From physical models to advanced numerical methods through de Rham cohomology

Daniele A. Di Pietro
mainly from joint works with Jérôme Droniou
Institut Montpelliérain Alexander Grothendieck, University of Montpellier https://imag.umontpellier.fr/~di-pietro/

100UMI800UNIPD, 27 May 2022

Outline

1 Three model problems and their well-posedness

2 Discrete de Rham (DDR) complexes

3 Application to magnetostatics

Setting I

- Let Ω be an open connected $\left(b_{0}=1\right)$ polyhedral domain of $\mathbb{R}^{3}\left(b_{3}=0\right)$
- Assume, for the moment being, that Ω has a trivial topology, i.e.,
- It is not crossed by any "tunnel" ($b_{1}=0$)

$$
\left(b_{0}, b_{1}, b_{2}, b_{3}\right)=(1,1,0,0)
$$

- It does not enclose any "void" $\left(b_{2}=0\right)$

$$
\left(b_{0}, b_{1}, b_{2}, b_{3}\right)=(1,0,1,0)
$$

Setting II

We consider PDE models that hinge on the vector calculus operators:

$$
\operatorname{grad} q=\left(\begin{array}{l}
\partial_{1} q \\
\partial_{2} q \\
\partial_{3} q
\end{array}\right), \operatorname{curl} \boldsymbol{v}=\left(\begin{array}{l}
\partial_{2} v_{3}-\partial_{3} v_{2} \\
\partial_{3} v_{1}-\partial_{1} v_{3} \\
\partial_{1} v_{2}-\partial_{2} v_{1}
\end{array}\right), \operatorname{div} \boldsymbol{w}=\partial_{1} w_{1}+\partial_{2} w_{2}+\partial_{3} w_{3}
$$

for smooth enough functions

$$
q: \Omega \rightarrow \mathbb{R}, \quad v: \Omega \rightarrow \mathbb{R}^{3}, \quad \boldsymbol{w}: \Omega \rightarrow \mathbb{R}^{3}
$$

Some relevant Hilbert spaces

- For simplicity, we consider problems driven by forcing terms
- To allow for physical configurations, we focus on weak formulations
- These will be based on the following Hilbert spaces:

$$
\begin{aligned}
H^{1}(\Omega) & :=\left\{q \in L^{2}(\Omega): \operatorname{grad} q \in \boldsymbol{L}^{2}(\Omega):=L^{2}(\Omega)^{3}\right\}, \\
\boldsymbol{H}(\operatorname{curl} ; \Omega) & :=\left\{\boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega): \operatorname{curl} \boldsymbol{v} \in \boldsymbol{L}^{2}(\Omega)\right\}, \\
\boldsymbol{H}(\operatorname{div} ; \Omega) & :=\left\{\boldsymbol{w} \in \boldsymbol{L}^{2}(\Omega): \operatorname{div} \boldsymbol{w} \in L^{2}(\Omega)\right\}
\end{aligned}
$$

Three model problems

The Stokes problem in curl-curl formulation

■ Given $v>0$ and $\boldsymbol{f} \in \boldsymbol{L}^{2}(\Omega)$, the Stokes problem reads:
Find the velocity $\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{3}$ and pressure $p: \Omega \rightarrow \mathbb{R}$ s.t.

$$
-v \Delta u
$$

$$
\begin{array}{rlrl}
v(\operatorname{curl} \operatorname{curl} \boldsymbol{u}-\operatorname{grad} \operatorname{div} u)+\operatorname{grad} p & =\boldsymbol{f} & & \text { in } \Omega, \\
\operatorname{div} \boldsymbol{u} & =0 & & \text { (n } \Omega, \\
& \text { (mamentum conservation) } \\
\operatorname{curl} \boldsymbol{u} \times \boldsymbol{n}=\mathbf{0} \text { and } \boldsymbol{u} \cdot \boldsymbol{n}=0 & & \text { on } \partial \Omega, & \\
\int_{\Omega} p=0 & &
\end{array}
$$

- Weak formulation: Find $(\boldsymbol{u}, p) \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \times H^{1}(\Omega)$ s.t. $\int_{\Omega} p=0$ and

$$
\begin{aligned}
\int_{\Omega} v \operatorname{curl} u \cdot \operatorname{curl} v & +\int_{\Omega} \operatorname{grad} p \cdot v=\int_{\Omega} f \cdot v & \forall v \in \boldsymbol{H}(\operatorname{curl} ; \Omega) \\
& -\int_{\Omega} u \cdot \operatorname{grad} q=0 & \forall q \in H^{1}(\Omega)
\end{aligned}
$$

Three model problems

The magnetostatics problem

- For $\mu>0$ and $\boldsymbol{J} \in \operatorname{curl} \boldsymbol{H}(\mathbf{c u r l} ; \Omega)$, the magnetostatics problem reads:

Find the magnetic field $\boldsymbol{H}: \Omega \rightarrow \mathbb{R}^{3}$ and vector potential $\boldsymbol{A}: \Omega \rightarrow \mathbb{R}^{3}$ s.t.

$$
\begin{array}{rll}
\mu \boldsymbol{H}-\boldsymbol{\operatorname { c u r l }} \boldsymbol{A}=\mathbf{0} & \text { in } \Omega, & \text { (vector potential) } \\
\boldsymbol{\operatorname { c u r l } \boldsymbol { H }}=\boldsymbol{J} & \text { in } \Omega, & \text { (Ampère's law) } \\
\operatorname{div} \boldsymbol{A}=0 & \text { in } \Omega, & \text { (Coulomb's gauge) } \\
\boldsymbol{A} \times \boldsymbol{n}=\mathbf{0} & \text { on } \partial \Omega & \text { (boundary condition) }
\end{array}
$$

- Weak formulation: Find $(\boldsymbol{H}, \boldsymbol{A}) \in \boldsymbol{H}(\operatorname{curl} ; \boldsymbol{\Omega}) \times \boldsymbol{H}(\operatorname{div} ; \boldsymbol{\Omega})$ s.t.

$$
\begin{aligned}
\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{\tau}-\int_{\Omega} \boldsymbol{A} \cdot \operatorname{curl} \boldsymbol{\tau}=0 & \forall \boldsymbol{\tau} \in \boldsymbol{H}(\operatorname{curl} ; \Omega), \\
\int_{\Omega} \operatorname{curl} \boldsymbol{H} \cdot \boldsymbol{v}+\int_{\Omega} \operatorname{div} \boldsymbol{A} \operatorname{div} \boldsymbol{v}=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} & \forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} ; \Omega)
\end{aligned}
$$

Three model problems

The Darcy problem in velocity-pressure formulation

- Given $\kappa>0$ and $f \in L^{2}(\Omega)$, the Darcy problem reads:

Find the velocity $\boldsymbol{u}: \Omega \rightarrow \mathbb{R}^{3}$ and pressure $p: \Omega \rightarrow \mathbb{R}$ s.t.

$$
\begin{array}{rlrl}
\kappa^{-1} \boldsymbol{u}-\operatorname{grad} p & =0 & & \text { in } \Omega, \\
& \text { (Darcy's law) } \\
-\operatorname{div} \boldsymbol{u}=f & \text { in } \Omega, & & \text { (mass conservation) } \\
p=0 & & \text { on } \partial \Omega & \\
\text { (boundary condition) }
\end{array}
$$

- Weak formulation: Find $(\boldsymbol{u}, p) \in \boldsymbol{H}(\operatorname{div} ; \boldsymbol{\Omega}) \times L^{2}(\boldsymbol{\Omega})$ s.t.

$$
\begin{aligned}
\int_{\Omega} \kappa^{-1} \boldsymbol{u} \cdot \boldsymbol{v}+\int_{\Omega} p \operatorname{div} \boldsymbol{v}=0 & \forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} ; \Omega), \\
-\int_{\Omega} \operatorname{div} \boldsymbol{u} q=\int_{\Omega} f q & \forall q \in L^{2}(\Omega)
\end{aligned}
$$

A unified view

- All of the above problems are mixed formulations involving two fields
- They can be recast into the abstract setting: Find $(u, p) \in V \times Q$ s.t.

$$
\begin{array}{ll}
A u+B^{\top} p=f & \text { in } V^{\prime}, \\
-B u+C p=g & \text { in } Q^{\prime}
\end{array}
$$

- Well-posedness for this problem holds under [Brezzi and Fortin, 1991]:
- The coercivity of A in $\operatorname{Ker} B$
- The coercivity of C in $H:=\operatorname{Ker} B^{\top}$
- An inf-sup condition for $B: \exists \beta \in \mathbb{R}$,

$$
0<\beta=\inf _{q \in H^{\perp} \backslash\{0\}} \sup _{v \in V \backslash\{0\}} \frac{\langle B v, q\rangle}{\|q\|_{Q}\|v\|_{V}}
$$

- Similar properties underlie the stability of numerical approximations

A unified tool for well-posedness: The de Rham complex

Figure: Georges de Rham (Roche 1903-Lausanne 1990)

A unified tool for well-posedness: The de Rham complex

$$
\mathbb{R} \longleftrightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} \boldsymbol{H}(\operatorname{curl} ; \Omega) \xrightarrow{\text { curl }} \boldsymbol{H}(\operatorname{div} ; \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \xrightarrow{0}\{0\}
$$

- We have key properties depending on the topology of Ω :

$$
\begin{gathered}
\Omega \text { connected }\left(b_{0}=1\right) \Longrightarrow \operatorname{Ker} \operatorname{grad}=\mathbb{R}, \\
\operatorname{Im} \text { grad } \subset \operatorname{Ker} \text { curl }, \\
\operatorname{Im} \text { curl } \subset \operatorname{Ker} \text { div, } \\
\Omega \subset \mathbb{R}^{3}\left(b_{3}=0\right) \Longrightarrow \operatorname{Im} \operatorname{div}=L^{2}(\Omega) \quad(\text { Darcy, magnetostatics })
\end{gathered}
$$

A unified tool for well-posedness: The de Rham complex

$\mathbb{R} \longleftrightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} \boldsymbol{H}(\operatorname{curl} ; \Omega) \xrightarrow{\text { curl }} \boldsymbol{H}(\operatorname{div} ; \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \xrightarrow{0}\{0\}$

- We have key properties depending on the topology of Ω :

$$
\begin{gathered}
\Omega \text { connected }\left(b_{0}=1\right) \Longrightarrow \operatorname{Ker} \operatorname{grad}=\mathbb{R}, \\
\text { no "tunnels" crossing } \Omega\left(b_{1}=0\right) \Longrightarrow \operatorname{Im} \operatorname{grad}=\operatorname{Ker} \text { curl, } \quad \text { (Stokes) }
\end{gathered}
$$

no "voids" contained in $\Omega\left(b_{2}=0\right) \Longrightarrow$ Im curl $=$ Ker div, $\quad($ magnetostatics)

$$
\Omega \subset \mathbb{R}^{3}\left(b_{3}=0\right) \Longrightarrow \operatorname{Im} \operatorname{div}=L^{2}(\Omega) \quad(\text { Darcy, magnetostatics })
$$

A unified tool for well-posedness: The de Rham complex

$\mathbb{R} \longleftrightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} \boldsymbol{H}(\operatorname{curl} ; \boldsymbol{\Omega}) \xrightarrow{\text { curl }} \boldsymbol{H}(\operatorname{div} ; \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \xrightarrow{0}\{0\}$

- We have key properties depending on the topology of Ω :

$$
\begin{gathered}
\Omega \text { connected }\left(b_{0}=1\right) \Longrightarrow \operatorname{Ker} \operatorname{grad}=\mathbb{R}, \\
\text { no "tunnels" crossing } \Omega\left(b_{1}=0\right) \Longrightarrow \operatorname{Im} \operatorname{grad}=\operatorname{Ker} \text { curl, } \quad \text { (Stokes) }
\end{gathered}
$$

no "voids" contained in $\Omega\left(b_{2}=0\right) \Longrightarrow$ Im curl $=$ Ker div, $\quad($ magnetostatics)

$$
\Omega \subset \mathbb{R}^{3}\left(b_{3}=0\right) \Longrightarrow \operatorname{Im} \operatorname{div}=L^{2}(\Omega) \quad \text { (Darcy, magnetostatics) }
$$

- When $b_{1} \neq 0$ or $b_{2} \neq 0$, de Rham's cohomology characterizes Ker curl/Im grad and Ker div/Im curl

■ Key consequences are Hodge decompositions and Poincaré inequalities

A unified tool for well-posedness: The de Rham complex

$\mathbb{R} \longleftrightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} \boldsymbol{H}(\operatorname{curl} ; \Omega) \xrightarrow{\text { curl }} \boldsymbol{H}(\operatorname{div} ; \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \xrightarrow{0}\{0\}$

- We have key properties depending on the topology of Ω :

$$
\begin{gathered}
\Omega \text { connected }\left(b_{0}=1\right) \Longrightarrow \operatorname{Ker} \operatorname{grad}=\mathbb{R}, \\
\text { no "tunnels" crossing } \Omega\left(b_{1}=0\right) \Longrightarrow \operatorname{Im} \operatorname{grad}=\operatorname{Ker} \text { curl, } \quad \text { (Stokes) }
\end{gathered}
$$

no "voids" contained in $\Omega\left(b_{2}=0\right) \Longrightarrow$ Im curl $=$ Ker div, $\quad($ magnetostatics)

$$
\Omega \subset \mathbb{R}^{3}\left(b_{3}=0\right) \Longrightarrow \operatorname{Im} \operatorname{div}=L^{2}(\Omega) \quad \text { (Darcy, magnetostatics) }
$$

- When $b_{1} \neq 0$ or $b_{2} \neq 0$, de Rham's cohomology characterizes Ker curl/Im grad and Ker div/Im curl
- Key consequences are Hodge decompositions and Poincaré inequalities
- Emulating these properties is key for stable discretizations

The (trimmed) Finite Element way

Local spaces

$■$ Let $T \subset \mathbb{R}^{3}$ be a tetrahedron and set, for any $k \geq-1$,

$$
\mathcal{P}^{k}(T):=\{\text { restrictions of 3-variate polynomials of degree } \leq k \text { to } T\}
$$

■ Fix $k \geq 0$ and write, denoting by \boldsymbol{x}_{T} a point inside T,

$$
\begin{aligned}
\mathcal{P}^{k}(T)^{3} & =\overbrace{\operatorname{grad} \mathcal{P}^{k+1}(T)}^{\mathcal{G}^{k}(T)} \oplus \overbrace{\left(\boldsymbol{x}-\boldsymbol{x}_{T}\right) \times \mathcal{P}^{k-1}(T)^{3}}^{\mathcal{G}^{\mathrm{c}, k}(T)} \\
& =\underbrace{\operatorname{curl} \mathcal{P}^{k+1}(T)^{3}}_{\mathcal{R}^{k}(T)} \oplus \underbrace{\left(\boldsymbol{x}-\boldsymbol{x}_{T}\right) \mathcal{P}^{k-1}(T)}_{\mathcal{R}^{\mathrm{c}, k}(T)}
\end{aligned}
$$

- Define the trimmed spaces that sit between $\mathcal{P}^{k}(T)^{3}$ and $\mathcal{P}^{k+1}(T)^{3}$:

$$
\boldsymbol{N}^{k+1}(T):=\boldsymbol{G}^{k}(T) \oplus \boldsymbol{G}^{\mathrm{c}, k+1}(T)
$$

$$
\mathcal{R \mathcal { T }}^{k+1}(T):=\mathcal{R}^{k}(T) \oplus \mathcal{R}^{\mathrm{c}, k+1}(T) \quad[\text { Raviart and Thomas, 1977] }
$$

- See also [Arnold, 2018]

The (trimmed) Finite Element way

Global complex

- Let $\mathcal{T}_{h}=\{T\}$ be a conforming tetrahedral mesh of Ω and let $k \geq 0$
- Local spaces can be glued together to form a global FE complex:

- The gluing only works on conforming meshes (simplicial complexes)!

The Finite Element way

Shortcomings

- Approach limited to conforming meshes with standard elements
\Longrightarrow local refinement requires to trade mesh size for mesh quality
\Longrightarrow complex geometries may require a large number of elements
\Longrightarrow the element shape cannot be adapted to the solution
- Need for (global) basis functions
\Longrightarrow significant increase of DOFs on hexahedral elements

The discrete de Rham (DDR) approach I

- Key idea: replace both spaces and operators by discrete counterparts:

$$
\mathbb{R} \xrightarrow{\underline{I}_{\text {grad,h }}^{k}} \underline{X}_{\mathrm{grad}, h}^{k} \xrightarrow{\underline{\boldsymbol{G}}_{h}^{k}} \underline{X}_{\mathrm{curl}, h}^{k} \xrightarrow{\underline{\boldsymbol{C}}_{h}^{k}} \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}\left(\mathcal{T}_{h}\right) \xrightarrow{0}\{0\}
$$

- Support of polyhedral meshes (CW complexes) and high-order
- Key exactness and consistency properties proved at the discrete level

■ Several strategies to reduce the number of unknowns on general shapes

The discrete de Rham (DDR) approach II

- DDR spaces are spanned by vectors of polynomials
- Polynomial components enable consistent reconstructions of
- vector calculus operators
- the corresponding scalar or vector potentials

■ These reconstructions emulate integration by parts (Stokes) formulas

References

- Introduction of DDR [DP, Droniou, Rapetti, 2020]
- Present sequence and properties [DP and Droniou, 2021a]
- Application to magnetostatics [DP and Droniou, 2021b]
- Bridges with VEM [Beirão da Veiga, Dassi, DP, Droniou, 2022]
- More recent developments include:
- Reissner-Mindlin plates [DP and Droniou, 2021c]
- The 2D plates complex and Kirchhoff-Love plates [DP and Droniou, 2022]

$$
\mathcal{R \mathcal { T }}^{-1}(F) \longleftrightarrow \boldsymbol{H}^{1}\left(\Omega ; \mathbb{R}^{2}\right) \xrightarrow{\text { sym rot }} \boldsymbol{H}(\operatorname{div} \operatorname{div}, \Omega ; \mathbb{S}) \xrightarrow{\text { div div }} L^{2}(\Omega) \xrightarrow{0} 0
$$

- The 2D Stokes complex [Hanot, 2021]

$$
\mathbb{R} \longrightarrow H^{2}(\Omega) \xrightarrow{\text { rot }} H^{1}(\Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \xrightarrow{0} 0
$$

- Serendipity versions. ..
- Polyhedral analysis tools: [DP and Droniou, 2020]

Outline

1 Three model problems and their well-posedness

2 Discrete de Rham (DDR) complexes

3 Application to magnetostatics

The two-dimensional case

Continuous exact complex

■ With F mesh face let, for $q: F \rightarrow \mathbb{R}$ and $v: F \rightarrow \mathbb{R}^{2}$ smooth enough,

$$
\operatorname{rot}_{F} q:=\left(\operatorname{grad}_{F} q\right)^{\perp} \quad \operatorname{rot}_{F} v:=\operatorname{div}_{F}\left(v^{\perp}\right)
$$

- We derive a discrete counterpart of the 2D de Rham complex:

$$
\mathbb{R} \longleftrightarrow H^{1}(F) \xrightarrow{\operatorname{grad}_{F}} \boldsymbol{H}(\mathrm{rot} ; F) \xrightarrow{\mathrm{rot}_{F}} L^{2}(F) \xrightarrow{0}\{0\}
$$

- We will need the following decompositions of $\mathcal{P}^{k}(F)^{2}$:

$$
\begin{aligned}
\mathcal{P}^{k}(F)^{2} & =\overbrace{\operatorname{grad}_{F} \mathcal{P}^{k+1}(F)}^{\mathcal{G}^{k}(F)} \oplus \overbrace{\left(\boldsymbol{x}-\boldsymbol{x}_{F}\right)^{\perp} \mathcal{P}^{k-1}(F)}^{\mathcal{G}^{\mathrm{c}, k}(F)} \\
& =\underbrace{\operatorname{rot}_{F} \mathcal{P}^{k+1}(F)}_{\mathcal{R}^{k}(F)} \oplus \underbrace{\left(\boldsymbol{x}-\boldsymbol{x}_{F}\right) \mathcal{P}^{k-1}(F)}_{\mathcal{R}^{\mathrm{c}, k}(F)}
\end{aligned}
$$

The two-dimensional case

A key remark

- Let $q \in \mathcal{P}^{k+1}(F)$. For any $\boldsymbol{v} \in \mathcal{P}^{k}(F)^{2}$, we have

$$
\int_{F} \operatorname{grad}_{F} q \cdot v=-\int_{F} q \operatorname{div}_{F} v+\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E} q_{\mid \partial F}\left(\boldsymbol{v} \cdot \boldsymbol{n}_{F E}\right)
$$

The two-dimensional case

A key remark

- Let $q \in \mathcal{P}^{k+1}(F)$. For any $\boldsymbol{v} \in \mathcal{P}^{k}(F)^{2}$, we have

$$
\int_{F} \operatorname{grad}_{F} q \cdot \boldsymbol{v}=-\int_{F} q \underbrace{\operatorname{div}_{F} \boldsymbol{v}}_{\in \mathcal{P}^{k-1}(F)}+\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E} q_{\mid \partial F}\left(\boldsymbol{v} \cdot \boldsymbol{n}_{F E}\right)
$$

The two-dimensional case

A key remark

- Let $q \in \mathcal{P}^{k+1}(F)$. For any $\boldsymbol{v} \in \mathcal{P}^{k}(F)^{2}$, we have

$$
\int_{F} \operatorname{grad}_{F} q \cdot \boldsymbol{v}=-\int_{F} \pi_{\mathcal{P}, F}^{k-1} q \underbrace{\operatorname{div}_{F} \boldsymbol{v}}_{\in \mathcal{P}^{k-1}(F)}+\sum_{E \in \mathcal{\mathcal { O }}_{F}} \omega_{F E} \int_{E} q_{\mid \partial F}\left(\boldsymbol{v} \cdot \boldsymbol{n}_{F E}\right)
$$

- Hence, $\operatorname{grad}_{F} q$ can be computed given $\pi_{\mathcal{P}, F}^{k-1} q$ and $q_{\mid \partial F}$

The two-dimensional case

Discrete $H^{1}(F)$ space

- Based on this remark, we take as discrete counterpart of $H^{1}(F)$

$$
\underline{X}_{\mathrm{grad}, F}^{k}:=\left\{\underline{q}_{F}=\left(q_{F}, q_{\partial F}\right): q_{F} \in \mathcal{P}^{k-1}(F) \text { and } q_{\partial F} \in \mathcal{P}_{\mathrm{c}}^{k+1}\left(\mathcal{E}_{F}\right)\right\}
$$

- Let $\underline{I}_{\text {grad }, F}^{k}: C^{0}(\bar{F}) \rightarrow \underline{X}_{\text {grad }, F}^{k}$ be s.t., $\forall q \in C^{0}(\bar{F})$,

$$
\begin{gathered}
\underline{I}_{\text {grad, } F}^{k} q:=\left(\pi_{\mathcal{P}, F}^{k-1} q, q_{\partial F}\right) \text { with } \\
\pi_{\mathcal{P}, E}^{k-1}\left(q_{\partial F}\right)_{\mid E}=\pi_{\mathcal{P}, E}^{k-1} q_{\mid E} \forall E \in \mathcal{E}_{F} \text { and } q_{\partial F}\left(x_{V}\right)=q\left(x_{V}\right) \forall V \in \mathcal{V}_{F}
\end{gathered}
$$

$k=0$

$k=1$

$k=2$

The two-dimensional case

Reconstructions in $\underline{X}_{\text {grad }, F}^{k}$
■ For all $E \in \mathcal{E}_{F}$, the edge gradient $G_{E}^{k}: \underline{X}_{\mathrm{grad}, F}^{k} \rightarrow \mathcal{P}^{k}(E)$ is s.t.

$$
G_{E}^{k} \underline{q}_{F}:=\left(q_{\partial F}\right)_{\mid E}^{\prime}
$$

■ The full face gradient $\mathrm{G}_{F}^{k}: \underline{X}_{\mathrm{grad}, F}^{k} \rightarrow \mathcal{P}^{k}(F)^{2}$ is s.t., $\forall \boldsymbol{v} \in \mathcal{P}^{k}(F)^{2}$,

$$
\int_{F} \mathrm{G}_{F}^{k} \underline{q}_{F} \cdot \boldsymbol{v}=-\int_{F} q_{F} \operatorname{div}_{F} \boldsymbol{v}+\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E} q_{\partial F}\left(\boldsymbol{v} \cdot \boldsymbol{n}_{F E}\right)
$$

■ By construction, we have polynomial consistency:

$$
\mathrm{G}_{F}^{k}\left(\underline{\mathrm{grad}}, F_{k} q\right)=\operatorname{grad}_{F} q \quad \forall q \in \mathcal{P}^{k+1}(F)
$$

The two-dimensional case

Reconstructions in $\underline{X}_{\text {grad }, F}^{k}$

■ For all $E \in \mathcal{E}_{F}$, the edge gradient $G_{E}^{k}: \underline{X}_{\mathrm{grad}, F}^{k} \rightarrow \mathcal{P}^{k}(E)$ is s.t.

$$
G_{E}^{k} \underline{q}_{F}:=\left(q_{\partial F}\right)_{\mid E}^{\prime}
$$

■ The full face gradient $\mathrm{G}_{F}^{k}: \underline{X}_{\mathrm{grad}, F}^{k} \rightarrow \mathcal{P}^{k}(F)^{2}$ is s.t., $\forall \boldsymbol{v} \in \mathcal{P}^{k}(F)^{2}$,

$$
\int_{F} \mathrm{G}_{F}^{k} \underline{q}_{F} \cdot \boldsymbol{v}=-\int_{F} q_{F} \operatorname{div}_{F} \boldsymbol{v}+\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E} q_{\partial F}\left(\boldsymbol{v} \cdot \boldsymbol{n}_{F E}\right)
$$

- By construction, we have polynomial consistency:

$$
\mathrm{G}_{F}^{k}\left(\underline{\mathrm{grad}}, F_{k} q\right)=\operatorname{grad}_{F} q \quad \forall q \in \mathcal{P}^{k+1}(F)
$$

- Similarly, we can reconstruct a scalar trace $\gamma_{F}^{k+1}: \underline{X}_{\text {grad, } F}^{k} \rightarrow \mathcal{P}^{k+1}(F)$ s.t.

$$
\gamma_{F}^{k+1}\left(\underline{g}_{\mathrm{grad}, F}^{k} q\right)=q \quad \forall q \in \mathcal{P}^{k+1}(F)
$$

The two-dimensional case

Discrete $\boldsymbol{H}($ rot $; F)$ space
■ We start from: $\forall \boldsymbol{v} \in \boldsymbol{\mathcal { N }}^{k+1}(F):=\boldsymbol{G}^{k}(F) \oplus \boldsymbol{\mathcal { G }}^{\mathrm{c}, k+1}(F), \forall q \in \mathcal{P}^{k}(F)$,

$$
\int_{F} \operatorname{rot}_{F} \boldsymbol{v} q=\int_{F} \boldsymbol{v} \cdot \underbrace{\operatorname{rot}_{F} q}_{\in \mathcal{R}^{k-1}(F)}-\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E}\left(\boldsymbol{v} \cdot \boldsymbol{t}_{E}\right) q_{\mid E}
$$

The two-dimensional case

Discrete $\boldsymbol{H}($ rot $; F)$ space
■ We start from: $\forall \boldsymbol{v} \in \boldsymbol{\mathcal { N }}^{k+1}(F):=\boldsymbol{G}^{k}(F) \oplus \boldsymbol{\mathcal { G }}^{\mathrm{c}, k+1}(F), \forall q \in \mathcal{P}^{k}(F)$,

$$
\int_{F} \operatorname{rot}_{F} v q=\int_{F} \pi_{\mathcal{R}, T}^{k-1} v \cdot \underbrace{\operatorname{rot}_{F} q}_{\in \mathcal{R}^{k-1}(F)}-\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E} \underbrace{\left(v \cdot \boldsymbol{t}_{E}\right)}_{\in \mathcal{P}^{k}(E)} q_{\mid E}
$$

The two-dimensional case

Discrete $\boldsymbol{H}($ rot $; F)$ space

- We start from: $\forall \boldsymbol{v} \in \boldsymbol{N}^{k+1}(F):=\boldsymbol{\mathcal { G }}^{k}(F) \oplus \mathcal{G}^{\mathrm{c}, k+1}(F), \forall q \in \mathcal{P}^{k}(F)$,

$$
\int_{F} \operatorname{rot}_{F} v q=\int_{F} \pi_{\mathcal{R}, T}^{k-1} v \cdot \underbrace{\operatorname{rot}_{F} q}_{\in \mathcal{R}^{k-1}(F)}-\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E} \underbrace{\left(v \cdot t_{E}\right)}_{\in \mathcal{P}^{k}(E)} q_{\mid E}
$$

- This leads to the following discrete counterpart of $\boldsymbol{H}(\operatorname{rot} ; F)$:

$$
\begin{aligned}
\underline{\boldsymbol{X}}_{\text {curl }, F}^{k}:=\{ & \underline{\boldsymbol{v}}_{F}= \\
& \left(v_{\mathcal{R}, F}, v_{\mathcal{R}, F}^{\mathrm{c}},\left(v_{E}\right)_{E \in \mathcal{E}_{F}}\right): \\
& \left.v_{\mathcal{R}, F} \in \mathcal{R}^{k-1}(F), \boldsymbol{v}_{\mathcal{R}, F}^{\mathrm{c}} \in \mathcal{R}^{\mathrm{c}, k}(F), v_{E} \in \mathcal{P}^{k}(E) \forall E \in \mathcal{E}_{F}\right\}
\end{aligned}
$$

The two-dimensional case

Reconstructions in $\underline{\boldsymbol{X}}_{\text {curl }, F}^{k}$

- The face curl operator $C_{F}^{k}: \underline{\boldsymbol{X}}_{\text {curl }, F}^{k} \rightarrow \mathcal{P}^{k}(F)$ is s.t.,

$$
\int_{F} C_{F}^{k} \underline{v}_{F} q=\int_{F} v_{\mathcal{R}, F} \cdot \operatorname{rot}_{F} q-\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E} v_{E} q \quad \forall q \in \mathcal{P}^{k}(F)
$$

- Let $\underline{\underline{r}}_{\mathrm{rot}, \boldsymbol{F}}^{k}: H^{1}(F)^{2} \rightarrow \underline{\boldsymbol{X}}_{\text {curl }, F}^{k}$ collect component-wise L^{2}-projections
- C_{F}^{k} is polynomially consistent by construction:

$$
C_{F}^{k}\left(\underline{I}_{\mathrm{rot}, F}^{k} \boldsymbol{v}\right)=\operatorname{rot}_{F} \boldsymbol{v} \quad \forall \boldsymbol{v} \in \boldsymbol{N}^{k+1}(F)
$$

The two-dimensional case

Reconstructions in $\underline{\boldsymbol{X}}_{\text {curl }, F}^{k}$

- The face curl operator $C_{F}^{k}: \underline{X}_{\text {curl }, F}^{k} \rightarrow \mathcal{P}^{k}(F)$ is s.t.,

$$
\int_{F} C_{F}^{k} \underline{v}_{F} q=\int_{F} v_{\mathcal{R}, F} \cdot \operatorname{rot}_{F} q-\sum_{E \in \mathcal{E}_{F}} \omega_{F E} \int_{E} v_{E} q \quad \forall q \in \mathcal{P}^{k}(F)
$$

■ Let $\underline{\underline{r}}_{\mathrm{rot}, \boldsymbol{F}}^{k}: H^{1}(F)^{2} \rightarrow \underline{\boldsymbol{X}}_{\text {curl }, F}^{k}$ collect component-wise L^{2}-projections

- C_{F}^{k} is polynomially consistent by construction:

$$
C_{F}^{k}\left(\underline{\mathrm{r}}_{\mathrm{rot}, F}^{k} \boldsymbol{v}\right)=\operatorname{rot}_{F} \boldsymbol{v} \quad \forall \boldsymbol{v} \in \boldsymbol{N}^{k+1}(F)
$$

- Similarly, we can construct a tangent trace $\boldsymbol{\gamma}_{\mathrm{t}, F}^{k}: \underline{\boldsymbol{X}}_{\mathrm{curl}, F}^{k} \rightarrow \mathcal{P}^{k}(F)^{2}$ s.t.

$$
\boldsymbol{\gamma}_{\mathrm{t}, F}^{k}\left(\underline{\boldsymbol{I}}_{\mathrm{curl}, F}^{k} \boldsymbol{v}\right)=\boldsymbol{v} \quad \forall \boldsymbol{v} \in \mathcal{P}^{k}(F)^{2}
$$

The two-dimensional case

Exact local two-dimensional DDR complex

- We need a discrete gradient operator from $\underline{X}_{\text {grad }, F}^{k}$ to $\underline{X}_{\text {curl }, F}^{k}$
- To this end, let $\underline{\boldsymbol{G}}_{F}^{k}: \underline{X}_{\mathrm{grad}, F}^{k} \rightarrow \underline{\boldsymbol{X}}_{\text {curl }, F}^{k}$ be s.t., $\forall \underline{q}_{F} \in \underline{X}_{\mathrm{grad}, F}^{k}$,

$$
\underline{\boldsymbol{G}}_{F}^{k} \underline{q}_{F}:=\left(\pi_{\mathcal{R}, F}^{k-1}\left(\mathrm{G}_{F}^{k} \underline{q}_{F}\right), \pi_{\mathcal{R}, F}^{\mathrm{c}, k}\left(\mathrm{G}_{F}^{k} \underline{q}_{F}\right),\left(G_{E}^{k} \underline{q}_{F}\right)_{E \in \mathcal{E}_{F}}\right) \in \underline{\boldsymbol{X}}_{\mathrm{curl}, F}^{k}
$$

■ If F is simply connected, the following 2D DDR complex is exact:

$$
\mathbb{R} \xrightarrow{\underline{I}_{\mathrm{grad}, F}^{k}} \underline{X}_{\mathrm{grad}, F}^{k} \xrightarrow{\underline{\boldsymbol{G}}_{F}^{k}} \underline{\boldsymbol{X}}_{\mathrm{curl}, F}^{k} \xrightarrow{C_{F}^{k}} \mathcal{P}^{k}(F) \xrightarrow{0}\{0\}
$$

The two-dimensional case

Summary

$$
\begin{array}{l|ccc}
\mathbb{R} \xrightarrow{\underline{I_{\text {grad }, F}^{k}}} \underline{X}_{\text {grad }, F}^{k} \xrightarrow{\underline{\boldsymbol{G}}_{F}^{k}} \underline{\boldsymbol{X}}_{\text {curl }, F}^{k} \xrightarrow{C_{F}^{k}} \mathcal{P}^{k}(F) \xrightarrow{0}\{0\} \\
\hline \text { Space } & V \text { (vertex) } & E \text { (edge) } & F(\text { face }) \\
\hline \underline{X}_{\text {grad }, F}^{k} & \mathbb{R} & \mathcal{P}^{k-1}(E) & \mathcal{P}^{k-1}(F) \\
\underline{X}_{\text {curl }, F}^{k} & & \mathcal{P}^{k}(E) & \mathcal{R}^{k-1}(F) \times \mathcal{R}^{\mathrm{c}, k}(F) \\
\mathcal{P}^{k}(F) & & \mathcal{P}^{k}(F) \\
\hline
\end{array}
$$

■ Interpolators $=$ component-wise L^{2}-projections
■ Discrete operators $=L^{2}$-projections of full operator reconstructions

The three-dimensional case

Local three-dimensional DDR complex and exactness

$$
\mathbb{R} \xrightarrow{\underline{I}_{\mathrm{grad}, T}^{k}} \underline{X}_{\mathrm{grad}, T}^{k} \xrightarrow{\underline{\boldsymbol{G}}_{T}^{k}} \xrightarrow[\boldsymbol{X}_{\mathrm{curl}, T}^{k}]{\xrightarrow{\underline{\boldsymbol{C}}_{T}^{k}}} \underline{\boldsymbol{X}}_{\mathrm{div}, T}^{k} \xrightarrow{D_{T}^{k}} \mathcal{P}^{k}(T) \xrightarrow{0}\{0\}
$$

Space	V	E	F	T (element)
$\underline{X}_{\text {grad }, T}^{k}$	\mathbb{R}	$\mathcal{P}^{k-1}(E)$	$\mathcal{P}^{k-1}(F)$	$\mathcal{P}^{k-1}(T)$
$\underline{\boldsymbol{X}}_{\text {url }, T}^{k}$		$\mathcal{P}^{k}(E)$	$\mathcal{R}^{k-1}(F) \times \mathcal{R}^{\mathrm{c}, k}(F)$	$\mathcal{R}^{k-1}(T) \times \mathcal{R}^{\mathrm{c}, k}(T)$
$\underline{\boldsymbol{X}}_{\text {div }, T}^{k}$			$\mathcal{P}^{k}(F)$	$\boldsymbol{G}^{k-1}(T) \times \boldsymbol{G}^{\mathrm{c}, k}(T)$
$\mathcal{P}^{k}(T)$				$\mathcal{P}^{k}(T)$

If the element T has a trivial topology, this complex is exact.

The three-dimensional case

Local commutation properties

$$
\begin{aligned}
& \mathbb{R} \longleftrightarrow C^{\infty}(\bar{T}) \xrightarrow{\text { grad }} C^{\infty}(\bar{T})^{3} \xrightarrow{\text { curl }} C^{\infty}(\bar{T})^{3} \xrightarrow{\text { div }} C^{\infty}(\bar{T}) \xrightarrow{0}\{0\}
\end{aligned}
$$

■ Crucial property for adjoint consistency (see below)

- Compatibility of projections with Helmholtz-Hodge decompositions
\Longrightarrow Robustness of DDR numerical schemes with respect to the physics (cf. [Beirão da Veiga, Dassi, DP, Droniou, 2021], [DP and Droniou, 2022])

The three-dimensional case

Local discrete L^{2}-products

- Emulating integration by part formulas, we define the local potentials

$$
\begin{gathered}
P_{\mathrm{grad}, T}^{k+1}: \underline{X}_{\mathrm{grad}, T}^{k} \rightarrow \mathcal{P}^{k+1}(T), \\
\boldsymbol{P}_{\mathrm{cul}, T}^{k}: \underline{\boldsymbol{X}}_{\mathrm{cur}, T}^{k} \rightarrow \mathcal{P}^{k}(T)^{3}, \\
\boldsymbol{P}_{\mathrm{div}, T}^{k}: \underline{\boldsymbol{X}}_{\mathrm{div}, T}^{k} \rightarrow \boldsymbol{P}^{k}(T)^{3}
\end{gathered}
$$

- Based on these potentials, we construct local discrete L^{2}-products

$$
\left(\underline{x}_{T}, \underline{y}_{T}\right)_{\bullet, T}=\underbrace{\int_{T} P_{\bullet}, T \underline{x}_{T} \cdot P_{\bullet, T} \underline{y}_{T}}_{\text {consistency }}+\underbrace{+\mathrm{s}_{\bullet, T}\left(\underline{x}_{T}, \underline{y}_{T}\right)}_{\text {stability }} \quad \forall \bullet \in\{\operatorname{grad}, \text { curl, div }\}
$$

- The L^{2}-products are built to be polynomially exact

The three-dimensional case

Global DDR complex

$$
\mathbb{R} \xrightarrow{\underline{I}_{\underline{\text { grad, }, h}}^{k}} \underline{X}_{\text {grad }, h}^{k} \xrightarrow{\underline{\underline{G}}_{h}^{k}} \underline{\boldsymbol{X}}_{\text {curl }, h}^{k} \xrightarrow{\underline{\boldsymbol{C}}_{h}^{k}} \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}\left(\mathcal{T}_{h}\right) \xrightarrow{0}\{0\}
$$

■ Let \mathcal{T}_{h} be a polyhedral mesh with elements and faces of trivial topology

- Global DDR spaces are defined gluing boundary components:

$$
\underline{X}_{\mathrm{grad}, h}^{k}, \quad \underline{\boldsymbol{X}}_{\mathrm{curl}, h}^{k}, \quad \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k}
$$

- Global operators are obtained collecting local components:

$$
\underline{\boldsymbol{G}}_{h}^{k}: \underline{X}_{\mathrm{grad}, h}^{k} \rightarrow \underline{\boldsymbol{X}}_{\mathrm{curl}, h}^{k}, \underline{\boldsymbol{C}}_{h}^{k}: \underline{\boldsymbol{X}}_{\mathrm{curl}, h}^{k} \rightarrow \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k}, \quad D_{h}^{k}: \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k} \rightarrow \mathcal{P}^{k}\left(\mathcal{T}_{h}\right)
$$

■ Global L^{2}-products $(\cdot, \cdot)_{\bullet, h}$ are obtained assembling element-wise

Exactness of the global three-dimensional DDR complex

- The global DDR complex satisfies:

$$
\begin{aligned}
& \Omega \text { connected }\left(b_{0}=1\right) \Longrightarrow \operatorname{Im} \underline{\underline{g}}_{\underline{\text { grad }, h}}=\operatorname{Ker} \underline{\boldsymbol{G}}_{h}^{k}, \\
& \text { no "tunnels" crossing } \Omega\left(b_{1}=0\right) \Longrightarrow \operatorname{Im} \underline{\boldsymbol{G}}_{h}^{k}=\operatorname{Ker} \underline{\boldsymbol{C}}_{h}^{k}, \\
& \text { no "voids" contained in } \Omega\left(b_{2}=0\right) \Longrightarrow \operatorname{Im} \underline{\boldsymbol{C}}_{h}^{k}=\operatorname{Ker} D_{h}^{k}, \\
& \Omega \subset \mathbb{R}^{3}\left(b_{3}=0\right) \Longrightarrow \operatorname{Im} D_{h}^{k}=\mathcal{P}^{k}\left(\mathcal{T}_{h}\right)
\end{aligned}
$$

- The latter results can be generalized to non-trivial topologies

Exactness of the global three-dimensional DDR complex

$$
\mathbb{R} \xrightarrow{I_{\text {gmad }, h}^{k}} \underline{X}_{\mathrm{grad}, h}^{k} \xrightarrow{\underline{\boldsymbol{G}}_{h}^{k}} \underline{\boldsymbol{X}}_{\mathrm{cur}, h}^{k}, \xrightarrow{\underline{C}_{h}^{k}} \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}\left(\mathcal{T}_{h}\right) \xrightarrow{0}\{0\}
$$

- The global DDR complex satisfies:

$$
\begin{aligned}
& \Omega \text { connected }\left(b_{0}=1\right) \Longrightarrow \operatorname{Im} \underline{\underline{g}}_{\underline{\text { grad }, h}}=\operatorname{Ker} \underline{\boldsymbol{G}}_{h}^{k}, \\
& \text { no "tunnels" crossing } \Omega\left(b_{1}=0\right) \Longrightarrow \operatorname{Im} \underline{\boldsymbol{G}}_{h}^{k}=\operatorname{Ker} \underline{\boldsymbol{C}}_{h}^{k}, \\
& \text { no "voids" contained in } \Omega\left(b_{2}=0\right) \Longrightarrow \operatorname{Im} \underline{\boldsymbol{C}}_{h}^{k}=\operatorname{Ker} D_{h}^{k}, \\
& \Omega \subset \mathbb{R}^{3}\left(b_{3}=0\right) \Longrightarrow \operatorname{Im} D_{h}^{k}=\mathcal{P}^{k}\left(\mathcal{T}_{h}\right)
\end{aligned}
$$

- The latter results can be generalized to non-trivial topologies

■ We next discuss other key results focusing on magnetostatics

Discrete uniform Poincaré inequalities

- Let $\left(\operatorname{Ker} \underline{\boldsymbol{C}}_{h}^{k}\right)^{\perp}$ be the orthogonal of $\operatorname{Ker} \underline{\boldsymbol{C}}_{h}^{k}$ in $\underline{\boldsymbol{X}}_{\text {curl }, h}^{k}$ for $(\cdot, \cdot)_{\mathrm{cur}, h}$. Then,

$$
b_{2}=0 \Longrightarrow \underline{\boldsymbol{C}}_{h}^{k}:\left(\operatorname{Ker} \underline{\boldsymbol{C}}_{h}^{k}\right)^{\perp} \rightarrow \operatorname{Ker} D_{h}^{k} \text { is an isomorphism }
$$

- If, moreover, $b_{1}=0$, there is $C>0$ independent of h s.t.

$$
\left\|\underline{\boldsymbol{v}}_{h}\right\|_{\mathrm{curr}, h} \leq C\left\|\underline{\boldsymbol{C}}_{h}^{k} \underline{\boldsymbol{v}}_{h}\right\|_{\mathrm{div}, h} \quad \forall \underline{\boldsymbol{v}}_{h} \in\left(\operatorname{Ker} \underline{\boldsymbol{C}}_{h}^{k}\right)^{\perp}
$$

with $\|\cdot\|_{\bullet}, h$ norm induced by $(\cdot, \cdot)_{\bullet}, h$ on $\underline{X}_{\bullet, h}^{k}$
■ Similar results can be proved for the gradient and the divergence

Adjoint consistency

Adjoint consistency measures the failure to satisfy a global IBP. For the curl,

$$
\int_{\Omega} w \cdot \operatorname{curl} v-\int_{\Omega} \operatorname{curl} \boldsymbol{w} \cdot \boldsymbol{v}=0 \text { if } \boldsymbol{w} \times \boldsymbol{n}=\mathbf{0} \text { on } \partial \Omega
$$

Theorem (Adjoint consistency for the curl)
Let $\mathcal{E}_{\text {curl }, h}:\left(C^{0}(\bar{\Omega})^{3} \cap \mathbf{H}_{0}(\operatorname{curl} ; \Omega)\right) \times \underline{\boldsymbol{X}}_{\text {curl }, h}^{k} \rightarrow \mathbb{R}$ be s.t.

$$
\mathcal{E}_{\mathrm{curr}, h}\left(\boldsymbol{w}, \underline{\boldsymbol{v}}_{h}\right):=\left(\underline{\boldsymbol{I}}_{\mathrm{div}, h}^{k} \boldsymbol{w}, \underline{\boldsymbol{C}}_{h}^{k} \underline{\boldsymbol{v}}_{h}\right)_{\mathrm{div}, h}-\int_{\Omega} \operatorname{curl} \boldsymbol{w} \cdot \boldsymbol{P}_{\mathrm{curl}, h}^{k} \underline{\boldsymbol{v}}_{h} .
$$

Then, for all $\boldsymbol{w} \in C^{0}(\bar{\Omega})^{3} \cap \mathbf{H}_{0}(\operatorname{curl} ; \boldsymbol{\Omega})$ s.t. $\boldsymbol{w} \in H^{k+2}\left(\mathcal{T}_{h}\right)^{3}: \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{X}}_{\text {curl, }, h}^{k}$,

$$
\left|\mathcal{E}_{\mathrm{curr}, h}\left(\boldsymbol{w}, \underline{\boldsymbol{v}}_{h}\right)\right| \leq C h^{k+1}\left(\left\|\underline{\boldsymbol{v}}_{h}\right\|_{\mathrm{curl}, h}+\left\|\underline{\boldsymbol{C}}_{h}^{k} \underline{\boldsymbol{v}}_{h}\right\|_{\mathrm{div}, h}\right),
$$

with C independent of h.
Similar results can be proved for the gradient and the divergence

Outline

1 Three model problems and their well-posedness

2 Discrete de Rham (DDR) complexes

3 Application to magnetostatics

Discrete problem I

- With $\mu=1$, we seek $(\boldsymbol{H}, \boldsymbol{A}) \in \boldsymbol{H}(\operatorname{curl} ; \boldsymbol{\Omega}) \times \boldsymbol{H}(\operatorname{div} ; \boldsymbol{\Omega})$ s.t.

$$
\begin{array}{cl}
\int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{\tau}-\int_{\Omega} \boldsymbol{A} \cdot \operatorname{curl} \boldsymbol{\tau}=0 & \forall \boldsymbol{\tau} \in \boldsymbol{H}(\operatorname{curl} ; \Omega), \\
\int_{\Omega} \operatorname{curl} \boldsymbol{H} \cdot \boldsymbol{v}+\int_{\Omega} \operatorname{div} \boldsymbol{A} \operatorname{div} \boldsymbol{v}=\int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} & \forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div} ; \Omega)
\end{array}
$$

- The DDR scheme is obtained substituting

$$
\boldsymbol{H}(\operatorname{curl} ; \Omega) \leftarrow \underline{\boldsymbol{X}}_{\text {curl }, h}^{k}, \quad \boldsymbol{H}(\operatorname{div} ; \Omega) \leftarrow \underline{\boldsymbol{X}}_{\text {div }, h}^{k}
$$

and

$$
\begin{array}{rlrl}
\int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{\tau} & \leftarrow\left(\underline{\boldsymbol{H}}_{h}, \underline{\boldsymbol{\tau}}_{h}\right)_{\mathrm{curl}, h}, \quad \int_{\Omega} \operatorname{curl} \boldsymbol{\tau} \cdot \boldsymbol{v} & \leftarrow\left(\underline{\boldsymbol{C}}_{h}^{k} \underline{\boldsymbol{\tau}}_{h}, \underline{\boldsymbol{v}}_{h}\right)_{\mathrm{div}, h}, \\
\int_{\Omega} \operatorname{div} \boldsymbol{w} \operatorname{div} \boldsymbol{v} & \leftarrow \int_{\Omega} D_{h}^{k} \underline{\boldsymbol{w}}_{h} D_{h}^{k} \underline{\boldsymbol{v}}_{h}, & \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} & \leftarrow \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{P}_{\mathrm{div}, h}^{k} \underline{\boldsymbol{v}}_{h}
\end{array}
$$

Discrete problem II

- The discrete problem reads: Find $\left(\underline{\boldsymbol{H}}_{h}, \underline{\boldsymbol{A}}_{h}\right) \in \underline{\boldsymbol{X}}_{\text {curl }, h}^{k} \times \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k}$ s.t.

$$
\begin{array}{cl}
\left(\underline{\boldsymbol{H}}_{h}, \underline{\boldsymbol{\tau}}_{h}\right)_{\mathrm{curl}, h}-\left(\underline{\boldsymbol{A}}_{h}, \underline{\boldsymbol{C}}_{h}^{k} \underline{\boldsymbol{\tau}}_{h}\right)_{\mathrm{div}, h}=0 & \forall \underline{\boldsymbol{\tau}}_{h} \in \underline{\boldsymbol{X}}_{\mathrm{curl}, h}^{k}, \\
\left(\underline{\boldsymbol{C}}_{h}^{k} \underline{\boldsymbol{H}}_{h}, \underline{\boldsymbol{v}}_{h}\right)_{\mathrm{div}, h}+\int_{\Omega} D_{h}^{k} \underline{\boldsymbol{A}}_{h} D_{h}^{k} \underline{\boldsymbol{v}}_{h}=l_{h}\left(\underline{\boldsymbol{v}}_{h}\right) & \forall \underline{v}_{h} \in \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k}
\end{array}
$$

- Stability hinges on the exactness of the portion

$$
\mathbb{R} \xrightarrow{I_{\text {grad }, h}^{k}}{\underset{-}{X} k}_{k}^{k} \text { rad }, h \xrightarrow{\underline{G}_{h}^{k}} \underline{\boldsymbol{X}}_{\text {curl }, h}^{k} \xrightarrow{\underline{\boldsymbol{X}}_{h}^{k}} \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}\left(\mathcal{T}_{h}\right) \xrightarrow{0}\{0\},
$$

which requires $b_{2}=0$

- For $b_{2} \neq 0$, we need to add orthogonality to harmonic forms

Analysis I

Theorem (Stability)

Let $\Omega \subset \mathbb{R}^{3}$ be an polyhedral connected domain s.t. $b_{1}=b_{2}=0$ and set

$$
\begin{aligned}
& \mathrm{A}_{h}\left(\left(\underline{\boldsymbol{\sigma}}_{h}, \underline{\boldsymbol{u}}_{h}\right),\left(\underline{\boldsymbol{\tau}}_{h}, \underline{\boldsymbol{v}}_{h}\right)\right):= \\
& \quad\left(\underline{\boldsymbol{\sigma}}_{h}, \underline{\boldsymbol{\tau}}_{h}\right)_{\mathrm{curl}, h}-\left(\underline{\boldsymbol{u}}_{h}, \underline{\boldsymbol{k}}_{h}^{k} \underline{\boldsymbol{\tau}}_{h}\right)_{\operatorname{div}, h}+\left(\underline{\boldsymbol{C}}_{h}^{k} \underline{\boldsymbol{\sigma}}_{h}, \underline{\boldsymbol{v}}_{h}\right)_{\operatorname{div}, h}+\int_{\Omega} D_{h}^{k} \underline{\boldsymbol{u}}_{h} D_{h}^{k} \underline{\boldsymbol{v}}_{h} .
\end{aligned}
$$

Then, it holds: $\forall\left(\underline{\boldsymbol{\sigma}}_{h}, \underline{\boldsymbol{u}}_{h}\right) \in \underline{\boldsymbol{X}}_{\mathrm{curl}, h}^{k} \times \underline{\boldsymbol{X}}_{\mathrm{div}, h}^{k}$,

$$
\left\|\left(\underline{\boldsymbol{\sigma}}_{h}, \underline{\boldsymbol{u}}_{h}\right)\right\|_{h} \leq C \sup _{\left(\underline{\boldsymbol{\tau}}_{h}, \underline{\underline{v}}_{h}\right) \in \boldsymbol{X}_{\underline{\text { uurl,h}}}^{k} \times \underline{\underline{X}}_{\mathrm{div}, h}^{k} \backslash\{(\mathbf{0}, \mathbf{0})\}} \frac{\mathrm{A}_{h}\left(\left(\underline{\boldsymbol{\sigma}}_{h}, \underline{\boldsymbol{u}}_{h}\right),\left(\underline{\boldsymbol{\tau}}_{h}, \underline{\boldsymbol{v}}_{h}\right)\right)}{\left\|\left(\underline{\boldsymbol{\tau}}_{h}, \underline{\boldsymbol{v}}_{h}\right)\right\|_{h}}
$$

with C independent of h and

$$
\left\|\left(\underline{\boldsymbol{\tau}}_{h}, \underline{\boldsymbol{v}}_{h}\right)\right\|_{h}^{2}:=\left\|\underline{\boldsymbol{\tau}}_{h}\right\|_{\mathrm{curl}, h}^{2}+\left\|\underline{\boldsymbol{C}}_{h}^{k} \underline{\boldsymbol{\tau}}_{h}\right\|_{\mathrm{div}, h}^{2}+\left\|\underline{\boldsymbol{v}}_{h}\right\|_{\mathrm{div}, h}^{2}+\left\|D_{h}^{k} \underline{\boldsymbol{v}}_{h}\right\|_{L^{2}(\Omega)}^{2}
$$

Analysis II

Theorem (Error estimate for the magnetostatics problem)
Assume $b_{1}=b_{2}=0, \boldsymbol{H} \in C^{0}(\bar{\Omega})^{3} \cap H^{k+2}\left(\mathcal{T}_{h}\right)^{3}, \boldsymbol{A} \in C^{0}(\bar{\Omega})^{3} \times H^{k+2}\left(\mathcal{T}_{h}\right)^{3}$. Then, we have the following error estimate:

$$
\left\|\left(\underline{\boldsymbol{H}}_{h}-\underline{\boldsymbol{I}}_{\mathrm{curl}, h}^{k} \boldsymbol{H}, \underline{\boldsymbol{A}}_{h}-\underline{\boldsymbol{I}}_{\mathrm{div}, h}^{k} \boldsymbol{A}\right)\right\|_{h} \leq C h^{k+1},
$$

with $C>0$ independent of h.

Numerical examples

Energy error vs. meshsize

$$
\begin{array}{r}
-k=0 \\
\square k=1 \\
\square k=2 \\
-k=3
\end{array}
$$

Open-source implementation available in HArDCore3D

A glance at the general case

- Let n denote the ambient dimension and Ω a polytopal set of \mathbb{R}^{n}
- For $k=0, \ldots, n$, we define the DDR space

$$
\underline{X}_{r, h}^{k}:=\bigwedge_{d=r}^{n} X_{\mathrm{e} \in \mathcal{T}_{d, h}} \mathcal{P}^{k,-} \Lambda^{d-r}(\mathrm{e})
$$

with $\mathcal{P}^{k,-} \Lambda^{d-r}(\mathrm{e})$ trimmed polynomial space of $(d-r)$-forms

- For $d=k+1, \ldots, n$, the discrete differential $d_{r, \mathrm{e}}^{k}: \underline{X}_{r, \mathrm{e}}^{k} \rightarrow \mathcal{P}^{k} \Lambda^{r+1}(\mathrm{e})$ is s.t.

$$
\begin{aligned}
& \forall\left(\underline{\omega}_{\mathrm{e}}, \mu_{\mathrm{e}}\right) \in \underline{X}_{r, \mathrm{e}}^{k} \times \mathcal{P}^{k} \Lambda^{d-r-1}(\mathrm{e}) \\
& \quad \int_{\mathrm{e}} d_{r, \mathrm{e}}^{k} \underline{\omega}_{\mathrm{e}} \wedge \mu_{\mathrm{e}}=(-1)^{k+1} \int_{\mathrm{e}} \star \omega_{\mathrm{e}} \wedge d \mu_{\mathrm{e}}+\int_{\partial \mathrm{e}} P_{r, \partial \mathrm{e}}^{k} \underline{\omega}_{\partial \mathrm{e}} \wedge \operatorname{tr}_{\partial \mathrm{e}} \mu_{\mathrm{e}}
\end{aligned}
$$

- The discrete potential $P_{r, \mathrm{e}}^{k}$ is intrinsically available or defined similarly

■ Unified proofs of homological and stability properties!

Conclusions and perspectives

- Novel approach to approximate PDEs relating to the de Rham complex
- Key features: support of general polyhedral meshes and high-order
- Novel computational strategies made possible
- Natural extensions to variable coefficients and nonlinearities
- Formalization using differential forms (ongoing work with F. Bonaldi)
- Development of novel complexes (e.g., elasticity, Hessian,...)
- Applications (possibly beyond continuum mechanics)

References I

Arnold, D. (2018).
Finite Element Exterior Calculus.
SIAM.

Beirão da Veiga, L., Dassi, F., Di Pietro, D. A., and Droniou, J. (2022).
Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes.
Comput. Methods Appl. Mech. Engrg.
Accepted for publication. arXiv: 2112.09750 [math.NA].

Brezzi, F. and Fortin, M. (1991).
Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York.

Di Pietro, D. A. and Droniou, J. (2020).
The Hybrid High-Order method for polytopal meshes.
Number 19 in Modeling, Simulation and Application. Springer International Publishing.
Di Pietro, D. A. and Droniou, J. (2021a).
An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency. Found. Comput. Math.
Published online. DOI: 10.1007/s10208-021-09542-8.

Di Pietro, D. A. and Droniou, J. (2021b).
An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence.
J. Comput. Phys., 429(109991).

Di Pietro, D. A. and Droniou, J. (2021c).
A DDR method for the Reissner-Mindlin plate bending problem on polygonal meshes.
Submitted, arXiv: 2105.11773 [math.NA].

References II

Di Pietro, D. A. and Droniou, J. (2022).
A fully discrete plates complex on polygonal meshes with application to the Kirchhoff-Love problem.
Math. Comp.
Accepted for publication. arXiv: 2112.14497 [math.NA].
Di Pietro, D. A., Droniou, J., and Rapetti, F. (2020).
Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra.
Math. Models Methods Appl. Sci., 30(9):1809-1855.
Hanot, M.-L. (2021).
An arbitrary-order fully discrete Stokes complex on general polygonal meshes.
Submitted. URL: arXiv: 2112.03125 [math.NA].
Nédélec, J.-C. (1980).
Mixed finite elements in \mathbf{R}^{3}.
Numer. Math., 35(3):315-341.
Raviart, P. A. and Thomas, J. M. (1977).
A mixed finite element method for 2nd order elliptic problems.
In Galligani, I. and Magenes, E., editors, Mathematical Aspects of the Finite Element Method. Springer, New York.

