# Hybrid High-Order methods for poroelasticity

### Daniele A. Di Pietro

#### Institut Montpelliérain Alexander Grothendieck, University of Montpellier

### Besançon, October 2, 2019



## Features of HHO methods



Figure: Examples of supported meshes  $\mathcal{M}_h = (\mathcal{T}_h, \mathcal{F}_h)$  in 2d and 3d

- Capability of handling general polyhedral meshes
- Construction valid for arbitrary space dimensions
- Arbitrary approximation order (including k = 0)
- Physical fidelity leading to robustness in singular limits
- Natural extension to nonlinear problems
- Reduced computational cost after static condensation

## Outline



2 Poroelasticity

- Linear elasticity,  $k \ge 1$  [DP and Ern, 2015]
- Nonlinear elasticity [Botti,DP, Sochala, 2017]
- Linear elasticity, k = 0 [Botti, DP, Guglielmana, 2019]

### New book!

D. A. Di Pietro and J. Droniou
The Hybrid High-Order Method for Polytopal Meshes
Design, Analysis, and Applications
528 pages, http://hal.archives-ouvertes.fr/hal-02151813v2

### Model problem I

- Let  $\Omega \subset \mathbb{R}^d$ ,  $d \in \{2, 3\}$ , denote a bounded, connected polyhedral domain
- For  $f \in L^2(\Omega; \mathbb{R}^d)$ , we consider the elasticity problem

$$-\nabla \cdot (\boldsymbol{\sigma}(\cdot, \nabla_{s} \boldsymbol{u})) = f \quad \text{in } \Omega,$$
$$\boldsymbol{u} = \boldsymbol{0} \quad \text{on } \partial \Omega,$$

with  $\sigma : \Omega \times \mathbb{R}^{d \times d}_{sym} \to \mathbb{R}^{d \times d}_{sym}$  possibly nonlinear strain-stress law In weak form: Find  $u \in U \coloneqq H_0^1(\Omega)^d$  s.t.

$$a(u,v) \coloneqq \int_{\Omega} \boldsymbol{\sigma}(\cdot, \nabla_{s} u) : \nabla_{s} v = \int_{\Omega} \boldsymbol{f} \cdot v \qquad \forall v \in \boldsymbol{U}$$

From here on, the dependence of  $\sigma$  on x will not be made explicit

## Model problem II

### Example (Linear elasticity)

Given a uniformly elliptic fourth-order tensor-valued function  $C: \Omega \to \mathbb{R}^{d \times d \times d \times d}$ , for a.e.  $x \in \Omega$  and all  $\tau \in \mathbb{R}^{d \times d}$ ,

 $\sigma(x,\tau) = C(x)\tau.$ 

For uniform isotropic materials, the expression simplifies to

 $\sigma(\tau) = 2\mu\tau + \lambda \operatorname{tr}(\tau)I_d \quad \text{with} \quad 2\mu - d\lambda^- \ge \alpha > 0.$ 

#### Example (Hencky–Mises model)

Given  $\lambda : \mathbb{R} \to \mathbb{R}$  and  $\mu : \mathbb{R} \to \mathbb{R}$ , for a.e.  $x \in \Omega$  and all  $\tau \in \mathbb{R}^{d \times d}$ ,

 $\sigma(\tau) = 2\mu(\operatorname{dev}(\tau))\tau + \lambda(\operatorname{dev}(\tau))\operatorname{tr}(\tau)I_d,$ 

where  $\operatorname{dev}(\boldsymbol{\tau}) \coloneqq \operatorname{tr}(\boldsymbol{\tau}^2) - d^{-1} \operatorname{tr}(\boldsymbol{\tau})^2$ .

### Example (Isotropic damage model)

Given the damage function  $D : \mathbb{R}^{d \times d}_{sym} \to \mathbb{R}$  and C as above, for a.e.  $x \in \Omega$  and all  $\tau \in \mathbb{R}^{d \times d}$ ,

 $\sigma(x,\tau) = (1 - D(\tau)) C(x)\tau.$ 

### Example (Second-order model)

Given Lamé parameters  $\mu, \lambda \in \mathbb{R}$  and second-order moduli  $A, B, C \in \mathbb{R}$ , for all  $\tau \in \mathbb{R}^{d \times d}$ ,

 $\boldsymbol{\sigma}(\boldsymbol{\tau}) = 2\mu\boldsymbol{\tau} + \lambda \operatorname{tr}(\boldsymbol{\tau})\boldsymbol{I}_d + A\boldsymbol{\tau}^2 + B\operatorname{tr}(\boldsymbol{\tau}^2)\boldsymbol{I}_d + 2B\operatorname{tr}(\boldsymbol{\tau})\boldsymbol{\tau} + C\operatorname{tr}(\boldsymbol{\tau})^2\boldsymbol{I}_d.$ 

• Let  $l \ge 0$ ,  $X \in \mathcal{T}_h \cup \mathcal{F}_h$ . The  $L^2$ -projector  $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$  is s.t.

$$\pi_X^{0,l} v = \arg\min_{w \in \mathbb{P}^l(X)} \|w - v\|_{L^2(X;\mathbb{R})}^2$$

• Let  $l \ge 0$ ,  $X \in \mathcal{T}_h \cup \mathcal{F}_h$ . The  $L^2$ -projector  $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$  is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

• Let  $l \ge 0$ ,  $X \in \mathcal{T}_h \cup \mathcal{F}_h$ . The  $L^2$ -projector  $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$  is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

• Approximation properties for  $\pi_X^{0,l}$  proved in [DP and Droniou, 2017a]

• Let  $l \ge 0$ ,  $X \in \mathcal{T}_h \cup \mathcal{F}_h$ . The  $L^2$ -projector  $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$  is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

Approximation properties for π<sup>0,l</sup><sub>X</sub> proved in [DP and Droniou, 2017a]
 The vector version π<sup>0,l</sup><sub>X</sub> is obtained component-wise

• Let  $l \ge 0$ ,  $X \in \mathcal{T}_h \cup \mathcal{F}_h$ . The  $L^2$ -projector  $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$  is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

- Approximation properties for π<sub>X</sub><sup>0,l</sup> proved in [DP and Droniou, 2017a]
   The vector version π<sub>X</sub><sup>0,l</sup> is obtained component-wise
- Let  $l \ge 1$ ,  $T \in \mathcal{T}_h$ . The strain projector  $\pi_T^{\varepsilon,l} : H^1(T)^d \to \mathbb{P}^l(T)^d$  is s.t.

$$\pi_T^{\varepsilon,l} \boldsymbol{\nu} = \arg \min_{\boldsymbol{w} \in \mathbb{P}^l(T)^d, \, \int_T (\boldsymbol{w} - \boldsymbol{\nu}) = \mathbf{0}, \, \int_T \nabla_{\!\!\mathrm{ss}}(\boldsymbol{w} - \boldsymbol{\nu}) = \mathbf{0}} \| \nabla_{\!\!\mathrm{s}}(\boldsymbol{w} - \boldsymbol{\nu}) \|_{L^2(T; \mathbb{R}^{d \times d})}^2$$

• Let  $l \ge 0$ ,  $X \in \mathcal{T}_h \cup \mathcal{F}_h$ . The  $L^2$ -projector  $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$  is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

- Approximation properties for π<sub>X</sub><sup>0,l</sup> proved in [DP and Droniou, 2017a]
   The vector version π<sub>X</sub><sup>0,l</sup> is obtained component-wise
- Let  $l \ge 1$ ,  $T \in \mathcal{T}_h$ . The strain projector  $\pi_T^{\varepsilon,l} : H^1(T)^d \to \mathbb{P}^l(T)^d$  is s.t.

$$\int_{T} \nabla_{\mathbf{s}} (\boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{v} - \boldsymbol{v}) : \nabla_{\mathbf{s}} \boldsymbol{w} = 0 \quad \forall \boldsymbol{w} \in \mathbb{P}^{l}(T; \mathbb{R}^{d})$$

and

$$\int_{T} \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{\nu} = \int_{T} \boldsymbol{\nu}, \qquad \int_{T} \boldsymbol{\nabla}_{\mathrm{ss}} \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{\nu} = \int_{T} \boldsymbol{\nabla}_{\mathrm{ss}} \boldsymbol{\nu}$$

•

• Let  $l \ge 0$ ,  $X \in \mathcal{T}_h \cup \mathcal{F}_h$ . The  $L^2$ -projector  $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$  is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

- Approximation properties for π<sub>X</sub><sup>0,l</sup> proved in [DP and Droniou, 2017a]
   The vector version π<sub>X</sub><sup>0,l</sup> is obtained component-wise
- Let  $l \ge 1$ ,  $T \in \mathcal{T}_h$ . The strain projector  $\pi_T^{\varepsilon,l} : H^1(T)^d \to \mathbb{P}^l(T)^d$  is s.t.

$$\int_{T} \nabla_{\mathbf{s}} (\boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{v} - \boldsymbol{v}) : \nabla_{\mathbf{s}} \boldsymbol{w} = 0 \quad \forall \boldsymbol{w} \in \mathbb{P}^{l}(T; \mathbb{R}^{d})$$

and

$$\int_{T} \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{v} = \int_{T} \boldsymbol{v}, \qquad \int_{T} \boldsymbol{\nabla}_{\mathrm{ss}} \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{v} = \int_{T} \boldsymbol{\nabla}_{\mathrm{ss}} \boldsymbol{v}$$

**\pi\_T^{\epsilon,1} coincides with the elliptic projector of** [DP and Droniou, 2017b]

#### Theorem (Optimal approximation properties of the strain projector)

Denote by  $(\mathcal{M}_h)_{h \in \mathcal{H}} = (\mathcal{T}_h, \mathcal{F}_h)_{h \in \mathcal{H}}$  a regular mesh sequence with star-shaped elements. Let an integer  $s \in \{1, ..., l+1\}$  be given. Then, for all  $T \in \mathcal{T}_h$ , all  $v \in H^s(T)^d$ , and all  $m \in \{0, ..., s\}$ ,

$$|\boldsymbol{\nu}-\boldsymbol{\pi}_T^{\boldsymbol{\varepsilon},l}\boldsymbol{\nu}|_{H^m(T;\mathbb{R}^d)} \leq h_T^{s-m}|\boldsymbol{\nu}|_{H^s(T;\mathbb{R}^d)}.$$

Moreover, if  $m \leq s - 1$ , then, for all  $F \in \mathcal{F}_T$ ,

$$|\boldsymbol{v} - \boldsymbol{\pi}_T^{\boldsymbol{\varepsilon},l}\boldsymbol{v}|_{H^m(F,\mathbb{R}^d)} \leq h_T^{s-m-\frac{1}{2}}|\boldsymbol{v}|_{H^s(T;\mathbb{R}^d)}$$

Hidden constants depend only on d, l, s, m, and the mesh regularity.

### Approximation properties for the strain projector II

It suffices to prove (cf. [DP and Droniou, 2017b]): For all  $T \in \mathcal{T}_h$ 

$$\begin{split} \| \boldsymbol{\nabla} \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{\nu} \|_{L^{2}(T;\mathbb{R}^{d\times d})} &\lesssim |\boldsymbol{\nu}|_{H^{1}(T;\mathbb{R}^{d})}, & \text{if } m \geq 1, \\ \| \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{\nu} \|_{L^{2}(T;\mathbb{R}^{d})} &\lesssim \| \boldsymbol{\nu} \|_{L^{2}(T;\mathbb{R}^{d})} + h_{T} | \boldsymbol{\nu} |_{H^{1}(T;\mathbb{R}^{d})} & \text{if } m = 0 \end{split}$$

$$\begin{aligned} \| \boldsymbol{\nabla} \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{\nu} \|_{L^{2}(T;\mathbb{R}^{d \times d})} \\ & \leq \| \boldsymbol{\nabla} \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{\nu} - \boldsymbol{\pi}_{T}^{0,0} (\boldsymbol{\nabla}_{ss} \boldsymbol{\pi}_{T}^{\boldsymbol{\varepsilon},l} \boldsymbol{\nu}) \|_{L^{2}(T;\mathbb{R}^{d \times d})} + \| \boldsymbol{\pi}_{T}^{0,0} (\boldsymbol{\nabla}_{ss} \boldsymbol{\nu}) \|_{L^{2}(T;\mathbb{R}^{d \times d})} \end{aligned}$$

For the term in red, we need local Korn inequalities to write

$$\|\nabla \boldsymbol{\pi}_T^{\varepsilon,l}\boldsymbol{\nu} - \boldsymbol{\pi}_T^{0,0}(\nabla_{\mathrm{ss}}\boldsymbol{\pi}_T^{\varepsilon,l}\boldsymbol{\nu})\|_{L^2(T;\mathbb{R}^{d\times d})} \leq \|\nabla_{\mathrm{s}}\boldsymbol{\pi}_T^{\varepsilon,l}\boldsymbol{\nu}\|_{L^2(T;\mathbb{R}^{d\times d})},$$

where the hidden constant should be independent of T

### Lemma (Uniform local Korn inequalities)

Denoting by  $(\mathcal{M}_h)_{h \in \mathcal{H}}$  a regular mesh sequence with star-shaped elements it holds, for all  $h \in \mathcal{H}$  and all  $T \in \mathcal{T}_h$ ,

$$\|\nabla \boldsymbol{u} - \boldsymbol{\pi}_T^{0,0}(\nabla_{\mathrm{ss}}\boldsymbol{u})\|_T \lesssim \|\nabla_{\mathrm{ss}}\boldsymbol{u}\|_T \qquad \forall \boldsymbol{u} \in H^1(T)^d,$$

with hidden constant depending only on d and the mesh regularity (and independent of h and T).

#### Proof.

See [Botti, DP, and Droniou, 2018].

Г

## Computing displacement projections from $L^2$ -projections

• For all  $v \in H^1(T; \mathbb{R}^d)$  and all  $\tau \in C^{\infty}(\overline{T}; \mathbb{R}^{d \times d}_{sym})$ , it holds

$$\int_{T} \nabla_{\mathbf{s}} \mathbf{v} : \tau = -\int_{T} \mathbf{v} \cdot (\nabla \cdot \tau) + \sum_{F \in \mathcal{F}_{T}} \int_{F} \mathbf{v} \cdot \tau \mathbf{n}_{TF}$$

• Specialising to  $\boldsymbol{\tau} = \boldsymbol{\nabla}_{\!\!\mathrm{s}} \boldsymbol{w}$  with  $\boldsymbol{w} \in \mathbb{P}^{k+1}(T)^d$ ,  $k \ge 0$ , gives

$$\int_{T} \nabla_{\mathbf{s}} \pi_{T}^{\varepsilon,k+1} \boldsymbol{v} : \nabla_{\mathbf{s}} \boldsymbol{w} = -\int_{T} \pi_{T}^{0,k} \boldsymbol{v} \cdot (\nabla \cdot \nabla_{\mathbf{s}} \boldsymbol{w}) + \sum_{F \in \mathcal{F}_{T}} \int_{F} \pi_{F}^{0,k} \boldsymbol{v} \cdot \nabla_{\mathbf{s}} \boldsymbol{w} \boldsymbol{n}_{TF}$$

Moreover, we have

$$\int_{T} \boldsymbol{v} = \int_{T} \boldsymbol{\pi}_{T}^{0,k} \boldsymbol{v}, \quad \int_{T} \boldsymbol{\nabla}_{ss} \boldsymbol{v} = \frac{1}{2} \sum_{F \in \mathcal{F}_{T}} \int_{F} \left( \boldsymbol{\pi}_{F}^{0,k} \boldsymbol{v} \otimes \boldsymbol{n}_{TF} - \boldsymbol{n}_{TF} \otimes \boldsymbol{\pi}_{F}^{0,k} \boldsymbol{v} \right)$$

• Hence,  $\pi_T^{\varepsilon,k+1}v$  can be computed from  $\pi_T^{0,k}v$  and  $(\pi_F^{0,k}v)_{F\in\mathcal{F}_T}!$ 

## Computing displacement projections from $L^2$ -projections

• For all  $v \in H^1(T; \mathbb{R}^d)$  and all  $\tau \in C^{\infty}(\overline{T}; \mathbb{R}^{d \times d}_{sym})$ , it holds

$$\int_{T} \nabla_{\mathbf{s}} \mathbf{v} : \tau = -\int_{T} \mathbf{v} \cdot (\nabla \cdot \tau) + \sum_{F \in \mathcal{F}_{T}} \int_{F} \mathbf{v} \cdot \tau \mathbf{n}_{TF}$$

• Specialising to  $\boldsymbol{\tau} = \boldsymbol{\nabla}_{\!\!\mathrm{s}} \boldsymbol{w}$  with  $\boldsymbol{w} \in \mathbb{P}^{k+1}(T)^d$ ,  $k \ge 0$ , gives

$$\int_{T} \nabla_{\mathbf{s}} \pi_{T}^{\varepsilon,k+1} \boldsymbol{v} : \nabla_{\mathbf{s}} \boldsymbol{w} = -\int_{T} \pi_{T}^{0,k} \boldsymbol{v} \cdot (\nabla \cdot \nabla_{\mathbf{s}} \boldsymbol{w}) + \sum_{F \in \mathcal{F}_{T}} \int_{F} \pi_{F}^{0,k} \boldsymbol{v} \cdot \nabla_{\mathbf{s}} \boldsymbol{w} \boldsymbol{n}_{TF}$$

Moreover, we have

$$\int_{T} \boldsymbol{\nu} = \int_{T} \boldsymbol{\pi}_{T}^{0,k} \boldsymbol{\nu}, \quad \int_{T} \boldsymbol{\nabla}_{ss} \boldsymbol{\nu} = \frac{1}{2} \sum_{F \in \mathcal{F}_{T}} \int_{F} \left( \boldsymbol{\pi}_{F}^{0,k} \boldsymbol{\nu} \otimes \boldsymbol{n}_{TF} - \boldsymbol{n}_{TF} \otimes \boldsymbol{\pi}_{F}^{0,k} \boldsymbol{\nu} \right)$$

Hence, π<sub>T</sub><sup>ε,k+1</sup>ν can be computed from π<sub>T</sub><sup>0,k</sup>ν and (π<sub>F</sub><sup>0,k</sup>ν)<sub>F∈F<sub>T</sub></sub>!
 The same holds for π<sub>T</sub><sup>0,k</sup>(∇<sub>s</sub>ν) (specialise to τ ∈ P<sup>k</sup>(T; ℝ<sup>d×d</sup><sub>sym</sub>))

### Discrete unknowns



Figure:  $\underline{U}_T^k$  for  $k \in \{0, 1, 2\}$ 

- Let a polynomial degree  $k \ge 0$  be fixed
- For all  $T \in \mathcal{T}_h$ , we define the local space of discrete unknowns

$$\underline{U}_{T}^{k} \coloneqq \left\{ \underline{\nu}_{T} = (\nu_{T}, (\nu_{F})_{F \in \mathcal{F}_{T}}) : \\ \nu_{T} \in \mathbb{P}^{k}(T; \mathbb{R}^{d}) \text{ and } \nu_{F} \in \mathbb{P}^{k}(F; \mathbb{R}^{d}) \quad \forall F \in \mathcal{F}_{T} \right\}$$

• The local interpolator  $\underline{I}_T^k : H^1(T; \mathbb{R}^d) \to \underline{U}_T^k$  is s.t.

$$\underline{I}_{T}^{k} \boldsymbol{v} \coloneqq (\boldsymbol{\pi}_{T}^{0,k} \boldsymbol{v}, (\boldsymbol{\pi}_{F}^{0,k} \boldsymbol{v})_{F \in \mathcal{F}_{T}}) \quad \forall \boldsymbol{v} \in H^{1}(T)^{d}$$

### Local displacement and strain reconstructions I

We introduce the displacement reconstruction operator

$$\mathbf{p}_T^{k+1}: \underline{U}_T^k \to \mathbb{P}^{k+1}(T; \mathbb{R}^d)$$

s.t., for all  $\underline{v}_T \in \underline{U}_T^k$  and all  $w \in \mathbb{P}^{k+1}(T; \mathbb{R}^d)$ ,

$$\int_{T} \nabla_{\!\!\mathrm{s}} \mathbf{p}_{T}^{k+1} \underline{\mathbf{v}}_{T} : \nabla_{\!\!\mathrm{s}} w = -\int_{T} v_{T} \cdot (\nabla \cdot \nabla_{\!\!\mathrm{s}} w) + \sum_{F \in \mathcal{F}_{T}} \int_{F} v_{F} \cdot \nabla_{\!\!\mathrm{s}} w n_{TF}$$

and

$$\int_{T} \mathbf{p}_{T}^{k+1} \underline{\mathbf{v}}_{T} = \int_{T} \mathbf{v}_{T}, \quad \int_{T} \nabla_{ss} \mathbf{p}_{T}^{k+1} \underline{\mathbf{v}}_{T} = \frac{1}{2} \sum_{F \in \mathcal{F}_{T}} \int_{F} (\mathbf{v}_{F} \otimes \mathbf{n}_{TF} - \mathbf{n}_{TF} \otimes \mathbf{v}_{F})$$

By construction, the following commutation property holds:

$$\mathbf{p}_T^{k+1}\underline{I}_T^k \boldsymbol{v} = \boldsymbol{\pi}_T^{\boldsymbol{\varepsilon},k+1} \boldsymbol{v} \qquad \forall \boldsymbol{v} \in H^1(T;\mathbb{R}^d)$$

### Local displacement and strain reconstructions II

- For nonlinear problems,  $\nabla_{\!\!\mathrm{s}} \mathbf{p}_T^{k+1}$  is not sufficiently rich
- We therefore also define the strain reconstruction operator

$$\mathbf{G}_{\mathrm{s},T}^k : \underline{U}_T^k \to \mathbb{P}^k(T; \mathbb{R}^{d \times d}_{\mathrm{sym}})$$

such that, for all  $\pmb{\tau} \in \mathbb{P}^k(T; \mathbb{R}^{d imes d}_{\mathrm{sym}})$ ,

$$\int_{T} \mathbf{G}_{\mathbf{s},T}^{k} \underline{\mathbf{v}}_{T} : \boldsymbol{\tau} = -\int_{T} \boldsymbol{v}_{T} \cdot (\boldsymbol{\nabla} \cdot \boldsymbol{\tau}) + \sum_{F \in \mathcal{F}_{T}} \int_{F} \boldsymbol{v}_{F} \cdot \boldsymbol{\tau} \boldsymbol{n}_{TF}$$

By construction, it holds

$$\mathbf{G}_{\mathrm{s},T}^{k}\underline{I}_{T}^{k}\boldsymbol{\nu} = \boldsymbol{\pi}_{T}^{0,k}(\boldsymbol{\nabla}_{\!\!\mathrm{s}}\boldsymbol{\nu}) \qquad \forall \boldsymbol{\nu} \in H^{1}(T;\mathbb{R}^{d})$$

### Local contribution I

$$a_{|T}(\boldsymbol{u}, \boldsymbol{v}) \approx a_T(\underline{\boldsymbol{u}}_T, \underline{\boldsymbol{v}}_T) \coloneqq \int_T \boldsymbol{\sigma}(\mathbf{G}_{s,T}^k \underline{\boldsymbol{u}}_T) : \mathbf{G}_{s,T}^k \underline{\boldsymbol{v}}_T + \mathbf{s}_T(\underline{\boldsymbol{u}}_T, \underline{\boldsymbol{v}}_T)$$

#### Assumption (Stabilization bilinear form)

The bilinear form  $\mathbf{s}_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$  satisfies the following properties:

- Symmetry and positivity. s<sub>T</sub> is symmetric and positive semidefinite.
- Stability. It holds, with hidden constant independent of h and T and  $\|\cdot\|_{\varepsilon,h}$  natural DOF strain seminorm: For all  $\underline{v}_T \in \underline{U}_T^k$ ,

$$\|\mathbf{G}_{\mathrm{s},T}^{k}\underline{\boldsymbol{\nu}}_{T}\|_{L^{2}(T;\mathbb{R}^{d\times d})}^{2} + \mathrm{s}_{T}(\underline{\boldsymbol{\nu}}_{T},\underline{\boldsymbol{\nu}}_{T}) \simeq \|\underline{\boldsymbol{\nu}}_{T}\|_{\boldsymbol{\varepsilon},T}^{2}.$$

Polynomial consistency. For all  $w \in \mathbb{P}^{k+1}(T)$  and all  $\underline{v}_T \in \underline{U}_T^k$ ,

$$s_T(\underline{I}_T^k w, \underline{v}_T) = 0.$$

## Local contribution II

### Remark (Polynomial degree)

Stability and polynomial consistency are incompatible for k = 0.

#### Remark (Dependency)

 $s_T$  satisfies polynomial consistency if and only if it depends on its arguments via the difference operators s.t., for all  $\underline{v}_T \in \underline{U}_T^k$ ,

$$\begin{split} \boldsymbol{\delta}_T^k \underline{\boldsymbol{\nu}}_T &\coloneqq \boldsymbol{\pi}_T^{0,k} (\mathbf{p}_T^{k+1} \underline{\boldsymbol{\nu}}_T - \boldsymbol{\nu}_T), \\ \boldsymbol{\delta}_{TF}^k \underline{\boldsymbol{\nu}}_T &\coloneqq \boldsymbol{\pi}_F^{0,k} (\mathbf{p}_T^{k+1} \underline{\boldsymbol{\nu}}_T - \boldsymbol{\nu}_F) \quad \forall F \in \mathcal{F}_T. \end{split}$$

### Example (Classical HHO stabilisation)

$$\mathbf{s}_{T}(\underline{\boldsymbol{u}}_{T},\underline{\boldsymbol{v}}_{T}) \coloneqq \sum_{F \in \mathcal{F}_{T}} \frac{\gamma}{h_{F}} \int_{F} \left( \boldsymbol{\delta}_{TF}^{k} \underline{\boldsymbol{u}}_{T} - \boldsymbol{\delta}_{T}^{k} \underline{\boldsymbol{u}}_{T} \right) \cdot \left( \boldsymbol{\delta}_{TF}^{k} \underline{\boldsymbol{v}}_{T} - \boldsymbol{\delta}_{T}^{k} \underline{\boldsymbol{v}}_{T} \right).$$

### Discrete problem

Define the global space with single-valued interface unknowns

$$\begin{split} \underline{U}_{h}^{k} &\coloneqq \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{F}_{h}}) : \\ v_{T} \in \mathbb{P}^{k}(T; \mathbb{R}^{d}) \quad \forall T \in \mathcal{T}_{h} \text{ and } v_{F} \in \mathbb{P}^{k}(F; \mathbb{R}^{d}) \quad \forall F \in \mathcal{F}_{h} \right\} \end{split}$$

and its subspace with strongly enforced boundary conditions

$$\underline{U}_{h,0}^k \coloneqq \left\{ \underline{v}_h \in \underline{U}_h^k : v_F = \mathbf{0} \quad \forall F \in \mathcal{F}_h^{\mathrm{b}} \right\}$$

• The discrete problem reads: Find  $\underline{u}_h \in \underline{U}_{h,0}^k$  s.t.

$$\mathbf{a}_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) \coloneqq \sum_{T \in \mathcal{T}_{h}} \mathbf{a}_{T}(\underline{\boldsymbol{u}}_{T},\underline{\boldsymbol{v}}_{T}) = \sum_{T \in \mathcal{T}_{h}} \int_{T} \boldsymbol{f} \cdot \boldsymbol{v}_{h} \quad \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{U}}_{h,0}^{k}$$

### Global discrete Korn inequalities

Lemma (Global Korn inequality on broken polynomial spaces)

Let an integer  $l \ge 1$  be fixed and, given  $v_h \in \mathbb{P}^l(\mathcal{T}_h; \mathbb{R}^d)$ , set

$$\|\boldsymbol{v}_h\|_{\mathrm{dG},h}^2 \coloneqq \|\boldsymbol{\nabla}_{\mathrm{s},h}\boldsymbol{v}_h\|_{L^2(\Omega;\mathbb{R}^{d\times d})}^2 + \sum_{F\in\mathcal{F}_h} \frac{1}{h_F} \|[\boldsymbol{v}_h]_F\|_{L^2(F;\mathbb{R}^d)}^2.$$

Then it holds, with hidden constant depending only on  $\Omega$ , d, l, and  $\rho$ ,

 $\|\boldsymbol{\nabla}_{h}\boldsymbol{\nu}_{h}\|_{L^{2}(\Omega;\mathbb{R}^{d\times d})} \lesssim \|\boldsymbol{\nu}_{h}\|_{\mathrm{dG},h}.$ 

#### Corollary (Global Korn inequality on HHO spaces)

Assume  $k \ge 1$ . Then it holds, for all  $\underline{v}_h \in \underline{U}_{h,0}^k$ , letting  $v_h \in \mathbb{P}^k(\mathcal{T}_h; \mathbb{R}^d)$  be s.t.  $(v_h)_{|T} := v_T$  for all  $T \in \mathcal{T}_h$  and with hidden constant as above,

 $\|\boldsymbol{v}_h\|_{L^2(\Omega;\mathbb{R}^d)} + \|\boldsymbol{\nabla}_h\boldsymbol{v}_h\|_{L^2(\Omega;\mathbb{R}^{d\times d})} \lesssim \|\underline{\boldsymbol{v}}_h\|_{\boldsymbol{\varepsilon},h}.$ 

### Existence and uniqueness I

#### Assumption (Strain-stress law/1)

The strain-stress law is a Carathéodory function s.t.  $\sigma(\cdot, \mathbf{0}) = \mathbf{0}$  and there exist  $0 < \underline{\sigma} \le \overline{\sigma}$  s.t., for a.e.  $\mathbf{x} \in \Omega$  and all  $\tau, \eta \in \mathbb{R}^{d \times d}_{sym}$ ,

$$\begin{split} \|\sigma(x,\tau)\|_{\mathbb{R}^{d\times d}} &\leq \overline{\sigma} \|\tau\|_{\mathbb{R}^{d\times d}}, \qquad \text{(growth)}\\ \sigma(x,\tau):\tau &\geq \underline{\sigma} \|\tau\|_{\mathbb{R}^{d\times d}}^2, \qquad \text{(coercivity)}\\ (\sigma(x,\tau) - \sigma(x,\eta)):(\tau - \eta) &\geq 0. \qquad \text{(monotonicity)} \end{split}$$

#### Remark (Choice of the penalty parameter)

A natural choice is to take the penalty parameter s.t.

$$\gamma \in [\underline{\sigma}, \overline{\sigma}].$$

### Theorem (Discrete existence and uniqueness)

Let  $(\mathcal{M}_h)_{h \in \mathcal{H}}$  denote a regular mesh sequence with star-shaped elements and assume  $k \geq 1$ . Then, for all  $h \in \mathcal{H}$ , there exist a solution  $\underline{u}_h \in \underline{U}_{h,0}^k$ to the discrete problem, which satisfies

 $\|\underline{\boldsymbol{u}}_{h}\|_{\boldsymbol{\varepsilon},h} \lesssim \|\boldsymbol{f}\|_{L^{2}(\Omega;\mathbb{R}^{d})},$ 

with hidden constant only depending on  $\Omega$ ,  $\sigma$ ,  $\gamma$ ,  $\varrho$ , and k. Moreover, if  $\sigma$  is strictly monotone, then the solution is unique.

### Theorem (Convergence)

Let  $(\mathcal{M}_h)_{h \in \mathcal{H}}$  denote a regular mesh sequence with star-shaped elements and assume  $k \ge 1$ . Then, for all  $q \in [1, +\infty)$  if d = 2 and  $q \in [1, 6)$  if d = 3, as  $h \to 0$  it holds, up to a subsequence, that

$$\begin{aligned} \boldsymbol{u}_h &\to \boldsymbol{u} & \text{strongly in } L^q(\Omega; \mathbb{R}^d), \\ \mathbf{G}_{\mathrm{s},h}^k \underline{\boldsymbol{u}}_h &\to \boldsymbol{\nabla}_{\!\mathrm{s}} \boldsymbol{u} & \text{weakly in } L^2(\Omega; \mathbb{R}^{d \times d}). \end{aligned}$$

If, additionally,  $\sigma$  is strictly monotone,

$$\mathbf{G}_{\mathrm{s},h}^{k} \underline{u}_{h} \to \mathbf{\nabla}_{\mathrm{s}} u \quad \text{strongly in } L^{2}(\Omega; \mathbb{R}^{d \times d})$$

and, the continuous solution being unique, the whole sequence converges.

### Error estimate

#### Assumption (Strain-stress law/2)

There exists  $\sigma_*, \sigma^* \in (0, +\infty)$  s.t., for a.e.  $x \in \Omega$  and all  $\tau, \eta \in \mathbb{R}^{d \times d}_{sym}$ ,

$$\|\sigma(\boldsymbol{x},\tau) - \sigma(\boldsymbol{x},\eta)\|_{\mathbb{R}^{d\times d}} \le \sigma^* \|\tau - \eta\|_{\mathbb{R}^{d\times d}}, \qquad \text{(Lipschitz continuity)}$$
$$(\sigma(\boldsymbol{x},\tau) - \sigma(\boldsymbol{x},\eta)): (\tau - \eta) \ge \sigma_* \|\tau - \eta\|_{\mathbb{R}^{d\times d}}^2. \qquad \text{(strong monotonicity)}$$

#### Theorem (Error estimate)

Let  $(\mathcal{M}_h)_{h \in \mathcal{H}}$  denote a regular mesh sequence with star-shaped elements and  $k \geq 1$ . Then, if  $\mathbf{u} \in H^{k+2}(\mathcal{T}_h; \mathbb{R}^d)$  and  $\sigma(\cdot, \nabla_{\!\!\mathbf{s}} \mathbf{u}) \in H^{k+1}(\mathcal{T}_h; \mathbb{R}^{d \times d})$ ,

with hidden constant only depending on  $\Omega$ , k,  $\overline{\sigma}$ ,  $\underline{\sigma}$ ,  $\sigma^*$ ,  $\sigma_*$ ,  $\gamma$ , the mesh regularity and an upper bound of  $||f||_{L^2(\Omega;\mathbb{R}^d)}$ .

For k = 0, stability cannot be enforced through local terms
 We therefore consider a<sup>lo</sup><sub>h</sub> : <u>U<sup>0</sup><sub>h</sub> × U<sup>0</sup><sub>h</sub></u> s.t.

$$\mathbf{a}_h^{\mathrm{lo}}(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h)\coloneqq \sum_{T\in\mathcal{T}_h}\mathbf{a}_T(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T) + \mathbf{j}_h(\mathbf{p}_h^1\underline{\boldsymbol{u}}_h,\mathbf{p}_h^1\underline{\boldsymbol{v}}_h),$$

with jump penalisation bilinear form

$$\mathbf{j}_h(\boldsymbol{u},\boldsymbol{v})\coloneqq\sum_{F\in\mathcal{F}_h}h_F^{-1}([\boldsymbol{u}]_F,[\boldsymbol{v}]_F)_F$$

### The lowest-order case II

Consider, e.g., isotropic homogeneous linear elasticity, that is

$$\sigma(\tau) = 2\mu\tau + \lambda \operatorname{tr}(\tau)I_d$$
 with  $2\mu - d\lambda^- \ge \alpha > 0$ 

• Coercivity is ensured by Korn's inequality in broken spaces:

$$\alpha \| \| \underline{\mathbf{v}}_h \| \|_{\boldsymbol{\varepsilon},h}^2 \lesssim \mathbf{a}_h^{\mathrm{lo}}(\underline{\mathbf{v}}_h,\underline{\mathbf{v}}_h) \qquad \forall \underline{\mathbf{v}}_h \in \underline{U}_{h,0}^0,$$

where

$$\||\underline{\boldsymbol{v}}_{h}\||_{\varepsilon,h} \coloneqq \left( \|\boldsymbol{v}_{h}\|_{\mathrm{dG},h}^{2} + |\underline{\boldsymbol{v}}_{h}|_{\mathrm{s},h}^{2} \right)^{\frac{1}{2}}, \quad |\underline{\boldsymbol{v}}_{h}|_{\mathrm{s},h} \coloneqq \left( \sum_{T \in \mathcal{T}_{h}} \mathrm{s}_{T}(\underline{\boldsymbol{v}}_{T},\underline{\boldsymbol{v}}_{T}) \right)^{\frac{1}{2}}$$

### Theorem (Energy error estimate, k = 0)

Let  $(\mathcal{M}_h)_{h \in \mathcal{H}}$  denote a regular mesh sequence. Then, if  $\mathbf{u} \in H^2(\mathcal{T}_h; \mathbb{R}^d)$ ,

with hidden constant independent of h, u, of the Lamé parameters and of f. This estimate can be proved to be uniform in  $\lambda$ .

#### Remark (Star-shaped assumption)

We do not need the star-shaped assumption for k = 0, since the strain projector coincides with the elliptic projector, whose approximation properties do not require local Korn inequalities.

### Theorem $(L^2$ -error estimate)

Under the assumptions of the above theorem, and further assuming  $\lambda \ge 0$ , elliptic regularity, and  $f \in H^1(\mathcal{T}_h; \mathbb{R}^d)$ , it holds that

$$\|\mathbf{p}_h^1 \underline{\boldsymbol{u}}_h - \boldsymbol{\boldsymbol{u}}\|_{L^2(\Omega;\mathbb{R}^d)} \lesssim h^2 \|\boldsymbol{f}\|_{H^1(\mathcal{T}_h;\mathbb{R}^d)},$$

with hidden constant independent of both h and  $\lambda$ .

## Outline





- Linear poroelasticity [Boffi, Botti, DP, 2016]
- Nonlinear poroelasticity [Botti, DP, Sochala, 2019]
- Random coefficients [Botti, DP, Le Maître, Sochala, 2019]
- Abstract analysis [Botti, Botti, DP, 2019a] (in preparation)
- Multi-network [Botti, Botti, DP, 2019b] (in preparation)

### The poroelasticity problem I

**Momentum balance**: For any control volume  $V \subset \Omega$ , enforce

$$\int_{V} \frac{\partial^2 \boldsymbol{u}}{\partial t^2} = \int_{\partial V} \tilde{\boldsymbol{\sigma}} \boldsymbol{n} + \int_{V} \boldsymbol{f},$$

with  $\tilde{\sigma} \coloneqq \sigma(\nabla_{\!\!\!\mathrm{s}} u) - pI_d$ . Under the quasi-static assumption,

$$-\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\boldsymbol{\nabla}_{\!\!\mathrm{s}} \boldsymbol{u}) + \boldsymbol{\nabla} p = \boldsymbol{f} \qquad \text{in } \boldsymbol{\Omega} \times (\boldsymbol{0}, t_{\mathrm{F}})$$

■ Mass conservation: For any control volume  $V \subset \Omega$ , enforce

$$\int_{V} \frac{\partial \phi}{\partial t} + \int_{\partial V} \mathbf{\Phi} \cdot \mathbf{n} = \int_{V} g$$

with porosity  $\phi = C_0 p + \nabla \cdot u$  and flux  $\Phi = -\kappa \nabla p$ . Substituting,

$$\partial_t (C_0 p + \nabla \cdot \boldsymbol{u}) - \nabla \cdot (\boldsymbol{\kappa} \nabla p) = g$$
 in  $\Omega \times (0, t_F)$ 

IC, BC, and, if  $C_0 = 0$ , compatibility conditions not detailed

### The poroelasticity problem II

$$\begin{aligned} -\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\boldsymbol{\nabla}_{\mathrm{s}}\boldsymbol{u}) + \boldsymbol{\nabla}p &= \boldsymbol{f} \qquad \text{in } \boldsymbol{\Omega} \times (0, t_{\mathrm{F}}) \\ \partial_t \left( C_0 p + \boldsymbol{\nabla} \cdot \boldsymbol{u} \right) - \boldsymbol{\nabla} \cdot (\boldsymbol{\kappa} \boldsymbol{\nabla}p) &= \boldsymbol{g} \qquad \text{in } \boldsymbol{\Omega} \times (0, t_{\mathrm{F}}) \end{aligned}$$



- Presence of different layers and, possibly, fractures
- Strongly heterogeneous and anisotropic permeability tensor  $\kappa$
- General stress-strain relations  $\sigma$  (nonlinear,  $\lambda \rightarrow +\infty,...$ )
- Singular limit  $C_0 = 0$  (incompressible grains)

### Weak formulation

Let 
$$f \in L^2(0, t_{\mathrm{F}}; L^2(\Omega; \mathbb{R}^d))$$
,  $g \in L^2(0, t_{\mathrm{F}}; L^2(\Omega; \mathbb{R}))$ ,  $\phi^0 \in L^2(\Omega; \mathbb{R})$ ,  
 $P \coloneqq H^1(\Omega; \mathbb{R})$  if  $C_0 > 0$ ,  $P \coloneqq \left\{ q \in H^1(\Omega; \mathbb{R}) : \int_{\Omega} q = 0 \right\}$  if  $C_0 = 0$ 

• Define the bilinear forms  $b: U \times P \to \mathbb{R}$  and  $c: P \times P \to \mathbb{R}$  s.t.

$$b(\mathbf{v},q) \coloneqq -\int_{\Omega} \mathbf{\nabla} \cdot \mathbf{v} \ q, \qquad c(r,q) \coloneqq \int_{\Omega} \kappa \mathbf{\nabla} r \cdot \mathbf{\nabla} q$$

 $\blacksquare \text{ We seek } (\pmb{u},p) \in L^2(0,t_{\mathrm{F}};\pmb{U}\times P) \text{ s.t., } \forall (\pmb{v},q,\varphi) \in \pmb{U}\times P\times C^\infty_{\mathrm{c}}((0,t_{\mathrm{F}})),$ 

$$\begin{split} \int_{0}^{t_{\mathrm{F}}} & a(\boldsymbol{u}(t), \boldsymbol{v})\varphi(t) \,\mathrm{d}t + \int_{0}^{t_{\mathrm{F}}} b(\boldsymbol{v}, p(t))\varphi(t) \,\mathrm{d}t = \int_{0}^{t_{\mathrm{F}}} \int_{\Omega} \left(\boldsymbol{f}(t) \cdot \boldsymbol{v}\right) \varphi(t) \,\mathrm{d}t, \\ & \int_{0}^{t_{\mathrm{F}}} \int_{\Omega} \phi(t) d_{t}\varphi(t) \,\mathrm{d}t + \int_{0}^{t_{\mathrm{F}}} c(p, q)\varphi(t) \,\mathrm{d}t = \int_{0}^{t_{\mathrm{F}}} \int_{\Omega} g(t)q\varphi(t) \,\mathrm{d}t, \\ & \int_{\Omega} (C_{0}p(0) + \boldsymbol{\nabla} \cdot \boldsymbol{u}(0))q = \int_{\Omega} \phi^{0}q \end{split}$$

- High-order method on general polyhedral meshes
- Inf-sup-stable hydro-mechanical coupling
- Robustness with respect to heterogeneous-anisotropic permeability
- Seamless treatment of incompressible grains  $(C_0 = 0)$
- Locally equilibrated tractions and fluxes
- Numerically robust with respect to spurious pressure oscillations

### Discrete divergence and hydro-mechanical coupling I

• Mimicking the IBP formula:  $\forall (\mathbf{v}, q) \in H^1(T; \mathbb{R}^d) \times C^{\infty}(\overline{T}; \mathbb{R})$ ,

$$\int_{T} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) \ q = -\int_{T} \boldsymbol{v} \cdot \boldsymbol{\nabla} q + \sum_{F \in \mathcal{F}_{T}} \int_{F} (\boldsymbol{v} \cdot \boldsymbol{n}_{TF}) \ q,$$

we introduce divergence reconstruction  $D_T^k : \underline{U}_T^k \to \mathbb{P}^{\ell}(T)$  s.t.

$$\int_{T} \mathbf{D}_{T}^{k} \underline{\boldsymbol{\nu}}_{T} \ q = -\int_{T} \boldsymbol{\nu}_{T} \cdot \boldsymbol{\nabla} q + \sum_{F \in \mathcal{F}_{T}} \int_{F} (\boldsymbol{\nu}_{F} \cdot \boldsymbol{n}_{TF}) \ q \quad \forall q \in \mathbb{P}^{k}(T)$$

By construction, it holds, for all  $\underline{v}_T \in \underline{U}_T^k$ ,

$$\mathbf{D}_T^k \underline{\mathbf{\nu}}_T = \mathrm{tr}(\mathbf{G}_{\mathrm{s},T}^k \underline{\mathbf{\nu}}_T),$$

hence, for all  $v \in H^1(T; \mathbb{R}^d)$ ,

$$\mathbf{D}_T^k \underline{I}_T^k \boldsymbol{\nu} = \pi_T^{0,k} (\boldsymbol{\nabla} \boldsymbol{\cdot} \boldsymbol{\nu})$$

### Discrete divergence and hydro-mechanical coupling II

The hydro-mechanical coupling is realised by the bilinear form

$$\mathbf{b}_h(\underline{\boldsymbol{v}}_h,q_h)\coloneqq -\sum_{T\in\mathcal{T}_h}\,\int_T \mathbf{D}_T^k\underline{\boldsymbol{v}}_T \,\,q_T$$

Inf-sup stability: There is  $\beta > 0$  independent of h s.t.

$$\forall q_h \in P_h^k, \quad \beta \| q_h \|_{L^2(\Omega; \mathbb{R})} \leq \sup_{\underline{\nu}_h \in \underline{U}_{h,0}^k, \| \underline{\nu}_h \|_{\varepsilon,h} = 1} \mathbf{b}_h(\underline{\nu}_h, q_h)$$

**Result valid on general meshes and for any**  $k \ge 0$ 

### Darcy term

• For all  $F \in \mathcal{F}_h^i$  s.t.  $F \subset \partial T_1 \cap \partial T_2$  and all  $q_h \in \mathbb{P}^k(\mathcal{T}_h)$ ,

 $[q_h]_F \coloneqq (q_h)_{|T_1} - (q_h)_{|T_2}, \quad \{q_h\}_F \coloneqq \frac{\kappa_2}{\kappa_1 + \kappa_2} (q_h)_{|T_1} + \frac{\kappa_1}{\kappa_1 + \kappa_2} (q_h)_{|T_2}$ 

where  $\mathbf{n}_F$  points out of  $T_1$  and, for  $i \in \{1, 2\}$ ,  $\kappa_i \coloneqq \mathbf{n}_F^t \kappa_{|T_i} \mathbf{n}_F$ 

- Applied to vector functions,  $[\cdot]_F$  and  $\{\cdot\}_F$  act component-wise
- The Darcy bilinear form is s.t.

$$\begin{split} \mathbf{c}_{h}(r_{h},q_{h}) &\coloneqq \int_{\Omega} \boldsymbol{\kappa} \boldsymbol{\nabla}_{h} r_{h} \cdot \boldsymbol{\nabla}_{h} q_{h} + \sum_{F \in \mathcal{F}_{h}^{i}} \frac{\varsigma \lambda_{\boldsymbol{\kappa},F}}{h_{F}} \int_{F} [r_{h}]_{F} [q_{h}]_{F} \\ &- \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \left( [q_{h}]_{F} \{ \boldsymbol{\kappa} \boldsymbol{\nabla}_{h} r_{h} \}_{F} + [r_{h}]_{F} \{ \boldsymbol{\kappa} \boldsymbol{\nabla}_{h} q_{h} \}_{F} \right) \cdot \boldsymbol{n}_{F}, \end{split}$$

where  $\varsigma > 0$  is a penalty parameter assumed large enough and

$$\lambda_{\kappa,F} \coloneqq \frac{2\kappa_1\kappa_2}{\kappa_1 + \kappa_2}$$

• Let  $\underline{U}_{h,0}^k$  as for the elasticity problem and set

$$P_h^k \coloneqq \mathbb{P}^k(\mathcal{T}_h) \text{ if } C_0 > 0, \ P_h^k \coloneqq \left\{ q_h \in \mathbb{P}^k(\mathcal{T}_h) : \ \int_{\Omega} q_h = 0 \right\} \text{ if } C_0 = 0$$

• Let  $N \in \mathbb{N}^*$ ,  $\tau \coloneqq t_{\mathrm{F}}/N$ , and  $\mathcal{T}_{\tau} \coloneqq (t^n \coloneqq n\tau)_{n=0,...,N}$ 

• Let V denote a vector space and, for all  $\varphi_{\tau} := (\varphi^i)_{0 \le i \le N} \in V^{N+1}$ ,

$$\delta_t^n \varphi_\tau \coloneqq \frac{\varphi^n - \varphi^{n-1}}{\tau} \in V \quad \forall 1 \le n \le N$$

be the discrete backward derivative operator

### Discrete problem II

We let 
$$(\underline{\boldsymbol{u}}_{h\tau}, p_{h\tau}) \in [\underline{\boldsymbol{U}}_{h,0}^k]^{N+1} \times [P_h^k]^{N+1}$$
 satisfy, for  $n = 1, ..., N$ ,  
 $a_h(\underline{\boldsymbol{u}}_h^n, \underline{\boldsymbol{v}}_h) + b_h(\underline{\boldsymbol{v}}_h, p_h^n) = \int_{\Omega} \overline{f}^n \cdot \boldsymbol{v}_h, \quad \forall \underline{\boldsymbol{v}}_h \in \underline{\boldsymbol{U}}_{h,0}^k,$   
 $\int_{\Omega} C_0 \delta_t^n p_{h\tau} q_h - b_h(\delta_t^n \underline{\boldsymbol{u}}_{h\tau}, q_h) + c_h(p_h^n, q_h) = \int_{\Omega} \overline{g}^n q_h \quad \forall q_h \in P_h^k,$ 

with

$$\overline{f}^n\coloneqq \frac{1}{\tau}\int_{t^{n-1}}^{t^n}f(t)\,\mathrm{d}t\in L^2(\Omega)^d,\qquad \overline{g}^n\coloneqq \frac{1}{\tau}\int_{t^{n-1}}^{t^n}g(t)\,\mathrm{d}t\in L^2(\Omega).$$

The initial condition is accounted for by enforcing

$$\int_{\Omega} C_0 p_h^0 q_h - \mathbf{b}_h(\underline{\boldsymbol{u}}_h^0, q_h) = \int_{\Omega} \phi^0 q_h \qquad \forall q_h \in P_h^k$$

#### Theorem (Error estimate)

Set, for any  $0 \le n \le N$ ,  $\underline{e}_h := \underline{u}_h^n - \underline{I}_h^k u^n$  and  $\epsilon_h := p_h^n - \pi_h^{0,k} p^n$ . Assume  $\Omega$  convex,  $\kappa \in \mathbb{P}^0(\Omega; \mathbb{R}^{d \times d})$ , as well as

$$\begin{split} &\boldsymbol{u} \in H^1(\mathcal{T}_{\tau};\boldsymbol{U}) \cap L^2(\boldsymbol{0},t_{\mathrm{F}};\boldsymbol{H}^{k+1}(\mathcal{T}_{h};\mathbb{R}^d)), \quad \boldsymbol{\sigma}(\boldsymbol{\nabla}_{\!\!\mathrm{s}}\boldsymbol{u}) \in L^2(\boldsymbol{0},t_{\mathrm{F}};\boldsymbol{H}^{k+1}(\mathcal{T}_{h};\mathbb{R}^{d\times d})), \\ &\boldsymbol{p} \in L^2(\boldsymbol{0},t_{\mathrm{F}};\boldsymbol{P} \cap \boldsymbol{H}^{k+1}(\mathcal{T}_{h};\mathbb{R})), \qquad \qquad \boldsymbol{\phi} \in H^1(\mathcal{T}_{\tau};L^2(\Omega;\mathbb{R})), \end{split}$$

with  $\phi = C_0 p + \nabla \cdot u$ . If  $C_0 > 0$ , we further assume  $\pi_{\Omega}^{0,0} p \in H^1(\mathcal{T}_{\tau}; \mathbb{P}^0(\Omega))$ . Then,

$$\sum_{n=1}^{N} \tau \left( \|\underline{e}_{h}^{n}\|_{\epsilon,h}^{2} + \|\epsilon_{h}^{n} - \pi_{\Omega}^{0,0}\epsilon_{h}^{n}\|_{L^{2}(\Omega)}^{2} + C_{0}\|\epsilon_{h}^{n}\|_{L^{2}(\Omega)}^{2} \right) + \|z_{h}^{N}\|_{c,h}^{2} \leq \left( h^{2k+2}C_{1} + \tau^{2}C_{2} \right),$$

with hidden constant independent of h,  $\tau$ ,  $C_0$ ,  $\kappa$ , and  $t_F$ ,  $z_h^N \coloneqq \sum_{n=1}^N \tau \epsilon_h^n$ , and

$$\begin{split} C_{1} &\coloneqq \|\boldsymbol{u}\|_{L^{2}(0,t_{\mathrm{F}};H^{k+2}(\mathcal{T}_{h};\mathbb{R}^{d}))}^{2} + \|\boldsymbol{\sigma}(\boldsymbol{\nabla}_{\mathrm{s}}\boldsymbol{u})\|_{L^{2}(0,t_{\mathrm{F}};H^{k+1}(\mathcal{T}_{h};\mathbb{R}^{d\times d}))}^{2} \\ &+ (1+C_{0})\frac{\overline{K}}{\underline{K}}\|\boldsymbol{p}\|_{L^{2}(0,t_{\mathrm{F}};H^{k+1}(\mathcal{T}_{h};\mathbb{R}))}^{2}, \\ C_{2} &\coloneqq \|\boldsymbol{u}\|_{H^{1}(\mathcal{T}_{\tau};H^{1}(\Omega;\mathbb{R})^{d})}^{2} + \|\boldsymbol{\phi}\|_{H^{1}(\mathcal{T}_{\tau};L^{2}(\Omega;\mathbb{R}))}^{2} + C_{0}\|\boldsymbol{\pi}_{\Omega}^{0,0}\boldsymbol{p}\|_{H^{1}(\mathcal{T}_{\tau})}^{2}. \end{split}$$

## Convergence (linear case) I



Figure: Meshes for the convergence test

In  $\Omega = (0, 1)^2 \times [0, t_F = 1]$ , we consider linear poroelasticity with  $\mu = 1$ ,  $\lambda = 1$ ,  $\kappa = I_d$ ,  $C_0 = 0$ , and exact solution

$$u(\mathbf{x}, t) = \sin(\pi t) \begin{pmatrix} -\cos(\pi x_1)\cos(\pi x_2)\\\sin(\pi x_1)\sin(\pi x_2) \end{pmatrix},$$
  

$$p(\mathbf{x}, t) = -\cos(\pi t)\sin(\pi x_1)\cos(\pi x_2),$$
  

$$(f, g) \text{ inferred from } \mathbf{u}, p$$

### Convergence (linear case) II



Figure:  $L^2$ -error on the pressure (top) and  $H^1$ -error on the displacement (bottom) vs. h for (from left to right) the triangular, Voronoi, and locally refined meshes

- $\blacksquare \ \Omega = (0,1)^2$
- $\bullet C_0 = 0, \ \boldsymbol{\kappa} = \boldsymbol{I}_d,$
- On  $\partial \Omega$ , we enforce

$$\boldsymbol{u} \cdot \boldsymbol{\tau} = 0, \ \boldsymbol{n}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{u} \boldsymbol{n} = 0, \ \boldsymbol{p} = 0$$

Source term periodic in time

 $g(\boldsymbol{x},t) = \delta(\boldsymbol{x} - \boldsymbol{x}_0)\sin(t)$ 

## Barry and Mercer II



Figure: Pressure profiles along (0, 0)–(1, 1) for  $\kappa = 1 \cdot 10^{-6} I_d$  and  $\tau = 1 \cdot 10^{-4}$ : (*left*) Small oscillations on the Cartesian mesh, card( $\mathcal{T}_h$ ) = 4028; (*right*) No oscillations is present on the Voronoi mesh, card( $\mathcal{T}_h$ ) = 4192

# Convergence (nonlinear case) I



Figure: Meshes for the convergence test

In  $\Omega = (0, 1)^2 \times [0, t_F = 1]$ , we consider nonlinear poroelasticity with  $\mu = 1$ ,  $\lambda = 1$ ,  $\kappa = I_d$ ,  $C_0 = 0$ , strain-stress law

$$\boldsymbol{\sigma}(\boldsymbol{\tau}) = (1 + \exp(-\operatorname{dev} \boldsymbol{\tau}))\operatorname{tr}(\boldsymbol{\tau})\boldsymbol{I}_d + (4 - 2\exp(-\operatorname{dev} \boldsymbol{\tau}))\boldsymbol{\tau},$$

and exact solution

$$\begin{split} \boldsymbol{u}(\boldsymbol{x},t) &= t^2 \begin{pmatrix} \sin(\pi x_1) \sin(\pi x_2) \\ \sin(\pi x_1) \sin(\pi x_2) \end{pmatrix}, \\ p(\boldsymbol{x},t) &= -\pi^{-1} (\sin(\pi x_1) \cos(\pi x_2) + \cos(\pi x_1) \sin(\pi x_2)), \\ (\boldsymbol{f}, g) \text{ inferred from } \boldsymbol{u}, p \end{split}$$

# Convergence (nonlinear case) II

| h                     | $\left(\sum_{n=1}^N \tau \ \underline{\boldsymbol{e}}_h^n\ _{\boldsymbol{\varepsilon},h}^2\right)^{\frac{1}{2}}$ | OCV  | $\left(\sum_{n=1}^N \tau \ \epsilon_h^n\ _\Omega^2\right)^{\frac{1}{2}}$ | OCV  |
|-----------------------|------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------|------|
| Cartesian mesh family |                                                                                                                  |      |                                                                          |      |
| $6.25 \cdot 10^{-2}$  | $3.10 \cdot 10^{-2}$                                                                                             |      | 0.39                                                                     |      |
| $3.12\cdot 10^{-2}$   | $8.52 \cdot 10^{-3}$                                                                                             | 1.86 | $9.65 \cdot 10^{-2}$                                                     | 2.00 |
| $1.56 \cdot 10^{-2}$  | $2.22 \cdot 10^{-3}$                                                                                             | 1.94 | $2.44 \cdot 10^{-2}$                                                     | 1.98 |
| $7.81\cdot10^{-3}$    | $5.61 \cdot 10^{-4}$                                                                                             | 1.99 | $6.18 \cdot 10^{-3}$                                                     | 1.99 |
| $3.91\cdot 10^{-3}$   | $1.41\cdot 10^{-4}$                                                                                              | 2.00 | $1.56\cdot 10^{-3}$                                                      | 1.99 |
| Voronoi mesh family   |                                                                                                                  |      |                                                                          |      |
| $6.50 \cdot 10^{-2}$  | $3.28 \cdot 10^{-2}$                                                                                             | _    | 0.27                                                                     | _    |
| $3.15\cdot 10^{-2}$   | $8.48 \cdot 10^{-3}$                                                                                             | 1.87 | $6.58\cdot10^{-2}$                                                       | 1.96 |
| $1.61\cdot 10^{-2}$   | $2.20 \cdot 10^{-3}$                                                                                             | 2.01 | $1.63 \cdot 10^{-2}$                                                     | 2.08 |
| $9.09\cdot 10^{-3}$   | $5.72 \cdot 10^{-4}$                                                                                             | 2.36 | $4.24 \cdot 10^{-3}$                                                     | 2.36 |
| $4.26\cdot 10^{-3}$   | $1.42\cdot 10^{-4}$                                                                                              | 1.83 | $1.05\cdot 10^{-3}$                                                      | 1.84 |

### References



#### Boffi, D., Botti, M., and Di Pietro, D. A. (2016).

A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput., 38(3):A1508-A1537.



#### Botti, L., Di Pietro, D. A., and Droniou, J. (2018).

A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits. *Comput. Methods Appl. Mech. Engrg.*, 341:278–310.



#### Botti, M., Di Pietro, D. A., and Guglielmana, A. (2019a).

A low-order nonconforming method for linear elasticity on general meshes. Submitted.



#### Botti, M., Di Pietro, D. A., Le Maître, O., and Sochala, P. (2019b).

Numerical approximation of poroelasticity with random coefficients using polynomial chaos and high-order polyhedral methods. Submitted.



#### Botti, M., Di Pietro, D. A., and Sochala, P. (2017).

A Hybrid High-Order method for nonlinear elasticity. SIAM J. Numer. Anal., 55(6):2687–2717.



#### Di Pietro, D. A. and Droniou, J. (2017a).

A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math. Comp., 86(307):2159-2191.



#### Di Pietro, D. A. and Droniou, J. (2017b).

 $W^{S,P}$ -approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray–Lions problems.

Math. Models Methods Appl. Sci., 27(5):879-908.



#### Di Pietro, D. A. and Ern, A. (2015).

A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg., 283:1-21.