An introduction to Hybrid High-Order (HHO) methods
Nonlinear elasticity and poroelasticity

Daniele Di Pietro
from joint works with D. Boffi, M. Botti, P. Sochala

Institut Montpellierain Alexander Grothendieck

Bergamo, 19 December 2017

Features of HHO methods

- Support of general polytopal meshes in any space dimension
- Arbitrary approximation order
- Local principle of virtual work with equilibrated tractions
- Compact stencil only involving neighbors through faces
- Reduced cost after hybridisation for linear(ised) problems

\[N_{\text{dof}}^{\text{hho}} \approx \frac{1}{2} k^2 \text{card}(\mathcal{F}_h) \quad N_{\text{dof}}^{\text{dg}} \approx \frac{1}{6} k^3 \text{card}(\mathcal{T}_h) \]
Figure: Admissible meshes. The agglomerated mesh is taken from [DP and Specogna, 2016]
Figure: Treatment of a nonconforming junction (red) as multiple coplanar faces. Gray elements are pentagons, white elements are squares.
Definition (Regular mesh sequence)

Let $(\mathcal{M}_h)_{h \in \mathcal{H}} := (\mathcal{T}_h, \mathcal{F}_h)_{h \in \mathcal{H}}$ be a sequence of h-refined polytopal meshes with \mathcal{T}_h set of elements and \mathcal{F}_h set of faces. The sequence is regular if there exists a sequence of simplicial submeshes $(\mathcal{T}_h)_{h \in \mathcal{H}}$

- **shape-regular** in the sense of Ciarlet;
- **contact-regular**, i.e., every simplex $S \subset T$ is s.t. $h_S \approx h_T$.

Main consequences:

- **Trace and inverse inequalities**
- **Optimal approximation properties** for broken polynomial spaces
Outline

1. Nonlinear elasticity

2. Poroelasticity
Let $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$, be a bounded connected polyhedral domain.

For $f \in L^2(\Omega; \mathbb{R}^d)$ we seek the displacement field $u : \Omega \to \mathbb{R}^d$ s.t.

$$-\nabla \cdot \sigma(\cdot, \nabla_s u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega$$

with $\sigma : \Omega \times \mathbb{R}^{d \times d}_{\text{sym}} \to \mathbb{R}^{d \times d}_{\text{sym}}$ stress-strain law.

Weak formulation: Find $u \in H^1_0(\Omega; \mathbb{R}^d)$ such that

$$a(u, v) := \int_{\Omega} \sigma(\cdot, \nabla_s u) : \nabla_s v = \int_{\Omega} f \cdot v \quad \forall v \in H^1_0(\Omega; \mathbb{R}^d)$$

with ∇_s denoting the symmetric (part of) the gradient.
Error estimates under (relatively) strong assumptions on σ and u

- Conforming FE, standard meshes

 [Gatica and Stephan, 2002, Gatica et al., 2013]

- Discontinuous Galerkin (DG), standard meshes

 [Ortner and Süli, 2007]

- Virtual Elements, polyhedral meshes in 2D, low-order

 [Beirão da Veiga et al., 2013]

Convergence to minimal regularity solutions

- Gradient Discretisations [Droniou and Lamichhane, 2015]

- DG, stronger assumptions on σ, [Bi and Lin, 2012]

Convergence to minimal regularity solutions and error estimates for HHO [Botti, DP, Sochala, 2017]
Assumption (Stress-strain law I)

The Carathéodory function σ is s.t. $\sigma(\cdot, 0) = 0$. Moreover, there exist two real numbers $\sigma, \sigma \in (0, +\infty)$ s.t. for a.e. $x \in \Omega$ and all $\tau, \eta \in \mathbb{R}_{\text{sym}}^{d\times d}$,

\[
\|\sigma(x, \tau)\|_{d\times d} \leq \sigma \|\tau\|_{d\times d}, \quad \text{(growth)}
\]
\[
\sigma(x, \tau): \tau \geq \sigma \|\tau\|_{d\times d}^2, \quad \text{(coercivity)}
\]
\[
(\sigma(x, \tau) - \sigma(x, \eta)) : (\tau - \eta) \geq 0, \quad \text{(monotonicity)}
\]

where $\|\tau\|_{d\times d}^2 := \tau : \tau$ and $\tau : \eta := \sum_{1 \leq i, j \leq d} \tau_{ij} \eta_{ij}$.
Stress-strain law II

Example (Stress-strain laws)

- **Linear elasticity.** For Lamé’s parameters $\mu > 0$ and $\lambda \geq 0$,
 \[
 \sigma(\cdot, \tau) = 2\mu \tau + \lambda \text{tr}(\tau) I_d
 \]

- **Hencky–Mises model.** For given Lamé’s functions $\tilde{\mu}$ and $\tilde{\lambda}$, setting $\text{dev}(\tau) := \text{tr}(\tau^2) - \frac{1}{d} \text{tr}(\tau)^2$,
 \[
 \sigma(\cdot, \tau) = 2\tilde{\mu}(\text{dev}(\tau))\tau + \tilde{\lambda}(\text{dev}(\tau)) \text{tr}(\tau) I_d
 \]

- **Isotropic damage model.** For a scalar damage function $D : \mathbb{R}^{d \times d}_{\text{sym}} \to \mathbb{R}$ and a fourth-order tensor $C : \Omega \to \mathbb{R}^{d^4}$,
 \[
 \sigma(\cdot, \tau) = (1 - D(\tau)) C(\cdot) \tau
 \]
Let X denote an element in \mathcal{T}_h or a face in \mathcal{T}_h and $l \geq 0$ an integer.

The L^2-orthogonal projector $\pi^l_X : L^1(X; \mathbb{R}) \to P^l(X; \mathbb{R})$ is s.t.

\[
\forall v \in L^1(\Omega; \mathbb{R}), \quad \int_X (\pi^l_X v - v) w = 0 \quad \forall w \in P^l(X; \mathbb{R})
\]

$\pi^l_X v$ is well-defined and it holds that

\[
\pi^l_X v = \text{argmin}_{w \in P^l(X; \mathbb{R})} \|v - w\|_{L^2(X; \mathbb{R})}^2
\]

The vector- and matrix-versions π^l_X act component-wise.
Lemma ($W^{s,p}$-approximation properties of π^l_T)

Let $(M_h)_{h \in \mathcal{H}}$ be a regular mesh sequence. For an integer $l \geq 0$, let an integer $s \in \{0, \ldots, l + 1\}$ and a real number $p \in [1, +\infty]$ be given. Then, for all $T \in T_h$, all $v \in W^{s,p}(T)$, and all $m \in \{0, \ldots, s\}$,

$$|v - \pi^l_T v|_{W^{m,p}(T)} \lesssim h^{s-m}_T |v|_{W^{s,p}(T)}$$

and, if $s \geq 1$ and $m \in \{0, \ldots, s - 1\}$,

$$h^{\frac{1}{p}}_T |v - \pi^l_T v|_{W^{m,p}(F_T)} \lesssim h^{s-m}_T |v|_{W^{s,p}(T)}.$$

Above, \lesssim hides multiplicative constants independent of h.

See [DP and Droniou, 2017a], based on [Dupont and Scott, 1980]
Let $T \in \mathcal{T}_h$, $\mathbb{RM}_d(T)$ spanned by rigid-body motions restricted to T

For a given integer $l \geq 1$, we define the elastic projector

$$\pi^l_{el,T} : W^{1,1}(T; \mathbb{R}^d) \to \mathbb{P}^l(T; \mathbb{R}^d)$$

s.t., for all $v \in W^{1,1}(T; \mathbb{R}^d)$,

$$\int_T \nabla_s (\pi^l_{el,T} v - v) : \nabla_s w = 0 \quad \forall w \in \mathbb{P}^l(T; \mathbb{R}^d),$$

$$\int_T \pi^l_{el,T} v = \int_T v, \quad \int_T \nabla_{ss} \pi^l_{el,T} v = \frac{1}{2} \sum_{F \in \mathcal{F}_T} \left(n_{TF} \wedge \pi^k_F v - \pi^k_F v \wedge n_{TF} \right)$$

Using the abstract results of [DP and Droniou, 2017b], it can be proved that $\pi^l_{el,T}$ has optimal approximation properties
Computing L^2-projections of $\nabla_S v$ from L^2-projections of v

- For all $v \in W^{1,1}(T; \mathbb{R}^d)$ and all $\tau \in C^\infty(\overline{T}; \mathbb{R}_\text{sym}^{d \times d})$, it holds that

$$
\int_T \nabla_S v : \tau = -\int_T v \cdot (\nabla \cdot \tau) + \sum_{F \in \mathcal{F}_T} \int_F v \cdot \tau n_{TF}
$$

(IBP)

- Specialising (IBP) to $\tau \in \mathcal{P}^l(T; \mathbb{R}_\text{sym}^{d \times d})$, we can write

$$
\int_T \pi_T^l \nabla_S v : \tau = -\int_T \pi_T^{l-1} v \cdot (\nabla \cdot \tau) + \sum_{F \in \mathcal{F}_T} \int_F \pi_F^l v \cdot \tau n_{TF}
$$

- Hence, computing $\pi_T^l \nabla_S v$ does not require a full knowledge of v!
- All that is required is $\pi_T^{l-1} v$ and for all $F \in \mathcal{F}_T$, $\pi_F^l v$
Computing $\pi_{\text{el},T}^{l+1}\nu$ from L^2-projections of ν

- Specialise now (IBP) to $\tau = \nabla_s w$ with $w \in \mathbb{P}^{l+1}(T; \mathbb{R}^d)$, to obtain

$$\int_T \nabla_s \pi_{\text{el},T}^{l+1}\nu : \nabla_s w = -\int_T \pi_T^{l-1}\nu \cdot (\nabla \cdot \nabla_s w) + \sum_{F \in \mathcal{F}_T} \int_F \pi_F^l\nu \cdot \nabla_s w n_{TF}$$

- Observe, moreover, that if $l \geq 1$ then for all $w \in \mathbb{R}\mathcal{M}_d(T)$,

$$\int_T (\pi_{\text{el},T}^{l+1}\nu - \nu) \cdot w = \int_T (\pi_{\text{el},T}^{l+1}\nu - \pi_T^l\nu) \cdot w$$

since $\mathbb{R}\mathcal{M}_d(T) \subset \mathbb{P}^1(T; \mathbb{R}^d) \subset \mathbb{P}^l(T; \mathbb{R}^d)$

- Hence, $\pi_{\text{el},T}^{l+1}\nu$ is computable from $\pi_T^l\nu$ and for all $F \in \mathcal{F}_T$, $\pi_F^l\nu$
Let $k \geq 1$ and $T \in \mathcal{T}_h$ be fixed. The **space of local unknowns** is s.t.

$$U^k_T := \mathbb{P}^k(T; \mathbb{R}^d) \times \left(\bigtimes_{F \in \mathcal{F}_T} \mathbb{P}^k(F; \mathbb{R}^d) \right)$$

- We denote by $\underline{v}_T = (v_T, (v_F)_{F \in \mathcal{F}_T})$ a generic element of U^k_T.
- The **local interpolator** $I^k_T : W^{1,1}(T; \mathbb{R}^d) \to U^k_T$ is s.t.

$$\forall v \in W^{1,1}(T; \mathbb{R}^d), \quad I^k_T v := (\pi^k_T v, (\pi^k_F v)_F)_{F \in \mathcal{F}_T}$$
The symmetric gradient reconstruction \(G_{s,T}^k : U_T^k \to \mathbb{P}^k(T; \mathbb{R}^{d \times d}_{\text{sym}}) \) is s.t.

\[
\int_T G_{s,T}^k \nu_T : \tau = - \int_T \nu_T \cdot (\nabla \cdot \tau) + \sum_{F \in \mathcal{F}_T} \int_F \nu_F \cdot \tau n_{TF} \quad \forall \tau \in \mathbb{P}^k(T; \mathbb{R}^{d \times d}_{\text{sym}})
\]

The displacement reconstruction \(r_{T}^{k+1} : U_T^k \to \mathbb{P}^{k+1}(T; \mathbb{R}^{d+1}) \) is s.t.

\[
\int_T (\nabla s r_{T}^{k+1} - G_{s,T}^k) \nu_T : \nabla s w = 0 \quad \forall w \in \mathbb{P}^{k+1}(T; \mathbb{R}^d)
\]

\[
\int_T (r_{T}^{k+1} \nu_T - \nu_T) \cdot w = 0 \quad \forall w \in \mathbb{P}^{k+1}(T; \mathbb{R}^d)
\]

We have the key commuting properties: For all \(v \in W^{1,1}(T; \mathbb{R}^d) \),

\[
G_{s,T}^k I_{T}^k v = \pi_T^k \nabla s v, \quad r_{T}^{k+1} I_{T}^k v = \pi_{\text{el},T}^{k+1} v
\]
Let $T \in \mathcal{T}_h$. We approximate $a_{|T}$ with $a_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ s.t.

$$a_T(u_T, v_T) := \int_T \sigma(\cdot, G_{s,T} u_T) : G_{s,T} v_T + s_T(u_T, v_T)$$

Here, s_T is the stabilisation bilinear form s.t.

$$s_T(u_T, v_T) := \sum_{F \in \mathcal{F}_T} \frac{\gamma}{h_F} \int_F (\delta_{TF}^k - \delta_T^k) u_T \cdot (\delta_{TF}^k - \delta_T^k) v_T,$$

with γ user-defined parameter and difference operators s.t.

$$(\delta_T^k v_T, (\delta_{TF}^k v_T)_{F \in \mathcal{F}_T}) := I_T^k (r_T^{k+1} v_T) - v_T \in \underline{U}_T^k$$
Proposition (Properties of s_T)

- **Stability.** For all $v_T \in U_T^k$, it holds that

\[
\| G_{s,T}^k v_T \|_{L^2(T; \mathbb{R}^{d \times d})}^2 + s_T(v_T, v_T) \simeq \| v_T \|_{\epsilon,T}^2
\]

with hidden constant independent of h and T and

\[
\| v_T \|_{\epsilon,T}^2 := \| \nabla s v_T \|_{L^2(T; \mathbb{R}^{d \times d})}^2 + \sum_{F \in \mathcal{F}_T} \frac{1}{h_F} \| v_F - v_T \|_{L^2(F; \mathbb{R}^d)}^2.
\]

- **Polynomial consistency.** For all $w \in P^{k+1}(T; \mathbb{R}^d)$, it holds that

\[
s_T(I_T^k w, v_T) = 0 \quad \forall v_T \in U_T^k.
\]
Remark (Naïve stabilisation and polynomial consistency)

Stability can be achieved using the following naïve stabilisation:

\[S_T^{\text{hdg}}(u_T, v_T) = \sum_{F \in \mathcal{F}_T} \frac{\gamma}{h_F} \int_F (u_F - u_T) \cdot (v_F - v_T). \]

In this case, however, we only have polynomial consistency for \(w \in P^k(T; \mathbb{R}^d) \). As a result, up to one order of convergence is lost.
Discrete problem I

- We define the global space with single-valued interface unknowns

\[\underline{U}_h^k := \left(\bigotimes_{T \in \mathcal{T}_h} \mathbb{P}^k(T; \mathbb{R}^d) \right) \times \left(\bigotimes_{F \in \mathcal{F}_h} \mathbb{P}^k(F; \mathbb{R}^d) \right) \]

as well as its subspace with strongly enforced b.c.

\[\underline{U}_{h,0}^k := \{ \underline{v}_h = ((v_T)_{T \in \mathcal{T}_h}, (v_F)_{F \in \mathcal{F}_h}) \in \underline{U}_h^k : v_F = 0 \quad \forall F \in \mathcal{F}_h^b \} \]

- The global interpolator \(\underline{I}_h^k : W^{1,1}(\Omega; \mathbb{R}^d) \to \underline{U}_h^k \) is s.t.

\[(\underline{I}_h^k v)_T := I_T^k v|_T \quad \forall T \in \mathcal{T}_h \]
Discrete problem II

- Define the function $a_h : \mathcal{U}_h^k \times \mathcal{U}_h^k \to \mathbb{R}$ assembled element-wise:

$$a_h(u_h, v_h) := \sum_{T \in T_h} a_T(u_T, v_T)$$

- Discrete problem: Find $u_h \in \mathcal{U}_{h,0}^k$ such that

$$a_h(u_h, v_h) = \int_{\Omega} f \cdot v_h \quad \forall v_h \in \mathcal{U}_{h,0}^k$$

with v_h obtained patching element unknowns

Lemma (Existence and uniqueness)

Let $(\mathcal{M}_h)_{h \in \mathcal{H}}$ be a regular mesh sequence. Then, for all $h \in \mathcal{H}$ there exists at least one solution $u_h \in \mathcal{U}_{h,0}^k$. Additionally, if σ is strictly monotone, the solution is unique.
Theorem (Convergence)

Let \((M_h)_{h \in H}\) be a regular mesh sequence. Then, for all \(q\) s.t.
1 \(\leq q < +\infty\) if \(d = 2\), 1 \(\leq q < 6\) if \(d = 3\), as \(h \to 0\), up to a subsequence,

- \(u_h \to u\) strongly in \(L^q(\Omega; \mathbb{R}^d)\);
- \(G_{S,T}^k u_h \to \nabla S u\) weakly in \(L^2(\Omega; \mathbb{R}^{d \times d})\).

Moreover, if we assume strict monotonicity for \(\sigma\),

- \(G_{S,T}^k u_h \to \nabla S u\) strongly in \(L^2(\Omega; \mathbb{R}^{d \times d})\).

If the continuous solution is unique, the whole sequence converges.
Convergence II

Assumption (Stress-strain law II)

There exist reals $\sigma^*, \sigma_* \in (0, +\infty)$ s.t., for a.e. $x \in \Omega$ and all $\tau, \eta \in \mathbb{R}^{d \times d}_{\text{sym}}$,

$$\|\sigma(x, \tau) - \sigma(x, \eta)\|_{d \times d} \leq \sigma^* \|\tau - \eta\|_{d \times d}, \quad \text{(Lipschitz continuity)}$$

$$(\sigma(x, \tau) - \sigma(x, \eta)) : (\tau - \eta) \geq \sigma_* \|\tau - \eta\|_{d \times d}^2. \quad \text{(strong monotonicity)}$$

Theorem (Error estimate)

Under the above assumption and the regularity $u \in H^{k+2}(\mathcal{T}_h; \mathbb{R}^d)$ and $\sigma(\cdot, \nabla_s u) \in H^{k+1}(\mathcal{T}_h; \mathbb{R}^{d \times d})$, it holds that

$$\|\nabla_s u - G^k_{s,T} u_h\|_{L^2(\Omega; \mathbb{R}^{d \times d})} + |u_h|_{s,h} \lesssim h^{k+1} \mathcal{N}_u,$$

with hidden constant independent of h, $|u_h|_{s,h}^2 := \sum_{T \in \mathcal{T}_h} \mathcal{S}_T(u_h, u_h)$, and $\mathcal{N}_u := \|u\|_{H^{k+2}(\mathcal{T}_h; \mathbb{R}^d)} + \|\sigma(\cdot, \nabla_s u)\|_{H^{k+1}(\mathcal{T}_h; \mathbb{R}^{d \times d})}$.
Theorem (Robust estimate for quasi-incompressible materials)

Let σ be such that, for all $x \in \Omega$ and all $\tau \in \mathbb{R}^{d \times d}_{\text{sym}}$ with $\mu > 0$ and $\lambda \geq 0$,

$$\sigma(x, \tau) = 2\mu \tau + \lambda \text{tr}(\tau) I_d.$$

Then, the following locking-free error estimate holds:

$$(2\mu)^{\frac{1}{2}} \| \nabla_s u - G_{s,T}^k u_h \|_{L^2(\Omega;\mathbb{R}^{d \times d})} \lesssim h^{k+1} \left(2\mu \| u \|_{H^{k+2}(T_h;\mathbb{R}^d)} + \lambda \| \nabla \cdot u \|_{H^{k+1}(T_h;\mathbb{R})} \right)$$

with hidden constant independent of h, μ, and λ.
Numerical examples I
Convergence

- We consider the Hencky–Mises model with $\mu = 2$ and $\lambda = 1$ and

$$\sigma(\tau) = ((\lambda - \mu) + \mu \exp(-\text{dev}(\tau))) \text{tr}(\tau)I_d + \mu (2 - \exp(-\text{dev}(\tau))) \tau$$

- We solve the homogeneous Dirichlet problem with

$$u(x) := \begin{pmatrix} \sin(\pi x_1) \sin(\pi x_2) \\ \sin(\pi x_1) \sin(\pi x_2) \end{pmatrix}, \quad f = -\nabla \cdot \sigma(\nabla_s u)$$

- Refinements of the following meshes are used:
Convergence

\[\| \nabla_s u - G^k_{s,h} u_h \|_{L^2(\Omega; \mathbb{R}^{d \times d})} \]

\[\| \pi^k_h u - u_h \|_{L^2(\Omega; \mathbb{R}^d)} \]
Figure: Traction and shear tests and corresponding stress components for the linear case (10^5 Pa)
Numerical examples II

Traction and shear test cases

Traction

- $k = 1$ Triangular
- $k = 1$ Voronoi
- $k = 2$ Triangular
- $k = 2$ Voronoi
- $k = 3$ Triangular
- $k = 3$ Voronoi
- $E_{\text{lin}} = 21532$ J

Shear

- $k = 1$ Triangular
- $k = 1$ Voronoi
- $k = 2$ Triangular
- $k = 2$ Voronoi
- $k = 3$ Triangular
- $k = 3$ Voronoi
- $E_{\text{snd}} = 22490$ J

Linear

- $k = 1$ Triangular
- $k = 1$ Voronoi
- $k = 2$ Triangular
- $k = 2$ Voronoi
- $k = 3$ Triangular
- $k = 3$ Voronoi
- $E_{\text{lin}} = 3180$ J

Second-order

- $k = 1$ Triangular
- $k = 1$ Voronoi
- $k = 2$ Triangular
- $k = 2$ Voronoi
- $k = 3$ Triangular
- $k = 3$ Voronoi
- $E_{\text{snd}} = 3190$ J

1Obtained adding third-order terms to the energy density function
Outline

1. Nonlinear elasticity

2. Poroelasticity
The Biot model

- Let Ω as before, $t_F > 0$ and $\kappa : \Omega \rightarrow \mathbb{R}$ be s.t. $0 < \underline{\kappa} \leq \kappa \leq \overline{\kappa}$ in Ω
- Let f and g be given volumetric load and source terms
- Biot problem: Find the displacement u and the pressure p s.t.

\[
\begin{align*}
-\nabla \cdot \sigma(u) + \nabla p &= f \quad \text{in } \Omega \times (0, t_F), \\
 c_0 \frac{d}{dt} p + \nabla \cdot (d_t u) - \nabla \cdot (\kappa \nabla p) &= g \quad \text{in } \Omega \times (0, t_F),
\end{align*}
\]

completed with initial and boundary conditions (impermeable fixed walls)
- In the incompressible case $c_0 = 0$, we further assume for any t

\[
\int_{\Omega} p(\cdot, t) = 0 \text{ and } \int_{\Omega} g(\cdot, t) = 0
\]
- Perspective: extension to the nonlinear, multiphase case
Minimal bibliography

- Origin of the model [Terzaghi, 1943] and [Biot, 1941, Biot, 1955]
- Finite Volumes, 3D, discontinuous coefficients [Naumovich, 2006]
- Continuous FE $u + \text{DG } p$ [Phillips and Wheeler, 2007]
- $\text{DG } u + \text{MPFA } p$ [Wheeler et al., 2014]
- Justification of spurious oscillations [Rodrigo et al., 2016]
- HHO $u + \text{DG } p$ [Boffi, Botti, DP, 2016]
Features

- High-order method on general polyhedral meshes
- Inf-sup-stable hydro-mechanical coupling
- Robustness with respect to heterogeneous-anisotropic permeabilities
- Seamless treatment of the incompressible case $c_0 = 0$
- Locally equilibrated tractions and fluxes
- Numerically robust w.r. to spurious oscillations for small κ and τ
Figure: Displacement and pressure discrete unknowns for $k \in \{1, 2\}$

Let $k \geq 1$. We approximate the displacements in the HHO space

$$U_{h,0}^k := \{ v_h = ((v_T)_{T \in \mathcal{T}_h}, (v_F)_{F \in \mathcal{F}_h}) \in U_h^k : v_F = 0 \quad \forall F \in \mathcal{F}_h \}$$

For the pressure, we consider the broken polynomial space

$$P_h^k := \begin{cases} P^k(\mathcal{T}_h; \mathbb{R}) & \text{if } c_0 > 0 \\ P^k(\mathcal{T}_h; \mathbb{R}) \cap L^2_0(\Omega; \mathbb{R}) & \text{if } c_0 = 0 \end{cases}$$
Discrete problem

- We consider for the sake of simplicity a uniform time mesh of size τ
- Discrete problem: For $1 \leq n \leq N$, $(\underline{u}_h^n, p_h^n) \in \underline{U}_{h,0}^k \times P_h^k$ is s.t.

\[
\begin{align*}
 a_h(\underline{u}_h^n, \underline{v}_h) + b_h(\underline{v}_h, p_h^n) &= \int_\Omega f^n \cdot \underline{v}_h & \forall \underline{v}_h \in \underline{U}_{h,0}^k, \\
 (c_0 \delta_t p_h^n, q_h) - b_h(\delta_t \underline{u}_h^n, q_h) + c_h(p_h^n, q_h) &= \int_\Omega g^n q_h & \forall q_h \in P^k(T_h; \mathbb{R})
\end{align*}
\]

- For the mechanical term we use a_h defined as before
The hydro-mechanical coupling hinges on the bilinear form

\[b_h(v_h, q_h) := - \int_{\Omega} D_h^k v_h q_h, \quad (D_h^k)_{|T} := \text{tr}(G_{s,T}^k) \quad \forall T \in \mathcal{T}_h \]

\(I_T^k \) is a Fortin interpolator: For all \(v \in H^1(\Omega; \mathbb{R}^d) \),

\[D_h^k I_h^k v = \pi_h^k (\nabla \cdot v), \quad \| I_h^k v \|_{\epsilon,h} \lesssim \| v \|_{H^1(\Omega; \mathbb{R}^d)} \]

Hence, for all \(q_h \in P_h^k \), with hidden constant independent of \(h \),

\[
\begin{align*}
\| q_h \|_{L^2(\Omega)} & \lesssim \sup_{v_h \in U_h^k, \| v_h \|_{\epsilon,h} = 1} b_h(v_h, q_h) \\
\end{align*}
\]

This is a key point for robust \(L^2 \)-norm bounds for \(p \) when \(c_0 = 0 \).
For the Darcy operator we use a Discontinuous Galerkin method.

For robustness in κ, we follow [DP et al., 2008].

Key ingredients are the jump and weighted average operators

$$[\varphi]_F := \varphi_{T_1} - \varphi_{T_2}$$
$$\{\varphi\}_F := \omega_{T_1} \varphi_{T_1} + \omega_{T_2} \varphi_{T_2},$$

where $F \in \mathcal{F}_h^i$ is s.t. $F \subset \partial T_1 \cap \partial T_2$ and

$$\omega_{T_1} := \frac{\kappa_{T_2}}{\kappa_{T_1} + \kappa_{T_2}}, \quad \omega_{T_2} := \frac{\kappa_{T_1}}{\kappa_{T_1} + \kappa_{T_2}}.$$
The Darcy operator is discretised using the SWIP bilinear form

\[
c_h(r_h, q_h) := \int_{\Omega} \kappa \nabla_h r_h \cdot \nabla_h q_h + \sum_{F \in F_h^1} \frac{\varsigma \lambda_{\kappa, F}}{h_F} \int_F [r_h]_F [q_h]_F \\
- \sum_{F \in F_h^1} \int_F \left(\{\kappa \nabla_h r_h\}_F \cdot n_F, [q_h]_F + [r_h]_F, \{\kappa \nabla_h q_h\}_F \cdot n_F \right)
\]

Here, \(\varsigma > 0 \) is a large enough user-defined penalty parameter and

\[
\lambda_{\kappa, F} := \frac{2\kappa_{T_1} \kappa_{T_2}}{\kappa_{T_1} + \kappa_{T_2}}
\]
Lemma (A priori bounds and well-posedness)

Let σ be such that, for all $x \in \Omega$ and all $\tau \in \mathbb{R}^{d \times d}_{\text{sym}}$ with $\mu > 0$ and $\lambda \geq 0$,

$$\sigma(x, \tau) = 2\mu \tau + \lambda \text{tr}(\tau)I_d.$$

Assume $f \in C^1([0, t_F]; L^2(\Omega; \mathbb{R}^d))$ and $g \in C^0([0, t_F]; L^2(\Omega; \mathbb{R}))$. Then, the discrete problem is well-posed with a priori bound

$$\|u_h^N\|_{a,h}^2 + \|c_0^2 p_h^N\|_{L^2(\Omega; \mathbb{R})}^2 + \|P_h^N - \overline{P}_h^N\|_{L^2(\Omega; \mathbb{R})}^2 + \sum_{n=1}^N \tau\|P_h^N\|_{c,h}^2 \lesssim 1$$

where the hidden constant depends on bounded norms of p^0, f, and g and we have set $\overline{P}_h^N := \int_{\Omega} p_h^N$.
Main results II

Theorem (Error estimate)

Let σ as above. Assume elliptic regularity, $p \in C^1([0, t_F]; H^{k+1}(P_\Omega; \mathbb{R}))$, $p \in C^2([0, t_F]; L^2(\Omega; \mathbb{R}))$ if $c_0 > 0$, and $u \in C^2([0, t_F], H^1(P_\Omega; \mathbb{R}^d)) \cap C^1([0, t_F]; H^{k+2}(P_\Omega; \mathbb{R}^d))$. Then, setting

$$e^n_h := u^n_h - I^n_k u^n, \quad \rho^n_h := p^n_h - \pi^n_k p^n, \quad \bar{\rho}^n_h := (\rho^n_h, 1),$$

it holds

$$\| e^n_h \|_{a,h}^2 + \| c_0^{\frac{1}{2}} \rho^n_h \|_{L^2(\Omega; \mathbb{R})}^2 + \| \rho^n_h - \bar{\rho}^n_h \|_{L^2(\Omega; \mathbb{R})}^2 + \sum_{n=1}^N \tau \| \rho^n_h \|_{c,h}^2 \lesssim \left(h^{k+1} + \tau \right)^2,$$

with hidden constant depending on bounded norms of u and p and increasing linearly with $\alpha^{\frac{1}{2}}$ where $\alpha := \kappa/\kappa$ is the anisotropy ratio.
We let $\Omega = (0, 1)^2$, $c_0 = 0$, $\mu = 1$, $\lambda = 1$, and $\kappa = I_2$ on

The right-hand side is inferred from the (non-physical) exact solution

\begin{align*}
 u_1(x, t) &= -\sin(\pi t) \cos(\pi x_1) \cos(\pi x_2), \\
 u_2(x, t) &= \sin(\pi t) \sin(\pi x_1) \sin(\pi x_2), \\
 p(x, t) &= -\cos(\pi t) \sin(\pi x_1) \cos(\pi x_2)
\end{align*}
Figure: L^2-error on the pressure (top) and H^1-error on the displacement (bottom) vs. h for (from left to right) the triangular, Voronoi, and locally refined meshes.
Figure: Barry and Mercer's exact solution modelling fluid injection and production from a well
Figure: Pressure profiles along \((0, 0)-(1, 1)\) for \(\kappa = 1 \cdot 10^{-6} I_d\) and \(\tau = 1 \cdot 10^{-4}\). Small oscillations visible on the Cartesian mesh (left, card \(\mathcal{T}_h = 4,028\)), no oscillations are present on the Voronoi mesh (right, card \(\mathcal{T}_h = 4,192\)
Alexander Grothendieck’s legacy

18,000 pages of unpublished handnotes now online

https://grothendieck.umontpellier.fr
Virtual elements for linear elasticity problems.

Discontinuous Galerkin method for monotone nonlinear elliptic problems.

Biot, M. A. (1941).
General theory of threedimensional consolidation.

Theory of elasticity and consolidation for a porous anisotropic solid.

A nonconforming high-order method for the Biot problem on general meshes.

A Hybrid High-Order method for nonlinear elasticity.

A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes.

$W^{s,p}$-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray–Lions problems.
Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection.

An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics.

Gradient schemes for linear and non-linear elasticity equations.

Polynomial approximation of functions in Sobolev spaces.

A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems.

A mixed-FEM formulation for nonlinear incompressible elasticity in the plane.

On finite volume discretization of the three-dimensional Biot poroelasticity system in multilayer domains.

Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems.
A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case.

Stability and monotonicity for some discretizations of the Biot’s consolidation model.

Terzaghi, K. (1943).
Theoretical soil mechanics.
Wiley, New York.

Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity.