Non-standard applications of the Raviart–Thomas–Nédélec element A HHO method for the Brinkman problem robust in the Darcy and Stokes limits

L. Botti D. A. Di Pietro J. Droniou

Institut Montpelliérain Alexander Grothendieck

May 29, 2018

The Raviart-Thomas-Nédélec finite element I

Figure: Degrees of freedom for $\mathbb{RTN}^k(T)$

- Let $d \ge 1$, T denote a d-simplex, and $k \ge 0$
- We consider here the Raviart–Thomas–Nédélec space

$$\mathbb{RTN}^k(T) \coloneqq \mathbb{P}^k(T)^d + \boldsymbol{x} \mathbb{P}^k(T)$$

• A function $\mathbf{v} \in \mathbb{RTN}^k(\mathcal{T})$ is uniquely defined by the quantities

$$\left\{ (\boldsymbol{v}, \boldsymbol{w})_T \ : \ \boldsymbol{w} \in \mathbb{P}^{k-1}(T)^d \right\} \text{ and } \left\{ (\boldsymbol{v} \cdot \boldsymbol{n}_{TF}, q)_F \ : \ q \in \mathbb{P}^k(F) \right\}$$

The Raviart–Thomas–Nédélec finite element II

- Introduced in [Raviart and Thomas, 1977, Nédélec, 1980]
- Tailored to mixed Darcy: Find $\boldsymbol{u}: \Omega \to \mathbb{R}^d$ and $p: \Omega \to \mathbb{R}$ s.t.

$$\nabla \boldsymbol{u} + \nabla \boldsymbol{p} = \boldsymbol{0} \qquad \text{in } \Omega,$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{g} \qquad \text{in } \Omega,$$
$$\boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{0} \qquad \text{on } \partial \Omega,$$
$$\int_{\Omega} \boldsymbol{p} = \boldsymbol{0}$$

- We show new applications of this finite element:
 - Robust HHO method for Brinkman [Botti, DP, Droniou, 18]
 - (Stable gradient reconstruction for HHO: see [DP et al., 2018])

The Brinkman problem

• Let $\mu: \Omega \to \mathbb{R}$ and $\nu: \Omega \to \mathbb{R}$ be piecewise constant and s.t.

$$0 < \underline{\mu} \le \mu \le \overline{\mu}, \qquad 0 \le \underline{\nu} \le \nu \le \overline{\nu}$$

• The Brinkman problem reads: Find $\boldsymbol{u}: \Omega \to \mathbb{R}^d$ and $p: \Omega \to \mathbb{R}$ s.t.

$$-\nabla \cdot (2\mu \nabla_{s} \boldsymbol{u}) + \nu \boldsymbol{u} + \nabla p = \boldsymbol{f} \qquad \text{in } \Omega,$$
$$\nabla \cdot \boldsymbol{u} = \boldsymbol{g} \qquad \text{in } \Omega,$$
$$\boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial \Omega,$$
$$\int_{\Omega} p = \boldsymbol{0}$$

It locally behaves like a Stokes or a Darcy problem (singular limit)

Goal: Identify the local regime and handle all regimes robustly

State of the art

- Naïve choices are not uniformly well-behaved [Mardal et al., 2002]:
 - Crouzeix-Raviart fails to converge in the Darcy limit
 - Taylor–Hood and the minielement experience convergence losses
- Several fixes proposed, including:
 - Low-order stabilised FE [Burman and Hansbo, 2007]
 - Stabilised equal-order FE [Braack and Schieweck, 2011]
 - Generalisation of the minielement [Juntunen and Stenberg, 2010]
 - Stabilised H(div; Ω)-conforming FE [Könnö and Stenberg, 2011]
 - 2d H(div; Ω)-conforming VEM [Vacca, 2018]

State of the art

- Naïve choices are not uniformly well-behaved [Mardal et al., 2002]:
 - Crouzeix-Raviart fails to converge in the Darcy limit
 - Taylor–Hood and the minielement experience convergence losses
- Several fixes proposed, including:
 - Low-order stabilised FE [Burman and Hansbo, 2007]
 - Stabilised equal-order FE [Braack and Schieweck, 2011]
 - Generalisation of the minielement [Juntunen and Stenberg, 2010]
 - Stabilised H(div; Ω)-conforming FE [Könnö and Stenberg, 2011]
 - 2d H(div; Ω)-conforming VEM [Vacca, 2018]
- Recurrent problems:
 - Darcy and Stokes contributions are not equilibrated
 - Local regimes not clearly identified

Key idea [Botti, DP, Droniou, 2018]: Replace FE by HHO

Features of HHO methods:

- Construction valid for arbitrary space dimensions
- Arbitrary approximation order
- Robustness with respect to the variations of the physical coefficients
- Reduced computational cost after static condensation
- (Capability of handling general polyhedral meshes)
- New schemes even on standard meshes

- Hybrid velocity, piecewise polynomial pressure
 - Inf-sup stable for arbitrary polynomial degree
 - Possibility to statically condense a large subset of the unknowns
- Local Stokes velocity reconstruction in $\mathbb{P}^{k+1}(T)^d$
 - Gain of (up to) two orders w.r. to element unknowns
 - Tailored to the Stokes regime
- Local Darcy velocity reconstruction in $\mathbb{RTN}^k(T)$
 - Equilibrated Stokes-Darcy terms in $O(h^{k+1})$
 - Tailored to the Darcy regime

Projectors on local polynomial spaces I

- Let \mathcal{T}_h denote a polytopal mesh with faces collected in \mathcal{F}_h
- HHO methods hinge on projectors on local polynomial spaces
- With X element or face, the L^2 -projector $\pi^{\ell}_X : L^1(T) \to \mathbb{P}^{\ell}(X)$ is s.t.

$$(\pi_X^\ell v - v, w)_X = 0$$
 for all $w \in \mathbb{P}^\ell(X)$

• For $T \in \mathcal{T}_h$, the strain projector $\pi_{\varepsilon,T}^l : H^1(T)^d \to \mathbb{P}^{\ell}(T)^d$ is s.t.

$$(\boldsymbol{\nabla}_{\mathrm{s}}(\boldsymbol{\pi}^{\ell}_{\boldsymbol{\varepsilon},T}\boldsymbol{\nu}-\boldsymbol{\nu}),\boldsymbol{\nabla}_{\mathrm{s}}\boldsymbol{w})_{T}=0 \qquad \forall \boldsymbol{w} \in \mathbb{P}^{\ell}(T)^{d}$$

and

$$\int_{\mathcal{T}} \boldsymbol{\pi}_{\boldsymbol{\varepsilon}, \, T}^{\ell} \boldsymbol{\nu} = \int_{\mathcal{T}} \boldsymbol{\nu}, \qquad \int_{\mathcal{T}} \boldsymbol{\nabla}_{\mathrm{ss}} \boldsymbol{\pi}_{\boldsymbol{\varepsilon}, \, T}^{\ell} \boldsymbol{\nu} = \int_{\mathcal{T}} \boldsymbol{\nabla}_{\mathrm{ss}} \boldsymbol{\nu}$$

Projectors on local polynomial spaces II

Theorem (Approximation properties of the strain projector)

Assume T star-shaped with respect to every point of a ball of radius $\geq \varrho h_T$. Let two integers $\ell \geq 1$ and $s \in \{1, \ldots, \ell + 1\}$ be given. Then, it holds with hidden constant depending only on d, ϱ , ℓ , and s such that, for all $m \in \{0, \ldots, s\}$ and all $v \in H^s(T)^d$,

$$|\mathbf{v} - \pi_{\varepsilon,T}^{\ell} \mathbf{v}|_{H^m(T)^d} \lesssim h_T^{s-m} |\mathbf{v}|_{H^s(T)^d}.$$

and

$$|\mathbf{v} - \pi_{\boldsymbol{\varepsilon}, T}^{\ell} \mathbf{v}|_{H^m(\mathcal{F}_T)^d} \lesssim h_T^{s-m-\frac{1}{2}} |\mathbf{v}|_{H^s(T)^d}$$

with $H^m(\mathcal{F}_T)$ broken Sobolev space on \mathcal{F}_T .

Proof.

See [Appendix A.2, Botti, DP, Droniou, 2018].

Computing $\pi_{\varepsilon,T}^{k+1}$ from L²-projections of degree k

For all $\mathbf{v} \in H^1(T)^d$ and all $\mathbf{w} \in C^{\infty}(\overline{T})^d$, it holds that

$$(\boldsymbol{\nabla}_{\mathrm{s}}\boldsymbol{v},\boldsymbol{\nabla}_{\mathrm{s}}\boldsymbol{w})_{T} = -(\boldsymbol{v},\boldsymbol{\nabla}\cdot\boldsymbol{\nabla}_{\mathrm{s}}\boldsymbol{w})_{T} + \sum_{F\in\mathcal{F}_{T}}(\boldsymbol{v},\boldsymbol{\nabla}_{\mathrm{s}}\boldsymbol{w}\boldsymbol{n}_{TF})_{F}$$

For $k \ge 0$ and $I := \max\{0, k-1\}$, letting $\boldsymbol{w} \in \mathbb{P}^{k+1}(T)^d$, we get

$$(\nabla_{\mathbf{s}} \boldsymbol{\pi}_{\boldsymbol{\varepsilon},T}^{k+1} \boldsymbol{v}, \nabla_{\mathbf{s}} \boldsymbol{w})_{T} = -(\boldsymbol{\pi}_{T}^{\prime} \boldsymbol{v}, \nabla \cdot \nabla_{\mathbf{s}} \boldsymbol{w})_{T} + \sum_{F \in \mathcal{F}_{T}} (\boldsymbol{\pi}_{F}^{k} \boldsymbol{v}_{|F}, \nabla_{\mathbf{s}} \boldsymbol{w} \boldsymbol{n}_{TF})_{F}$$

Moreover, it can be easily seen that

$$\int_{T} \boldsymbol{\pi}_{\boldsymbol{\varepsilon},T}^{k+1} \boldsymbol{v} = \int_{T} \boldsymbol{\pi}_{T}^{l} \boldsymbol{v}, \quad \int_{T} \boldsymbol{\nabla}_{ss} \boldsymbol{\pi}_{\boldsymbol{\varepsilon},T}^{k+1} \boldsymbol{v} = \frac{1}{2} \sum_{F \in \mathcal{F}_{T}} \int_{F} \left(\boldsymbol{n}_{TF} \otimes \boldsymbol{\pi}_{F}^{k} \boldsymbol{v} - \boldsymbol{\pi}_{F}^{k} \boldsymbol{v} \otimes \boldsymbol{n}_{TF} \right)$$

• Hence, $\pi_{\varepsilon,T}^{k+1}v$ can be computed from $\pi_T^l v$ and $(\pi_F^k v_{|F})_{F \in \mathcal{F}_T}$!

Local space of discrete velocity unknowns

Figure: Degrees of freedom for \underline{U}_T^k for $k \in \{1, 2\}$

- Assume \mathcal{T}_h matching simplicial, let $k \ge 1$, and set $l := \max\{k 1, 1\}$
- For all $T \in \mathcal{T}_h$, we define the local space of velocity unknowns

$$\underline{\boldsymbol{U}}_{\mathcal{T}}^{k} \coloneqq \left\{ \underline{\boldsymbol{v}}_{\mathcal{T}} = (\boldsymbol{v}_{\mathcal{T}}, (\boldsymbol{v}_{\mathcal{F}})_{\mathcal{F} \in \mathcal{F}_{\mathcal{T}}}) : \boldsymbol{v}_{\mathcal{T}} \in \mathbb{P}^{l}(\mathcal{T})^{d} \text{ and } \boldsymbol{v}_{\mathcal{F}} \in \mathbb{P}^{k}(\mathcal{F})^{d} \quad \forall \mathcal{F} \in \mathcal{F}_{\mathcal{T}} \right\}$$

• The local interpolator $\underline{I}_T^k : H^1(T)^d \to \underline{U}_T^k$ is s.t., for all $\boldsymbol{v} \in H^1(T)^d$,

$$\underline{\boldsymbol{I}}_T^k \boldsymbol{v} \coloneqq (\boldsymbol{\pi}_T^l \boldsymbol{v}, (\boldsymbol{\pi}_F^k \boldsymbol{v}_{|F})_{F \in \mathcal{F}_T})$$

A high-order Stokes velocity reconstruction

• Let $T \in \mathcal{T}_h$. We define the local Stokes velocity reconstruction

$$\mathbf{r}_{\mathrm{S},T}^{k+1}: \underline{\mathbf{U}}_{T}^{k} \to \mathbb{P}^{k+1}(T)^{d}$$

s.t., for all $\underline{\boldsymbol{v}}_{\mathcal{T}} \in \underline{\boldsymbol{U}}_{\mathcal{T}}^k$ and all $\boldsymbol{\boldsymbol{w}} \in \mathbb{P}^{k+1}(\mathcal{T})^d$,

$$(\nabla_{\mathbf{s}} \mathbf{r}_{\mathbf{S},T}^{k+1} \underline{\mathbf{v}}_{T}, \nabla_{\mathbf{s}} \mathbf{w})_{T} = -(\mathbf{v}_{T}, \nabla \cdot \nabla_{\mathbf{s}} \mathbf{w})_{T} + \sum_{F \in \mathcal{F}_{T}} (\mathbf{v}_{F}, \nabla_{\mathbf{s}} \mathbf{w} \mathbf{n}_{TF})_{F}$$

and

$$\int_{T} \mathbf{r}_{\mathrm{S},T}^{k+1} \underline{\mathbf{v}}_{T} = \int_{T} \mathbf{v}_{T}, \quad \int_{T} \nabla_{\mathrm{ss}} \mathbf{r}_{\mathrm{S},T}^{k+1} \underline{\mathbf{v}}_{T} = \frac{1}{2} \sum_{F \in \mathcal{F}_{T}} \int_{F} (\mathbf{n}_{TF} \otimes \mathbf{v}_{F} - \mathbf{v}_{F} \otimes \mathbf{n}_{TF})$$

By construction, we have

$$\pmb{r}_{\mathrm{S},T}^{k+1} \underline{\pmb{I}}_T^k = \pmb{\pi}_{\pmb{\varepsilon},T}^{k+1}$$

• $r_{S,T}^{k+1} \underline{I}_{T}^{k}$ has therefore optimal approximation properties in $\mathbb{P}^{k+1}(T)^{d}$

Local spaces are glued by enforcing single-valuedness at interfaces:

$$\underline{\boldsymbol{U}}_{h}^{k} := \left\{ \underline{\boldsymbol{v}}_{h} = ((\boldsymbol{v}_{T})_{T \in \mathcal{T}_{h}}, (\boldsymbol{v}_{F})_{F \in \mathcal{F}_{h}}) : \\ \boldsymbol{v}_{T} \in \mathbb{P}^{l}(T)^{d} \quad \forall T \in \mathcal{T}_{h} \text{ and } \boldsymbol{v}_{F} \in \mathbb{P}^{k}(F)^{d} \quad \forall F \in \mathcal{F}_{h} \right\}$$

Boundary conditions are strongly incorporated in the subspace

$$\underline{\boldsymbol{U}}_{h,0}^k \coloneqq \left\{ \underline{\boldsymbol{v}}_h \in \underline{\boldsymbol{U}}_h^k \ : \ \boldsymbol{v}_F = \boldsymbol{0} \quad \forall F \in \mathcal{F}_h^{\mathrm{b}} \right\}$$

The pressure is sought in the broken polynomial space

$$P_h^k \coloneqq \left\{ q_h \in \mathbb{P}^k(\mathcal{T}_h) \ : \ \int_\Omega q_h = 0 \right\}$$

Stokes term

Inside $T \in \mathcal{T}_h$, we approximate the Stokes term with

$$\mathbf{a}_{\mathrm{S},T}(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T) \coloneqq (2\mu_T \boldsymbol{\nabla}_{\mathrm{s}} \boldsymbol{r}_{\mathrm{S},T}^{k+1} \underline{\boldsymbol{u}}_T, \boldsymbol{\nabla}_{\mathrm{s}} \boldsymbol{r}_{\mathrm{S},T}^{k+1} \underline{\boldsymbol{v}}_T)_T + \mathbf{s}_{\mathrm{S},T}(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T)$$

• The Stokes stabilisation bilinear form is s.t.

$$s_T(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T) \coloneqq (2\mu_T)(\boldsymbol{\delta}_{\mathrm{S},T}^l \underline{\boldsymbol{u}}_T, \boldsymbol{\delta}_{\mathrm{S},T}^l \underline{\boldsymbol{v}}_T)_T + \sum_{F \in \mathcal{F}_T} \frac{2\mu_T}{h_F} (\boldsymbol{\delta}_{\mathrm{S},TF}^k \underline{\boldsymbol{u}}_T, \boldsymbol{\delta}_{\mathrm{S},TF}^k \underline{\boldsymbol{v}}_T)_F$$

with Stokes difference operators s.t., for all $\underline{\boldsymbol{v}}_T \in \underline{\boldsymbol{U}}_T^k$,

$$(\boldsymbol{\delta}_{\mathrm{S},T}^{l}\underline{\boldsymbol{\nu}}_{T},(\boldsymbol{\delta}_{\mathrm{S},TF}^{k}\underline{\boldsymbol{\nu}}_{T})_{F\in\mathcal{F}_{T}})\coloneqq\underline{\boldsymbol{I}}_{T}^{k}\boldsymbol{r}_{\mathrm{S},T}^{k+1}\underline{\boldsymbol{\nu}}_{T}-\underline{\boldsymbol{\nu}}_{T}$$

The global Stokes bilinear form is assembled element-wise:

$$\mathrm{a}_{\mathrm{S},h}(\underline{\boldsymbol{w}}_h,\underline{\boldsymbol{v}}_h)\coloneqq \sum_{T\in\mathcal{T}_h}\mathrm{a}_{\mathrm{S},T}(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T)$$

A Darcy velocity reconstruction in $\mathbb{RTN}^k(T)$

The local Darcy velocity reconstruction

$$\boldsymbol{r}_{\mathrm{D},T}^k:\underline{\boldsymbol{U}}_T^k\to\mathbb{RTN}^k(T)$$

is s.t., for all $\underline{\boldsymbol{v}}_T \in \underline{\boldsymbol{U}}_T^k$,

$$(\mathbf{r}_{\mathrm{D},T}^{k} \underline{\mathbf{v}}_{T}, \mathbf{w})_{T} = (\mathbf{v}_{T}, \mathbf{w})_{T} \qquad \forall \mathbf{w} \in \mathbb{P}^{k-1}(T)^{d}$$
$$(\mathbf{r}_{\mathrm{D},T}^{k} \underline{\mathbf{v}}_{T} \cdot \mathbf{n}_{TF}, q)_{F} = (\mathbf{v}_{F} \cdot \mathbf{n}_{TF}, q)_{F} \qquad \forall F \in \mathcal{F}_{T}, \ \forall q \in \mathbb{P}^{k}(F).$$

A direct verification shows that

$$\boldsymbol{r}_{\mathrm{D},T}^{k} \underline{\boldsymbol{I}}_{T}^{k} = \boldsymbol{I}_{\mathbb{RTN},T}^{k}$$

where $I_{\mathbb{RTN},T}^{k}$ is the standard interpolator on $\mathbb{RTN}^{k}(T)$

Darcy term

Inside $T \in \mathcal{T}_h$, we approximate the Darcy term with

$$\mathbf{a}_{\mathrm{D},T}(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T)\coloneqq \boldsymbol{\nu}_T(\boldsymbol{r}_{\mathrm{D},T}^k\underline{\boldsymbol{u}}_T,\boldsymbol{r}_{\mathrm{D},T}^k\underline{\boldsymbol{v}}_T)_T+\mathbf{s}_{\mathrm{D},T}(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T)$$

• The Darcy stabilisation bilinear form is s.t.

$$\mathrm{s}_{\mathrm{D},T}(\underline{\boldsymbol{u}}_{T},\underline{\boldsymbol{v}}_{T}) \coloneqq \nu_{T}(\boldsymbol{\delta}_{\mathrm{D},T}^{\prime}\underline{\boldsymbol{u}}_{T},\boldsymbol{\delta}_{\mathrm{D},T}^{\prime}\underline{\boldsymbol{v}}_{T})_{T} + \sum_{F \in \mathcal{F}_{T}^{i}} \nu_{T}h_{F}(\boldsymbol{\delta}_{\mathrm{D},TF}^{k}\underline{\boldsymbol{u}}_{T},\boldsymbol{\delta}_{\mathrm{D},TF}^{k}\underline{\boldsymbol{v}}_{T})_{F}$$

with Darcy difference operators s.t., for all $\underline{\boldsymbol{v}}_T \in \underline{\boldsymbol{U}}_T^k$,

$$(\boldsymbol{\delta}_{\mathrm{D},T}^{l} \underline{\boldsymbol{v}}_{T}, (\boldsymbol{\delta}_{\mathrm{D},TF}^{k} \underline{\boldsymbol{v}}_{T})_{F \in \mathcal{F}_{T}}) \coloneqq \underline{\boldsymbol{I}}_{T}^{k} \boldsymbol{r}_{\mathrm{D},T}^{k} \underline{\boldsymbol{v}}_{T} - \underline{\boldsymbol{v}}_{T}$$

The global Darcy bilinear form is assembled element-wise:

$$\mathrm{a}_{\mathrm{D},h}(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h)\coloneqq\sum_{T\in\mathcal{T}_h}\mathrm{a}_{\mathrm{D},T}(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T)$$

Pressure-velocity coupling

The pressure-velocity coupling is realized by means of the bilinear

$$\mathbf{b}_h(\underline{\boldsymbol{v}}_h,q_h)\coloneqq \sum_{T\in\mathcal{T}_h} \left((\boldsymbol{v}_T,\boldsymbol{\nabla} q_T)_T - \sum_{F\in\mathcal{F}_T} (\boldsymbol{v}_F,q_T\boldsymbol{n}_{TF})_F\right)$$

• Inf-sup stability: It holds, for all $q_h \in P_h^k$,

$$\beta \|q_h\| \lesssim \sup_{\underline{\boldsymbol{\nu}}_h \in \underline{\boldsymbol{\mathcal{U}}}_{h,0}^k \setminus \{\underline{0}\}} \frac{\mathbf{b}_h(\underline{\boldsymbol{\nu}}_h,q_h)}{\|\underline{\boldsymbol{\nu}}_h\|_{\boldsymbol{U},h}} \text{ with } \beta \coloneqq (2\overline{\mu}+\overline{\nu})^{-\frac{1}{2}}$$

Discrete problem and well-posedness

Define the Stokes–Darcy global bilinear form

 $\mathbf{a}_h \coloneqq \mathbf{a}_{\mathrm{S},h} + \mathbf{a}_{\mathrm{D},h}$

The discrete problem reads: Find $(\underline{\boldsymbol{u}}_h, p_h) \in \underline{\boldsymbol{U}}_{h,0}^k \times P_h^k$ s.t.

$$\begin{split} \mathbf{a}_h(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h) + \mathbf{b}_h(\underline{\boldsymbol{v}}_h,p_h) &= \sum_{T \in \mathcal{T}_h} (\boldsymbol{f},\boldsymbol{r}_{\mathrm{D},T}^k \underline{\boldsymbol{v}}_T)_T \quad \forall \underline{\boldsymbol{v}}_h \in \underline{\boldsymbol{U}}_{h,0}^k, \\ &-\mathbf{b}_h(\underline{\boldsymbol{u}}_h,q_h) = (g,q_h) \qquad \quad \forall q_h \in P_h^k \end{split}$$

Theorem (Well-posedness)

The discrete problem is well-posed with a priori bound:

$$\|\underline{\boldsymbol{u}}_{h}\|_{\boldsymbol{U},h} + \beta \|\boldsymbol{p}_{h}\| \leq (2\mu)^{-\frac{1}{2}} \|\boldsymbol{f}\| + \beta^{-1} \|\boldsymbol{g}\| \text{ with } \beta \coloneqq (\overline{\mu} + \overline{\nu})^{-\frac{1}{2}}$$

Convergence I

• We estimate the error $(\underline{e}_h, \epsilon_h) \coloneqq (\underline{u}_h - \underline{\hat{u}}_h, p_h - \hat{p}_h)$ with

$$(\underline{\hat{\boldsymbol{u}}}_h, \hat{p}_h) \coloneqq (\underline{\boldsymbol{l}}_h^k \boldsymbol{u}, \pi_h^k p) \in \underline{\boldsymbol{U}}_{h,0}^k \times P_h^k$$

• We have the following basic estimate [DP and Droniou, 2018]

$$\|\underline{\boldsymbol{e}}_{h}\|_{\boldsymbol{U},h} + \beta \|\epsilon_{h}\| \lesssim \|\Re(\boldsymbol{u},p)\|_{\boldsymbol{U}^{*},h}$$

with consistency error s.t., for all $\underline{v}_h \in \underline{U}_{h,0}^k$,

$$\langle \Re(\boldsymbol{u},\boldsymbol{p}),\underline{\boldsymbol{v}}_h\rangle \coloneqq (\boldsymbol{f},\boldsymbol{r}_{\mathrm{D},h}^k\underline{\boldsymbol{v}}_h) - \mathrm{a}_h(\underline{\hat{\boldsymbol{u}}}_h,\underline{\boldsymbol{v}}_h) - \mathrm{b}_h(\underline{\boldsymbol{v}}_h,\hat{\boldsymbol{p}}_h)$$

For $T \in \mathcal{T}_h$, we identify the regime via the local friction coefficient

$$C_{\rm f,\,T} \coloneqq \frac{\nu_{T} \, h_{T}^2}{2 \mu_{T}} \text{ with } C_{\rm f,\,T}^{-1} \coloneqq +\infty \text{ if } \nu_{T} = 0$$

More precisely, we have

- $C_{f,T} > 1$ if Darcy dominates (with pure Darcy if $C_{f,T} = +\infty$)
- $C_{f,T} < 1$ if Stokes dominates (with pure Stokes if $C_{f,T}^{-1} = +\infty$)
- $(C_{f,T} = 1 \text{ for pure Brinkman})$

Convergence III

Theorem (Estimate of the convergence rate)

Assuming $\boldsymbol{u} \in H^{k+2}(\mathcal{T}_{h})^{d}$ and $p \in H^{1}(\Omega)$, we have that

$$\begin{aligned} \|\Re(\boldsymbol{u},p)\|_{\boldsymbol{U}^{*},h} \lesssim \\ h^{k+1} \left[\sum_{T \in \mathcal{T}_{h}} \left((2\mu_{T}) \min(1, C_{\mathrm{f},T}^{-1}) |\boldsymbol{u}|_{H^{k+2}(T)^{d}}^{2} + \nu_{T} \min(1, C_{\mathrm{f},T}) |\boldsymbol{u}|_{H^{k+1}(T)^{d}}^{2} \right) \right]^{\frac{1}{2}} \end{aligned}$$

This estimate extends to the pure Darcy case setting $C_{f,T} = +\infty$.

- Fully robust for $C_{f,T} \in [0, +\infty]$ thanks to the cut-off factors
- Equilibrated Stokes and Darcy contributions in $O(h_T^{k+1})$
- Bonus/1: pressure-robust estimate for the velocity
- **Bonus**/2: k = l = 0 also works for Darcy $(C_{f,T} = +\infty \text{ for all } T \in \mathcal{T}_h)$

Static condensation

• Partition the discrete unknowns inside each $T \in T_h$ as follows:

- Velocity: element-based $U_{\mathcal{T}_h}$ + face-based $U_{\mathcal{F}_i}$
- **Pressure**: average value $\overline{P}_{\mathcal{T}_h}$ + oscillations $\widetilde{P}_{\mathcal{T}_h}$

The linear system has the form

$$\begin{bmatrix} \mathbf{A}_{\mathcal{T}_{h}} \mathcal{T}_{h} & \widetilde{\mathbf{B}}_{\mathcal{T}_{h}} & \mathbf{A}_{\mathcal{T}_{h}} \mathcal{F}_{h}^{i} & \overline{\mathbf{B}}_{\mathcal{T}_{h}} \\ \mathbf{A}_{\mathcal{T}_{h}^{i}} \mathcal{T}_{h} & \widetilde{\mathbf{B}}_{\mathcal{T}_{h}^{i}} & \mathbf{A}_{\mathcal{T}_{h}^{i}} \mathcal{F}_{h}^{i} & \overline{\mathbf{B}}_{\mathcal{T}_{h}^{i}} \\ \widetilde{\mathbf{B}}_{\mathcal{T}_{h}}^{\mathrm{T}} & \mathbf{0} & \widetilde{\mathbf{B}}_{\mathcal{T}_{h}^{i}}^{\mathrm{T}} & \mathbf{0} \\ \overline{\mathbf{B}}_{\mathcal{T}_{h}}^{\mathrm{T}} & \mathbf{0} & \overline{\mathbf{B}}_{\mathcal{T}_{h}^{i}}^{\mathrm{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{\mathcal{T}_{h}} \\ \widetilde{\mathbf{P}}_{\mathcal{T}_{h}} \\ \mathbf{U}_{\mathcal{T}_{h}^{i}} \\ \overline{\mathbf{P}}_{\mathcal{T}_{h}} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{\mathcal{T}_{h}} \\ \widetilde{\mathbf{G}}_{\mathcal{T}_{h}} \\ \mathbf{F}_{\mathcal{F}_{h}} \\ \overline{\mathbf{G}}_{\mathcal{T}_{h}} \end{bmatrix}$$

The matrix in red can be inexpensively inverte element-wise

• After statically condensing U_{T_h} and \widetilde{P}_{T_h} , system of size

$$d\binom{k+d-1}{k}\mathsf{card}(\mathcal{F}_h^{\mathrm{i}})+\mathsf{card}(\mathcal{T}_h)$$

Numerical examples I

Figure: Velocity and pressure for Darcy $(C_{f,\Omega} = +\infty)$, Brinkman $(C_{f,\Omega} = 1)$, and Stokes $(C_{f,\Omega} = 0)$ We consider the exact solution parametrised by $C_{f,\Omega} \in [0, +\infty]$ s.t.

$$\boldsymbol{u}(\boldsymbol{x}) = \chi_{\mathrm{S}} \left(C_{\mathrm{f},\Omega} \right) \boldsymbol{u}_{\mathrm{S}}(\boldsymbol{x}) + (1 - \chi_{\mathrm{S}}) \left(C_{\mathrm{f},\Omega} \right) \boldsymbol{u}_{\mathrm{D}}(\boldsymbol{x}), \quad \boldsymbol{p}(\boldsymbol{x}) \coloneqq \cos x_{1} \sin x_{2} - \boldsymbol{p}_{0},$$

where,

$$\boldsymbol{u}_{\mathrm{D}}(\boldsymbol{x}) \coloneqq \begin{cases} -\nu^{-1} \boldsymbol{\nabla} \boldsymbol{p}(\boldsymbol{x}) & \text{if } \nu \neq 0, \\ \boldsymbol{0} & \text{otherwise,} \end{cases} \qquad \boldsymbol{u}_{\mathrm{S}}(\boldsymbol{x}) \coloneqq -\operatorname{curl}(\sin x_1 \cos x_2) \end{cases}$$

Numerical examples II

$N_{ m dof}$	$N_{ m nz}$	$\ \underline{e}_h\ _{U,h}$	EOC	$\ \boldsymbol{e}_h\ $	EOC	$\ \epsilon_h\ $	EOC	$\tau_{\rm ass}$	$\tau_{\rm sol}$		
<i>k</i> = 0											
113 481 1985 8065 32513	1072 4944 21136 87312 354832	1.69e-01 8.84e-02 4.47e-02 2.22e-02 1.09e-02	- 0.94 0.98 1.01 1.03	1.69e-01 8.84e-02 4.47e-02 2.22e-02 1.09e-02	- 0.94 0.98 1.01 1.03	1.39e-01 4.27e-02 1.18e-02 3.69e-03 1.45e-03	- 1.70 1.86 1.67 1.35	2.26e-03 1.19e-02 3.34e-02 1.12e-01 3.94e-01	9.68e-04 5.34e-03 5.83e-02 1.02e+00 3.39e+01		
k = 1											
193 833 3457 14081 56833	3456 16192 69696 288832 1175616	1.33e-02 2.65e-03 6.55e-04 1.66e-04 4.32e-05	_ 2.32 2.02 1.98 1.94	3.89e-03 7.73e-04 1.90e-04 4.80e-05 1.25e-05	_ 2.33 2.03 1.98 1.94	5.15e-03 1.01e-03 2.27e-04 5.53e-05 1.37e-05	- 2.36 2.15 2.03 2.01	4.24e-03 1.98e-02 6.16e-02 2.05e-01 7.70e-01	1.71e-03 1.91e-02 1.35e-01 1.94e+00 6.49e+01		
k = 2											
273 1185 4929 20097 81153	7216 34000 146704 608656 2478736	4.84e-03 7.55e-04 1.00e-04 1.29e-05 1.64e-06	2.68 2.91 2.95 2.98	1.25e-03 1.94e-04 2.59e-05 3.36e-06 4.25e-07	2.68 2.90 2.95 2.98	2.48e-04 2.94e-05 3.76e-06 4.77e-07 5.94e-08	3.08 2.97 2.98 3.00	7.61e-03 3.64e-02 1.23e-01 4.02e-01 1.55e+00	2.57e-03 4.46e-02 2.39e-01 3.84e+00 8.75e+01		

Table: Convergence for Darcy

Numerical examples III

$N_{ m dof}$	$N_{ m nz}$	$\ \underline{e}_h\ _{U,h}$	EOC	$\ \boldsymbol{e}_h\ $	EOC	$\ \epsilon_h\ $	EOC	$\tau_{\rm ass}$	$\tau_{\rm sol}$	
k = 1										
193 833 3457 14081 56833	3456 16192 69696 288832 1175616	6.48e-02 2.78e-02 8.93e-03 2.43e-03 6.30e-04	- 1.22 1.64 1.88 1.95	3.51e-03 7.40e-04 1.18e-04 1.62e-05 2.10e-06		3.40e-02 9.34e-03 2.60e-03 6.84e-04 1.75e-04	- 1.86 1.84 1.93 1.97	4.86e-03 1.65e-02 6.32e-02 2.20e-01 8.13e-01	1.87e-03 2.05e-02 1.19e-01 1.69e+00 4.38e+01	
k = 2										
273 1185 4929 20097 81153	7216 34000 146704 608656 2478736	3.72e-03 7.56e-04 1.13e-04 1.52e-05 1.96e-06	- 2.30 2.74 2.89 2.95	1.21e-04 1.24e-05 9.35e-07 6.30e-08 4.08e-09	- 3.28 3.73 3.89 3.95	1.74e-03 1.98e-04 2.29e-05 2.70e-06 3.27e-07	- 3.13 3.12 3.08 3.04	8.64e-03 3.56e-02 1.28e-01 4.23e-01 1.71e+00	2.76e-03 3.12e-02 1.87e-01 2.97e+00 5.92e+01	
k = 3										
353 1537 6401 26113 105473	12352 58368 252160 1046784 4264192	2.44e-04 1.99e-05 1.27e-06 8.26e-08 5.19e-09	- 3.62 3.97 3.94 3.99	6.48e-06 2.68e-07 8.50e-09 2.79e-10 8.78e-12	4.60 4.98 4.93 4.99	1.41e-04 9.32e-06 5.65e-07 3.58e-08 2.23e-09	3.92 4.04 3.98 4.00	1.74e-02 7.41e-02 2.53e-01 9.11e-01 3.67e+00	3.93e-03 4.50e-02 4.28e-01 5.58e+00 8.72e+01	

Table: Convergence for Brinkman

Numerical examples IV

$N_{ m dof}$	$N_{ m nz}$	$\ \underline{e}_h\ _{U,h}$	EOC	$\ \boldsymbol{e}_h\ $	EOC	$\ \epsilon_h\ $	EOC	$\tau_{\rm ass}$	$\tau_{\rm sol}$		
k = 1											
193 833 3457 14081 56833	3456 16192 69696 288832 1175616	1.10e-02 3.79e-03 1.04e-03 2.71e-04 6.98e-05		6.07e-04 1.09e-04 1.52e-05 1.99e-06 2.56e-07	_ 2.48 2.84 2.93 2.96	1.82e-02 5.06e-03 1.32e-03 3.37e-04 8.53e-05	- 1.85 1.94 1.96 1.98	6.74e-03 1.61e-02 7.64e-02 2.32e-01 8.35e-01	2.36e-03 2.31e-02 1.33e-01 1.68e+00 4.41e+01		
k = 2											
273 1185 4929 20097 81153	7216 34000 146704 608656 2478736	1.38e-03 1.95e-04 2.74e-05 3.58e-06 4.50e-07	_ 2.83 2.83 2.94 2.99	4.97e-05 3.47e-06 2.39e-07 1.55e-08 9.77e-10	_ 3.84 3.86 3.94 3.99	1.70e-03 2.39e-04 3.06e-05 3.90e-06 4.90e-07	_ 2.83 2.96 2.97 2.99	9.99e-03 4.15e-02 2.38e-01 4.52e-01 1.74e+00	2.82e-03 3.44e-02 2.09e-01 3.11e+00 6.17e+01		
353 1537 6401 26113 105473	12352 58368 252160 1046784 4264192	1.17e-04 8.48e-06 5.43e-07 3.45e-08 2.18e-09	3.79 3.96 3.98 3.99	3.38e-06 1.26e-07 4.01e-09 1.28e-10 4.04e-12	4.74 4.98 4.97 4.99	1.51e-04 1.07e-05 6.70e-07 4.24e-08 2.66e-09	- 3.83 3.99 3.98 3.99	1.78e-02 7.66e-02 2.58e-01 9.33e-01 3.63e+00	4.03e-03 4.63e-02 4.51e-01 5.87e+00 9.27e+01		

Table: Convergence for Stokes

References I

Botti, L., Di Pietro, D. A., and Droniou, J. (2018).

A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits.

Braack, M. and Schieweck, F. (2011).

Equal-order finite elements with local projection stabilization for the Darcy-Brinkman equations. Comput. Methods Appl. Mech. Engrg., 200(9-12):1126–1136.

Burman, E. and Hansbo, P. (2007).

A unified stabilized method for Stokes' and Darcy's equations. J. Comput. Appl. Math., 198(1):35–51.

Di Pietro, D. A. and Droniou, J. (2018).

A third Strang lemma for schemes in fully discrete formulation.

Di Pietro, D. A., Droniou, J., and Manzini, G. (2018).

Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes. J. Comput. Phys., 355:397–425.

Juntunen, M. and Stenberg, R. (2010).

Analysis of finite element methods for the Brinkman problem. *Calcolo*, 47(3):129–147.

Könnö, J. and Stenberg, R. (2011).

H(div)-conforming finite elements for the Brinkman problem. Math. Models Methods Appl. Sci., 21(11):2227–2248.

Mardal, K. A., Tai, X.-C., and Winther, R. (2002).

A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal., 40(5):1605–1631.

References II

Nédélec, J.-C. (1980).

Mixed finite elements in R³. Numer. Math., 35(3):315–341.

Raviart, P.-A. and Thomas, J. M. (1977).

A mixed finite element method for 2nd order elliptic problems, pages 292-315. Lecture Notes in Math., Vol. 606. Springer, Berlin.

Vacca, G. (2018).

An H¹-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci., 28(1):159–194.