Wu 2021, ArXiv: 2103.14924))
For any d ≥ 1, r ≥ 0, a globally Cr finite element of degree k ≥ 2d r + 1 can be constructed on
any simplicial mesh with locally defined DOF.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 30 / 58

Conforming elements by neural network: V k
n ⊂ Hm(Ω)

Definition:

V k
n =

{ n∑
i=1

ai (wi x + bi)
k
+,wi ∈ R1×d , ai , bi ∈ R1

}

where

x+ = max(0, x) = ReLU(x)

Properties:
1 Conforming for any m, d ≥ 1 if k ≥ m:

V k
n ⊂ Hk (Ω) ⊂ Hm(Ω)

2 Piecewise polynomials of degree k in the following grids

J. Xu (PSU) Numerical Neural Networks June 14, 2021 31 / 58

Conforming elements by neural network: V k
n ⊂ Hm(Ω)

Definition:

V k
n =

{ n∑
i=1

ai (wi x + bi)
k
+,wi ∈ R1×d , ai , bi ∈ R1

}
where

x+ = max(0, x) = ReLU(x)

Properties:
1 Conforming for any m, d ≥ 1 if k ≥ m:

V k
n ⊂ Hk (Ω) ⊂ Hm(Ω)

2 Piecewise polynomials of degree k in the following grids

J. Xu (PSU) Numerical Neural Networks June 14, 2021 31 / 58

Conforming elements by neural network: V k
n ⊂ Hm(Ω)

Definition:

V k
n =

{ n∑
i=1

ai (wi x + bi)
k
+,wi ∈ R1×d , ai , bi ∈ R1

}
where

x+ = max(0, x) = ReLU(x)

Properties:
1 Conforming for any m, d ≥ 1 if k ≥ m:

V k
n ⊂ Hk (Ω) ⊂ Hm(Ω)

2 Piecewise polynomials of degree k in the following grids

J. Xu (PSU) Numerical Neural Networks June 14, 2021 31 / 58

Conforming elements by neural network: V k
n ⊂ Hm(Ω)

Definition:

V k
n =

{ n∑
i=1

ai (wi x + bi)
k
+,wi ∈ R1×d , ai , bi ∈ R1

}
where

x+ = max(0, x) = ReLU(x)

Properties:
1 Conforming for any m, d ≥ 1 if k ≥ m:

V k
n ⊂ Hk (Ω) ⊂ Hm(Ω)

2 Piecewise polynomials of degree k in the following grids

J. Xu (PSU) Numerical Neural Networks June 14, 2021 31 / 58

Application to high order PDE in any dimension

Consider {
Lu = f in Ω,

Bk
N (u) = 0, on ∂Ω, 0 ≤ k ≤ m − 1.

(29)

⇐⇒ Find u ∈ V = Hm(Ω) such that

J(u) = min
v∈V

J(v) (30)

where
J(v) =

1
2

∫
Ω

∑
|α|=m

aα|∂αv |2 + v2dx − (f , v). (31)

NN-FEM:Find un ∈ V k
n as follows:

J(un) = min
v∈V k

n

J(v). (32)

Theorem: ‖u − un‖a = inf
vn∈V k

n

‖u − vn‖a = O(nm−(k+1) log n). (33)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 32 / 58

Application to high order PDE in any dimension

Consider {
Lu = f in Ω,

Bk
N (u) = 0, on ∂Ω, 0 ≤ k ≤ m − 1.

(29)

⇐⇒ Find u ∈ V = Hm(Ω) such that

J(u) = min
v∈V

J(v) (30)

where
J(v) =

1
2

∫
Ω

∑
|α|=m

aα|∂αv |2 + v2dx − (f , v). (31)

NN-FEM:Find un ∈ V k
n as follows:

J(un) = min
v∈V k

n

J(v). (32)

Theorem: ‖u − un‖a = inf
vn∈V k

n

‖u − vn‖a = O(nm−(k+1) log n). (33)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 32 / 58

Application to high order PDE in any dimension

Consider {
Lu = f in Ω,

Bk
N (u) = 0, on ∂Ω, 0 ≤ k ≤ m − 1.

(29)

⇐⇒ Find u ∈ V = Hm(Ω) such that

J(u) = min
v∈V

J(v) (30)

where
J(v) =

1
2

∫
Ω

∑
|α|=m

aα|∂αv |2 + v2dx − (f , v). (31)

NN-FEM:

Find un ∈ V k
n as follows:

J(un) = min
v∈V k

n

J(v). (32)

Theorem: ‖u − un‖a = inf
vn∈V k

n

‖u − vn‖a = O(nm−(k+1) log n). (33)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 32 / 58

Application to high order PDE in any dimension

Consider {
Lu = f in Ω,

Bk
N (u) = 0, on ∂Ω, 0 ≤ k ≤ m − 1.

(29)

⇐⇒ Find u ∈ V = Hm(Ω) such that

J(u) = min
v∈V

J(v) (30)

where
J(v) =

1
2

∫
Ω

∑
|α|=m

aα|∂αv |2 + v2dx − (f , v). (31)

NN-FEM:Find un ∈ V k
n as follows:

J(un) = min
v∈V k

n

J(v). (32)

Theorem: ‖u − un‖a = inf
vn∈V k

n

‖u − vn‖a = O(nm−(k+1) log n). (33)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 32 / 58

Application to high order PDE in any dimension

Consider {
Lu = f in Ω,

Bk
N (u) = 0, on ∂Ω, 0 ≤ k ≤ m − 1.

(29)

⇐⇒ Find u ∈ V = Hm(Ω) such that

J(u) = min
v∈V

J(v) (30)

where
J(v) =

1
2

∫
Ω

∑
|α|=m

aα|∂αv |2 + v2dx − (f , v). (31)

NN-FEM:Find un ∈ V k
n as follows:

J(un) = min
v∈V k

n

J(v). (32)

Theorem: ‖u − un‖a = inf
vn∈V k

n

‖u − vn‖a

= O(nm−(k+1) log n). (33)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 32 / 58

Application to high order PDE in any dimension

Consider {
Lu = f in Ω,

Bk
N (u) = 0, on ∂Ω, 0 ≤ k ≤ m − 1.

(29)

⇐⇒ Find u ∈ V = Hm(Ω) such that

J(u) = min
v∈V

J(v) (30)

where
J(v) =

1
2

∫
Ω

∑
|α|=m

aα|∂αv |2 + v2dx − (f , v). (31)

NN-FEM:Find un ∈ V k
n as follows:

J(un) = min
v∈V k

n

J(v). (32)

Theorem: ‖u − un‖a = inf
vn∈V k

n

‖u − vn‖a = O(nm−(k+1) log n). (33)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 32 / 58

Superconvergence (?) property

For d = 2,m = 1, consider
∆2u = f .

1 k = 2
I Morley: ‖u − un‖2,h = O(h1) = O(n−

1
2).

I NN-FEM: ‖u − un‖2 = O(h2) = O(n−1).

2 k = 5
I Argyris: ‖u − uh‖2 = O(h4) = O(n−2).
I NN-FEM: ‖u − un‖2 = O(h8) = O(n−4).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 33 / 58

Superconvergence (?) property

For d = 2,m = 1, consider
∆2u = f .

1 k = 2
I Morley: ‖u − un‖2,h = O(h1) = O(n−

1
2).

I NN-FEM: ‖u − un‖2 = O(h2) = O(n−1).

2 k = 5
I Argyris: ‖u − uh‖2 = O(h4) = O(n−2).
I NN-FEM: ‖u − un‖2 = O(h8) = O(n−4).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 33 / 58

Superconvergence (?) property

For d = 2,m = 1, consider
∆2u = f .

1 k = 2
I Morley: ‖u − un‖2,h = O(h1) = O(n−

1
2).

I NN-FEM: ‖u − un‖2 = O(h2) = O(n−1).

2 k = 5
I Argyris: ‖u − uh‖2 = O(h4) = O(n−2).
I NN-FEM: ‖u − un‖2 = O(h8) = O(n−4).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 33 / 58

Superconvergence (?) property

For d = 2,m = 1, consider
∆2u = f .

1 k = 2
I Morley: ‖u − un‖2,h = O(h1) = O(n−

1
2).

I NN-FEM: ‖u − un‖2 = O(h2) = O(n−1).

2 k = 5
I Argyris: ‖u − uh‖2 = O(h4) = O(n−2).

I NN-FEM: ‖u − un‖2 = O(h8) = O(n−4).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 33 / 58

Superconvergence (?) property

For d = 2,m = 1, consider
∆2u = f .

1 k = 2
I Morley: ‖u − un‖2,h = O(h1) = O(n−

1
2).

I NN-FEM: ‖u − un‖2 = O(h2) = O(n−1).

2 k = 5
I Argyris: ‖u − uh‖2 = O(h4) = O(n−2).
I NN-FEM: ‖u − un‖2 = O(h8) = O(n−4).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 33 / 58

Properties of [ReLU]k -DNN`

1 Piecewise polynomials on "curved" elements
2 Best possible error estimate O(nm−(k+1) log n)

3 If k ≥ 2, we have spectral accuracy for smooth solution as ` increase.

4 Possible multi-scale adaptivity features (?):
I local singularity.
I global smoothness

J. Xu (PSU) Numerical Neural Networks June 14, 2021 34 / 58

Properties of [ReLU]k -DNN`

1 Piecewise polynomials on "curved" elements

2 Best possible error estimate O(nm−(k+1) log n)

3 If k ≥ 2, we have spectral accuracy for smooth solution as ` increase.

4 Possible multi-scale adaptivity features (?):
I local singularity.
I global smoothness

J. Xu (PSU) Numerical Neural Networks June 14, 2021 34 / 58

Properties of [ReLU]k -DNN`

1 Piecewise polynomials on "curved" elements
2 Best possible error estimate O(nm−(k+1) log n)

3 If k ≥ 2, we have spectral accuracy for smooth solution as ` increase.

4 Possible multi-scale adaptivity features (?):
I local singularity.
I global smoothness

J. Xu (PSU) Numerical Neural Networks June 14, 2021 34 / 58

Properties of [ReLU]k -DNN`

1 Piecewise polynomials on "curved" elements
2 Best possible error estimate O(nm−(k+1) log n)

3 If k ≥ 2, we have spectral accuracy for smooth solution as ` increase.

4 Possible multi-scale adaptivity features (?):
I local singularity.
I global smoothness

J. Xu (PSU) Numerical Neural Networks June 14, 2021 34 / 58

Properties of [ReLU]k -DNN`

1 Piecewise polynomials on "curved" elements
2 Best possible error estimate O(nm−(k+1) log n)

3 If k ≥ 2, we have spectral accuracy for smooth solution as ` increase.

4 Possible multi-scale adaptivity features (?):
I local singularity.
I global smoothness

J. Xu (PSU) Numerical Neural Networks June 14, 2021 34 / 58

Some challenges

Discretization of the integral in J(u), i.e. how do we evaluate∫
Ω
|∇u(x)|2dx −

∫
Ω

f (x)u(x)dx? (34)

How to analyze the convergence when numerical quadratures are used?

Optimization of the discrete energy, i.e. how can we efficiently solve

min JN (u) (35)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 35 / 58

Some challenges

Discretization of the integral in J(u), i.e. how do we evaluate∫
Ω
|∇u(x)|2dx −

∫
Ω

f (x)u(x)dx? (34)

How to analyze the convergence when numerical quadratures are used?

Optimization of the discrete energy, i.e. how can we efficiently solve

min JN (u) (35)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 35 / 58

Some challenges

Discretization of the integral in J(u), i.e. how do we evaluate∫
Ω
|∇u(x)|2dx −

∫
Ω

f (x)u(x)dx? (34)

How to analyze the convergence when numerical quadratures are used?

Optimization of the discrete energy, i.e. how can we efficiently solve

min JN (u) (35)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 35 / 58

Discretization of the Integral

There are two approaches for discetizing J(u)

Sample points x1, ..., xN uniformly at random from Ω and form

JN (u) =
1
N

N∑
i=1

|∇u(xi)|2 − f (xi)u(xi). (36)

Use a numerical quadrature rule such as Gaussian quadrature

JN (u) =
N∑

i=1

ai (|∇u(xi)|2 − f (xi)u(xi)). (37)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 36 / 58

Discretization of the Integral

There are two approaches for discetizing J(u)

Sample points x1, ..., xN uniformly at random from Ω and form

JN (u) =
1
N

N∑
i=1

|∇u(xi)|2 − f (xi)u(xi). (36)

Use a numerical quadrature rule such as Gaussian quadrature

JN (u) =
N∑

i=1

ai (|∇u(xi)|2 − f (xi)u(xi)). (37)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 36 / 58

Error analysis

Numerical quadrature: for any g(x), N = (k−1)d
2∣∣∣∣∣

∫
Ω

g(x)dx − |Ω|
N∑

i=1

wi g(xi)

∣∣∣∣∣ . N−
r+1

d ‖g‖r,1.

Challenges: how to bound
‖g‖r,1 ≤?, for g ∈ Σσn

OK if the following Bernstein or inverse inequality holds for r > s

‖vn‖r . nβ‖vn‖s, ∀vn ∈ Σk
n . (38)

Many attempts have been made in existing literature

J. Xu (PSU) Numerical Neural Networks June 14, 2021 37 / 58

Bad news: Bernstein inequalty does not hold for NN

Given any ε > 0, consider an NN function with 3 neurons:

u3(x) = ReLU(x −
1
2

+ ε)− 2ReLU(x −
1
2

) + ReLU(x −
1
2
− ε), ∀x ∈ (0, 1).

A direct calculation shows that∫ 1

0
|u′3(x)|2dx = 2ε and

∫ 1

0
|u3(x)|2dx = ε2.

Therefore

|u3|H1 =

√
2
ε
‖u3‖L2 , ∀ε > 0

As a result, the following Bernstein inequality can not hold for any constant13 C(n)

|vn|H1 ≤ C(n)‖vn‖L2 , ∀vn ∈ Σσn

13Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. “A Priori Analysis of Stable Neural Network Solutions to Numerical
PDEs”. In: arXiv preprint arXiv:2104.02903 (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 38 / 58

Our approach

Development and analysis of stable neural network!

J. Xu (PSU) Numerical Neural Networks June 14, 2021 39 / 58

The use of K1(D)

We consider the following variational form of Laplace’s equation with Neumann boundary
conditions

min
v∈H1(Ω)

J(v) :=

∫
Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx . (39)

We solve this problem by restricting

min
‖v‖K1(D)≤M

J(v) :=

∫
Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx , (40)

for some M.

With numerical quadrature

min
‖v‖K1(D)≤M

JN (v) ≈
∫

Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx , (41)

for some M.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 40 / 58

The use of K1(D)

We consider the following variational form of Laplace’s equation with Neumann boundary
conditions

min
v∈H1(Ω)

J(v) :=

∫
Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx . (39)

We solve this problem by restricting

min
‖v‖K1(D)≤M

J(v) :=

∫
Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx , (40)

for some M.

With numerical quadrature

min
‖v‖K1(D)≤M

JN (v) ≈
∫

Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx , (41)

for some M.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 40 / 58

The use of K1(D)

We consider the following variational form of Laplace’s equation with Neumann boundary
conditions

min
v∈H1(Ω)

J(v) :=

∫
Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx . (39)

We solve this problem by restricting

min
‖v‖K1(D)≤M

J(v) :=

∫
Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx , (40)

for some M.

With numerical quadrature

min
‖v‖K1(D)≤M

JN (v) ≈
∫

Ω
|∇v(x)|2dx −

∫
Ω

f (x)v(x)dx , (41)

for some M.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 40 / 58

Uniform Bound on the Error

When using numerical quadrature, we require the dictionary D to satisfy

|D|W k,∞(Ω) := sup
d∈D
‖d‖W k,∞(Ω) ≤ C <∞. (42)

This means that ‖u‖W k,∞(Ω) ≤ C‖u‖K1(D).

So if we use r -th order quadrature, we will get14

|JN (u)− J(u)| . N−
r+1

d , (43)

uniformly on {u : ‖u‖K1(D) ≤ M}.

14Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. “A Priori Analysis of Stable Neural Network Solutions to Numerical
PDEs”. In: arXiv preprint arXiv:2104.02903 (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 41 / 58

Uniform Bound on the Error

When using numerical quadrature, we require the dictionary D to satisfy

|D|W k,∞(Ω) := sup
d∈D
‖d‖W k,∞(Ω) ≤ C <∞. (42)

This means that ‖u‖W k,∞(Ω) ≤ C‖u‖K1(D).

So if we use r -th order quadrature, we will get14

|JN (u)− J(u)| . N−
r+1

d , (43)

uniformly on {u : ‖u‖K1(D) ≤ M}.

14Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. “A Priori Analysis of Stable Neural Network Solutions to Numerical
PDEs”. In: arXiv preprint arXiv:2104.02903 (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 41 / 58

Uniform Bound on the Error (cont.)

The Rademacher complexity of a class of function F on Ω is given by

RN (F) = Ex1,...,xN Eξ1,...,ξN

(
sup
f∈F

1
N

N∑
i=1

ξi f (xi)

)
, (44)

where xi are drawn uniformly at random from Ω and ξi are uniformly random signs.

For Monte Carlo error analysis, we need to assume that

RN (D),RN (∇D) . N−
1
2 . (45)

Then we get15

E

 sup
‖u‖K1(D)≤M

|JN (u)− J(u)|

 . MN−
1
2 . (46)

15Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. “A Priori Analysis of Stable Neural Network Solutions to Numerical
PDEs”. In: arXiv preprint arXiv:2104.02903 (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 42 / 58

Uniform Bound on the Error (cont.)

The Rademacher complexity of a class of function F on Ω is given by

RN (F) = Ex1,...,xN Eξ1,...,ξN

(
sup
f∈F

1
N

N∑
i=1

ξi f (xi)

)
, (44)

where xi are drawn uniformly at random from Ω and ξi are uniformly random signs.

For Monte Carlo error analysis, we need to assume that

RN (D),RN (∇D) . N−
1
2 . (45)

Then we get15

E

 sup
‖u‖K1(D)≤M

|JN (u)− J(u)|

 . MN−
1
2 . (46)

15Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. “A Priori Analysis of Stable Neural Network Solutions to Numerical
PDEs”. In: arXiv preprint arXiv:2104.02903 (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 42 / 58

Orthogonal Greedy Algorithm

The orthogonal greedy algorithm is given by:

Orthogonal greedy algorithm16:

f0 = 0, gk = arg max
g∈D
〈f − fk−1, g〉, fk = Pk f , (47)

where Pk denotes the orthogonal projection onto the space spanned by g1, ..., gk .

There are also the pure greedy and relaxed greedy algorithms

16Ronald A DeVore and Vladimir N Temlyakov. “Some remarks on greedy algorithms”. In: Advances in computational
Mathematics 5.1 (1996), pp. 173–187.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 43 / 58

Orthogonal Greedy Algorithm

The orthogonal greedy algorithm is given by:

Orthogonal greedy algorithm16:

f0 = 0, gk = arg max
g∈D
〈f − fk−1, g〉, fk = Pk f , (47)

where Pk denotes the orthogonal projection onto the space spanned by g1, ..., gk .

There are also the pure greedy and relaxed greedy algorithms

16Ronald A DeVore and Vladimir N Temlyakov. “Some remarks on greedy algorithms”. In: Advances in computational
Mathematics 5.1 (1996), pp. 173–187.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 43 / 58

Convergence Rates of the Orthogonal Greedy
Algorithm

The convergence rates of the orthogonal greedy algorithm is:

Orthogonal greedy algorithm17: O(n−
1
2)

Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries Pd
k or Fd

s ?

Higher order approximation rates are possible!

Can the orthogonal greedy algorithms attain them?

17Ronald A DeVore and Vladimir N Temlyakov. “Some remarks on greedy algorithms”. In: Advances in computational
Mathematics 5.1 (1996), pp. 173–187.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 44 / 58

Convergence Rates of the Orthogonal Greedy
Algorithm

The convergence rates of the orthogonal greedy algorithm is:

Orthogonal greedy algorithm17: O(n−
1
2)

Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries Pd
k or Fd

s ?

Higher order approximation rates are possible!

Can the orthogonal greedy algorithms attain them?

17Ronald A DeVore and Vladimir N Temlyakov. “Some remarks on greedy algorithms”. In: Advances in computational
Mathematics 5.1 (1996), pp. 173–187.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 44 / 58

Convergence Rates of the Orthogonal Greedy
Algorithm

The convergence rates of the orthogonal greedy algorithm is:

Orthogonal greedy algorithm17: O(n−
1
2)

Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries Pd
k or Fd

s ?

Higher order approximation rates are possible!

Can the orthogonal greedy algorithms attain them?

17Ronald A DeVore and Vladimir N Temlyakov. “Some remarks on greedy algorithms”. In: Advances in computational
Mathematics 5.1 (1996), pp. 173–187.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 44 / 58

Convergence Rates of the Orthogonal Greedy
Algorithm

The convergence rates of the orthogonal greedy algorithm is:

Orthogonal greedy algorithm17: O(n−
1
2)

Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries Pd
k or Fd

s ?

Higher order approximation rates are possible!

Can the orthogonal greedy algorithms attain them?

17Ronald A DeVore and Vladimir N Temlyakov. “Some remarks on greedy algorithms”. In: Advances in computational
Mathematics 5.1 (1996), pp. 173–187.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 44 / 58

Convergence Rates of the Orthogonal Greedy
Algorithm

The convergence rates of the orthogonal greedy algorithm is:

Orthogonal greedy algorithm17: O(n−
1
2)

Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries Pd
k or Fd

s ?

Higher order approximation rates are possible!

Can the orthogonal greedy algorithms attain them?

17Ronald A DeVore and Vladimir N Temlyakov. “Some remarks on greedy algorithms”. In: Advances in computational
Mathematics 5.1 (1996), pp. 173–187.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 44 / 58

Convergence Rates of the Orthogonal Greedy
Algorithm

The convergence rates of the orthogonal greedy algorithm is:

Orthogonal greedy algorithm17: O(n−
1
2)

Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries Pd
k or Fd

s ?

Higher order approximation rates are possible!

Can the orthogonal greedy algorithms attain them?

17Ronald A DeVore and Vladimir N Temlyakov. “Some remarks on greedy algorithms”. In: Advances in computational
Mathematics 5.1 (1996), pp. 173–187.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 44 / 58

Convergence Rate of the Orthogonal Greedy
Algorithm18

Theorem
Let the iterates fn be given by the orthogonal greedy algorithm, where f ∈ K1(Pd

k). Then we have

‖fn − f‖ . n−
1
2−

2k+1
2d . (48)

The orthogonal greedy algorithm can train optimal neural networks!

18Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 45 / 58

Optimization of the Discrete Energy: Greedy Algorithm

We solve the optimization problem
min

‖u‖K1(D)≤M
JN (u) (49)

using the following greedy algorithm:

u0 = 0

gk = arg max
g∈D
〈∇JN (uk−1), g〉

uk = (1− sk)uk−1 −Msk g.

(50)

Theorem
‖un‖K1(D) ≤ M for all k and

JN (un)− min
‖u‖K1(D)≤M

JN (u) .
1
n
. (51)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 46 / 58

Optimization of the Discrete Energy: Greedy Algorithm

We solve the optimization problem
min

‖u‖K1(D)≤M
JN (u) (49)

using the following greedy algorithm:

u0 = 0

gk = arg max
g∈D
〈∇JN (uk−1), g〉

uk = (1− sk)uk−1 −Msk g.

(50)

Theorem
‖un‖K1(D) ≤ M for all k and

JN (un)− min
‖u‖K1(D)≤M

JN (u) .
1
n
. (51)

J. Xu (PSU) Numerical Neural Networks June 14, 2021 46 / 58

Main Theorem19

Theorem
Suppose that the dictionary D satisfies supd∈D ‖d‖W 1,∞(Ω) <∞ and the Rademacher
complexity bound

RN (∇D),RN (D) . N−
1
2 . (52)

Assume that the true solution u ∈ K1(D) satisfies ‖u‖K1(D) ≤ M and let the numerical solution
un,M,N ∈ Σn,M (D) be obtained by the greedy algorithm for n steps. Then we have

Ex1,...,xN (J(un,M,N)− J(u)) ≤ M
[
C1(1 + ‖f‖L∞(Ω))N−

1
2 + C2Mn−1

]
. (53)

19Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. “A Priori Analysis of Stable Neural Network Solutions to Numerical
PDEs”. In: arXiv preprint arXiv:2104.02903 (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 47 / 58

Summary of the Method

Need to know M such that the true solution u satisfies ‖u‖K1(D) ≤ M

Choose number of sample points N = Θ(M2ε−1) and number of iterations n = Θ(M2ε−1)

Form the discrete energy JN by randomly sampling points xi :

JN (u) =
N∑

i=1

|∇u(xi)|2 − f (xi)u(xi) (54)

Optimize JN using the relaxed greedy algorithm for n steps

Error will be O(ε)

Next we will present some numerical experiments20

20Wenrui Hao et al. “An efficient training algorithm for neural networks and applications in PDEs”. In: In preparation (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 48 / 58

Summary of the Method

Need to know M such that the true solution u satisfies ‖u‖K1(D) ≤ M

Choose number of sample points N = Θ(M2ε−1) and number of iterations n = Θ(M2ε−1)

Form the discrete energy JN by randomly sampling points xi :

JN (u) =
N∑

i=1

|∇u(xi)|2 − f (xi)u(xi) (54)

Optimize JN using the relaxed greedy algorithm for n steps

Error will be O(ε)

Next we will present some numerical experiments20

20Wenrui Hao et al. “An efficient training algorithm for neural networks and applications in PDEs”. In: In preparation (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 48 / 58

Summary of the Method

Need to know M such that the true solution u satisfies ‖u‖K1(D) ≤ M

Choose number of sample points N = Θ(M2ε−1) and number of iterations n = Θ(M2ε−1)

Form the discrete energy JN by randomly sampling points xi :

JN (u) =
N∑

i=1

|∇u(xi)|2 − f (xi)u(xi) (54)

Optimize JN using the relaxed greedy algorithm for n steps

Error will be O(ε)

Next we will present some numerical experiments20

20Wenrui Hao et al. “An efficient training algorithm for neural networks and applications in PDEs”. In: In preparation (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 48 / 58

Summary of the Method

Need to know M such that the true solution u satisfies ‖u‖K1(D) ≤ M

Choose number of sample points N = Θ(M2ε−1) and number of iterations n = Θ(M2ε−1)

Form the discrete energy JN by randomly sampling points xi :

JN (u) =
N∑

i=1

|∇u(xi)|2 − f (xi)u(xi) (54)

Optimize JN using the relaxed greedy algorithm for n steps

Error will be O(ε)

Next we will present some numerical experiments20

20Wenrui Hao et al. “An efficient training algorithm for neural networks and applications in PDEs”. In: In preparation (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 48 / 58

Summary of the Method

Need to know M such that the true solution u satisfies ‖u‖K1(D) ≤ M

Choose number of sample points N = Θ(M2ε−1) and number of iterations n = Θ(M2ε−1)

Form the discrete energy JN by randomly sampling points xi :

JN (u) =
N∑

i=1

|∇u(xi)|2 − f (xi)u(xi) (54)

Optimize JN using the relaxed greedy algorithm for n steps

Error will be O(ε)

Next we will present some numerical experiments20

20Wenrui Hao et al. “An efficient training algorithm for neural networks and applications in PDEs”. In: In preparation (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 48 / 58

Summary of the Method

Need to know M such that the true solution u satisfies ‖u‖K1(D) ≤ M

Choose number of sample points N = Θ(M2ε−1) and number of iterations n = Θ(M2ε−1)

Form the discrete energy JN by randomly sampling points xi :

JN (u) =
N∑

i=1

|∇u(xi)|2 − f (xi)u(xi) (54)

Optimize JN using the relaxed greedy algorithm for n steps

Error will be O(ε)

Next we will present some numerical experiments20

20Wenrui Hao et al. “An efficient training algorithm for neural networks and applications in PDEs”. In: In preparation (2021).

J. Xu (PSU) Numerical Neural Networks June 14, 2021 48 / 58

1 Finite element methods and neural networks

2 Approximation properties

3 Application to elliptic boundary value problems

4 Numerical experiments

5 Summary and Further Research

J. Xu (PSU) Numerical Neural Networks June 14, 2021 49 / 58

Numerical experiments
Example (2D approximation, OGA)
We consider approximating the following 2D function

f (x , y) = cos(2πx) cos(2πy), (x , y) ∈ (0, 1)2.

By fixing ‖w‖ = 1 and b ∈ [−2, 2], the convergence order of OGA is shown in Table below for
ReLUk neural networks. Theoretical order is shown in parenthesis.

N k = 1 (O(n−1.25)) k = 2 (O(n−1.75)) k = 3 (O(n−2.25))
L2-error order L2-error order L2-error order

2 4.969e-01 - 4.998e-01 - 4.976e-01 -
4 4.883e-01 0.025 4.992e-01 0.002 4.957e-01 0.006
8 2.423e-01 1.011 3.233e-01 0.627 4.193e-01 0.242

16 6.632e-02 1.869 4.911e-02 2.719 1.099e-01 1.932
32 2.206e-02 1.588 1.688e-02 1.541 8.075e-03 3.767
64 1.060e-02 1.058 4.156e-03 2.022 1.149e-03 2.813

128 4.284e-03 1.306 9.773e-04 2.088 2.185e-04 2.395
256 1.703e-03 1.331 2.622e-04 1.898 4.718e-05 2.211

Table: Convergence order of OGA with ReLUk activation function

J. Xu (PSU) Numerical Neural Networks June 14, 2021 50 / 58

Numerical experiments

Example (1D elliptic equation, OGA)
We solve a 1D elliptic equation with the source term f =

(
1 + π2) cos

(
πx
)

on [−1, 1] then the
analytical solution is u(x) = cos

(
πx
)
, x ∈ (−1, 1). The activation function is ReLU2.

N ‖u − uN‖L2 order (n−3) ‖u − uN‖H1 order (n−2)
2 1.312179e+00 - 3.123769e+00 -
4 3.809296e-01 1.78 1.795590e+00 0.80
8 7.900097e-03 5.59 1.239320e-01 3.86

16 6.253874e-04 3.66 2.431156e-02 2.35
32 7.539756e-05 3.05 5.645258e-03 2.11
64 8.098691e-06 3.22 1.351523e-03 2.06

128 9.655067e-07 3.07 3.200813e-04 2.08
256 1.209074e-07 3.00 7.899931e-05 2.02

Table: L2 and H1 numerical error of the numerical solution, uN , where N
denotes the number of basis functions.

J. Xu (PSU) Numerical Neural Networks June 14, 2021 51 / 58

Numerical experiments
Example (Mesh adaptivity in 1D, OGA)
Let Ω = (−1, 1) and K = 0.01. The solution for 1D elliptic equation is taken with three peaks:

u(x) = (1 + x)2(1− x2)

(
0.5 exp

(
−

(x + 0.5)2

K

)
+ exp

(
−

x2

K

)
+ 0.5 exp

(
−

(x − 0.5)2

K

))
.

We illustrate the adaptivity by defining the grid points x = (x1, · · · , xN)T such that w1x + b1 = 0.

Figure: Grid points of a 1-hidden layer neural network solution with N = 128

J. Xu (PSU) Numerical Neural Networks June 14, 2021 52 / 58

Numerical experiments

Example (2D 4th order problem, OGA)
Consider the ‖ · ‖a and ‖ · ‖0 error. We solve this forth-order equation numerically by using the
ReLU3 dictionary

D = {ReLU3(w · x + b)
∣∣‖w‖ = 1, b ∈ [−2, 2]}.

The exact solution is (x2 − 1)4(y2 − 1)4, (x , y) ∈ Ω = (−1, 1)2.

N ‖u − uN‖L2 order ‖u − uN‖a order (n−1.25)
2 6.527642e-01 - 7.926637e+00 -
4 7.859126e-01 -0.27 7.592753e+00 0.06
8 9.906278e-01 -0.33 6.295085e+00 0.27

16 8.215047e-01 0.27 4.002859e+00 0.65
32 1.512860e-01 2.44 1.446132e+00 1.47
64 7.206241e-02 1.07 4.746744e-01 1.61
128 2.258788e-02 1.67 1.808527e-01 1.39
256 4.696294e-03 2.27 6.970084e-02 1.38

Table: The ‖ · ‖a and ‖ · ‖0 error of the numerical solution

J. Xu (PSU) Numerical Neural Networks June 14, 2021 53 / 58

Numerical experiments
Example (A nonlinear 2D example, RGA)
Consider the 2D nonlinear PDE −∆u + u3 + u = f on (0, 1)2 with ∂u/∂n = 0 on the boundary.
The analytical solution is u = cos(2πx) cos(2πy) and the dictionary is taken as

D = {σ(w1x + w2y + b)|(w1,w2, b) ∈ [−20, 20]3},

where σ(x) is the sigmoid function. The convergence is considered on the approximating space
BM (D) where M = 15.

N ‖u − uN‖2 order ‖Du − DuN‖2 order J(uN)− J(u) order (n−1)
16 7.847118e-01 - 4.645084e+00 - 1.804723e+04 -
32 6.678914e-01 0.23 2.954645e+00 0.65 7.563223e+03 1.25
64 2.370456e-01 1.49 1.675239e+00 0.82 2.327894e+03 1.70

128 1.216064e-01 0.96 1.087479e+00 0.62 9.679782e+02 1.27
256 6.183769e-02 0.98 5.204851e-01 1.06 2.222200e+02 2.12
512 3.796748e-02 0.70 3.610805e-01 0.53 1.066532e+02 1.06
1024 2.687126e-02 0.50 2.110172e-01 0.77 3.661551e+01 1.54
2048 1.072196e-02 1.33 1.431628e-01 0.56 1.663444e+01 1.14

Table: Convergence order of RGA

J. Xu (PSU) Numerical Neural Networks June 14, 2021 54 / 58

A new generation of numerical methods?

Advantages:

I Highly flexible
I Works for high-dimensional problems
I Highly adaptive and parallelizable
I Rigorous convergence possible using greedy algorithms!

F For the first time, rigorous results are possible!

Disadvantages:

I Greedy algorithms are currently expensive
I Much research must still be done!

J. Xu (PSU) Numerical Neural Networks June 14, 2021 55 / 58

A new generation of numerical methods?

Advantages:

I Highly flexible
I Works for high-dimensional problems
I Highly adaptive and parallelizable
I Rigorous convergence possible using greedy algorithms!

F For the first time, rigorous results are possible!

Disadvantages:

I Greedy algorithms are currently expensive
I Much research must still be done!

J. Xu (PSU) Numerical Neural Networks June 14, 2021 55 / 58

1 Finite element methods and neural networks

2 Approximation properties

3 Application to elliptic boundary value problems

4 Numerical experiments

5 Summary and Further Research

J. Xu (PSU) Numerical Neural Networks June 14, 2021 56 / 58

Summary

Deep ReLU neural networks contain finite element spaces

Approximation property of shallow neural networks:
I K1(D) is the largest space for stable approximation
I Optimal approximation rates for ReLUk neural networks O(n−

1
2−

2k+1
2d)

I Higher order approximation rates for ReLUk networks on highly smooth functions
(without `1 coefficient bound)

Using neural network to solve 2m-th order PDEs:
I Bernstein inequality does not work for the neural network space
I Convergence analysis for numerical quadrature and Monte Carlo quadrature
I Use greedy algorithms to solve discrete energy optimization

Numerical experiments

J. Xu (PSU) Numerical Neural Networks June 14, 2021 57 / 58

Summary

Deep ReLU neural networks contain finite element spaces

Approximation property of shallow neural networks:
I K1(D) is the largest space for stable approximation

I Optimal approximation rates for ReLUk neural networks O(n−
1
2−

2k+1
2d)

I Higher order approximation rates for ReLUk networks on highly smooth functions
(without `1 coefficient bound)

Using neural network to solve 2m-th order PDEs:
I Bernstein inequality does not work for the neural network space
I Convergence analysis for numerical quadrature and Monte Carlo quadrature
I Use greedy algorithms to solve discrete energy optimization

Numerical experiments

J. Xu (PSU) Numerical Neural Networks June 14, 2021 57 / 58

Summary

Deep ReLU neural networks contain finite element spaces

Approximation property of shallow neural networks:
I K1(D) is the largest space for stable approximation
I Optimal approximation rates for ReLUk neural networks O(n−

1
2−

2k+1
2d)

I Higher order approximation rates for ReLUk networks on highly smooth functions
(without `1 coefficient bound)

Using neural network to solve 2m-th order PDEs:
I Bernstein inequality does not work for the neural network space
I Convergence analysis for numerical quadrature and Monte Carlo quadrature
I Use greedy algorithms to solve discrete energy optimization

Numerical experiments

J. Xu (PSU) Numerical Neural Networks June 14, 2021 57 / 58

Summary

Deep ReLU neural networks contain finite element spaces

Approximation property of shallow neural networks:
I K1(D) is the largest space for stable approximation
I Optimal approximation rates for ReLUk neural networks O(n−

1
2−

2k+1
2d)

I Higher order approximation rates for ReLUk networks on highly smooth functions
(without `1 coefficient bound)

Using neural network to solve 2m-th order PDEs:
I Bernstein inequality does not work for the neural network space
I Convergence analysis for numerical quadrature and Monte Carlo quadrature
I Use greedy algorithms to solve discrete energy optimization

Numerical experiments

J. Xu (PSU) Numerical Neural Networks June 14, 2021 57 / 58

Summary

Deep ReLU neural networks contain finite element spaces

Approximation property of shallow neural networks:
I K1(D) is the largest space for stable approximation
I Optimal approximation rates for ReLUk neural networks O(n−

1
2−

2k+1
2d)

I Higher order approximation rates for ReLUk networks on highly smooth functions
(without `1 coefficient bound)

Using neural network to solve 2m-th order PDEs:

I Bernstein inequality does not work for the neural network space
I Convergence analysis for numerical quadrature and Monte Carlo quadrature
I Use greedy algorithms to solve discrete energy optimization

Numerical experiments

J. Xu (PSU) Numerical Neural Networks June 14, 2021 57 / 58

Summary

Deep ReLU neural networks contain finite element spaces

Approximation property of shallow neural networks:
I K1(D) is the largest space for stable approximation
I Optimal approximation rates for ReLUk neural networks O(n−

1
2−

2k+1
2d)

I Higher order approximation rates for ReLUk networks on highly smooth functions
(without `1 coefficient bound)

Using neural network to solve 2m-th order PDEs:
I Bernstein inequality does not work for the neural network space

I Convergence analysis for numerical quadrature and Monte Carlo quadrature
I Use greedy algorithms to solve discrete energy optimization

Numerical experiments

J. Xu (PSU) Numerical Neural Networks June 14, 2021 57 / 58

Summary

Deep ReLU neural networks contain finite element spaces

Approximation property of shallow neural networks:
I K1(D) is the largest space for stable approximation
I Optimal approximation rates for ReLUk neural networks O(n−

1
2−

2k+1
2d)

I Higher order approximation rates for ReLUk networks on highly smooth functions
(without `1 coefficient bound)

Using neural network to solve 2m-th order PDEs:
I Bernstein inequality does not work for the neural network space
I Convergence analysis for numerical quadrature and Monte Carlo quadrature

I Use greedy algorithms to solve discrete energy optimization

Numerical experiments

J. Xu (PSU) Numerical Neural Networks June 14, 2021 57 / 58

Summary

Deep ReLU neural networks contain finite element spaces

Approximation property of shallow neural networks:
I K1(D) is the largest space for stable approximation
I Optimal approximation rates for ReLUk neural networks O(n−

1
2−

2k+1
2d)

I Higher order approximation rates for ReLUk networks on highly smooth functions
(without `1 coefficient bound)

Using neural network to solve 2m-th order PDEs:
I Bernstein inequality does not work for the neural network space
I Convergence analysis for numerical quadrature and Monte Carlo quadrature
I Use greedy algorithms to solve discrete energy optimization

Numerical experiments

J. Xu (PSU) Numerical Neural Networks June 14, 2021 57 / 58

References

J. Xu, The Finite Neuron Method and Convergence Analysis, Commun. Comput. Phys.,
28, pp. 1707-1745, (2020).

J. W. Siegel and J. Xu, "High-Order Approximation Rates for Neural Networks with ReLUk

Activation Functions." arXiv preprint arXiv:2012.07205 (2020).

J. W. Siegel and J. Xu, "Approximation rates for neural networks with general activation
functions." Neural Networks (2020).

J. W. Siegel and J. Xu, "Optimal Approximation Rates and Metric Entropy of ReLU k and
Cosine Networks" arXiv preprint arXiv:2101.12365 (2021)

Q. Hong J. W. Siegel and J. Xu "A Priori Analysis of Stable Neural Network Solutions to
Numerical PDEs" arXiv preprint arXiv:2104.02903 (2021)

Thank you!

J. Xu (PSU) Numerical Neural Networks June 14, 2021 58 / 58

	Finite element methods and neural networks
	Approximation properties
	Application to elliptic boundary value problems
	Numerical experiments
	Summary and Further Research

