An introduction to the convergence analysis of discretisation methods for PDEs with application to Hybrid High-Order methods

Daniele A. Di Pietro
Institut Montpelliérain Alexander Grothendieck, University of Montpellier daniele.di-pietro@umontpellier.fr
Bergamo, May 10-11, 2018

Outline

Basic notions

Abstract convergence analysis

Application to Hybrid High-Order methods

Outline

Basic notions

Abstract convergence analysis

Application to Hybrid High-Order methods

A model problem

- Let $\Omega \subset \mathbb{R}^{d}, d \geq 1$, denote an open bounded connected polytopal set
- Let $f: \bar{\Omega} \rightarrow \mathbb{R}$ denote a given source term
- We consider the Poisson problem: Find $u: \bar{\Omega} \rightarrow \mathbb{R}$ s.t.

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega, \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

where we recall that the Laplace operator is defined as

$$
\Delta u:=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial x_{i}^{2}}
$$

Advantages of the weak formulation

- Let, for the moment being, $d=1$ and $\Omega=(0,1)$
- The Poisson problem reads in this case: Find $u:[0,1] \rightarrow \mathbb{R}$ s.t.

$$
\begin{aligned}
-\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}} & =f \quad \text { in }(0,1), \\
u(0) & =u(1)=0
\end{aligned}
$$

- This problem is meaningful if $f \in C^{0}([0,1])$ and $u \in C^{2}([0,1])$
- This is however not representative of real-life problems, where the source term can be discontinuous!
- The weak formulation covers this (and other) important case(s)

Weak derivatives I

- For any function $\phi \in C^{\infty}(\Omega)$, we define its support by

$$
\operatorname{supp}(\phi):=\overline{\{x \in \Omega: \phi(x) \neq 0\}}
$$

- Denote by $C_{0}^{\infty}(\Omega)$ the set of functions with compact support in Ω

$$
C_{0}^{\infty}(\Omega):=\left\{\phi \in C^{\infty}(\Omega): \operatorname{supp}(\phi) \text { is a compact subset of } \Omega\right\},
$$

i.e., functions in $C_{0}^{\infty}(\Omega)$ vanish near $\partial \Omega$

- We define the set of locally Lebesgue integrable functions

$$
L_{\mathrm{loc}}^{1}(\Omega):=\left\{f: \int_{K}|f(x)| \mathrm{d} x<+\infty \text { for all compact } K \subset \Omega\right\}
$$

Weak derivatives II

Definition (Weak first partial derivative and weak gradient)
We say that $v \in L_{\text {loc }}^{1}(\Omega)$ has weak partial derivative w.r. to the i th variable if there exists $w \in L_{\mathrm{loc}}^{1}(\Omega)$ s.t.

$$
\int_{\Omega} w(x) \phi(x) \mathrm{d} x=-\int_{\Omega} v(x) \frac{\partial \phi(x)}{\partial x_{i}} \mathrm{~d} x \quad \forall \phi \in C_{0}^{\infty}(\Omega)
$$

and we set

$$
\partial_{i} v:=w
$$

If v function has weak partial derivatives with respect to the i th variable for any $1 \leq i \leq d$, we define its weak gradient

$$
\nabla v:=\left(\begin{array}{c}
\partial_{i} v \\
\vdots \\
\partial_{d} v
\end{array}\right)
$$

Hilbert spaces I

Definition (Inner product space)

A inner product space is a vector space V over \mathbb{R} together with an inner product $(\cdot, \cdot)_{V}$, i.e., a $\operatorname{map}(\cdot, \cdot)_{V}: V \times V \rightarrow \mathbb{R}$ s.t., for all $(u, v, z) \in U^{3}$ and all $\alpha \in \mathbb{R}$, the following properties hold:

$$
\begin{aligned}
(u, v)_{V} & =(v, u)_{V}, & & \text { (Symmetry) } \\
(\alpha u, v)_{V} & =\alpha(u, v)_{V} \text { and }(u+v, z)_{V}=(u, z)_{V}+(v, z)_{V}, & & \text { (Linearity) } \\
(v, v)_{V} & \geq 0 \text { and }(v, v)_{V}=0 \text { iff } v=0 . & & \text { (Positivity) }
\end{aligned}
$$

We denote by $\|\cdot\|_{V}$ the norm induced by the inner product on V.

Lemma (Cauchy-Schwarz inequality)

Let $\left(V,(\cdot, \cdot)_{V}\right)$ be an inner-product space. Then, for all $u, v \in V$,

$$
\left|(u, v)_{V}\right| \leq\|u\|_{V}\|v\|_{V} .
$$

A similar inquality is valid for any positive semi-definite bilinear form on $V \times V$.

Hilbert spaces II

Definition (Hilbert space)

A Hilbert space is an inner product space $\left(V,(\cdot, \cdot)_{V}\right)$ that is complete with respect to the distance function defined by the norm, i.e., every Cauchy sequence converges in V.

We recall that a Cauchy sequence in this context is a sequence $\left(\phi_{n}\right)_{n \in N} \in V^{\mathbb{N}}$ s.t., for all $\epsilon>0$, there exists $N \in \mathbb{N}$ s.t., for all $n, m \geq N$, $\left\|\phi_{m}-\phi_{n}\right\|_{V}<\epsilon$.

The space of finite energy functions for the Poisson problem I

- Let $\|\cdot\|_{L^{2}(\Omega)}$ map a given function $v: \Omega \rightarrow \mathbb{R}$ on

$$
\|v\|_{L^{2}(\Omega)}:=\left(\int_{\Omega}|v(x)|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
$$

- We define the Lebesgue space of square-integrable functions

$$
L^{2}(\Omega):=\left\{v: \Omega \rightarrow \mathbb{R}:\|v\|_{L^{2}(\Omega)}<+\infty\right\}
$$

- The space of finite energy functions for the Poisson problem is

$$
H^{1}(\Omega):=\left\{v \in L^{2}(\Omega): \partial_{i} v \in L^{2}(\Omega) \quad \forall 1 \leq i \leq d\right\}
$$

The space of finite energy functions for the Poisson problem II

- We equip $H^{1}(\Omega)$ with the following inner product:

$$
(u, v)_{H^{1}(\Omega)}:=\int_{\Omega} u(x) v(x) \mathrm{d} x+\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \mathrm{d} x
$$

- The corresponding norm is

$$
\|v\|_{H^{1}(\Omega)}:=\left(\|v\|_{L^{2}(\Omega)}^{2}+|v|_{H^{1}(\Omega)}^{2}\right)^{\frac{1}{2}} \quad \text { with } \quad|v|_{H^{1}(\Omega)}:=\|\nabla v\|_{L^{2}(\Omega)^{d}}
$$

- It can be proved that $\left(H^{1}(\Omega),(\cdot, \cdot)_{H^{1}(\Omega)}\right)$ is a Hilbert space

Boundary conditions and Poincaré inequality

- Finite energy functions that vanish on $\partial \Omega$ are collected in the space

$$
H_{0}^{1}(\Omega):=\left\{v \in H^{1}(\Omega): v_{\mid \partial \Omega}=0\right\}
$$

- A crucial result is the following Poincare inequality: There exists C_{Ω} only depending on Ω s.t.

$$
\|v\|_{L^{2}(\Omega)} \leq C_{\Omega}|v|_{H^{1}(\Omega)} \quad \forall v \in H_{0}^{1}(\Omega)
$$

- As a result, $|\cdot|_{H^{1}(\Omega)}$ is a norm on $H_{0}^{1}(\Omega)$

Weak formulation

- Let $f \in L^{2}(\Omega)$, which includes possibly discontinuous source terms
- Set $U:=H_{0}^{1}(\Omega)$ and let $a: U \times U \rightarrow \mathbb{R}$ and $\ell: U \rightarrow \mathbb{R}$ be s.t.

$$
a(u, v):=\int_{\Omega} u(x) v(x) \mathrm{d} x, \quad \ell(v):=\int_{\Omega} f(x) \mathrm{d} x
$$

- The weak formulation of our model problem reads:

$$
\text { Find } u \in U \text { s.t. } \quad a(u, v)=\ell(v) \quad \forall v \in U
$$

- It can be proved that u minimises the energy

$$
\Phi(v):=\frac{1}{2} a(v, v)-\ell(v)
$$

Well-posedness I

Lemma (Lax-Milgram)

Given a Hilbert space $\left(V,(\cdot, \cdot)_{V}\right)$, assume that there exist strictly positive real numbers α, γ, and L s.t.

$$
\begin{array}{cll}
\alpha\|v\|_{V}^{2} \leq a(v, v) & \forall v \in V, & \text { (Coercivity) } \\
|a(u, v)| \leq \gamma\|u\|_{V}\left\|_{v}\right\|_{V} & \forall(u, v) \in V^{2}, & \text { (Boundedness of a) } \\
|\ell(v)| \leq L\|v\|_{V} & \forall v \in V . & \text { (Boundedness of } \ell \text {) }
\end{array}
$$

Then, the problem:

$$
\text { Find } u \in V \text { s.t. } \quad a(u, v)=\ell(v) \quad \forall v \in V
$$

admits a unique solution which satisfies the a priori estimate

$$
\|v\|_{V} \leq \frac{L}{\alpha}
$$

Well-posedness II

Theorem (Well-posedness of the Poisson problem)
The Poisson problem is well-posed, and it holds

$$
\|u\|_{H^{1}(\Omega)} \leq \frac{1}{1+C_{\Omega}^{2}}\|f\|_{L^{2}(\Omega)}
$$

Well-posedness III

- Using Poincare's inequality, we have for all $v \in U$,

$$
\frac{1}{1+C_{\Omega}^{2}}\|u\|_{H^{1}(\Omega)}^{2}=\frac{1}{1+C_{\Omega}^{2}}\left(\|v\|_{L^{2}(\Omega)}^{2}+|v|_{H^{1}(\Omega)}^{2}\right) \leq\|\nabla v\|_{L^{2}(\Omega)^{d}}^{2}=a(v, v),
$$

that is, a is coercive with $\alpha=1 /\left(1+C_{\Omega}^{2}\right)$

- Moreover, for all $(u, v) \in U^{2}$, using the Cauchy-Schwarz inequality,

$$
|a(u, v)| \leq\|u\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)} \leq\|u\|_{H^{1}(\Omega)}\|v\|_{H^{1}(\Omega)},
$$

i.e., a is bounded with $\gamma=1$

- Finally, using again Poincaré's inequality, for all $v \in U$

$$
|\ell(v)|=\left|\int_{\Omega} f(x) v(x) \mathrm{d} x\right| \leq\|f\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|v\|_{H^{1}(\Omega)},
$$

which shows that ℓ is bounded with $L=\|f\|_{L^{2}(\Omega)}$

Outline

Basic notions

Abstract convergence analysis

Application to Hybrid High-Order methods

Setting

Definition (Continuous problem)

Let a Hilbert space H, a continuous bilinear form $a: H \times H \rightarrow \mathbb{R}$, and a continuous linear form $\ell: H \rightarrow \mathbb{R}$ be given. The problem we aim at approximating is

$$
\begin{equation*}
\text { Find } u \in H \text { s.t. } \quad a(u, v)=\ell(v) \quad \forall v \in H . \tag{П}
\end{equation*}
$$

Definition (Discrete problem)

Let a vector space X_{h} with norm $\|\cdot\|_{X_{h}}$, a bilinear form $a_{h}: X_{h} \times X_{h} \rightarrow \mathbb{R}$, and a linear form $\ell_{h}: X_{h} \rightarrow \mathbb{R}$ be given. The approximation of problem (Π) is

Find $u_{h} \in X_{h}$ s.t. $\quad a_{h}\left(u_{h}, v_{h}\right)=\ell_{h}\left(v_{h}\right) \quad \forall v_{h} \in X_{h}$
with h discretisation parameter s.t. convergence is expected when $h \rightarrow 0$.

Stability

Definition (Coercivity)

The bilinear form a_{h} is coercive for $\|\cdot\|_{X_{h}}$ if

$$
\exists \gamma>0 \text { s.t. } \gamma\left\|v_{h}\right\|_{X_{h}}^{2} \leq a_{h}\left(v_{h}, v_{h}\right) \quad \forall v_{h} \in X_{h} .
$$

A more general notion of stability is the following:
Definition (Inf-sup stability)
The bilinear form a_{h} is inf-sup stable for $\|\cdot\|_{X_{h}}$ if

$$
\exists \gamma>0 \text { s.t. } \gamma\left\|u_{h}\right\|_{X_{h}} \leq \sup _{v_{h} \in X_{h} \backslash\{0\}} \frac{a_{h}\left(u_{h}, v_{h}\right)}{\left\|v_{h}\right\|_{X_{h}}} \quad \forall u_{h} \in X_{h} .
$$

Remark

For optimal error estimates, one usually needs γ to be independent of h.

A priori bound on the discrete solution

Proposition (A priori bound on the discrete solution)
If a_{h} is inf-sup stable, $m_{h}: X_{h} \rightarrow \mathbb{R}$ is linear, and w_{h} satisfies

$$
a_{h}\left(w_{h}, v_{h}\right)=m_{h}\left(v_{h}\right) \quad \forall v_{h} \in X_{h},
$$

then, setting $\left\|m_{h}\right\|_{X_{h}^{\star}}:=\sup _{v_{h} \in X_{h} \backslash\{0\}} \frac{\left|m_{h}\left(v_{h}\right)\right|}{\left\|v_{h}\right\|_{X_{h}}}$,

$$
\left\|w_{h}\right\|_{X_{h}} \leq \gamma^{-1}\left\|m_{h}\right\|_{X_{h}^{\star}}
$$

Proof.
Take $v_{h} \in X_{h} \backslash\{0\}$ and write, by definition of $\|\cdot\|_{X_{h}^{\star}}$,

$$
\frac{a_{h}\left(w_{h}, v_{h}\right)}{\left\|v_{h}\right\|_{X_{h}}}=\frac{m_{h}\left(v_{h}\right)}{\left\|v_{h}\right\|_{X_{h}}} \leq\left\|m_{h}\right\|_{X_{h}^{\star}}
$$

The proof is completed by taking the supremum over such v_{h}.

Consistency error and consistency

Definition (Consistency error and consistency)

Let u solve (Π) and take $I_{h} u \in X_{h}$. The variational consistency error is the linear form $\mathcal{E}_{h}(u ; \cdot): X_{h} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{E}_{h}(u ; \cdot)=\ell_{h}(\cdot)-a_{h}\left(I_{h} u, \cdot\right) .
$$

Let now a family $\left(X_{h}, a_{h}, \ell_{h}\right)_{h \rightarrow 0}$ of spaces and forms be given, and consider the corresponding discrete problems $\left(\Pi_{h}\right)$. Consistency holds if

$$
\left\|\mathcal{E}_{h}(u ; \cdot)\right\|_{X_{h}^{\star}} \rightarrow 0 \text { as } h \rightarrow 0
$$

Remark (Choice of $I_{h} u$)

No particular property is required here on $I_{h} u$; it could actually be any element of X_{h}. However, for the estimates that follow to be meaningful, it is expected that $I_{h} u$ is computed from u, so that information on $I_{h} u$ encodes meaningful information on u itself.

Abstract energy error estimate I

Theorem (Abstract energy error estimate and convergence) Assume a_{h} inf-sup stable. Let u be a solution to (Π) and $I_{h} u \in X_{h}$. If u_{h} is a solution to $\left(\Pi_{h}\right)$ then

$$
\left\|u_{h}-I_{h} u\right\|_{X_{h}} \leq \gamma^{-1}\left\|\mathcal{E}_{h}(u ; \cdot)\right\|_{X_{h}^{\star}} .
$$

As a consequence, letting a family $\left(X_{h}, a_{h}, \ell_{h}\right)_{h \rightarrow 0}$ of spaces and forms be given, if consistency holds, then we have convergence in the following sense:

$$
\left\|u_{h}-I_{h} u\right\|_{X_{h}} \rightarrow 0 \text { as } h \rightarrow 0 .
$$

Abstract energy error estimate II

Proof.

For any $v_{h} \in X_{h}$, the scheme $\left(\Pi_{h}\right)$ yields

$$
a_{h}\left(u_{h}-I_{h} u, v_{h}\right)=a_{h}\left(u_{h}, v_{h}\right)-a_{h}\left(I_{h} u, v_{h}\right)=\ell_{h}\left(v_{h}\right)-a_{h}\left(I_{h} u, v_{h}\right)
$$

Recalling the definition of the consistency error, the error $u_{h}-I_{h} u$ can then be characterised as the solution to the following error equation:

$$
\begin{equation*}
a_{h}\left(u_{h}-I_{h} u, v_{h}\right)=\mathcal{E}_{h}\left(u ; v_{h}\right) \quad \forall v_{h} \in X_{h} \tag{err,h}
\end{equation*}
$$

The proof is completed by writing the a priori bound with $m_{h}=\mathcal{E}_{h}(u ; \cdot)$ and $w_{h}=u_{h}-I_{h} u$.

Quasi-optimality of the error estimate

Remark

Let

$$
\left\|a_{h}\right\|_{X_{h} \times X_{h}}:=\sup _{w_{h} \in X_{h} \backslash\{0\}, v_{h} \in Y_{h} \backslash\{0\}} \frac{\left|a_{h}\left(w_{h}, v_{h}\right)\right|}{\left\|w_{h}\right\|_{X_{h}}\left\|v_{h}\right\|_{X_{h}}}
$$

be the standard norm of the bilinear form a_{h}. The error equation ($\Pi_{\text {err }, h}$) shows that

$$
\left\|\mathcal{E}_{h}(u ; \cdot)\right\|_{X_{h}^{\star}} \leq\left\|a_{h}\right\|_{X_{h} \times X_{h}}\left\|u_{h}-I_{h} u\right\|_{X_{h}} .
$$

Hence, if $\left\|a_{h}\right\|_{X_{h} \times X_{h}}$ and γ remain bounded with respect to h as $h \rightarrow 0$, which is always the case in practice, the error estimate is quasi-optimal in the sense that, for some C not depending on h, it holds that

$$
C^{-1}\left\|\mathcal{E}_{h}(u ; \cdot)\right\|_{X_{h}^{\star}} \leq\left\|u_{h}-I_{h} u\right\|_{X_{h}} \leq C\left\|\mathcal{E}_{h}(u ; \cdot)\right\|_{X_{h}^{\star}}
$$

Outline

Basic notions

Abstract convergence analysis

Application to Hybrid High-Order methods

Features

- Capability of handling general polyhedral meshes
- Construction valid for arbitrary space dimensions
- Arbitrary approximation order (including $k=0$)
- Robustness with respect to the variations of the physical coefficients
- Reduced computational cost after hybridization

$$
N_{\mathrm{dof}, h}=\operatorname{card}\left(\mathcal{F}_{h}^{\mathrm{i}}\right)\binom{k+d-1}{d-1}
$$

Polyhedral meshes

Figure: Admissible meshes in 2d and 3d, and HHO solution on the agglomerated 3d mesh

Model problem

- Let $\Omega \subset \mathbb{R}^{d}, d \geq 1$, as before
- For $X \subset \Omega$, we denote by $(\cdot, \cdot)_{X}$ the standard inner product of $L^{2}(X)$ and set $\|v\|_{X}:=\sqrt{(v, v)_{X}}$. When $X=\Omega$, the subscript is omitted
- We come back to the Poisson problem: Find $u \in H_{0}^{1}(\Omega)$ s.t.

$$
a(u, v):=(\nabla u, \nabla v)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega)
$$

- Hereafter, $a \lesssim b$ means $a \leq C b$ with C independent of $h . a \simeq b$ means $a \lesssim b \lesssim a$

Sobolev spaces

- For all $p \in[1,+\infty]$ we set, for all $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{d}$,

$$
\|\boldsymbol{x}\|_{p}:= \begin{cases}\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} & \text { if } 1 \leq p<+\infty \\ \max _{1 \leq i \leq d}\left|x_{i}\right| & \text { if } p=+\infty\end{cases}
$$

- Let $X \subset \mathbb{R}^{d}$. For all $s \in \mathbb{N}$, we define the Sobolev space

$$
H^{s}(X):=\left\{v \in L^{2}(X): \forall \alpha \in \boldsymbol{A}_{d}^{s}, \partial^{\alpha} v \in L^{2}(X)\right\}
$$

with $\boldsymbol{A}_{d}^{s}:=\left\{\alpha \in \mathbb{N}^{d}:\|\alpha\|_{1} \leq s\right\}$. By definition,

$$
H^{0}(X)=L^{2}(X)
$$

- The Sobolev norm $\|\cdot\|_{W^{s, p}(X)}$ and seminorm $|\cdot|_{W^{s, p}(X)}$ are

$$
\|v\|_{\boldsymbol{H}^{s}(X)}:=\sum_{\boldsymbol{\alpha} \in \boldsymbol{A}_{d}^{s}}\left\|\partial^{\alpha} v\right\|_{X}, \quad|v|_{\boldsymbol{H}^{s}(X)}:=\sum_{\alpha \in \mathbb{N}^{n},\|\boldsymbol{\alpha}\|_{1}=s}\left\|\partial^{\alpha} v\right\|_{X}
$$

Projectors on local polynomial spaces I

- At the core of HHO are projectors on local polynomial spaces
- With $X=T$ or $X=F$, the L^{2}-projector $\pi_{X}^{0, l}: L^{1}(T) \rightarrow \mathbb{P}^{l}(X)$ is s.t.

$$
\left(\pi_{X}^{0, l} v-v, w\right)_{X}=0 \text { for all } w \in \mathbb{P}^{l}(X)
$$

- The elliptic projector $\pi_{T}^{1, l}: W^{1,1}(T) \rightarrow \mathbb{P}^{l}(T)$ is s.t.

$$
\left(\boldsymbol{\nabla}\left(\pi_{T}^{1, l} v-v\right), \boldsymbol{\nabla} w\right)_{T}=0 \text { for all } w \in \mathbb{P}^{l}(T) \text { and }\left(\pi_{T}^{1, l} v-v, 1\right)_{T}=0
$$

Projectors on local polynomial spaces II

Theorem (Optimal approximation properties of projectors)
For $\xi \in\{0,1\}$ and $s \in\{\xi, \ldots, l+1\}$, it holds for all $T \in \mathcal{T}_{h}$ and $v \in H^{s}(T)$,

$$
\left|v-\pi_{T}^{\xi, l} v\right|_{H^{m}(T)} \lesssim h_{T}^{s-m}|v|_{H^{s}(T)} \quad \forall m \in\{0, \ldots, s\}
$$

and, if $s \geq 1$,

$$
\left|v-\pi_{T}^{\xi, l} v\right|_{H^{m}\left(\mathcal{F}_{T}\right)} \lesssim h_{T}^{s-m-\frac{1}{2}}|v|_{H^{s}(T)} \quad \forall m \in\{0, \ldots, s-1\},
$$

where $H^{m}\left(\mathcal{F}_{T}\right):=\left\{v \in L^{2}(\partial T): v_{\mid F} \in H^{m}(F) \quad \forall F \in \mathcal{F}_{T}\right\}$ is the broken Sobolev space on the boundary of T.

Proof.
See [Di Pietro and Droniou, 2017a, Di Pietro and Droniou, 2017b].

Computing $\pi_{T}^{1, k+1}$ from L^{2}-projections of degree k

- The following integration by parts formula is valid for all $w \in C^{\infty}(\bar{T})$:

$$
(\boldsymbol{\nabla} v, \boldsymbol{\nabla} w)_{T}=-(v, \Delta w)_{T}+\sum_{F \in \mathcal{F}_{T}}\left(v, \boldsymbol{\nabla} w \cdot \boldsymbol{n}_{T F}\right)_{F}
$$

- Specializing it to $w \in \mathbb{P}^{k+1}(T)$, we can write

$$
\left(\boldsymbol{\nabla} \pi_{T}^{1, k+1} v, \boldsymbol{\nabla} w\right)_{T}=-\left(\pi_{T}^{0, k} v, \Delta w\right)_{T}+\sum_{F \in \mathcal{F}_{T}}\left(\pi_{F}^{0, k} v_{\mid F}, \boldsymbol{\nabla} w \cdot \boldsymbol{n}_{T F}\right)_{F}
$$

- Moreover, it can be easily seen that

$$
\left(\pi_{T}^{1, k+1} v-v, 1\right)_{T}=\left(\pi_{T}^{1, k+1} v-\pi_{T}^{0, k} v, 1\right)_{T}=0
$$

- Hence, $\pi_{T}^{1, k+1} v$ can be computed from $\pi_{T}^{0, k} v$ and $\left(\pi_{F}^{0, k} v_{\mid F}\right)_{F \in \mathcal{F}_{T}}$!

Discrete unknowns

Figure: \underline{U}_{T}^{k} for $k \in\{0,1,2\}$

- Let a polynomial degree $k \geq 0$ be fixed
- For all $T \in \mathcal{T}_{h}$, we define the local space of discrete unknowns

$$
\underline{U}_{T}^{k}:=\left\{\underline{v}_{T}=\left(v_{T},\left(v_{F}\right)_{F \in \mathcal{F}_{T}}\right): v_{T} \in \mathbb{P}^{k}(T) \text { and } v_{F} \in \mathbb{P}^{k}(F) \quad \forall F \in \mathcal{F}_{T}\right\}
$$

- The local interpolator $\underline{I}_{T}^{k}: H^{1}(T) \rightarrow \underline{U}_{T}^{k}$ is s.t., for all $v \in H^{1}(T)$,

$$
\underline{I}_{T}^{k} v:=\left(\pi_{T}^{0, k} v,\left(\pi_{F}^{0, k} v_{\mid F}\right)_{F \in \mathcal{F}_{T}}\right)
$$

Local potential reconstruction

- Let $T \in \mathcal{T}_{h}$. We define the local potential reconstruction operator

$$
r_{T}^{k+1}: \underline{U}_{T}^{k} \rightarrow \mathbb{P}^{k+1}(T)
$$

s.t. for all $\underline{v}_{T} \in \underline{U}_{T}^{k},\left(r_{T}^{k+1} \underline{v}_{T}-v_{T}, 1\right)_{T}=0$ and

$$
\left(\boldsymbol{\nabla} r_{T}^{k+1} \underline{v}_{T}, \boldsymbol{\nabla} w\right)_{T}=-\left(v_{T}, \Delta w\right)_{T}+\sum_{F \in \mathscr{F}_{T}}\left(v_{F}, \boldsymbol{\nabla} w \cdot \boldsymbol{n}_{T F}\right)_{F} \quad \forall w \in \mathbb{P}^{k+1}(T)
$$

- By construction, we have

$$
r_{T}^{k+1} \circ \underline{I}_{T}^{k}=\pi_{T}^{1, k+1}
$$

- $r_{T}^{k+1} \circ \underline{I}_{T}^{k}$ has therefore optimal approximation properties in $\mathbb{P}^{k+1}(T)$

Stabilization I

- We would be tempted to approximate

$$
a_{\mid T}(u, v) \approx\left(\boldsymbol{\nabla} r_{T}^{k+1} \underline{u}_{T}, \nabla r_{T}^{k+1} \underline{v}_{T}\right)_{T}
$$

- This choice, however, is not stable in general. We consider instead

$$
\mathrm{a}_{T}\left(\underline{u}_{T}, \underline{v}_{T}\right):=\left(\boldsymbol{\nabla} r_{T}^{k+1} \underline{u}_{T}, \nabla r_{T}^{k+1} \underline{v}_{T}\right)_{T}+\mathrm{s}_{T}\left(\underline{u}_{T}, \underline{v}_{T}\right)
$$

- The role of s_{T} is to ensure $\|\cdot\|_{1, T}$-coercivity with

$$
\left\|\underline{v}_{T}\right\|_{1, T}^{2}:=\left\|\nabla v_{T}\right\|_{T}^{2}+\sum_{F \in \mathcal{F}_{T}} \frac{1}{h_{F}}\left\|v_{F}-v_{T}\right\|_{F}^{2} \quad \forall \underline{v}_{T} \in \underline{U}_{T}^{k}
$$

Stabilization II

Assumption (Stabilization bilinear form)

The bilinear form $\mathrm{s}_{T}: \underline{U}_{T}^{k} \times \underline{U}_{T}^{k} \rightarrow \mathbb{R}$ satisfies the following properties:
(S1) Symmetry and positivity. s_{T} is symmetric and positive semidefinite.
(S2) Stability. It holds, with hidden constant independent of h and T,

$$
\mathrm{a}_{T}\left(\underline{v}_{T}, \underline{v}_{T}\right)^{\frac{1}{2}} \simeq\left\|\underline{v}_{T}\right\|_{1, T} \quad \forall \underline{v}_{T} \in \underline{U}_{T}^{k}
$$

(S3) Polynomial consistency. For all $w \in \mathbb{P}^{k+1}(T)$ and all $\underline{v}_{T} \in \underline{U}_{T}^{k}$,

$$
\mathrm{s}_{T}\left(\underline{I}_{T}^{k} w, \underline{v}_{T}\right)=0 .
$$

Stabilization III

Proposition (Consistency of s_{T})

Let $T \in \mathcal{T}_{h}$ and let s_{T} denote a stabilisation bilinear form satisfying assumptions (S1)-(S3). Let $r \in\{0, \ldots, k\}$. Then, there is a real number $C>0$ independent of both h and T s.t., for all $v \in H^{r+2}(T)$,

$$
\mathrm{s}_{T}\left(\underline{I}_{T}^{k} v, \underline{I}_{T}^{k} v\right)^{\frac{1}{2}} \leq C h_{T}^{r+1}|v|_{H^{r+2}(T)}
$$

Stabilization IV

- The following stable choice violates polynomial consistency:

$$
\mathrm{s}_{T}^{\mathrm{hdg}}\left(\underline{u}_{T}, \underline{v}_{T}\right):=\sum_{F \in \mathcal{F}_{T}} h_{F}^{-1}\left(u_{F}-u_{T}, v_{F}-v_{T}\right)_{F}
$$

- To circumvent this problem, we penalize the high-order differences

$$
\left(\delta_{T}^{k} \underline{v}_{T},\left(\delta_{T F}^{k} \underline{v}_{T}\right)_{F \in \mathcal{F}_{T}}\right):=\underline{I}_{T}^{k} r_{T}^{k+1} \underline{v}_{T}-\underline{v}_{T}
$$

- The classical HHO stabilization bilinear form reads

$$
\mathrm{s}_{T}\left(\underline{u}_{T}, \underline{v}_{T}\right):=\sum_{F \in \mathcal{F}_{T}} h_{F}^{-1}\left(\left(\delta_{T}^{k}-\delta_{T F}^{k}\right) \underline{u}_{T},\left(\delta_{T}^{k}-\delta_{T F}^{k}\right) \underline{v}_{T}\right)_{F}
$$

Discrete problem

- Define the global space with single-valued interface unknowns

$$
\begin{aligned}
& \underline{U}_{h}^{k}:=\left\{\underline{v}_{h}=\left(\left(v_{T}\right)_{T \in \mathcal{T}_{h}},\left(v_{F}\right)_{F \in \mathcal{F}_{h}}\right):\right. \\
& \\
& \left.\quad v_{T} \in \mathbb{P}^{k}(T) \quad \forall T \in \mathcal{T}_{h} \text { and } v_{F} \in \mathbb{P}^{k}(F) \quad \forall F \in \mathcal{F}_{h}\right\}
\end{aligned}
$$

and its subspace with strongly enforced boundary conditions

$$
\underline{U}_{h, 0}^{k}:=\left\{\underline{v}_{h} \in \underline{U}_{h}^{k}: v_{F} \equiv 0 \quad \forall F \in \mathcal{F}_{h}^{\mathrm{b}}\right\}
$$

- The discrete problem reads: Find $\underline{u}_{h} \in \underline{U}_{h, 0}^{k}$ s.t.

$$
\mathrm{a}_{h}\left(\underline{u}_{h}, \underline{v}_{h}\right):=\sum_{T \in \mathcal{T}_{h}} \mathrm{a}_{T}\left(\underline{u}_{T}, \underline{v}_{T}\right)=\sum_{T \in \mathcal{T}_{h}}\left(f, v_{T}\right)_{T} \quad \forall \underline{v}_{h} \in \underline{U}_{h, 0}^{k}
$$

- Well-posedness follows from coercivity and discrete Poincaré

Properties of $a_{h} I$

Lemma (Properties of a_{h})

The bilinear form a_{h} enjoys the following properties:
(i) Stability and boundedness. For all $\underline{v}_{h} \in \underline{U}_{h, 0}^{k}$ it holds

$$
\left\|\underline{v}_{h}\right\|_{1, h} \simeq\left\|\underline{v}_{h}\right\|_{\mathrm{a}, h} \text { with }\left\|\underline{v}_{h}\right\|_{\mathrm{a}, h}:=\mathrm{a} \mathrm{a}_{h}\left(\underline{v}_{h}, \underline{v}_{h}\right)^{\frac{1}{2}} \text {. }
$$

(ii) Consistency. For all $r \in\{0, \ldots, k\}$ and $w \in H_{0}^{1}(\Omega) \cap H^{r+2}(\Omega)$ s.t. $\Delta w \in L^{2}(\Omega)$,

$$
\sup _{\underline{v}_{h} \in \underline{U}_{h, 0}^{k}, \underline{\underline{v}}_{h} \|_{a, h}=1}\left|\mathcal{E}_{h}\left(w ; \underline{v}_{h}\right)\right| \lesssim h^{r+1}|w|_{H^{r+2}(\Omega)},
$$

where the hidden constant is independent of w and h, and the linear form $\mathcal{E}_{h}(w ; \cdot): \underline{U}_{h, 0}^{k} \rightarrow \mathbb{R}$ representing the conformity error is s.t.

$$
\mathcal{E}_{h}\left(w ; \underline{v}_{h}\right):=-\left(\Delta w, v_{h}\right)-\mathrm{a}_{h}\left(\underline{I}_{h}^{k} w, \underline{v}_{h}\right)
$$

Properties of a_{h} II

- Point (i) is an immediate consequence of the assumptions on s_{T}
- Let $\underline{v}_{h} \in \underline{U}_{h, 0}^{k}$ be s.t. $\left\|\underline{v}_{h}\right\|_{a, h}=1$. For the sake of brevity, we let

$$
\check{w}_{T}:=r_{T}^{k+1} \underline{T}_{T}^{k} w_{\mid T}=\pi_{T}^{1, k+1} w_{\mid T} \quad \forall T \in \mathcal{T}_{h}
$$

- Integrating by parts element by element, we infer that

$$
\begin{aligned}
-\left(\Delta w, v_{h}\right) & =\sum_{T \in \mathcal{T}_{h}}\left(\left(\boldsymbol{\nabla} w, \boldsymbol{\nabla} v_{T}\right)_{T}-\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{\nabla} w \cdot \boldsymbol{n}_{T F}, v_{T}\right)_{F}\right) \\
& =\sum_{T \in \mathcal{T}_{h}}\left(\left(\boldsymbol{\nabla} w, \boldsymbol{\nabla} v_{T}\right)_{T}+\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{\nabla} w \cdot \boldsymbol{n}_{T F}, v_{F}-v_{T}\right)_{F}\right)
\end{aligned}
$$

- To insert v_{F} into the second term, we have used the fact that $v_{F}=0$ for all $F \in \mathcal{F}_{h}^{\mathrm{b}}$ while, for all $F \in \mathcal{F}_{h}^{\mathrm{i}}$ s.t. $F \subset \partial T_{1} \cap \partial T_{2}, T_{1} \neq T_{2}$,

$$
(\boldsymbol{\nabla} w)_{\mid T_{1}} \cdot \boldsymbol{n}_{T_{1} F}+(\boldsymbol{\nabla} w)_{\mid T_{2}} \cdot \boldsymbol{n}_{T_{2} F}=0
$$

Properties of a_{h} III

- Expanding a a_{T} then $r_{T}^{k+1} \underline{v}_{T}$ according to the respective definitions, we get

$$
\begin{aligned}
\mathrm{a}_{h}\left(\underline{I}_{h}^{k} w, \underline{v}_{h}\right)= & \sum_{T \in \mathcal{T}_{h}}\left(\left(\boldsymbol{\nabla} \check{w}_{T}, \boldsymbol{\nabla} v_{T}\right)_{T}+\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{\nabla} \check{w}_{T} \cdot \boldsymbol{n}_{T F}, v_{F}-v_{T}\right)_{F}\right) \\
& +\mathrm{s}_{h}\left(\underline{I}_{h}^{k} w, \underline{v}_{h}\right)
\end{aligned}
$$

- Combining the above relations, we get

$$
\begin{aligned}
&\left|\mathcal{E}_{h}\left(w ; \underline{v}_{h}\right)\right| \\
&=\left|\sum_{T \in \mathcal{T}_{h}}\left(\sum_{F \in \mathcal{F}_{T}}\left(\boldsymbol{\nabla}\left(w-\check{w}_{T}\right) \cdot \boldsymbol{n}_{T F}, v_{F}-v_{T}\right)_{F}\right)+\mathrm{s}_{h}\left(\underline{I}_{h}^{k} w, \underline{v}_{h}\right)\right| \\
& \leq\left|\sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{T}} h_{F}^{\frac{1}{2}}\left\|\boldsymbol{\nabla}\left(w-\check{w}_{T}\right)\right\|_{F} h_{F}^{-\frac{1}{2}}\left\|v_{F}-v_{T}\right\|_{F}\right|+\left|\mathrm{s}_{h}\left(\underline{I}_{h}^{k} w, \underline{v}_{h}\right)\right|
\end{aligned}
$$

Properties of a_{h} IV

- Repeated applications of the Cauchy-Schwarz inequality give

$$
\begin{aligned}
\left|\mathcal{E}_{h}\left(w ; \underline{v}_{h}\right)\right| \leq & \left(\sum_{T \in \mathcal{T}_{h}} h_{T}\left\|\boldsymbol{\nabla}\left(w-\check{w}_{T}\right)\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T \in \mathcal{T}_{h}}\left|\underline{v}_{T}\right|_{1, \partial T}^{2}\right)^{\frac{1}{2}} \\
& +\mathrm{s}_{h}\left(\underline{I}_{h}^{k} w, \underline{I}_{h}^{k} w\right)^{\frac{1}{2}} \mathrm{~s}_{h}\left(\underline{v}_{h}, \underline{v}_{h}\right)^{\frac{1}{2}}
\end{aligned}
$$

- Using the approximation properties of $\pi_{T}^{1, k+1}$ and of s_{T}, we infer

$$
\left|\mathcal{E}_{h}\left(w ; \underline{v}_{h}\right)\right| \lesssim h^{r+1}|w|_{H^{r+2}(\Omega)}\left[\left(\sum_{T \in \mathcal{T}_{h}}\left|\underline{v}_{T}\right|_{1, \partial T}^{2}\right)^{\frac{1}{2}}+\left|\underline{v}_{h}\right|_{\mathrm{s}, h}\right]
$$

- Recalling that $\left\|\underline{v}_{h}\right\|_{\mathrm{a}, h}=1$, the definition of a_{h} and the coercivity property in point (i), the terms involving \underline{v}_{T} and \underline{v}_{h} above are bounded by a constant independent of h and point (ii) follows

Convergence I

Theorem (Energy error estimate)

Let $\left(\mathcal{M}_{h}\right)_{h \in \mathcal{H}}$ denote a regular mesh sequence. Let a polynomial degree $k \geq 0$ be fixed. Let $u \in H_{0}^{1}(\Omega)$ denote the exact solution, for which we assume the additional regularity $u \in H^{r+2}(\Omega)$ for some $r \in\{0, \ldots, k\}$. For all $h \in \mathcal{H}$, let $\underline{u}_{h} \in \underline{U}_{h, 0}^{k}$ denote the discrete solution with stabilisation bilinear forms $\mathrm{s}_{T}, T \in \mathcal{T}_{h}$, satisfying assumptions (S1)-(S3). Then,

$$
\left\|\underline{u}_{h}-\underline{I}_{h}^{k} u\right\|_{\mathrm{a}, h} \lesssim h^{r+1}|u|_{H^{r+2}(\Omega)}
$$

where the hidden constant is independent of h and u.

Proof.

We invoke the abstract result with $H=H_{0}^{1}(\Omega), a(u, v)=(\boldsymbol{\nabla} u, \nabla v)$, $\ell(v)=(f, v), X_{h}=\underline{U}_{h, 0}^{k}$ endowed with the norm $\|\cdot\|_{a, h}, a_{h}=\mathrm{a}_{h}$, $\ell_{h}\left(\underline{v}_{h}\right)=\left(f, v_{h}\right)$ and $I_{h} u=\underline{I}_{h}^{k} u$. We notice that a_{h} is obviously coercive for $\|\cdot\|_{a, h}$ with constant 1 and, since $-\Delta u=f$, the consistency error is exactly $\mathcal{E}_{h}(u ; \cdot)$. Hence, the error estimate follows using (ii).

Static condensation I

- Fix a basis for $\underline{U}_{h, 0}^{k}$ with functions supported by only one T or F
- Partition the discrete unknowns into element- and interface-based:

$$
\mathrm{U}_{h}=\left[\begin{array}{l}
\mathrm{U}_{\mathcal{T}_{h}} \\
\mathrm{U}_{\mathcal{F}_{h}^{\mathrm{h}}}
\end{array}\right]
$$

- U_{h} solves the following linear system:

$$
\left[\begin{array}{ll}
\mathrm{A}_{\mathcal{T}_{h} \mathcal{T}_{h}} & \mathrm{~A}_{\mathcal{T}_{h} \mathcal{F}_{h}^{\mathrm{i}}} \\
\mathrm{~A}_{\mathcal{F}_{h} \mathcal{T}_{h}} & \mathrm{~A}_{\mathcal{F}_{h} \mathscr{F}_{h}^{\mathrm{i}}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{U}_{\mathcal{T}_{h}} \\
\mathrm{U}_{\mathcal{F}_{h}^{\prime}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{F}_{\mathcal{T}_{h}} \\
0
\end{array}\right]
$$

- $\mathrm{A}_{\mathcal{T}_{h} \mathcal{T}_{h}}$ is block-diagonal and SPD, hence inexpensive to invert

Static condensation II

This remark suggests a two-step solution strategy:

- Element unknowns are eliminated solving the local balances

$$
\mathrm{U}_{\mathcal{T}_{h}}=\mathrm{A}_{\mathcal{T}_{h} \mathcal{T}_{h}}^{-1}\left(\mathrm{~F}_{\mathcal{T}_{h}}-\mathrm{A}_{\mathcal{T}_{h} \mathcal{F}_{h}^{\mathrm{i}}} \mathrm{U}_{\mathcal{F}_{h}^{\prime}}\right)
$$

- Face unknowns are obtained solving the global transmission problem

$$
\mathrm{A}_{h}^{\mathrm{sc}} \mathrm{U}_{\mathcal{F}_{h}^{\mathrm{i}}}=-\mathrm{A}_{\mathcal{T}_{h} \mathcal{F}_{h}}^{\mathrm{T}} \mathrm{~A}_{\mathcal{T}_{h} \mathcal{T}_{h}}^{-1} \mathrm{~F}_{\mathcal{T}^{\prime}}
$$

with global system matrix

$$
\mathrm{A}_{h}^{\mathrm{sc}}:=\mathrm{A}_{\mathcal{F}_{h} \mathcal{F}_{h}}-\mathrm{A}_{\mathcal{T}_{h} \mathcal{F}_{h}}^{\mathrm{T}} \mathrm{~A}_{\mathcal{T}_{h} \mathcal{T}_{h}}^{-1} \mathrm{~A}_{\mathcal{T}_{h} \mathcal{F}_{h}}
$$

$A_{h}^{\text {sc }}$ is SPD and its stencil involves neighbours through faces

Numerical examples

2d test case, smooth solution, uniform refinement

Figure: 2d test case, trigonometric solution. Energy (left) and L^{2}-norm (right) of the error vs. h for uniformly refined triangular (top) and hexagonal (bottom) mesh families

Numerical examples I

3d industrial test case, adaptive refinement, cost assessment

Figure: Geometry (left), numerical solution (right, top) and final adaptive mesh (right, bottom) for the comb-drive actuator test case [Di Pietro and Specogna, 2016]

Numerical examples II

3d industrial test case, adaptive refinement, cost assessment

(a) Capacitance vs. $N_{\text {dof, } h}$

(b) Capacitance vs. computing time

Figure: Results for the comb drive benchmark.

Numerical examples III

3d industrial test case, adaptive refinement, cost assessment

Figure: Computing wall time (s) vs. number of DOFs for the comb drive benchmark, AGMG solver.

Numerical examples I

3d test case, singular solution, adaptive coarsening

Figure: Fichera corner benchmark, adaptive mesh coarsening [Di Pietro and Specogna, 2016]

Numerical examples II

3d test case, singular solution, adaptive coarsening

Figure: Error vs. number of DOFs for the Fichera corner benchmark, adaptively coarsened meshes

References I

Di Pietro, D. A. and Droniou, J. (2017a).
A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes.
Math. Comp., 86(307):2159-2191.
Di Pietro, D. A. and Droniou, J. (2017b).
$\boldsymbol{W}^{\boldsymbol{S}}, \boldsymbol{P}_{\text {-approximation }}$ properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems.
Math. Models Methods Appl. Sci., 27(5):879-908.
Di Pietro, D. A., Ern, A., and Lemaire, S. (2014).
An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math., 14(4):461-472.

Di Pietro, D. A. and Specogna, R. (2016).
An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics.
J. Comput. Phys., 326(1):35-55.

Di Pietro, D. A. and Tittarelli, R. (2017).
An introduction to Hybrid High-Order methods.
Preprint arXiv:1703.05136.

