Discontinuous Galerkin methods and applications

Daniele A. Di Pietro
Université de Montpellier 2

Porquerolles, 2-8 june, 2013

Reference for this course

D. A. Di Pietro and A. Ern,

Mathematical Aspects of Discontinuous Galerkin Methods, Number 69 in Mathématiques \& Applications, Springer, Berlin, 2011

Introduction I

Figure: Entries with the keyword "discontinuous Galerkin" in MathSciNet

Introduction II

(a) SUPG (4800)

(c) dG-P3 (5120)

(b) SUPG (13300)

(d) dG-P3 (13520)

Figure: Accuracy in advective problems [DP et al., 2006]

Introduction III

Figure: Unsteady compressible Navier-Stokes, Onera M6 wing [Bassi, Crivellini, DP, \& Rebay, 2006]

Introduction IV

Figure: High-order accuracy in convection-dominated flows (3d lid-driven cavity, [Botti and DP, 2011])

Introduction V

$|\mathbf{u |}|=0.00 \quad 0.200 .400 .600 .601 .001 .201 .401 .601 .602 .00$

Figure: Unsteady incompressible Navier-Stokes, Turek cylinder [Bassi, Crivellini, DP, \& Rebay, 2007]

Introduction VI

Figure: High-order in space-time

Introduction VII

Figure: Degenerate advection-diffusion [DP et al., 2008]

Introduction VIII

(a) 15 el .

(b) 63 el .

(c) 250 el .

(d) 1024 el .

Figure: Adaptive derefinement [Bassi, Botti, Colombo, DP, Tesini, 2012]

The origins: First-order PDEs

- [Reed and Hill, 1973], dG for steady neutron transport
- [Lesaint and Raviart, 1974], first error estimate
- [Johnson and Pitkäranta, 1986], improved estimate
- [Cockburn and Shu, 1989], explicit Runge-Kutta dG methods

The origins: Second-order PDES

- [Nitsche, 1971], boundary penalty methods
- [Babuška and Zlámal, 1973], Interior Penalty for bcs
- [Arnold, 1982], Symmetric Interior Penalty (SIP) dG method
- [Bassi and Rebay, 1997], compressible Navier-Stokes equations
- [Arnold et al., 2002], unified analysis

Part I

Basic concepts

Outline

1 Broken spaces and operators

2 Abstract nonconforming error analysis

3 Mesh regularity

Faces, averages, and jumps I

Definition (Mesh)

A mesh \mathcal{T} of Ω is a finite collection of disjoint open polyhedra $\mathcal{T}=\{T\}$ s.t. $\bigcup_{T \in \mathcal{T}} \bar{T}=\bar{\Omega}$. Each $T \in \mathcal{T}$ is called a mesh element.

Definition (Element diameter, meshsize)

Let \mathcal{T} be a mesh of Ω. For all $T \in \mathcal{T}, h_{T}$ denotes the diameter T, and the meshsize is defined as

$$
h:=\max _{T \in \mathcal{T}} h_{T} .
$$

We use the notation \mathcal{T}_{h} for a mesh \mathcal{T} with meshsize h.

Faces, averages, and jumps II

Figure: Example of mesh

Faces, averages, and jumps III

Definition (Mesh faces)

Let \mathcal{T}_{h} be a mesh of the domain Ω. A closed subset F of $\bar{\Omega}$ is a mesh face if $|F|_{d-1}>0$ and either one of the two following conditions holds:

■ $\exists T_{1}, T_{2} \in \mathcal{T}_{h}, T_{1} \neq T_{2}$, s.t. $F=\partial T_{1} \cap \partial T_{2}$ (interface);
■ $\exists T \in \mathcal{T}_{h}$ s.t. $F=\partial T \cap \partial \Omega$ (boundary face).

Figure: Examples of interfaces

Faces, averages, and jumps IV

- Interfaces are collected in \mathcal{F}_{h}^{i}, boundary faces in \mathcal{F}_{h}^{b}, and

$$
\mathcal{F}_{h}:=\mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{b}
$$

- For all $T \in \mathcal{T}_{h}$ we let

$$
\mathcal{F}_{T}:=\left\{F \in \mathcal{F}_{h} \mid F \subset \partial T\right\},
$$

and we set

$$
N_{\partial}:=\max _{T \in \mathcal{T}_{h}} \operatorname{card}\left(\mathcal{F}_{T}\right)
$$

■ Symmetrically, for all $F \in \mathcal{F}_{h}$, we let

$$
\mathcal{T}_{F}:=\left\{T \in \mathcal{T}_{h} \mid F \subset \partial T\right\}
$$

Faces, averages, and jumps \vee

Definition (Interface averages and jumps)

Assume $v: \Omega \rightarrow \mathbb{R}$ smooth enough to admit a possibly two-valued trace on all interfaces. Then, for all $F \in \mathcal{F}_{h}^{i}$ we let

$$
\{v\}:=\frac{1}{2}\left(\left.v\right|_{T_{1}}+\left.v\right|_{T_{2}}\right), \quad \llbracket v \rrbracket:=\left.v\right|_{T_{1}}-\left.v\right|_{T_{2}} .
$$

For all $F \in \mathcal{F}_{h}^{b}$ with $F \subset \partial T$ we conventionally set $\left\{\{v\}=\llbracket v \rrbracket=\left.v\right|_{T}\right.$.

Broken polynomial spaces I

k	$d=1$	$d=2$	$d=3$
0	1	1	1
1	2	3	4
2	3	6	10
3	4	10	20

Table: Dimension of \mathbb{P}_{d}^{k} for $1 \leq d \leq 3$ and $0 \leq k \leq 3$

Discontinuous Galerkin methods hinge on broken polynomial spaces,

$$
\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L^{2}(\Omega)\left|\forall T \in \mathcal{T}_{h}, v\right|_{T} \in \mathbb{P}_{d}^{k}(T)\right\}
$$

Hence, the number of DOFs is

$$
\operatorname{dim}\left(\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right)=\operatorname{card}\left(\mathcal{T}_{h}\right) \times \operatorname{card}\left(\mathbb{P}_{d}^{k}\right)=\operatorname{card}\left(\mathcal{T}_{h}\right) \times \frac{(k+d)!}{k!d!}
$$

Broken polynomial spaces II

Figure: Orthonormal polynomial basis functions for an L-shaped element

Basic facts on Lebesgue and Sobolev spaces I

- Let $v: \Omega \rightarrow \mathbb{R}$ be Lebesgue measurable
- Let $1 \leq p \leq \infty$ be a real number. We set

$$
\|v\|_{L^{p}(\Omega)}:=\left(\int_{\Omega}|v|^{p}\right)^{1 / p} \quad 1 \leq p<\infty
$$

and

$$
\|v\|_{L^{\infty}(\Omega)}:=\inf \{M>0| | v(x) \mid \leq M \text { a.e. } x \in \Omega\}
$$

■ In either case, we define the Lebesgue space

$$
L^{p}(\Omega):=\left\{v \text { Lebesgue measurable } \mid\|v\|_{L^{p}(\Omega)}<\infty\right\}
$$

Basic facts on Lebesgue and Sobolev spaces II

- Equipped with $\|\cdot\|_{L^{p}(\Omega)}, L^{p}(\Omega)$ is a Banach space for all p
- $L^{2}(\Omega)$ is a Hilbert space when equipped with the scalar product

$$
(v, w)_{L^{2}(\Omega)}:=\int_{\Omega} v w
$$

- We record the Cauchy-Schwarz inequality: For all $v, w \in L^{2}(\Omega)$,

$$
(v, w)_{L^{2}(\Omega)} \leq\|v\|_{L^{2}(\Omega)}\|w\|_{L^{2}(\Omega)}
$$

Basic facts on Lebesgue and Sobolev spaces III

- Let ∂_{i} denote the distributional partial derivative with respect to x_{i}
- For a d-uple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$ we note

$$
\partial^{\alpha} v:=\partial_{1}^{\alpha_{1}} \ldots \partial_{d}^{\alpha_{d}} v
$$

- For an integer $m \geq 0$ we define the Sobolev space

$$
H^{m}(\Omega)=\left\{v \in L^{2}(\Omega) \mid \forall \alpha \in A_{d}^{m}, \partial^{\alpha} v \in L^{2}(\Omega)\right\}
$$

Basic facts on Lebesgue and Sobolev spaces IV

- $H^{m}(\Omega)$ is a Hilbert space when equipped with the scalar product

$$
(v, w)_{H^{m}(\Omega)}:=\sum_{\alpha \in A_{d}^{m}}\left(\partial^{\alpha} v, \partial^{\alpha} w\right)_{L^{2}(\Omega)}
$$

leading to (with $A_{d}^{k}:=\left\{\left.\alpha \in \mathbb{N}^{d}| | \alpha\right|_{\ell^{1}} \leq k\right\}$),

$$
\|v\|_{H^{m}(\Omega)}:=\left(\sum_{\alpha \in A_{d}^{m}}\left\|\partial^{\alpha} v\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}, \quad|v|_{H^{m}(\Omega)}:=\left(\sum_{\alpha \in \bar{A}_{d}^{m}}\left\|\partial^{\alpha} v\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}
$$

- For $m=1$, letting $\nabla v=\left(\partial_{1} v, \ldots, \partial_{d} v\right)^{t}$ yields

$$
(v, w)_{H^{1}(\Omega)}=(v, w)_{L^{2}(\Omega)}+(\nabla v, \nabla w)_{\left[L^{2}(\Omega)\right]^{d}}
$$

Basic facts on Lebesgue and Sobolev spaces V

- It is useful to record the following trace inequality:

$$
\|v\|_{L^{2}(\partial \mathcal{D})} \leq C\|v\|_{L^{2}(\mathcal{D})}^{1 / 2}\|v\|_{H^{1}(\mathcal{D})}^{1 / 2}
$$

which implies that functions in $H^{1}(\mathcal{D})$ have traces in $L^{2}(\partial \mathcal{D})$

Broken Sobolev spaces and broken gradient I

- In the analysis we need to formulate local regularity requirements for the exact solution
- To this purpose we introduce the broken Sobolev spaces

$$
H^{m}\left(\mathcal{T}_{h}\right):=\left\{v \in L^{2}(\Omega)\left|\forall T \in \mathcal{T}_{h}, v\right|_{T} \in H^{m}(T)\right\}
$$

- Clearly, $H^{m}(\Omega) \subset H^{m}\left(\mathcal{T}_{h}\right)$
- Owing to the trace inequality, functions in $H^{1}\left(\mathcal{T}_{h}\right)$ have trace in $L^{2}(\partial T)$ for all $T \in \mathcal{T}_{h}$

Broken Sobolev spaces and broken gradient II

Definition (Broken gradient)

The broken gradient $\nabla_{h}: H^{1}\left(\mathcal{T}_{h}\right) \rightarrow\left[L^{2}(\Omega)\right]^{d}$ is defined s.t.

$$
\forall v \in H^{1}\left(\mathcal{T}_{h}\right),\left.\quad\left(\nabla_{h} v\right)\right|_{T}:=\nabla\left(\left.v\right|_{T}\right) \quad \forall T \in \mathcal{T}_{h}
$$

Broken Sobolev spaces and broken gradient III

Lemma (Characterization of $H^{1}(\Omega)$)

A function $v \in H^{1}\left(\mathcal{T}_{h}\right)$ belongs to $H^{1}(\Omega)$ if and only if

$$
\llbracket v \rrbracket=0 \quad \forall F \in \mathcal{F}_{h}^{i} .
$$

Moreover there holds, for all $v \in H^{1}(\Omega)$,

$$
\nabla_{h} v=\nabla v \text { in }\left[L^{2}(\Omega)\right]^{d} .
$$

Abstract nonconforming error analysis I

- Let X be a function space s.t.

$$
X \hookrightarrow L^{2}(\Omega) \equiv L^{2}(\Omega)^{\prime} \hookrightarrow X^{\prime}
$$

with dense and continuous injection

Abstract nonconforming error analysis II

- We consider the model linear problem

$$
\begin{equation*}
\text { Find } u \in X \text { s.t. } a(u, w)=\langle f, w\rangle_{X^{\prime}, X} \text { for all } w \in X \tag{П}
\end{equation*}
$$

with a bounded bilinear form in $X \times X$ and $f \in X^{\prime}$

- For $V_{h}:=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ the dG problem reads

$$
\begin{equation*}
\text { Find } u_{h} \in V_{h} \text { s.t. } a_{h}\left(u_{h}, w_{h}\right)=l_{h}\left(w_{h}\right) \text { for all } w_{h} \in V_{h} \tag{h}
\end{equation*}
$$

with a_{h} bilinear form on $V_{h} \times V_{h}$ and l_{h} linear form on V_{h}

- In general dG methods are nonconforming, i.e.,

$$
V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right) \not \subset X
$$

Abstract nonconforming error analysis III

- We formulate general conditions to bound the error

$$
\left\|u-u_{h}\right\|
$$

in terms of the approximation properties of V_{h},

$$
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*}
$$

- In the analysis of dG methods we often have

$$
\|\cdot\| \neq\| \| \cdot \|_{*}
$$

Abstract nonconforming error analysis IV

Definition (Discrete stability)

We say that the discrete bilinear form a_{h} enjoys discrete stability on V_{h} if there is $C_{\text {sta }}>0$ independent of h s.t.

$$
\begin{equation*}
\forall v_{h} \in V_{h}, \quad C_{\text {sta }}\left\|v_{h}\right\| \leq \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\left\|w_{h}\right\|} \tag{inf-sup}
\end{equation*}
$$

or, equivalently,

$$
C_{\text {sta }} \leq \inf _{v_{h} \in V_{h} \backslash\{0\}} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\left\|v_{h}\right\|\left\|w_{h}\right\|} .
$$

Stability is a purely discrete property which is intimately linked with the well-posedness of the discrete problem

Abstract nonconforming error analysis V

- A sufficient condition for discrete stability is coercivity,

$$
\forall v_{h} \in V_{h}, \quad C_{\text {sta }}\left\|v_{h}\right\|^{2} \leq a_{h}\left(v_{h}, v_{h}\right)
$$

■ Discrete coercivity implies (inf-sup) since, for all $v_{h} \in V_{h} \backslash\{0\}$,

$$
C_{\text {sta }}\left\|v_{h}\right\| \leq \frac{a_{h}\left(v_{h}, v_{h}\right)}{\left\|v_{h}\right\|} \leq \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\left\|w_{h}\right\|}
$$

Abstract nonconforming error analysis VI

- For consistency we need to plug u into the first argument of a_{h}

■ However, in most cases a_{h} cannot be extended to $X \times V_{h}$

Assumption (Regularity of the exact solution)

We assume that there is $X_{*} \subset X$ s.t.

- a_{h} can be extended to $X_{*} \times V_{h}$ and
- the exact solution u is s.t. $u \in X_{*}$.

Abstract nonconforming error analysis VII

Definition (Consistency)

The discrete problem $\left(\Pi_{h}\right)$ is consistent if for the exact solution $u \in X_{*}$,

$$
a_{h}\left(u, w_{h}\right)=l_{h}\left(w_{h}\right) \quad \forall w_{h} \in V_{h} .
$$

(cons.)

Lemma (Galerkin orthogonality)
If $u \in X_{*}$ and a_{h} is consistent, Galerkin orthogonality holds, i.e.,

$$
a_{h}\left(u-u_{h}, w_{h}\right)=0 \quad \forall w_{h} \in V_{h} .
$$

Abstract nonconforming error analysis VIII

$$
X_{* h}:=X_{*}+V_{h}
$$

- The error $u-u_{h}$ belongs to $X_{* h}$
- It is often not possible to express boundedness in terms of the $\|\cdot\|$ norm, so we introduce a second norm $\|\cdot\|_{*}$ s.t.

$$
\forall v \in X_{* h}, \quad\|v\| \leq\|v\|_{*}
$$

Definition (Boundedness)

We say that the discrete bilinear form a_{h} is bounded in $X_{* h} \times V_{h}$ if there is C_{bnd} independent of h s.t.

$$
\forall\left(v, w_{h}\right) \in X_{* h} \times V_{h}, \quad\left|a_{h}\left(v, w_{h}\right)\right| \leq C_{\mathrm{bnd}}\|v\|_{*}\left\|w_{h}\right\| .
$$

Abstract nonconforming error analysis IX

Theorem (Abstract error estimate)
Let u solve (П) and assume $u \in X_{*}$. Then, assuming discrete stability, consistency, and boundedness, there holds

$$
\begin{equation*}
\left\|u-u_{h}\right\| \leq\left(1+\frac{C_{\mathrm{bnd}}}{C_{\mathrm{sta}}}\right) \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*} . \tag{est.}
\end{equation*}
$$

Abstract nonconforming error analysis X

$$
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\| \leq\left\|u-u_{h}\right\| \leq C \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*}
$$

Definition（Optimal，quasi－optimal，and suboptimal error estimate）

We say that the above error estimate is
■ optimal if $\|\cdot \cdot\|=\|\cdot\|_{*}$
－quasi－optimal if $\|\cdot\| \neq\| \| \cdot \|_{*}$ ，but the lower and upper bounds converge，for smooth u ，at the same convergence rate as $h \rightarrow 0$
－suboptimal if the upper bound converges more slowly

Abstract nonconforming error analysis XI

Proof.

- Let $y_{h} \in V_{h}$. Owing to discrete stability and consistency,

$$
\begin{aligned}
\left\|u_{h}-y_{h}\right\| & \leq C_{\text {sta }}^{-1} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(u_{h}-y_{h}, w_{h}\right)}{\left\|w_{h}\right\|} \\
& =C_{\text {sta }}^{-1} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(u-y_{h}, w_{h}\right)+a_{h}\left(u_{h}-u, w_{h}\right)}{\left\|w_{h}\right\|}
\end{aligned}
$$

- Hence, using boundedness,

$$
\left\|u_{h}-y_{h}\right\| \leq C_{\mathrm{sta}}^{-1} C_{\mathrm{bnd}}\left\|u-y_{h}\right\|_{*}
$$

- Estimate (est.) then results from the triangle inequality, the fact that $\left\|u-y_{h}\right\| \leq\left\|u-y_{h}\right\|_{*}$, and that y_{h} is arbitrary in V_{h}

Roadmap for the design of dG methods

1 Extend the continuous bilinear form to $X_{* h} \times X_{h}$ by replacing

$$
\nabla \leftarrow \nabla_{h}
$$

2. Check for stability

- remove bothering terms in a consistent way
- if necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved
4 Prove boundedness by appropriately selecting $\|\cdot \mid\|_{*}$

Mesh regularity I

- To prove discrete stability, consistency, and boundedness we need basic results such as trace and inverse inequalities
- To assert the convergence of a method, the discrete space must enjoy approximation properties of the form

$$
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*} \leq C_{u} h^{l}
$$

This requires regularity assumptions on the mesh sequence

$$
\mathcal{T}_{\mathcal{H}}:=\left(\mathcal{T}_{h}\right)_{h \in \mathcal{H}}
$$

Mesh regularity II

Definition (Shape and contact regularity)

The mesh sequence $\mathcal{T}_{\mathcal{H}}$ is shape- and contact-regular if for all $h \in \mathcal{H}, \mathcal{T}_{h}$ admits a matching simplicial submesh \mathfrak{S}_{h} s.t.
(i) There is a $\varrho_{1}>0$, independent of h, s.t.

$$
\forall T^{\prime} \in \mathfrak{S}_{h}, \quad \varrho_{1} h_{T^{\prime}} \leq r_{T^{\prime}}
$$

with $r_{T^{\prime}}$ radius of the largest ball inscribed in T^{\prime};
(ii) there is $\varrho_{2}>0$, independent of h s.t.

$$
\forall T \in \mathcal{T}_{h}, \forall T^{\prime} \in \mathfrak{S}_{T}, \quad \varrho_{2} h_{T} \leq h_{T^{\prime}}
$$

If \mathcal{T}_{h} is itself matching and simplicial, the only requirement is shaperegularity with parameter $\varrho_{1}>0$ independent of h.

Mesh regularity III

Figure: Mesh \mathcal{T}_{h} and matching simplicial submesh \mathfrak{S}_{h}

Mesh regularity IV

Lemma (Discrete inverse and trace inequalities)

Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact-regular mesh sequence. Then, for all $h \in \mathcal{H}$, all $v_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$, and all $T \in \mathcal{T}_{h}$,

$$
\begin{aligned}
\left\|\nabla v_{h}\right\|_{\left[L^{2}(T)\right]^{d}} & \leq C_{\mathrm{inv}} h_{T}^{-1}\left\|v_{h}\right\|_{L^{2}(T)}, \\
\left\|v_{h}\right\|_{L^{2}(F)} & \leq C_{\mathrm{tr}} h_{T}^{-1 / 2}\left\|v_{h}\right\|_{L^{2}(T)} \quad \forall F \in \mathcal{F}_{T}
\end{aligned}
$$

where C_{inv} and C_{tr} only depend on ϱ, d, and k.

Lemma (Continuous trace inequality)

Moreover, for all $h \in \mathcal{H}$, all $v \in H^{1}\left(\mathcal{T}_{h}\right)$, all $T \in \mathcal{T}_{h}$, and all $F \in \mathcal{F}_{T}$,

$$
\|v\|_{L^{2}(F)}^{2} \leq C_{\mathrm{cti}}\left(2\|\nabla v\|_{\left[L^{2}(T)\right]^{d}}+d h_{T}^{-1}\|v\|_{L^{2}(T)}\right)\|v\|_{L^{2}(T)},
$$

with C_{cti} only depending on ϱ and d.

Mesh regularity V

- The last requirement is that the spaces

$$
\left(\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right)_{h \in \mathcal{H}}
$$

enjoy optimal approximation properties

- Since we consider continuous problems posed in a space X s.t.

$$
X \hookrightarrow L^{2}(\Omega) \equiv L^{2}(\Omega)^{\prime} \hookrightarrow X^{\prime}
$$

it is natural to focus on the L^{2}-orthogonal projector π_{h}^{k}

- This also allows to deal naturally with polyhedral elements

Mesh regularity VI

Lemma (Optimal polynomial approximation)

Let $\mathcal{T}_{\mathcal{H}}$ denote a shape- and contact-regular mesh sequence. Then, for all $h \in \mathcal{H}$, all $T \in \mathcal{T}_{h}$, and all polynomial degree k, there holds

$$
\begin{aligned}
\forall s \in\{0, \ldots, k+1\}, \forall m \in\{0, & \ldots, s\}, \forall v \in H^{s}(T) \\
& \left|v-\pi_{h}^{k} v\right|_{H^{m}(T)} \leq C_{\mathrm{app}} h_{T}^{s-m}|v|_{H^{s}(T)},
\end{aligned}
$$

where $C_{\text {app }}$ is independent of both T and h.
Proof.
Follows from [Dupont and Scott, 1980]

Part II

Scalar first-order PDES

Outline

4 The continuous setting

5 Centered fluxes

6 Upwind fluxes

7 The unsteady case

The continuous problem I

- We consider the following steady advection-reaction problem:

$$
\begin{aligned}
& \beta \cdot \nabla u+\mu u=f \\
& \text { in } \Omega, \\
& u \\
& \text { on } \partial \Omega^{-},
\end{aligned}
$$

where $f \in L^{2}(\Omega)$ and

$$
\partial \Omega^{ \pm}:=\{x \in \partial \Omega \mid \pm \beta(x) \cdot \mathrm{n}(x)>0\}
$$

- We further assume

$$
\mu \in L^{\infty}(\Omega), \quad \beta \in[\operatorname{Lip}(\Omega)]^{d}, \quad \Lambda:=\mu-\frac{1}{2} \nabla \cdot \beta \geq \mu_{0}
$$

■ This implies, in particular, $\beta \in\left[W^{1, \infty}(\Omega)\right]^{d}$

Traces in the graph space I

- To follow the roadmap, we first rework the continuous problem to enforce BCs weakly
- The natural space to look for the solution is the graph space

$$
V:=\left\{v \in L^{2}(\Omega) \mid \beta \cdot \nabla v \in L^{2}(\Omega)\right\}
$$

equipped with the inner product

$$
(v, w)_{V}:=(v, w)_{L^{2}(\Omega)}+(\beta \cdot \nabla v, \beta \cdot \nabla w)_{L^{2}(\Omega)}
$$

- It can be proved that V is a Hilbert space

Traces in the graph space II

- To formulate BCs, we investigate the traces on $\partial \Omega$ of functions in V
- Our aim is to give a meaning to such traces in the space

$$
L^{2}(|\beta \cdot \mathrm{n}| ; \partial \Omega):=\left\{v \text { is measurable on } \partial \Omega\left|\int_{\partial \Omega}\right| \beta \cdot \mathrm{n} \mid v^{2}<\infty\right\}
$$

- We assume henceforth inflow/outflow separation,

$$
\operatorname{dist}\left(\partial \Omega^{-}, \partial \Omega^{+}\right):=\min _{(x, y) \in \partial \Omega^{-} \times \partial \Omega^{+}}|x-y|>0
$$

Traces in the graph space III

Figure: Counter-example for inflow/outflow separation

Traces in the graph space IV

Lemma (Traces and integration by parts)

In the above framework, the trace operator

$$
\gamma: C^{0}(\bar{\Omega}) \ni v \longmapsto \gamma(v):=\left.v\right|_{\partial \Omega} \in L^{2}(|\beta \cdot \mathrm{n}| ; \partial \Omega)
$$

extends continuously to V, i.e., there is C_{γ} s.t., for all $v \in V$,

$$
\|\gamma(v)\|_{L^{2}(|\beta \cdot \mathbf{n}| ; \Omega)} \leq C_{\gamma}\|v\|_{V}
$$

Moreover, the following IBP formula holds true: For all $v, w \in V$,

$$
\int_{\Omega}[(\beta \cdot \nabla v) w+(\beta \cdot \nabla w) v+(\nabla \cdot \beta) v w]=\int_{\partial \Omega}(\beta \cdot \mathrm{n}) \gamma(v) \gamma(w) .
$$

Weak formulation and well-posedness I

■ We introduce the following bilinear form:

$$
a(v, w):=\int_{\Omega} \mu v w+\int_{\Omega}(\beta \cdot \nabla v) w+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w,
$$

where

$$
x^{\oplus}:=\frac{1}{2}(|x|+x), \quad x^{\ominus}:=\frac{1}{2}(|x|-x)
$$

- For all $v, w \in V$, the Cauchy-Schwarz inequality together with the bound $\|\gamma(v)\|_{L^{2}(|\beta \cdot \mathrm{n}| ; \partial \Omega)} \leq C_{\gamma}\|v\|_{V}$ yield

$$
|a(v, w)| \leq\left(1+\|\mu\|_{L^{\infty}(\Omega)}^{2}\right)^{\frac{1}{2}}\|v\|_{V}\|w\|_{L^{2}(\Omega)}+C_{\gamma}^{2}\|v\|_{V}\|w\|_{V}
$$

i.e., a is bounded in $V \times V$

Weak formulation and well-posedness II

Lemma (L^{2}-coercivity of a)
The bilinear form a is L^{2}-coercive on V, namely,

$$
\forall v \in V, \quad a(v, v) \geq \mu_{0}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2} .
$$

Weak formulation and well-posedness III

$$
a(v, w):=\int_{\Omega} \mu v w+\int_{\Omega}(\beta \cdot \nabla v) w+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w,
$$

Proof.

For all $v \in V$, IBP yields

$$
\begin{aligned}
a(v, v) & =\int_{\Omega}\left(\mu-\frac{1}{2} \nabla \cdot \beta\right) v^{2}+\int_{\partial \Omega} \frac{1}{2}(\beta \cdot \mathrm{n}) v^{2}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v^{2} \\
& =\int_{\Omega} \Lambda v^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2} \\
& \geq \mu_{0}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2},
\end{aligned}
$$

where we have used the assumption $\Lambda \geq \mu_{0}>0$ to conclude.

Weak formulation and well-posedness IV

$$
\begin{equation*}
\text { Find } u \in V \text { s.t. } a(u, w)=\int_{\Omega} f w \text { for all } w \in V \tag{П}
\end{equation*}
$$

Lemma (Well-posedness and characterization of (П))

Problem (Π) is well-posed and its solution $u \in V$ is s.t.

$$
\begin{aligned}
\beta \cdot \nabla u+\mu u & =f \quad \text { a.e. in } \Omega \\
u=0 & \text { a.e. in } \partial \Omega^{-} .
\end{aligned}
$$

■ We have devised a weak formulation with weakly enforced homogeneous inflow BCs

- The ideas can be extended to inhomogeneous BCs and systems of equations [Ern et al., 2007]

Roadmap for the design of dG methods

1 Extend the continuous bilinear form to $X_{* h} \times X_{h}$ by replacing

$$
\nabla \leftarrow \nabla_{h}
$$

2. Check for stability

- remove bothering terms in a consistent way
- if necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved
4 Prove boundedness by appropriately selecting $\|\cdot \mid\|_{*}$

Heuristic derivation I

Assumption (Regularity of exact solution and space V_{*})

We assume that there is a partition $P_{\Omega}=\left\{\Omega_{i}\right\}_{1 \leq i \leq N_{\Omega}}$ of Ω into disjoint polyhedra s.t., for the exact solution u,

$$
u \in V_{*}:=V \cap H^{1}\left(P_{\Omega}\right) .
$$

Additionally, we set $V_{* h}:=V_{*}+V_{h}$.
Lemma (Jumps of u across interfaces)
If $u \in V_{*}$, then, for all $F \in \mathcal{F}_{h}^{i}$,

$$
\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket u \rrbracket_{F}(x)=0 \quad \text { for a.e. } x \in F .
$$

Heuristic derivation II

- Let $V_{h}:=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right), k \geq 1$
- Our starting point is the (consistent) extension of a to $V_{* h} \times V_{h}$,

$$
a_{h}^{(0)}\left(v, w_{h}\right):=\int_{\Omega}\left\{\mu v w_{h}+\left(\beta \cdot \nabla_{h} v\right) w_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w_{h}
$$

We mimic L^{2}-coercivity at the discrete level by introducing additional consistent terms that vanish when we plug u into the first argument

Heuristic derivation III

- Element-by-element IBP yields for all $v_{h} \in V_{h}$,

$$
\begin{aligned}
a_{h}^{(0)}\left(v_{h}, v_{h}\right) & =\int_{\Omega}\left\{\mu v_{h}^{2}+\left(\beta \cdot \nabla_{h} v_{h}\right) v_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2} \\
& =\int_{\Omega} \mu v_{h}^{2}+\sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\beta \cdot \nabla v_{h}\right) v_{h}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2} \\
& =\int_{\Omega} \mu v_{h}^{2}+\sum_{T \in \mathcal{T}_{h}} \int_{T} \frac{1}{2}\left(\beta \cdot \nabla v_{h}^{2}\right)+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2} \\
& =\int_{\Omega} \Lambda v_{h}^{2}+\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \frac{1}{2}\left(\beta \cdot \mathrm{n}_{T}\right) v_{h}^{2}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2}
\end{aligned}
$$

where we have used $\Lambda:=\mu-\frac{1}{2} \nabla \cdot \beta$

- Let us focus on the boundary terms

Heuristic derivation IV

- Using the continuity of $\left(\beta \cdot \mathrm{n}_{F}\right)$ across all $F \in \mathcal{F}_{h}^{i}$,

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \frac{1}{2}\left(\beta \cdot \mathrm{n}_{T}\right) v_{h}^{2}=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{1}{2}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h}^{2} \rrbracket+\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F} \frac{1}{2}(\beta \cdot \mathrm{n}) v_{h}^{2}
$$

- For all $\mathcal{F}_{h}^{i} \ni F=\partial T_{1} \cap \partial T_{2}, v_{i}=\left.v_{h}\right|_{T_{i}}, i \in\{1,2\}$, there holds

$$
\frac{1}{2} \llbracket v_{h}^{2} \rrbracket=\frac{1}{2}\left(v_{1}^{2}-v_{2}^{2}\right)=\frac{1}{2}\left(v_{1}-v_{2}\right)\left(v_{1}+v_{2}\right)=\llbracket v_{h} \rrbracket\left\{v_{h}\right\}
$$

Heuristic derivation \vee

- As a result,

$$
\begin{aligned}
a_{h}^{(0)}\left(v_{h}, v_{h}\right)= & \left.\int_{\Omega} \Lambda v_{h}^{2}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket\left\{v_{h}\right\}\right\} \\
& +\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F} \frac{1}{2}(\beta \cdot \mathrm{n}) v_{h}^{2}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h}^{2}
\end{aligned}
$$

- Combining the two rightmost terms, we arrive at

$$
a_{h}^{(0)}\left(v_{h}, v_{h}\right)=\int_{\Omega} \Lambda v_{h}^{2}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket\left\{v_{h}\right\}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v_{h}^{2}
$$

- The boxed term is nondefinite

Heuristic derivation VI

- A natural idea is to modify $a_{h}^{(0)}$ as follows:

$$
\begin{aligned}
a_{h}^{\mathrm{cf}}\left(v, w_{h}\right):= & \int_{\Omega}\left\{\mu v w_{h}+\left(\beta \cdot \nabla_{h} v\right) w_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w_{h} \\
& \left.-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v \rrbracket\left\{w_{h}\right\}\right\}
\end{aligned}
$$

- The highlighted term is consistent since $u \in V_{*}$ implies

$$
\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket u \rrbracket_{F}(x)=0 \quad \text { for a.e. } x \in F
$$

■ Moreover, it ensures L^{2}-coercivity since, this time,

$$
a_{h}^{\mathrm{cf}}\left(v_{h}, v_{h}\right)=\int_{\Omega} \Lambda v_{h}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v_{h}^{2} \quad \forall v_{h} \in V_{h}
$$

Heuristic derivation VII

$$
\begin{aligned}
& \int_{\Omega}\left\{\mu v_{h} w_{h}+\left(\beta \cdot \nabla_{h} v_{h}\right) w_{h}\right\}, \int_{\partial \Omega}(\beta \cdot \mathbf{n})^{\ominus} v_{h} w_{h} \\
& \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket\left\{w_{h}\right\}
\end{aligned}
$$

Figure: Stencil of the different terms

Heuristic derivation VIII

$$
\|v\|_{\mathrm{cf}}^{2}:=\tau_{\mathrm{c}}^{-1}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2}, \quad \tau_{\mathrm{c}}:=\left\{\max \left(\|\mu\|_{L^{\infty}(\Omega)}, L_{\beta}\right)\right\}^{-1}
$$

Lemma (Consistency and discrete coercivity)

The discrete bilinear form $a_{h}^{\text {cf }}$ satisfies the following properties:
(i) Consistency, i.e., assuming $u \in V_{*}$,

$$
a_{h}^{\mathrm{cf}}\left(u, v_{h}\right)=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h}
$$

(ii) Coercivity on V_{h} with $C_{\text {sta }}:=\min \left(1, \tau_{\mathrm{c}} \mu_{0}\right)$,

$$
\forall v_{h} \in V_{h}, \quad a_{h}^{\text {cf }}\left(v_{h}, v_{h}\right) \geq C_{\text {sta }}\left\|v_{h}\right\|_{\text {cf }}^{2} .
$$

Error estimate I

Lemma (Boundedness)

There holds

$$
\forall\left(v, w_{h}\right) \in V_{* h} \times V_{h}, \quad a_{h}^{\mathrm{cf}}\left(v, w_{h}\right) \leq C_{\mathrm{bnd}}\|v\|_{\mathrm{cf}, *}\left\|w_{h}\right\|_{\mathrm{cf}}
$$

with C_{bnd} independent of h and of μ and β, and with $\beta_{\mathrm{c}}:=\|\beta\|_{\left[L^{\infty}(\Omega)\right]^{d}}$,

$$
\|v\|_{\mathrm{cf}, *}^{2}:=\|v\|_{\mathrm{cf}}^{2}+\sum_{T \in \mathcal{T}_{h}} \tau_{\mathrm{c}}\|\beta \cdot \nabla v\|_{L^{2}(T)}^{2}+\sum_{T \in \mathcal{T}_{h}} \tau_{\mathrm{c}} \beta_{\mathrm{c}}^{2} h_{T}^{-1}\|v\|_{L^{2}(\partial T)}^{2}
$$

Error estimate II

$$
\begin{equation*}
\text { Find } u_{h} \in V_{h} \text { s.t. } a_{h}^{\text {cf }}\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h} \text { for all } v_{h} \in V_{h} \tag{h}
\end{equation*}
$$

Theorem (Error estimate)

Let u solve (Π) and let u_{h} solve $\left(\Pi_{h}^{c \mathrm{cf}}\right)$ where $V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ with $k \geq 1$. Then, there holds

$$
\left\|u-u_{h}\right\|_{\mathrm{cf}} \leq C \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{\mathrm{cf}, *},
$$

with C independent of h and depending on the data only through the factor

$$
C_{\mathrm{sta}}^{-1}=\left\{\min \left(1, \tau_{\mathrm{c}} \mu_{0}\right)\right\}^{-1}
$$

Error estimate III

Corollary (Convergence rate for smooth solutions)

Assume $u \in H^{k+1}(\Omega)$. Then, there holds

$$
\left\|u-u_{h}\right\|_{\mathrm{cf}} \leq C_{u} h^{k},
$$

with $C_{u}=C\|u\|_{H^{k+1}(\Omega)}$ and C independent of h and depending on the data only through the factor $\left\{\min \left(1, \tau_{c} \mu_{0}\right)\right\}^{-1}$.

Proof.

Let $y_{h}=\pi_{h}^{k} u$ in the error estimate and use the approximation properties of the sequence of discrete spaces $\left(V_{h}\right)_{h \in \mathcal{H}}$.

Error estimate IV

- This estimate is suboptimal by $\frac{1}{2}$ power of h
- Indeed, in the inequalities

$$
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{\mathrm{cf}} \leq\left\|u-u_{h}\right\|_{\mathrm{cf}} \leq C \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{\mathrm{cf}, *},
$$

the upper bound converges more slowly than the lower bound

$$
\begin{aligned}
\|v\|_{\mathrm{cf}}^{2} & :=\tau_{\mathrm{c}}^{-1}\|v\|_{L^{2}(\Omega)}^{2}+\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2} \\
\|v\|_{\mathrm{cf}, *}^{2} & :=\|v\|_{\mathrm{cf}}^{2}+\sum_{T \in \mathcal{T}_{h}} \tau_{\mathrm{c}}\|\beta \cdot \nabla v\|_{L^{2}(T)}^{2}+\sum_{T \in \mathcal{T}_{h}} \tau_{\mathrm{c}} \beta_{\mathrm{c}}^{2} h_{T}^{-1}\|v\|_{L^{2}(\partial T)}^{2}
\end{aligned}
$$

Numerical fluxes I

$$
\begin{aligned}
a_{h}^{\text {cf }}\left(v, w_{h}\right):= & \int_{\Omega}\left\{\mu v w_{h}+\left(\beta \cdot \nabla_{h} v\right) w_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w_{h} \\
& -\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v \rrbracket\left\{w_{h}\right\}
\end{aligned}
$$

Lemma (Equivalent expression for a_{h}^{cf})

For all $\left(v, w_{h}\right) \in V_{* h} \times V_{h}$, there holds

$$
\begin{aligned}
& a_{h}^{\mathrm{cf}}\left(v, w_{h}\right)=\int_{\Omega}\left\{(\mu-\nabla \cdot \beta) v w_{h}-v\left(\beta \cdot \nabla_{h} w_{h}\right)\right\} \\
&+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\oplus} v w_{h}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right)\left\{[v\} \llbracket w_{h} \rrbracket .\right.
\end{aligned}
$$

Numerical fluxes II

- IBP of the advective term leads to

$$
\begin{aligned}
a_{h}^{\mathrm{cf}}\left(v, w_{h}\right)=\int_{\Omega} & \left\{(\mu-\nabla \cdot \beta) v w_{h}-v\left(\beta \cdot \nabla_{h} w_{h}\right)\right\} \\
& +\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\beta \cdot \mathrm{n}_{T}\right) v w_{h}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v w_{h} \\
& \left.-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v \rrbracket\left\{w_{h}\right\}\right\}
\end{aligned}
$$

- Exploiting the continuity of $\beta \cdot \mathrm{n}_{F}$ we obtain

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\beta \cdot \mathrm{n}_{T}\right) v w_{h}=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v w_{h} \rrbracket+\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F}(\beta \cdot \mathrm{n}) v w_{h}
$$

Numerical fluxes III

- To conclude we use the magic formula

$$
\begin{aligned}
\llbracket v w_{h} \rrbracket & =v_{1} w_{1}-v_{2} w_{2} \\
& =\frac{1}{2}\left(v_{1}-v_{2}\right)\left(w_{1}+w_{2}\right)+\frac{1}{2}\left(v_{1}+v_{2}\right)\left(w_{1}-w_{2}\right) \\
& \left.\left.=\llbracket v \rrbracket \llbracket w_{h}\right\}\right\}+\{v\} \rrbracket \llbracket w_{h} \rrbracket,
\end{aligned}
$$

where $v_{i}:=\left.v\right|_{T_{i}}$ and $w_{i}:=\left.w_{h}\right|_{T_{i}}$ for $i \in\{1,2\}$

Numerical fluxes IV

- We now consider a point of view closer to finite volumes
- Let $T \in \mathcal{T}_{h}$ and $\xi \in \mathbb{P}_{d}^{k}(T)$
- For a set $S \subset \Omega$, denote by χ_{S} the characteristic function of S s.t.

$$
\chi_{S}(x)= \begin{cases}1 & \text { if } x \in S \\ 0 & \text { otherwise }\end{cases}
$$

- With the goal of setting $v_{h}=\xi \chi_{T}$ in $\left(\Pi_{h}^{\mathrm{cf}}\right)$ observe that

$$
\llbracket \xi \chi_{T} \rrbracket=\epsilon_{T, F} \xi \quad \text { with } \quad \epsilon_{T, F}:=\mathrm{n}_{T} \cdot \mathrm{n}_{F}
$$

Numerical fluxes \vee

$$
\begin{aligned}
& a_{h}^{\mathrm{cf}}\left(u_{h}, v_{h}\right)=\int_{\Omega}\left\{(\mu-\nabla \cdot \beta) u_{h} v_{h}-u_{h}\left(\beta \cdot \nabla_{h} v_{h}\right)\right\} \\
&\left.+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\oplus} u_{h} v_{h}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right)\left\{u_{h}\right\}\right\} \llbracket v_{h} \rrbracket .
\end{aligned}
$$

- Letting $v_{h}=\xi \chi_{T}$ in the alternative form for a_{h} (cf. above) we infer

$$
a_{h}\left(u_{h}, \xi \chi_{T}\right)=\int_{T}\left\{(\mu-\nabla \cdot \beta) u_{h} \xi-u_{h}(\beta \cdot \nabla \xi)\right\}+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \phi_{F}\left(u_{h}\right) \xi=\int_{T} f \xi
$$

where the numerical fluxes $\phi_{F}\left(u_{h}\right)$ given by

$$
\phi_{F}\left(u_{h}\right):= \begin{cases}\left(\beta \cdot \mathrm{n}_{F}\right)\left\{u_{h}\right\} & \text { if } F \in \mathcal{F}_{h}^{i}, \\ (\beta \cdot \mathrm{n})^{\oplus} u_{h} & \text { if } F \in \mathcal{F}_{h}^{b}\end{cases}
$$

Numerical fluxes VI

- For $\left.\xi\right|_{T} \equiv 1$ we recover the FV local conservation,

$$
\forall T \in \mathcal{T}_{h} \quad \int_{T}(\mu-\nabla \cdot \beta) u_{h}+\sum_{F \in \mathcal{F}_{T}} \int_{F} \phi_{T, F}\left(u_{h}\right)=\int_{T} f,
$$

where $\phi_{T, F}\left(u_{h}\right):=\epsilon_{T, F} \phi_{F}\left(u_{h}\right)$

- We next modify the numerical flux to recover quasi-optimality

Upwinding I

- The error estimate for centered fluxes is suboptimal
- This can be improved by tightening stability with a least-square penalization of interface jumps
- In terms of fluxes this approach amounts to upwinding
- As a side benefit, we can estimate the advective derivative error

Upwinding II

- We consider the new bilinear form

$$
a_{h}^{\mathrm{upw}}\left(v_{h}, w_{h}\right):=a_{h}^{\mathrm{cf}}\left(v_{h}, w_{h}\right)+s_{h}\left(v_{h}, w_{h}\right)
$$

where, for $\eta>0$,

$$
s_{h}\left(v_{h}, w_{h}\right)=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket
$$

- This term is consistent under the regularity assumption

Upwinding III

- Specifically,

$$
\begin{aligned}
a_{h}^{\mathrm{upw}}\left(v_{h}, w_{h}\right):= & \int_{\Omega}\left\{\mu v_{h} w_{h}+\left(\beta \cdot \nabla_{h} v_{h}\right) w_{h}\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h} w_{h} \\
& \left.-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket \llbracket w_{h}\right\}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket
\end{aligned}
$$

- Or, after element-by-element IBP,

$$
\begin{aligned}
a_{h}^{\mathrm{upw}}\left(v_{h}, w_{h}\right)= & \int_{\Omega}\left\{(\mu-\nabla \cdot \beta) v_{h} w_{h}-v_{h}\left(\beta \cdot \nabla_{h} w_{h}\right)\right\}+\int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\oplus} v_{h} w_{h} \\
& +\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right)\left\{\left\{v_{h}\right\} \llbracket w_{h} \rrbracket+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket\right.
\end{aligned}
$$

Upwinding IV

$$
\begin{aligned}
& \int_{\Omega}\left\{\mu v_{h} w_{h}+\left(\beta \cdot \nabla_{h} v_{h}\right) w_{h}\right\}, \int_{\partial \Omega}(\beta \cdot \mathrm{n})^{\ominus} v_{h} w_{h} \\
& \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\beta \cdot \mathrm{n}_{F}\right) \llbracket v_{h} \rrbracket\left\{w_{h}\right\} \\
& \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket
\end{aligned}
$$

Figure: Stencil of the different terms

Upwinding V

Find $u_{h} \in V_{h}$ s.t. $a_{h}^{\text {upw }}\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h}$ for all $v_{h} \in V_{h}$

Upwinding VI

$$
\|v\|_{\text {uwb }}^{2}:=\|v\|_{\text {cf }}^{2}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v \rrbracket^{2}
$$

Lemma (Consistency and discrete coercivity)

The discrete bilinear form $a_{h}^{\text {upw }}$ satisfies the following properties:
(i) Consistency, i.e., assuming $u \in V_{*}$,

$$
a_{h}^{\mathrm{upw}}\left(u, v_{h}\right)=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h},
$$

(ii) Coercivity on V_{h} with $C_{\text {sta }}=\min \left(1, \tau_{c} \mu_{0}\right)$,

$$
\forall v_{h} \in V_{h}, \quad a_{h}^{\text {upw }}\left(v_{h}, v_{h}\right) \geq C_{\text {sta }}\left\|v_{h}\right\|_{\text {uwb }}^{2} .
$$

Numerical fluxes

- Proceeding as for $a_{h}^{\text {cf }}$ we infer for all $T \in \mathcal{T}_{h}$,

$$
a_{h}\left(u_{h}, \xi \chi_{T}\right)=\int_{T}\left\{(\mu-\nabla \cdot \beta) u_{h} \xi-u_{h}(\beta \cdot \nabla \xi)\right\}+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \phi_{F}\left(u_{h}\right) \xi=\int_{T} f \xi,
$$

where, this time,

$$
\phi_{F}\left(u_{h}\right)= \begin{cases}\beta \cdot \mathrm{n}_{F}\left\{\left\{u_{h}\right\}\right\}+\frac{\eta}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket u_{h} \rrbracket & \text { if } F \in \mathcal{F}_{h}^{i}, \\ (\beta \cdot \mathrm{n})^{\oplus} u_{h} & \text { if } F \in \mathcal{F}_{h}^{b}\end{cases}
$$

- The choice $\eta=1$ leads to the classical upwind fluxes

$$
\phi_{F}\left(u_{h}\right)= \begin{cases}\beta \cdot \mathrm{n}_{F} u_{h}^{\uparrow} & \text { if } F \in \mathcal{F}_{h}^{i}, \\ (\beta \cdot \mathrm{n})^{\oplus} u_{h} & \text { if } F \in \mathcal{F}_{h}^{b}\end{cases}
$$

Error estimates based on inf-sup stability I

- We define the stronger norm $\left(\beta_{\mathrm{c}}:=\|\beta\|_{\left[L^{\infty}(\Omega)\right]^{d}}\right)$

$$
\|v\|_{\mathrm{uw} \sharp}^{2}:=\|v\|_{\mathrm{uwb}}^{2}+\sum_{T \in \mathcal{T}_{h}} \beta_{\mathrm{c}}^{-1} h_{T}\|\beta \cdot \nabla v\|_{L^{2}(T)}^{2}
$$

- We assume in what follows that the model is well-resolved and reaction is not dominant,

$$
h \leq \beta_{\mathrm{c}} \tau_{\mathrm{c}}
$$

Error estimates based on inf-sup stability II

Lemma (Discrete inf-sup condition for a_{h}^{upw})
There is $C_{\mathrm{sta}}^{\prime}>0$, independent of h, μ, and β, s.t.

$$
\forall v_{h} \in V_{h}, \quad C_{\mathrm{sta}}^{\prime} C_{\mathrm{sta}}\left\|v_{h}\right\|_{\mathrm{uw} \sharp} \leq \mathbb{S}:=\sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}^{\mathrm{upw}}\left(v_{h}, w_{h}\right)}{\left\|w_{h}\right\|_{\mathrm{uw} \sharp}},
$$

with $C_{\text {sta }}=\min \left(1, \tau_{\mathrm{c}} \mu_{0}\right) \leq 1 L^{2}$-coercivity constant.

Error estimates based on inf-sup stability III

Lemma (Boundedness)

There holds

$$
\forall\left(v, w_{h}\right) \in V_{* h} \times V_{h}, \quad\left|a_{h}^{\mathrm{upw}}\left(v, w_{h}\right)\right| \leq C_{\mathrm{bnd}}\|v\|_{\mathrm{uw} \sharp, *}\left\|w_{h}\right\|_{\mathrm{uw}},
$$

with C_{bnd} independent of h, μ, and β and

$$
\|v\|_{\mathrm{uw} \mathrm{\sharp,*}}^{2}:=\|v\|_{\mathrm{uw} \sharp}^{2}+\sum_{T \in \mathcal{T}_{h}} \beta_{\mathrm{c}}\left(h_{T}^{-1}\|v\|_{L^{2}(T)}^{2}+\|v\|_{L^{2}(\partial T)}^{2}\right) .
$$

Error estimates based on inf-sup stability IV

Theorem (Error estimate)

Let u solve (Π) and let u_{h} solve $\left(\Pi_{h}^{\mathrm{upw}}\right)$ where $V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ with $k \geq 0$. Then, there holds

$$
\left\|u-u_{h}\right\|_{\mathrm{uw} \sharp} \leq C \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{\mathrm{uw} \sharp, *},
$$

with C independent of h and depending on the data only through the factor $\left\{\min \left(1, \tau_{c} \mu_{0}\right)\right\}^{-1}$.

Corollary (Convergence rate for smooth solutions)

Assume $u \in H^{k+1}(\Omega)$. Then, there holds

$$
\left\|u-u_{h}\right\|_{\mathrm{uw} \sharp} \leq C_{u} h^{k+1 / 2},
$$

with $C_{u}=C\|u\|_{H^{k+1}(\Omega)}$ and C independent of h and depending on the data only through the factor $\left\{\min \left(1, \tau_{c} \mu_{0}\right)\right\}^{-1}$.

The unsteady case I

$$
\begin{aligned}
\partial_{t} u+\beta \cdot \nabla u+\mu u & =f & & \text { in } \Omega \times\left(0, t_{\mathrm{F}}\right), \\
u & =0 & & \text { on } \partial \Omega^{-} \times\left(0, t_{\mathrm{F}}\right), \\
u(\cdot, t=0) & =u_{0} & & \text { in } \Omega
\end{aligned}
$$

The unsteady case II

- We define $A_{h}^{\text {upw }}: V_{* h} \rightarrow V_{h}$ s.t. with $\eta=1$ (upwind),

$$
\forall\left(v, w_{h}\right) \in V_{* h} \times V_{h}, \quad\left(A_{h}^{\mathrm{upw}} v, w_{h}\right)_{L^{2}(\Omega)}=a_{h}^{\mathrm{upw}}\left(v, w_{h}\right)
$$

- The space semidiscrete problem reads

$$
\begin{equation*}
d_{t} u_{h}(t)+A_{h}^{\mathrm{upw}} u_{h}(t)=f_{h}(t) \quad \forall t \in\left[0, t_{\mathrm{F}}\right] \tag{h}
\end{equation*}
$$

with initial condition $u_{h}(0)=\pi_{h} u_{0}$ and source term

$$
f_{h}(t)=\pi_{h} f(t) \quad \forall t \in\left[0, t_{\mathrm{F}}\right],
$$

■ $\left(\Pi_{h}(t)\right)$ is a system of coupled ODEs

The unsteady case III

Lemma (Consistency and discrete dissipation for $A_{h}^{\text {upw }}$)

The discrete operator $A_{h}^{\text {upw }}$ satisfies the following properties:

- Consistency: For the exact solution $u \in C^{0}\left(H^{1}(\Omega)\right) \cap C^{1}\left(L^{2}(\Omega)\right)$,

$$
\pi_{h} d_{t} u(t)+A_{h}^{\mathrm{upw}} u(t)=f_{h}(t) \quad \forall t \in\left[0, t_{\mathrm{F}}\right] .
$$

- Discrete dissipation: For all $v_{h} \in V_{h}$,

$$
\left(A_{h}^{\mathrm{upw}} v_{h}, v_{h}\right)_{L^{2}(\Omega)}=\left|v_{h}\right|_{\beta}^{2}+\left(\Lambda v_{h}, v_{h}\right)_{L^{2}(\Omega)},
$$

where we have defined on $V_{* h}$ the seminorm

$$
|v|_{\beta}^{2}:=\int_{\partial \Omega} \frac{1}{2}|\beta \cdot \mathrm{n}| v^{2}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \frac{1}{2}\left|\beta \cdot \mathrm{n}_{F}\right| \llbracket v \rrbracket^{2} .
$$

Time discretization I

- Let δt be the (constant) time step s.t.

$$
t^{n}:=n \delta t, \quad \forall 0 \leq n \leq N, \quad t_{\mathrm{F}}=N \delta t
$$

- We assume that the time step resolves the reference time τ_{c}

$$
\delta t \leq \tau_{\mathrm{C}} \text { and } \delta t \leq t_{\mathrm{F}}
$$

- For a function of time $\varphi \in C^{0}(V)$ we set

$$
\varphi^{n}:=\varphi\left(t^{n}\right)
$$

Time discretization II

■ The simplest time marching scheme is the forward Euler scheme,

$$
u_{h}^{n+1}=u_{h}^{n}-\delta t A_{h}^{\mathrm{upw}} u_{h}^{n}+\delta t f_{h}^{n}
$$

- Equivalently,

$$
\frac{u_{h}^{n+1}-u_{h}^{n}}{\delta t}+A_{h}^{\mathrm{upw}} u_{h}^{n}=f_{h}^{n}
$$

UNIVEASTIEMONTEELIER 2

Time discretization III

- To improve the accuracy of time discretization, one possibility is to consider explicit Runge-Kutta (RK) schemes
- Such schemes are one-step methods where, at each time step, starting from u_{h}^{n}, s stages, $s \geq 1$, are performed to compute u_{h}^{n+1}
- Explicit RK schemes can be formulated in various forms

Time discretization IV

- Herein we focus on the increment form

$$
\begin{align*}
k_{i} & =-A_{h}^{\text {upw }}\left(u_{h}^{n}+\delta t \sum_{j=1}^{s} a_{i j} k_{j}\right)+f_{h}\left(t^{n}+c_{i} \delta t\right) \quad \forall i \in\{1, \ldots, s\}, \\
u_{h}^{n+1} & =u_{h}^{n}+\delta t \sum_{i=1}^{s} b_{i} k_{i} . \tag{s}
\end{align*}
$$

where

- $\left(a_{i j}\right)_{1 \leq i, j \leq s}$ are real numbers
- $\left(b_{i}\right)_{1 \leq i \leq s}$ are real numbers s.t. $\sum_{i=1}^{s} b_{i}=1$
- $\left(c_{i}\right)_{1 \leq i \leq s}$ are real numbers in [0,1] s.t. $c_{i}=\sum_{j=1}^{s} a_{i j} \forall 1 \leq i \leq s$
- The k_{i} can be interpreted as intermediate increments

Time discretization \vee

■ These quantities are usually collected in the so-called Butcher's array

$$
\left[\begin{array}{c:ccc}
c_{1} & a_{11} & \ldots & a_{1 s} \\
\vdots & \vdots & & \vdots \\
c_{s} & a_{s 1} & \ldots & a_{s s} \\
\hdashline & b_{1} & \ldots & b_{s}
\end{array}\right]
$$

- The scheme is explicit whenever

$$
a_{i j}=0 \text { for all } j \geq i
$$

- Explicit schemes require to invert the mass matrix at each stage
- For dG method, the mass matrix is (block) diagonal

Time discretization VI

- The forward Euler scheme is actually a one-stage RK method with

$$
\left[\begin{array}{c:c}
0 & 0 \\
\hdashline 1
\end{array}\right] \quad\left\{\begin{aligned}
k_{1} & =-A_{h}^{\mathrm{upw}} u_{h}^{n}+f_{h}^{n} \\
u_{h}^{n+1} & =u_{h}^{n}+\delta t k_{1}
\end{aligned}\right.
$$

Time discretization VII

- Two examples of two-stage RK schemes are the improved Euler

$$
\left[\begin{array}{c:cc}
0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 \\
\hdashline: 0 & 1
\end{array}\right] \quad\left\{\begin{aligned}
k_{1} & =-A_{h}^{\mathrm{upw}} u_{h}^{n}+f_{h}^{n} \\
k_{2} & =-A_{h}^{\mathrm{upw}}\left(u_{h}^{n}+\frac{1}{2} \delta t k_{1}\right)+f_{h}^{n+1 / 2} \\
u_{h}^{n+1} & =u_{h}^{n}+\delta t k_{2}
\end{aligned}\right.
$$

with $f_{h}^{n+1 / 2}=f_{h}\left(t^{n}+\frac{1}{2} \delta t\right)$ and Heun schemes

$$
\left[\begin{array}{c:cc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hdashline: 1 / 2 & 1 / 2
\end{array}\right] \quad\left\{\begin{aligned}
k_{1} & =-A_{h}^{\text {upw }} u_{h}^{n}+f_{h}^{n} \\
k_{2} & =-A_{h}^{\text {upw }}\left(u_{h}^{n}+\delta t k_{1}\right)+f_{h}^{n+1} \\
u_{h}^{n+1} & =u_{h}^{n}+\delta t \frac{1}{2}\left(k_{1}+k_{2}\right)
\end{aligned}\right.
$$

Time discretization VIII

- For $f=0$, since $A_{h}^{\text {upw }}$ is linear, both schemes can be written

$$
u_{h}^{n+1}=u_{h}^{n}-\delta t A_{h}^{\mathrm{upw}} u_{h}^{n}+\frac{1}{2} \delta t^{2}\left(A_{h}^{\mathrm{upw}}\right)^{2} u_{h}^{n} .
$$

- On the right-hand side, we recognize a second-order Taylor expansion in time at t^{n} where the time derivatives have been substituted using

$$
d_{t} u\left(t^{n}\right)=-A_{h}^{\mathrm{upw}} u\left(t^{n}\right),
$$

and replacing $u \leftarrow u_{h}$

Time discretization IX

■ An example of three-stage RK scheme is the three-stage Heun scheme for which

$$
\left[\begin{array}{c:ccc}
0 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 0 \\
2 / 3 & 0 & 2 / 3 & 0 \\
\hdashline & 1 / 4 & 0 & 3 / 4
\end{array}\right] \quad\left\{\begin{aligned}
k_{1} & =-A_{h}^{\mathrm{upw}} u_{h}^{n}+f_{h}^{n}, \\
k_{2} & =-A_{h}^{\mathrm{upw}}\left(u_{h}^{n}+\frac{1}{3} \delta t k_{1}\right)+f_{h}^{n+1 / 3} \\
k_{3} & =-A_{h}^{\mathrm{upw}}\left(u_{h}^{n}+\frac{2}{3} \delta t k_{2}\right)+f_{h}^{n+2 / 3} \\
u_{h}^{n+1} & =u_{h}^{n}+\frac{1}{4} \delta t\left(k_{1}+3 k_{3}\right)
\end{aligned}\right.
$$

- Straightforward algebra shows

$$
u_{h}^{n+1}=u_{h}^{n}-\delta t A_{h}^{\mathrm{upw}} u_{h}^{n}+\frac{1}{2} \delta t^{2}\left(A_{h}^{\mathrm{upw}}\right)^{2} u_{h}^{n}-\frac{1}{6} \delta t^{3}\left(A_{h}^{\mathrm{upw}}\right)^{3} u_{h}^{n}
$$

- We recognize now a third-order Taylor expansion in time

Time discretization X

- Finally, an example of four-stage RK scheme is

$$
\left[\begin{array}{c:cccc}
0 & 0 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
\hdashline & 1 / 6 & 1 / 3 & 1 / 3 & 1 / 6
\end{array}\right] \quad\left\{\begin{array}{c}
k_{1}=-A_{h}^{\text {upw }} u_{h}^{n}+f_{h}^{n} \\
k_{2}=-A_{h}^{\text {upw }}\left(u_{h}^{n}+\frac{1}{2} \delta t k_{1}\right)+f_{h}^{n+1 / 2} \\
k_{3}=-A_{h}^{\text {upw }}\left(u_{h}^{n}+\frac{1}{2} \delta t k_{2}\right)+f_{h}^{n+1 / 2} \\
k_{4}=-A_{h}^{\text {upw }}\left(u_{h}^{n}+\delta t k_{3}\right)+f_{h}^{n+1} \\
u_{h}^{n+1}=u_{h}^{n}+\frac{1}{6} \delta t\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
\end{array}\right.
$$

Time discretization XI

- An alternative formulation of RK schemes consists in introducing intermediate stages for the discrete solution instead of the intermediate increments k_{i}
- When $A_{h}^{\text {upw }}$ is linear, the two formulations are equivalent in the absence of external forcing
- In the nonlinear case, the form based on intermediate stages for the discrete solution is more appropriate

Main convergence results I

- We next state some error estimates under CFL conditions of the form

$$
\begin{equation*}
\delta t \leq \varrho \frac{h}{\beta_{\mathrm{c}}}, \quad \varrho>0 \tag{CFL}
\end{equation*}
$$

- For the forward Euler scheme, we only consider the case $k=0$ since the CFL to achieve stability is too stringent for $k \geq 1$
- For explicit RK2 and RK3 schemes, we consider dG schemes with polynomial degree $k \geq 0$ for space semidiscretization

Main convergence results II

Theorem (Convergence for forward Euler)

Set $V_{h}=\mathbb{P}_{d}^{0}\left(\mathcal{T}_{h}\right)$, assume $u \in C^{0}\left(H^{1}(\Omega)\right) \cap C^{2}\left(L^{2}(\Omega)\right)$ and (CFL) with $\varrho \leq \varrho^{\text {Eul }}$ for $\varrho^{\text {Eul }}$ independent of $h, \delta t, f, \mu$, and β. Then, there holds

$$
\left\|u^{N}-u_{h}^{N}\right\|_{L^{2}(\Omega)}+\left(\sum_{m=0}^{N-1} \delta t\left|u^{m}-u_{h}^{m}\right|_{\beta}^{2}\right)^{\frac{1}{2}} \lesssim e^{C_{\mathrm{sta}} \frac{t_{\mathrm{F}}}{\tau_{*}}}\left(\chi_{1} \delta t+\chi_{2} h^{\frac{1}{2}}\right)
$$

where $\chi_{1}=t_{\mathrm{F}}^{\frac{1}{2}} \tau_{*}^{\frac{1}{2}}\left\|d_{t}^{2} u\right\|_{C^{0}\left(L^{2}(\Omega)\right)}$ and $\chi_{2}=t_{\mathrm{F}}^{\frac{1}{2}} \beta_{\mathrm{c}}^{\frac{1}{2}}\|u\|_{C^{0}\left(H^{1}(\Omega)\right)}$, and $C_{\text {sta }}$ is independent of $h, \delta t$, and the data f, μ, and β.

Main convergence results III

- We reformulate the RK2 scheme as

$$
\begin{aligned}
w_{h}^{n} & =u_{h}^{n}-\delta t A_{h}^{\text {upw }} u_{h}^{n}+\delta t f_{h}^{n}, \\
u_{h}^{n+1} & =\frac{1}{2}\left(u_{h}^{n}+w_{h}^{n}\right)-\frac{1}{2} \delta t A_{h}^{\text {upw }} w_{h}^{n}+\frac{1}{2} \delta t \psi_{h}^{n},
\end{aligned}
$$

with initial condition $u_{h}^{0}=\pi_{h} u_{0}$.

- We assume $f \in C^{2}\left(L^{2}(\Omega)\right)$ and

$$
\left\|\psi_{h}^{n}-f_{h}^{n}-\delta t d_{t} f_{h}^{n}\right\|_{L^{2}(\Omega)} \lesssim \delta t^{2}\left\|d_{t}^{2} f(t)\right\|_{C^{0}\left(L^{2}(\Omega)\right)} .
$$

Main convergence results IV

Theorem (Convergence for RK2)

Assume $u \in C^{3}\left(L^{2}(\Omega)\right) \cap C^{0}\left(H^{1}(\Omega)\right)$. Set $V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ with $k \geq 1$.

- In the case $k \geq 2$, assume the $4 / 3-C F L$ condition

$$
\delta t \leq \varrho^{\prime} \tau_{*}^{-\frac{1}{3}}\left(\frac{h}{\beta_{\mathrm{c}}}\right)^{\frac{4}{3}}, \quad \varrho^{\prime}>0
$$

- In the case $k=1$, assume the CFL condition (CFL), that is,

$$
\delta t \leq \varrho^{\mathrm{RK} 2} \frac{h}{\beta_{\mathrm{c}}}
$$

with $\varrho^{\mathrm{RK} 2}$ independent of $h, \delta t, f, \mu$, and β.
Finally, assume $d_{t}^{s} u \in C^{0}\left(H^{k+1-s}(\Omega)\right)$ for $s \in\{0,1\}$. Then,

$$
\left\|u^{N}-u_{h}^{N}\right\|_{L^{2}(\Omega)}+\left(\sum_{m=0}^{N-1} \delta t\left|u^{m}-u_{h}^{m}\right|_{\beta}^{2}\right)^{\frac{1}{2}} \lesssim e^{C_{\text {sta }} \frac{t_{\mathrm{F}}}{\tau_{*}}}\left(\chi_{1} \delta t^{2}+\chi_{2} h^{k+\frac{1}{2}}\right),
$$

where $C_{\text {sta }}$ is independent of h, δ, and the data f, μ, and β, and χ_{1} and χ_{2} depend only on $t_{\mathrm{F}}, \tau_{*}, \beta_{\mathrm{c}}$, and bounded norms of f and u.

Main convergence results V

- We reformulate the RK3 scheme as

$$
\begin{aligned}
w_{h}^{n} & =u_{h}^{n}-\delta t A_{h}^{\mathrm{upw}} u_{h}^{n}+\delta t f_{h}^{n} \\
y_{h}^{n} & =\frac{1}{2}\left(u_{h}^{n}+w_{h}^{n}\right)-\frac{1}{2} \delta t A_{h}^{\mathrm{upw}} w_{h}^{n}+\frac{1}{2} \delta t\left(f_{h}^{n}+\delta t d_{t} f_{h}^{n}\right) \\
u_{h}^{n+1} & =\frac{1}{3}\left(u_{h}^{n}+w_{h}^{n}+y_{h}^{n}\right)-\frac{1}{3} \delta t A_{h}^{\mathrm{upw}} y_{h}^{n}+\frac{1}{3} \delta t \psi_{h}^{n}
\end{aligned}
$$

with initial condition $u_{h}^{0}=\pi_{h} u_{0}$.

- We assume $f \in C^{3}\left(L^{2}(\Omega)\right)$ and

$$
\left\|\psi_{h}^{n}-f_{h}^{n}-\delta t d_{t} f_{h}^{n}-\frac{1}{2} \delta t^{2} d_{t}^{2} f_{h}^{n}\right\|_{L^{2}(\Omega)} \lesssim \delta t^{3}\left\|d_{t}^{3} f\right\|_{C^{0}\left(L^{2}(\Omega)\right)}
$$

Main convergence results VI

Theorem (Convergence for RK3)

Assume $u \in C^{4}\left(L^{2}(\Omega)\right) \cap C^{0}\left(H^{1}(\Omega)\right)$. Set $V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ for $k \geq 1$.
Assume

$$
\delta t \leq \varrho^{\mathrm{RK} 3} \frac{h}{\beta_{\mathrm{c}}}
$$

for $\varrho^{\mathrm{RK} 3}$ independent of $h, \delta t, f, \mu$, and β. Finally, assume $d_{t}^{s} u \in C^{0}\left(H^{k+1-s}(\Omega)\right)$ for $s \in\{0,1,2\}$. Then,

$$
\left\|u^{N}-u_{h}^{N}\right\|_{L^{2}(\Omega)}+\left(\sum_{m=0}^{N-1} \delta t\left|u^{m}-u_{h}^{m}\right|_{\beta}^{2}\right)^{\frac{1}{2}} \lesssim e^{C_{\mathrm{sta}} \frac{t_{\mathrm{F}}}{\tau_{*}}}\left(\chi_{1} \delta t^{3}+\chi_{2} h^{k+\frac{1}{2}}\right),
$$

where $C_{\text {sta }}$ is independent of $h, \delta t$, and the data f, μ, and β, and χ_{1} and χ_{2} depend only on $t_{\mathrm{F}}, \tau_{*}, \beta_{\mathrm{c}}$, and bounded norms of f and u.

Part III

Scalar second-order PDEs

Outline

8 Setting

9 Heuristic derivation

10 Convergence analysis

11 Liftings and discrete gradients

Setting I

- For $f \in L^{2}(\Omega)$ we consider the model problem

$$
\begin{aligned}
-\triangle u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}
$$

- The weak formulation reads with $V:=H_{0}^{1}(\Omega)$,

$$
\text { Find } u \in V \text { s.t. } a(u, v)=\int_{\Omega} f v \text { for all } v \in V
$$

where

$$
a(u, v):=\int_{\Omega} \nabla u \cdot \nabla v
$$

Setting II

- The well-posedness of (Π) hinges on Poincaré's inequality,

$$
\forall v \in H_{0}^{1}(\Omega), \quad\|v\|_{L^{2}(\Omega)} \leq C_{\Omega}\|\nabla v\|_{\left[L^{2}(\Omega)\right]^{d}}
$$

- Indeed, a classical result is the coercivity of a,

$$
\forall v \in H_{0}^{1}(\Omega), \quad a(v, v) \geq \frac{1}{1+C_{\Omega}^{2}}\|v\|_{H^{1}(\Omega)}^{2}
$$

Lemma (Continuity of the potential and of the diffusive flux)
Letting $\llbracket v \rrbracket_{F}=\{v v\}_{F}=v$ for all $F \in \mathcal{F}_{h}^{b}$, there holds

$$
\begin{aligned}
\llbracket u \rrbracket=0 & \forall F \in \mathcal{F}_{h}, \\
\llbracket \nabla u \rrbracket \cdot \mathrm{n}_{F}=0 & \forall F \in \mathcal{F}_{h}^{i} .
\end{aligned}
$$

Setting III

Assumption (Regularity of exact solution and space V_{*})

We assume that the exact solution u is s.t.

$$
u \in V_{*}:=V \cap H^{2}(\Omega) .
$$

We set $V_{* h}:=V_{*}+V_{h}$. This implies, in particular, that the traces of both u and $\nabla u \cdot \mathrm{n}_{F}$ are square-integrable.

Roadmap for the design of dG methods

1 Extend the continuous bilinear form to $X_{* h} \times X_{h}$ by replacing

$$
\nabla \leftarrow \nabla_{h}
$$

2. Check for stability

- remove bothering terms in a consistent way
- if necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved
4 Prove boundedness by appropriately selecting $\|\cdot \mid\|_{*}$

Symmetric Interior Penalty: Heuristic derivation I

$$
V_{h}:=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right), \quad k \geq 1
$$

- We derive a dG method for (П) based on a bilinear form a_{h}
- For all $\left(v, w_{h}\right) \in V_{* h} \times V_{h}$ we set

$$
a_{h}^{(0)}\left(v, w_{h}\right):=\int_{\Omega} \nabla_{h} v \cdot \nabla_{h} w_{h}=\sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla v \cdot \nabla w_{h}
$$

Consistency I

- Integrating by parts element-by-element we arrive at

$$
a_{h}^{(0)}\left(v, w_{h}\right)=-\sum_{T \in \mathcal{T}_{h}} \int_{T}(\Delta v) w_{h}+\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla v \cdot \mathrm{n}_{T}\right) w_{h}
$$

- The second term in the RHS can be reformulated as follows:

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla v \cdot \mathrm{n}_{T}\right) w_{h}=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket\left(\nabla_{h} v\right) w_{h} \rrbracket \cdot \mathrm{n}_{F}+\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F}\left(\nabla v \cdot \mathrm{n}_{F}\right) w_{h}
$$

Consistency II

- Moreover,

$$
\llbracket\left(\nabla_{h} v\right) w_{h} \rrbracket=\left\{\nabla_{h} v\right\} \llbracket w_{h} \rrbracket+\llbracket \nabla_{h} v \rrbracket\left\{w_{h}\right\},
$$

since letting $a_{i}=\left.(\nabla v)\right|_{T_{i}}, b_{i}=\left.w_{h}\right|_{T_{i}}, i \in\{1,2\}$, yields

$$
\begin{aligned}
\llbracket\left(\nabla_{h} v\right) w_{h} \rrbracket & =a_{1} b_{1}-a_{2} b_{2} \\
& =\frac{1}{2}\left(a_{1}+a_{2}\right)\left(b_{1}-b_{2}\right)+\left(a_{1}-a_{2}\right) \frac{1}{2}\left(b_{1}+b_{2}\right) \\
& \left.=\left\{\left\{\nabla_{h} v\right\}\right\} \llbracket w_{h} \rrbracket+\llbracket \nabla_{h} v \rrbracket\left\{w_{h}\right\}\right\} .
\end{aligned}
$$

- As a result, and accounting also for boundary faces,

$$
\left.\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\nabla v \cdot \mathrm{n}_{T}\right) w_{h}=\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\nabla_{h} v\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket \nabla_{h} v \rrbracket \cdot \mathrm{n}_{F}\left\{w_{h}\right\}
$$

Consistency III

- In conclusion,

$$
\begin{aligned}
a_{h}^{(0)}\left(v, w_{h}\right)= & -\sum_{T \in \mathcal{T}_{h}} \int_{T}(\triangle v) w_{h}+\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left\{\nabla_{h} v\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket \\
& +\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket \nabla_{h} v \rrbracket \cdot \mathrm{n}_{F}\left\{\left\{w_{h}\right\}\right\}
\end{aligned}
$$

- To check consistency, set $v=u$. For all $w_{h} \in V_{h}$,

$$
a_{h}^{(0)}\left(u, w_{h}\right)=\int_{\Omega} f w_{h}+\sum_{F \in \mathcal{F}_{h}} \int_{F}\left(\nabla u \cdot \mathrm{n}_{F}\right) \llbracket w_{h} \rrbracket
$$

- Hence, we modify $a_{h}^{(0)}$ as follows:

$$
a_{h}^{(1)}\left(v, w_{h}\right):=\int_{\Omega} \nabla_{h} v \cdot \nabla_{h} w_{h}-\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left[\nabla_{h} v\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket
$$

Symmetry I

- A desirable property is symmetry since
- it simplifies the solution of the linear system
- it is used to prove optimal L^{2} error estimates
- We consider the following modification of $a_{h}^{(1)}$:

$$
\begin{aligned}
a_{h}^{\mathrm{cs}}\left(v, w_{h}\right):= & \int_{\Omega} \nabla_{h} v \cdot \nabla_{h} w_{h} \\
& -\sum_{F \in \mathcal{F}_{h}} \int_{F}\left(\left\{\left\{\nabla_{h} v\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket+\llbracket v \rrbracket\left\{\left\{\nabla_{h} w_{h}\right\}\right\} \cdot \mathrm{n}_{F}\right)
\end{aligned}
$$

Symmetry II

- Element-by-element integration by parts yields

$$
\begin{aligned}
a_{h}^{\mathrm{cs}}\left(v, w_{h}\right)= & -\sum_{T \in \mathcal{T}_{h}} \int_{T}(\Delta v) w_{h}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \llbracket \nabla_{h} v \rrbracket \cdot \mathrm{n}_{F}\left\{\left\{w_{h}\right\}\right. \\
& \left.\left.-\sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket v \rrbracket \llbracket \nabla_{h} w_{h}\right\}\right\} \cdot \mathrm{n}_{F}
\end{aligned}
$$

- This shows that $a_{h}^{\text {cs }}$ retains consistency since

$$
\begin{aligned}
\llbracket \nabla_{h} u \rrbracket_{F} \cdot \mathrm{n}_{F} & =0 & & \text { for all } F \in \mathcal{F}_{h}^{i}, \\
\llbracket u \rrbracket_{F} & =0 & & \text { for all } F \in \mathcal{F}_{h}
\end{aligned}
$$

Coercivity I

- For all $v_{h} \in V_{h}$ there holds

$$
a_{h}^{\mathrm{cs}}\left(v_{h}, v_{h}\right)=\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}-2 \sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left\{\nabla_{h} v_{h}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket v_{h} \rrbracket
$$

- The boxed term is nondefinite

■ We further modify $a_{h}^{\text {cs }}$ as follows: For all $\left(v, w_{h}\right) \in V_{* h} \times V_{h}$,

$$
a_{h}^{\mathrm{sip}}\left(v, w_{h}\right):=a_{h}^{\mathrm{cs}}\left(v, w_{h}\right)+s_{h}\left(v, w_{h}\right)
$$

with the stabilization bilinear form

$$
s_{h}\left(v, w_{h}\right):=\sum_{F \in \mathcal{F}_{h}} \frac{\eta}{h_{F}} \int_{F} \llbracket v \rrbracket \llbracket w_{h} \rrbracket
$$

Coercivity II

■ We aim at asserting coercivity in the norm

$$
\forall v \in V_{* h}, \quad\|v\|_{\text {sip }}:=\left(\left\|\nabla_{h} v\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}+|v|_{\mathrm{J}}^{2}\right)^{\frac{1}{2}}
$$

with jump seminorm

$$
|v|_{J}:=\left(\eta^{-1} s_{h}(v, v)\right)^{\frac{1}{2}}=\left(\sum_{F \in \mathcal{F}_{h}} \frac{1}{h_{F}}\|\llbracket v \rrbracket\|_{L^{2}(F)}^{2}\right)^{\frac{1}{2}}
$$

- We anticipate the following discrete Poincare's inequality:

$$
\forall v_{h} \in V_{h}, \quad\left\|v_{h}\right\|_{L^{2}(\Omega)} \leq \sigma_{2}\left\|v_{h}\right\|_{\text {sip }}
$$

with $\sigma_{2}>0$ is independent of h

Coercivity III

The choice for s_{h} is justified by the following result.

Lemma (Bound on consistency and symmetry terms)

For all $\left(v, w_{h}\right) \in V_{* h} \times V_{h}$,

$$
\left|\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\| \nabla_{h} v\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket\right| \leq\left(\sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{T}} h_{F}\left\|\left.\nabla v\right|_{T} \cdot \mathrm{n}_{F}\right\|_{L^{2}(F)}^{2}\right)^{\frac{1}{2}}\left|w_{h}\right|_{\mathrm{J}} .
$$

Moreover, if $v=v_{h} \in V_{h}$,

$$
\left|\sum_{F \in \mathcal{F}_{h}} \int_{F}\left\{\left\{\nabla_{h} v_{h}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket\right| \leq C_{\mathrm{tr}} N_{\partial}^{\frac{1}{2}}\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}\left|v_{h}\right|_{\mathrm{J}} .
$$

Coercivity IV

Lemma (Discrete coercivity)
For all $\eta>\underline{\eta}:=C_{\mathrm{tr}}^{2} N_{\partial}$ there holds

$$
\forall v_{h} \in V_{h}, \quad a_{h}^{\text {sip }}\left(v_{h}, v_{h}\right) \geq C_{\eta}\left\|v_{h}\right\|_{\text {sip }}^{2}
$$

with $C_{\eta}:=\left(\eta-C_{\mathrm{tr}}^{2} N_{\partial}\right)(1+\eta)^{-1}$.

Coercivity V

$$
\begin{aligned}
a_{h}^{\text {sip }}\left(v, w_{h}\right)= & \left.\int_{\Omega} \nabla_{h} v \cdot \nabla_{h} w_{h}-\sum_{F \in \mathcal{F}_{h}} \int_{F}\left(\left\{\nabla_{h} v\right\}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket+\llbracket v \rrbracket\left\{\left\{\nabla_{h} w_{h}\right\}\right\} \cdot \mathrm{n}_{F}\right) \\
& +\sum_{F \in \mathcal{F}_{h}} \frac{\eta}{h_{F}} \int_{F} \llbracket v \rrbracket \llbracket w_{h} \rrbracket,
\end{aligned}
$$

- Using the bound on consistency and symmetry terms,

$$
a_{h}^{\mathrm{sip}}\left(v_{h}, v_{h}\right) \geq\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}-2 C_{\operatorname{tr}} N_{\partial}^{1 / 2}\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}\left|v_{h}\right|_{\mathrm{J}}+\eta\left|v_{h}\right|_{\mathrm{J}}^{2}
$$

■ For all $\beta \in \mathbb{R}^{+}, \eta>\beta^{2}, x, y \in \mathbb{R}$, there holds

$$
x^{2}-2 \beta x y+\eta y^{2} \geq \frac{\eta-\beta^{2}}{1+\eta}\left(x^{2}+y^{2}\right)
$$

$■$ Let $\beta=C_{\operatorname{tr}} N_{\partial}^{1 / 2}, x=\left\|\nabla_{h} v_{h}\right\|_{\left[L^{2}(\Omega)\right]^{d}}, y=\left|v_{h}\right|_{\mathrm{J}}$ to conclude

Coercivity VI

Lemma (Boundedness)

There is C_{bnd}, independent of h, s.t.

$$
\forall\left(v, w_{h}\right) \in V_{* h} \times V_{h}, \quad a_{h}^{\operatorname{sip}}\left(v, w_{h}\right) \leq C_{\mathrm{bnd}}\|v\|_{\text {sip }, *}\left\|w_{h}\right\|_{\text {sip }}
$$

where

$$
\|v\|_{\text {sip }, *}:=\left(\|v\|_{\text {sip }}^{2}+\sum_{T \in \mathcal{T}_{h}} h_{T}\left\|\left.\nabla v\right|_{T} \cdot \mathrm{n}_{T}\right\|_{L^{2}(\partial T)}^{2}\right)^{\frac{1}{2}}
$$

Basic energy error estimate I

Find $u_{h} \in V_{h}$ s.t. $a_{h}^{\text {sip }}\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h}$ for all $v_{h} \in V_{h}$

Theorem (Energy error estimate)

Assume $u \in V_{*}$ and $\eta>\underline{\eta}$. Then, there is C, independent of h, s.t.

$$
\left\|u-u_{h}\right\|_{\text {sip }} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{\text {sip }, *} .
$$

Basic energy error estimate II

Corollary (Convergence rate in $\|\cdot\|_{\text {sip }}$-norm)

Additionally assume $u \in H^{k+1}(\Omega)$. Then, there holds

$$
\left\|u-u_{h}\right\|_{\text {sip }} \leq C_{u} h^{k},
$$

with $C_{u}=C\|u\|_{H^{k+1}(\Omega)}$ and C independent of h.

- The above estimate shows that convergence requires $k \geq 1$, i.e., we cannot take $k=0$
- For an extension to the lowest-order case, cf. [DP, 2012]

L^{2}-norm error estimate ।

- Using the broken Poincaré inequality of [Brenner, 2004] one can infer

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq \sigma_{2}^{\prime} C_{u} h^{k}
$$

- This estimate is suboptimal by one power in h
- An optimal estimate can be recovered exploiting symmetry
- Further regularity for the problem needs to be assumed

L^{2}-norm error estimate II

Definition (Elliptic regularity)

Elliptic regularity holds true for the model problem (Π) if there is $C_{\text {ell }}$, only depending on Ω, s.t., for all $\psi \in L^{2}(\Omega)$, the solution to the problem,

$$
\text { Find } \zeta \in H_{0}^{1}(\Omega) \text { s.t. } a(\zeta, v)=\int_{\Omega} \psi v \text { for all } v \in H_{0}^{1}(\Omega)
$$

is in V_{*} and satisfies

$$
\|\zeta\|_{H^{2}(\Omega)} \leq C_{\mathrm{ell}}\|\psi\|_{L^{2}(\Omega)}
$$

Elliptic regularity holds, e.g., if the domain Ω is convex [Grisvard, 1992]

L^{2}-norm error estimate III

Theorem (L^{2}-norm error estimate)

Let $u \in V_{*}$ solve (Π) and assume elliptic regularity. Then, there is C, independent of h, s.t.

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C h\left\|u-u_{h}\right\|_{\text {sip }, *} .
$$

Corollary (Convergence rate in $\|\cdot\|_{\left.L^{2}(\Omega)^{-n o r m}\right)}$
Additionally assume $u \in H^{k+1}(\Omega)$. Then, there holds

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C_{u} h^{k+1}
$$

with $C_{u}=C\|u\|_{H^{k+1}(\Omega)}$ and C independent of h.

Liftings I

■ Liftings map jumps onto vector-valued functions defined on elements
■ Liftings play a key role in several developments

- Flux and mixed formulations
- Computable lower bound for η
- Convergence to minimal regularity solutions
- The theoretical developments will eventually allow us to analyze dG methods for nonlinear problems such as the Navier-Stokes equations

Liftings II

- For an integer $l \geq 0$, we define the (local) lifting operator

$$
\mathrm{r}_{F}^{l}: L^{2}(F) \longrightarrow\left[\mathbb{P}_{d}^{l}\left(\mathcal{T}_{h}\right)\right]^{d}
$$

as follows: For all $\varphi \in L^{2}(F)$,

$$
\int_{\Omega} \mathrm{r}_{F}^{l}(\varphi) \cdot \tau_{h}=\int_{F}\left\{\left\{\tau_{h}\right\}\right\} \cdot \mathrm{n}_{F} \varphi \quad \forall \tau_{h} \in\left[\mathbb{P}_{d}^{l}\left(\mathcal{T}_{h}\right)\right]^{d}
$$

- We observe that $\operatorname{supp}\left(\mathrm{r}_{F}^{l}\right)=\bigcup_{T \in \mathcal{T}_{F}} \bar{T}$

Liftings III

- For all $l \geq 0$ and $v \in H^{1}\left(\mathcal{T}_{h}\right)$, we define the (global) lifting

$$
\mathrm{R}_{h}^{l}(\llbracket v \rrbracket):=\sum_{F \in \mathcal{F}_{h}} \mathrm{r}_{F}^{l}(\llbracket v \rrbracket) \in\left[\mathbb{P}_{d}^{l}\left(\mathcal{T}_{h}\right)\right]^{d}
$$

- $\mathrm{R}_{h}^{l}(\llbracket v \rrbracket)$ maps the jumps of v into a global, vector-valued volumic contribution which is homogeneous to a gradient

Liftings IV

Lemma (Bound on local lifting)

Let $F \in \mathcal{F}_{h}$ and let $l \geq 0$. For all $v \in H^{1}\left(\mathcal{T}_{h}\right)$, there holds

$$
\left\|\mathrm{r}_{F}^{l}(\llbracket v \rrbracket)\right\|_{\left[L^{2}(\Omega)\right]^{d}} \leq C_{\mathrm{tr}} h_{F}^{-\frac{1}{2}}\|\llbracket v \rrbracket\|_{L^{2}(F)}
$$

Lemma (Bound on global lifting)

Let $l \geq 0$. For all $v \in H^{1}\left(\mathcal{T}_{h}\right)$, there holds

$$
\left.\left.\| \mathrm{R}_{h}^{l}(\llbracket v]\right)\left\|_{\left[L^{2}(\Omega)\right]^{d}} \leq N_{\partial}^{\frac{1}{2}}\left(\sum_{F \in \mathcal{F}_{h}} \| \mathrm{r}_{F}^{l}(\llbracket v]\right)\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}\right)^{\frac{1}{2}} \leq C_{\mathrm{tr}} N_{\partial}^{\frac{1}{2}}|v|_{J} .
$$

Discrete gradients I

- For $l \geq 0$, we define the discrete gradient operator

$$
G_{h}^{l}: H^{1}\left(\mathcal{T}_{h}\right) \longrightarrow\left[L^{2}(\Omega)\right]^{d},
$$

as follows: For all $v \in H^{1}\left(\mathcal{T}_{h}\right)$,

$$
G_{h}^{l}(v):=\nabla_{h} v-\mathrm{R}_{h}^{l}(\llbracket v \rrbracket)
$$

- The discrete gradient accounts for inter-element and boundary jumps

Lemma (Bound on discrete gradient)
Let $l \geq 0$. For all $v \in H^{1}\left(\mathcal{T}_{h}\right)$, there holds

$$
\left\|G_{h}^{l}(v)\right\|_{\left[L^{2}(\Omega)\right]^{d}} \leq\left(1+C_{\mathrm{tr}}^{2} N_{\partial}\right)^{\frac{1}{2}}\|v\|_{\text {sip }}
$$

Reformulation of $a_{h}^{\text {sip }}$ ।

- Let $l \in\{k-1, k\}$ and set $V_{h}=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ with $k \geq 1$
- There holds for all $v_{h}, w_{h} \in V_{h}$,

$$
a_{h}^{\mathrm{cs}}\left(v_{h}, w_{h}\right)=\int_{\Omega} \nabla_{h} v_{h} \cdot \nabla_{h} w_{h}-\int_{\Omega} \nabla_{h} v_{h} \cdot \mathrm{R}_{h}^{l}\left(\llbracket w_{h} \rrbracket\right)-\int_{\Omega} \nabla_{h} w_{h} \cdot \mathrm{R}_{h}^{l}\left(\llbracket v_{h} \rrbracket\right)
$$

$■$ Indeed $\nabla_{h} v_{h} \in\left[\mathbb{P}_{d}^{l}\left(\mathcal{T}_{h}\right)\right]^{d}$ with $l \geq k-1$,

$$
\forall F \in \mathcal{F}_{h}, \quad \int_{F}\left\{\left\{\nabla_{h} v_{h}\right\} \cdot \mathrm{n}_{F} \llbracket w_{h} \rrbracket=\int_{\Omega} \nabla_{h} v_{h} \cdot \mathrm{r}_{F}^{l}\left(\llbracket w_{h} \rrbracket\right)\right.
$$

■ Using the definition of discrete gradients,

$$
a_{h}^{\mathrm{cs}}\left(v_{h}, w_{h}\right)=\int_{\Omega} G_{h}^{l}\left(v_{h}\right) \cdot G_{h}^{l}\left(w_{h}\right)-\int_{\Omega} \mathrm{R}_{h}^{l}\left(\llbracket v_{h} \rrbracket\right) \cdot \mathrm{R}_{h}^{l}\left(\llbracket w_{h} \rrbracket\right)
$$

Reformulation of $a_{h}^{\text {sip }}$ II

- Plugging the above expression into $a_{h}^{\text {sip }}$,

$$
a_{h}^{\operatorname{sip}}\left(v_{h}, w_{h}\right)=\int_{\Omega} G_{h}^{l}\left(v_{h}\right) \cdot G_{h}^{l}\left(w_{h}\right)+\hat{s}_{h}^{\operatorname{sip}}\left(v_{h}, w_{h}\right)
$$

with

$$
\hat{s}_{h}^{\operatorname{sip}}\left(v_{h}, w_{h}\right):=\sum_{F \in \mathcal{F}_{h}} \frac{\eta}{h_{F}} \int_{F} \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket-\int_{\Omega} \mathrm{R}_{h}^{l}\left(\llbracket v_{h} \rrbracket\right) \cdot \mathrm{R}_{h}^{l}\left(\llbracket w_{h} \rrbracket\right)
$$

- Dropping the negative term in $\hat{s}_{h}^{\text {sip }}$ leads to the Local Discontinuous Galerkin (LDG) method of [Cockburn and Shu, 1998]
- This method has the drawback of having a significantly larger stencil

Reformulation of $a_{h}^{\operatorname{sip}}$ III

$$
\begin{aligned}
& \int_{\Omega} \nabla_{h} v_{h} \cdot \nabla_{h} w_{h} \\
& \int_{\Omega}\left(\nabla_{h} v_{h} \cdot \mathrm{R}_{h}^{l}\left(\llbracket w_{h} \rrbracket\right)+\nabla_{h} w_{h} \cdot \mathrm{R}_{h}^{l}\left(\llbracket v_{h} \rrbracket\right)\right), \\
& \sum_{F \in \mathcal{F}_{h}} \frac{\eta}{h_{F}} \int_{F} \llbracket v_{h} \rrbracket \llbracket w_{h} \rrbracket \\
& \int_{\Omega} \mathrm{R}_{h}^{l}\left(\llbracket u_{h} \rrbracket\right) \cdot \mathrm{R}_{h}^{l}\left(\llbracket v_{h} \rrbracket\right), \int_{\Omega} G_{h}^{l}\left(v_{h}\right) \cdot G_{h}^{l}\left(w_{h}\right)
\end{aligned}
$$

Figure: Stencil of the different terms

Reformulation of $a_{h}^{\text {sip }}$ IV

Lemma (Coercivity (alternative form))

For all $v_{h} \in V_{h}$,

$$
\left\|G_{h}\left(v_{h}\right)\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}+\left(\eta-C_{\mathrm{tr}}^{2} N_{\partial}\right)\left|v_{h}\right|_{\mathrm{J}}^{2} \leq a_{h}\left(v_{h}, v_{h}\right)
$$

Proof.

Observe that

$$
a_{h}\left(v_{h}, v_{h}\right)=\left\|G_{h}\left(v_{h}\right)\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2}+\eta\left|v_{h}\right|_{J}^{2}-\left\|R_{h}\left(\llbracket v_{h} \rrbracket\right)\right\|_{\left[L^{2}(\Omega)\right]^{d}}^{2},
$$

and use the L^{2}-stability of R_{h} to conclude.

Numerical fluxes I

■ Let $T \in \mathcal{T}_{h}, \xi \in \mathbb{P}_{d}^{k}(T)$. Element-by-element IBP yields

$$
\int_{T} f \xi=-\int_{T}(\triangle u) \xi=\int_{T} \nabla u \cdot \nabla \xi-\int_{\partial T}\left(\nabla u \cdot \mathrm{n}_{T}\right) \xi .
$$

■ Hence, letting $\Phi_{F}(u):=-\nabla u \cdot \mathrm{n}_{F}$ and $\epsilon_{T, F}=\mathrm{n}_{T} \cdot \mathrm{n}_{F}$,

$$
\int_{T} \nabla u \cdot \nabla \xi+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \Phi_{F}(u) \xi=\int_{T} f \xi
$$

- Our goal is to identify a similar local conservation property for u_{h}

Numerical fluxes II

- Using $v_{h}=\xi \chi_{T}$ as test function we obtain

$$
\begin{aligned}
\int_{T} f \xi=a_{h}^{\operatorname{sip}}\left(u_{h}, \xi \chi_{T}\right)= & \left.\int_{T} \nabla u_{h} \cdot \nabla \xi-\sum_{F \in \mathcal{F}_{T}} \int_{F}\left\{(\nabla \xi) \chi_{T}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket u_{h} \rrbracket \\
& -\sum_{F \in \mathcal{F}_{T}} \int_{F}\left\{\nabla_{h} u_{h}\right\} \cdot \mathrm{n}_{F} \llbracket \xi \chi_{T} \rrbracket+\sum_{F \in \mathcal{F}_{T}} \int_{F} \frac{\eta}{h_{F}} \llbracket u_{h} \rrbracket \llbracket \xi \chi_{T} \rrbracket
\end{aligned}
$$

■ Let $l \in\{k-1, k\}$. For all $T \in \mathcal{T}_{h}$ and all $\xi \in \mathbb{P}_{d}^{k}(T)$,

$$
\int_{T} G_{h}^{l}\left(u_{h}\right) \cdot \nabla \xi+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \phi_{F}\left(u_{h}\right) \xi=\int_{T} f \xi
$$

with

$$
\phi_{F}\left(u_{h}\right):=\underbrace{\left.-\left\{\nabla_{h} u_{h}\right\}\right\} \cdot \mathrm{n}_{F}}_{\text {consistency }}+\underbrace{\frac{\eta}{h_{F}} \llbracket u_{h} \rrbracket}_{\text {penalty }}
$$

Numerical fluxes III

- Taking $\xi \equiv 1$ we infer the FV flux conservation property,

$$
\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \phi_{F}\left(u_{h}\right)=\int_{T} f
$$

Also in the elliptic case local conservation holds on the computational mesh (as opposed to vertex- or face-centered dual mesh)

Part IV

Applications in fluid dynamics

Outline

12 Stokes

13 Navier-Stokes

ume
 UNIVEASTITMONTPELIER 2

The Stokes problem I

- We consider the flow of a highly viscous fluid
- The governing Stokes equations read

$$
\begin{aligned}
\hline-\triangle u+\nabla p=f & \text { in } \Omega, \\
\nabla \cdot u=0 & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega, \\
\langle p\rangle_{\Omega}=0 &
\end{aligned}
$$

The Stokes problem II

- Let $L_{0}^{2}(\Omega):=\left\{v \in L^{2}(\Omega) \mid\langle v\rangle_{\Omega}=0\right\}$ and set

$$
U:=\left[H_{0}^{1}(\Omega)\right]^{d}, \quad P:=L_{0}^{2}(\Omega), \quad X:=U \times P
$$

- The spaces U, P, and X are Hilbert spaces when equipped with the inner products inducing the norms

$$
\begin{aligned}
\|v\|_{U} & :=\|v\|_{\left[H^{1}(\Omega)\right]^{d}}:=\left(\sum_{i=1}^{d}\left\|v_{i}\right\|_{H^{1}(\Omega)}^{2}\right)^{1 / 2} \\
\|q\|_{P} & :=\|q\|_{L^{2}(\Omega)} \\
\|(v, q)\|_{X} & :=\left(\|v\|_{U}^{2}+\|q\|_{P}^{2}\right)^{1 / 2}
\end{aligned}
$$

The Stokes problem III

- For all $(u, p),(v, q) \in X$ let

$$
a(u, v):=\int_{\Omega} \nabla u: \nabla v, \quad b(v, q):=-\int_{\Omega} q \nabla \cdot v, \quad B(v):=\int_{\Omega} f \cdot v,
$$

- The weak formulation reads: Find $(u, p) \in X$ s.t.

$$
\begin{align*}
a(u, v)+b(v, p) & =B(v) & & \forall v \in U, \tag{S}\\
-b(u, q) & =0 & & \forall q \in P
\end{align*}
$$

- $\left(\Pi_{S}\right)$ is a constrained minimization problem with the pressure acting as the Lagrange multiplier of the incompressibility constraint

The Stokes problem IV

- Equivalently, letting

$$
S((u, p),(v, q)):=a(u, v)+b(v, p)-b(u, q),
$$

we can formulate the problem as
Find $(u, p) \in X$ s.t. $S((u, p),(v, q))=B(v)$ for all $(v, q) \in X$

The Stokes problem V

- Well-posedness hinges on the coercivity of a and on the inf-sup condition

$$
\inf _{q \in P \backslash\{0\}} \sup _{v \in U \backslash\{0\}} \frac{b(v, q)}{\|v\|_{U}\|q\|_{P}} \geq \beta_{\Omega}>0
$$

■ Equivalently,

$$
\forall q \in P, \quad \beta_{\Omega}\|q\|_{P} \leq \sup _{v \in U \backslash\{0\}} \frac{b(v, q)}{\|v\|_{U}}
$$

The Stokes problem VI

Lemma (Surjectivity of the divergence operator from U to P)
Let $\Omega \in \mathbb{R}^{d}, d \geq 1$, be a connected domain. Then, there exists $\beta_{\Omega}>0$ s.t. for all $q \in P$, there is $v \in U$ satisfying

$$
q=\nabla \cdot v \quad \text { and } \quad \beta_{\Omega}\|v\|_{U} \leq\|q\|_{P}
$$

Proof.
See, e.g., [Girault and Raviart, 1986].

The Stokes problem VII

Proof of the continuous inf-sup condition

Let $q \in P$ and let $v \in U$ denote its velocity lifting. The case $v=0$ is trivial, so let us suppose $v \neq 0$:

$$
\begin{aligned}
\|q\|_{P}^{2} & =\int_{\Omega} q \nabla \cdot v=-b(v, q) \\
& \leq \sup _{w \in U \backslash\{0\}} \frac{b(w, q)}{\|w\|_{U}}\|v\|_{U} \\
& \leq \beta_{\Omega}^{-1} \sup _{w \in U \backslash\{0\}} \frac{b(w, q)}{\|w\|_{U}}\|q\|_{P},
\end{aligned}
$$

and the conclusion follows.

Equal-order discretization I

- For an integer $k \geq 1$ define the following spaces:

$$
U_{h}:=\left[\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right]^{d}, \quad P_{h}:=\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right) \cap L_{0}^{2}(\Omega), \quad X_{h}:=U_{h} \times P_{h}
$$

- Discrete pressure-velocity coupling: For all $\left(v_{h}, q_{h}\right) \in X_{h}$, set

$$
\begin{aligned}
b_{h}\left(v_{h}, q_{h}\right) & :=-\int_{\Omega}\left(\nabla_{h} \cdot v_{h}\right) q_{h}+\sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket v_{h} \rrbracket \cdot \mathrm{n}_{F}\left\{q_{h}\right\}=-\int_{\Omega} D_{h}^{l}\left(v_{h}\right) q_{h} \\
& \left.=\int_{\Omega} v_{h} \cdot \nabla q_{h}-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left\{v_{h}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket q_{h} \rrbracket,
\end{aligned}
$$

with $l=k$ and

$$
D_{h}^{l}\left(v_{h}\right):=\operatorname{tr}\left(G_{h}^{l}\left(v_{h}\right)\right)=\nabla_{h} \cdot v_{h}-\operatorname{tr}\left(R_{h}^{l}\left(\llbracket v_{h} \rrbracket\right)\right)
$$

Equal-order discretization II

- Extending the domain of b_{h} to $\left[H^{1}\left(\mathcal{T}_{h}\right)\right]^{d} \times H^{1}\left(\mathcal{T}_{h}\right)$, we obtain the consistency properties

$$
\begin{array}{ll}
\forall\left(v, q_{h}\right) \in U \times P_{h}, & b_{h}\left(v, q_{h}\right)=-\int_{\Omega} q_{h} \nabla \cdot v, \\
\forall\left(v_{h}, q\right) \in U_{h} \times H^{1}(\Omega), & b_{h}\left(v_{h}, q\right)=\int_{\Omega} v_{h} \cdot \nabla q,
\end{array}
$$

since, for all $v \in U$ and all $q \in H^{1}(\Omega)$,

$$
\begin{array}{ll}
\llbracket v \rrbracket=0 & \forall F \in \mathcal{F}_{h} \\
\llbracket q \rrbracket=0 & \forall F \in \mathcal{F}_{h}^{i}
\end{array}
$$

Equal-order discretization III

Lemma (Discrete inf-sup condition)

There is $\beta>0$ independent of h s.t. s.t.

$$
\forall q_{h} \in P_{h}, \quad \beta\left\|q_{h}\right\|_{P} \leq \sup _{v_{h} \in U_{h} \backslash\{0\}} \frac{b_{h}\left(v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{\mathrm{dG}}}+\left|q_{h}\right|_{p},
$$

where

$$
\left|q_{h}\right|_{p}^{2}:=\sum_{F \in \mathcal{F}_{h}^{i}} h_{F}\left\|\llbracket q_{h} \rrbracket\right\|_{L^{2}(F)}^{2} .
$$

Equal-order discretization IV

- We stabilize the pressure-velocity coupling using the bilinear form

$$
\forall\left(p_{h}, q_{h}\right) \in P_{h}, \quad s_{h}\left(p_{h}, r_{h}\right):=\sum_{F \in \mathcal{F}_{h}^{i}} h_{F} \int_{F} \llbracket p_{h} \rrbracket \llbracket q_{h} \rrbracket
$$

- We consider the bilinear form

$$
\begin{aligned}
& S_{h}\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right):= \\
& \quad a_{h}\left(u_{h}, v_{h}\right)+b_{h}\left(v_{h}, p_{h}\right)-b_{h}\left(u_{h}, q_{h}\right)+s_{h}\left(p_{h}, q_{h}\right)
\end{aligned}
$$

where

$$
a_{h}(w, v):=\sum_{i=1}^{d} a_{h}^{\operatorname{sip}}\left(w_{i}, v_{i}\right)
$$

Equal-order discretization V

- The discrete problem reads: Find $\left(u_{h}, p_{h}\right) \in X_{h}$ s.t.

$$
\begin{equation*}
S_{h}\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right)=B\left(v_{h}\right) \quad \forall\left(v_{h}, q_{h}\right) \in X_{h} \tag{S,h}
\end{equation*}
$$

■ Equivalently: Find $\left(u_{h}, p_{h}\right) \in X_{h}$ s.t.

$$
\begin{aligned}
a_{h}\left(u_{h}, v_{h}\right)+b_{h}\left(v_{h}, p_{h}\right) & =B\left(v_{h}\right) & & \forall v_{h} \in U_{h} \\
-b_{h}\left(u_{h}, q_{h}\right)+s_{h}\left(p_{h}, q_{h}\right) & =0 & & \forall q_{h} \in P_{h}
\end{aligned}
$$

- This corresponds to a linear system of the form

$$
\left[\begin{array}{cc}
\mathbf{A}_{h} & \mathbf{B}_{h} \\
-\mathbf{B}_{h}^{t} & \mathbf{C}_{h}
\end{array}\right]\left[\begin{array}{c}
\mathbf{U}_{h} \\
\mathbf{P}_{h}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{F}_{h} \\
\mathbf{0}
\end{array}\right]
$$

Stability I

- Equip X_{h} with the the following norm:

$$
\left\|\left(v_{h}, q_{h}\right)\right\|_{\mathrm{S}}^{2}:=\left\|v_{h}\right\|_{\text {vel }}^{2}+\left\|q_{h}\right\|_{P}^{2}+\left|q_{h}\right|_{p}^{2}
$$

where

$$
\|v\|_{\mathrm{vel}}^{2}:=\sum_{i=1}^{d}\left\|v_{i}\right\|_{\mathrm{sip}}^{2}
$$

- Owing to partial coercivity,

$$
\forall\left(v_{h}, q_{h}\right) \in X_{h}, \quad \alpha\left\|v_{h}\right\|_{\mathrm{vel}}^{2}+\left|q_{h}\right|_{p}^{2} \leq S_{h}\left(\left(v_{h}, q_{h}\right),\left(v_{h}, q_{h}\right)\right)
$$

Stability II

Lemma (Discrete inf-sup for S_{h})

There is $c_{S}>0$ independent of h s.t., for all $\left(v_{h}, q_{h}\right) \in X_{h}$,

$$
c_{S}\left\|\left(v_{h}, q_{h}\right)\right\|_{\mathrm{S}} \leq \sup _{\left(w_{h}, r_{h}\right) \in X_{h} \backslash\{0\}} \frac{S_{h}\left(\left(v_{h}, q_{h}\right),\left(w_{h}, r_{h}\right)\right)}{\left\|\left(w_{h}, r_{h}\right)\right\|_{\mathrm{S}}} .
$$

Proof.

Consequence of the coercivity of a_{h} and the discrete inf-sup on b_{h}.

Convergence to smooth solutions I

Assumption (Regularity of the exact solution and space X_{*})

We assume that the exact solution (u, p) is in $X_{*}:=U_{*} \times P_{*}$ where

$$
U_{*}:=U \cap\left[H^{2}(\Omega)\right]^{d}, \quad P_{*}:=P \cap H^{1}(\Omega) .
$$

We set

$$
U_{* h}:=U_{*}+U_{h}, \quad P_{* h}:=P_{*}+P_{h}, \quad X_{* h}:=X_{*}+X_{h} .
$$

Lemma (Jumps of ∇u and p across interfaces)
Assume $(u, p) \in X_{*}$. Then,

$$
\llbracket \nabla u \rrbracket \cdot \mathrm{n}_{F}=0 \quad \text { and } \quad \llbracket p \rrbracket=0 \quad \forall F \in \mathcal{F}_{h}^{i}
$$

Convergence to smooth solutions II

Lemma (Consistency)

Assume that $(u, p) \in X_{*}$. Then,

$$
S_{h}\left((u, p),\left(v_{h}, q_{h}\right)\right)=\int_{\Omega} f \cdot v_{h} \quad \forall\left(v_{h}, q_{h}\right) \in X_{h} .
$$

Convergence to smooth solutions III

- We have proved an inf-sup condition for S_{h}
- It remains to investigate the boundedness of S_{h}
- Letting

$$
\|(v, q)\|_{\text {sto,* }}^{2}:=\|(v, q)\|_{\text {sto }}^{2}+\sum_{T \in \mathcal{T}_{h}} h_{T}\left\|\left.\nabla v\right|_{T} \cdot \mathrm{n}_{T}\right\|_{L^{2}(\partial T)}^{2}+\sum_{T \in \mathcal{T}_{h}} h_{T}\|q\|_{L^{2}(\partial T)}^{2}
$$

there holds for all $(v, q) \in X_{* h}$ and all $\left(w_{h}, r_{h}\right) \in X_{h}$,

$$
S_{h}\left((v, q),\left(w_{h}, r_{h}\right)\right) \leq C_{\mathrm{bnd}}\|(v, q)\|_{\text {sto }, *}\left\|\left(w_{h}, r_{h}\right)\right\|_{\text {sto }}
$$

with C_{bnd} independent of the meshsize

Convergence to smooth solutions IV

Theorem ($\|\cdot\|_{\text {sto }}$-norm error estimate and convergence rate)

Let $(u, p) \in X_{*}$ denote the unique solution of problem $\left(\Pi_{\mathrm{S}}\right)$. Let $\left(u_{h}, p_{h}\right) \in X_{h}$ solve $\left(\Pi_{\mathrm{S}, h}\right)$. Then, there is C, independent of h, such that

$$
\left\|\left(u-u_{h}, p-p_{h}\right)\right\|_{\text {sto }} \leq C \inf _{\left(v_{h}, q_{h}\right) \in X_{h}}\left\|\left(u-v_{h}, p-q_{h}\right)\right\|_{\text {sto,* }} .
$$

Moreover, if $(u, p) \in\left[H^{k+1}(\Omega)\right]^{d} \times H^{k}(\Omega)$,

$$
\left\|\left(u-u_{h}, p-p_{h}\right)\right\|_{\text {sto }} \leq C_{u, p} h^{k},
$$

with $C_{u, p}=C\left(\|u\|_{\left[H^{k+1}(\Omega)\right]^{d}}+\|p\|_{H^{k}(\Omega)}\right)$.

Numerical fluxes I

- Define the inviscid fluxes

$$
\begin{aligned}
& \hat{p}:= \begin{cases}\left.\left\{p_{h}\right\}\right\} & \text { if } F \in \mathcal{F}_{h}^{i}, \\
p_{h} & \text { if } F \in \mathcal{F}_{h}^{b},\end{cases} \\
& \hat{u}:= \begin{cases}\left\{\left\{u_{h}\right\}\right\}+h_{F} \llbracket p_{h} \rrbracket \mathrm{n}_{F} & \text { if } F \in \mathcal{F}_{h}^{i}, \\
0 & \text { if } F \in \mathcal{F}_{h}^{b},\end{cases}
\end{aligned}
$$

- Additionally, we consider here the vector-valued viscous flux

$$
\phi_{F}^{\mathrm{diff}}\left(u_{h}\right)=-\left\{\left\{\nabla_{h} u_{h}\right\} \cdot \mathrm{n}_{F}+\frac{\eta}{h_{F}} \llbracket u_{h} \rrbracket\right.
$$

Numerical fluxes II

- Let $T \in \mathcal{T}_{h}$ and let $\xi \in\left[\mathbb{P}_{d}^{k}(T)\right]^{d}$ with $\xi=\left(\xi_{i}\right)_{1 \leq i \leq d}$
- Setting $v_{h}=\xi \chi_{T}$ in the discrete momentum conservation equation, we obtain for $l \in\{k-1, k\}$,

$$
\begin{aligned}
& \int_{T} \sum_{i=1}^{d} G_{h}^{l}\left(u_{h, i}\right) \cdot \nabla \xi_{i}-\int_{T} p_{h} \nabla \cdot \xi \\
&+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F}\left[\phi_{F}^{\mathrm{diff}}\left(u_{h}\right)+\hat{p} \mathrm{n}_{F}\right] \cdot \xi=\int_{T} f \cdot \xi
\end{aligned}
$$

Numerical fluxes III

- Similarly, let $\zeta \in \mathbb{P}_{d}^{k}(T)$
- Setting $q_{h}=\zeta \chi_{T}-\left\langle\zeta \chi_{T}\right\rangle_{\Omega}$ in the discrete mass conservation equation, we obtain

$$
-\int_{T} u_{h} \cdot \nabla \zeta+\sum_{F \in \mathcal{F}_{T}} \epsilon_{T, F} \int_{F} \hat{u} \cdot \mathrm{n}_{F} \zeta=0
$$

Convergence to minimal regularity solutions I

Theorem (Convergence to minimal regularity solutions)

Let $\left(u_{\mathcal{H}}, p_{\mathcal{H}}\right):=\left(\left(u_{h}, p_{h}\right)\right)_{h \in \mathcal{H}}$ solve $\left(\Pi_{\mathrm{S}, h}\right)$ on the admissible mesh sequence $\mathcal{T}_{\mathcal{H}}$. Then, as $h \rightarrow 0$,

$$
\begin{aligned}
u_{h} & \rightarrow u \quad \begin{array}{l}
\text { strongly in }\left[L^{2}(\Omega)\right]^{d}, \\
G_{h}\left(u_{h}\right)
\end{array} \rightarrow \nabla u \quad \text { strongly in }\left[L^{2}(\Omega)\right]^{d, d}, \\
\nabla_{h} u_{h} & \rightarrow \nabla u \quad \text { strongly in }\left[L^{2}(\Omega)\right]^{d, d}, \\
\left|u_{h}\right|_{\mathrm{J}} & \rightarrow 0, \\
p_{h} & \rightarrow p \quad \text { strongly in } L^{2}(\Omega), \\
\left|p_{h}\right|_{p} & \rightarrow 0,
\end{aligned}
$$

where $(u, p) \in X$ is the unique solution to $\left(\Pi_{S}\right)$.

Convergence to minimal regularity solutions II

Lemma (A priori estimate)

The problem $\left(\Pi_{\mathrm{S}, h}\right)$ is well-posed with the following a priori estimate:

$$
\left\|\left(u_{h}, p_{h}\right)\right\|_{\mathrm{S}} \leq \frac{\sigma_{2}}{c_{S}}\|f\|_{\left[L^{2}(\Omega)\right]^{d}} .
$$

- A priori estimate + discrete Rellich theorem [DP and Ern, 2010]: convergence of $\left(u_{\mathcal{H}}, p_{\mathcal{H}}\right)$ up to a subsequence
- Test using regular functions and conclude using density that the limit solves $\left(\Pi_{\mathrm{S}}\right)$
- Use continuous uniqueness to infer that the whole sequence converges
- Use partial coercivity to prove convergence of the gradients

The incompressible Navier-Stokes problem I

- The Navier-Stokes problem reads

$$
\begin{aligned}
&-\nu \triangle u+(u \cdot \nabla) u+\nabla p=f \\
& \text { in } \Omega \\
& \nabla \cdot u=0 \\
& \text { in } \Omega \\
& u=0 \\
& \text { on } \partial \Omega \\
&\langle p\rangle_{\Omega}=0
\end{aligned}
$$

- The nonlinear advection term is the physical source of turbulence

■ Uniqueness holds only under a suitable small data assumption

The incompressible Navier-Stokes problem II

- We introduce the trilinear form $t \in \mathcal{L}(U \times U \times U, \mathbb{R})$ is such that

$$
t(w, u, v):=\int_{\Omega}(w \cdot \nabla u) \cdot v=\int_{\Omega} \sum_{i, j=1}^{d} w_{j}\left(\partial_{j} u_{i}\right) v_{i} .
$$

- The weak formulation reads: Find $(u, p) \in X$ s.t., for all $(v, q) \in X$,

$$
\begin{equation*}
\nu a(u, v)+b(v, p)+t(u, u, v)-b(u, q)=B(v) \tag{NS}
\end{equation*}
$$

The incompressible Navier-Stokes problem III

Lemma (Skew-symmetry of trilinear form)

Letting

$$
t^{\prime}(w, u, v):=t(w, u, v)+\frac{1}{2} \int_{\Omega}(\nabla \cdot w) u \cdot v,
$$

there holds, for all $w \in U$,

$$
\forall v \in U, \quad t^{\prime}(w, v, v)=0
$$

Moreover, if $w \in V:=\{v \in U \mid \nabla \cdot v=0\}$,

$$
\forall v \in U, \quad t(w, v, v)=0 .
$$

The incompressible Navier-Stokes problem IV

- Let $w \in U$. We observe that, for all $v \in U$,

$$
t(w, v, v)+\frac{1}{2} \int_{\Omega}(\nabla \cdot w)|v|^{2}=\int_{\Omega} \frac{1}{2} w \cdot \nabla|v|^{2}+\frac{1}{2} \int_{\Omega}(\nabla \cdot w)|v|^{2}=\int_{\Omega} \frac{1}{2} \nabla \cdot\left(w|v|^{2}\right),
$$

- The divergence theorem yields

$$
t(w, v, v)+\frac{1}{2} \int_{\Omega}(\nabla \cdot w)|v|^{2}=\frac{1}{2} \int_{\partial \Omega}(w \cdot \mathrm{n})|v|^{2}=0
$$

since ($w \cdot \mathrm{n}$) vanishes on $\partial \Omega$ thus proving the first point

- The second point is an immediate consequence of the first

The incompressible Navier-Stokes problem V

- As a consequence, letting $(v, q)=(u, p)$ in $\left(\Pi_{\mathrm{NS}}\right)$,

$$
\nu\|\nabla u\|_{\left[L^{2}(\Omega)\right]^{d, d}}^{2}=\int_{\Omega} f \cdot u,
$$

where we have used $\nabla \cdot u=0$

- This shows that convection does not influence energy balance

Design of the discrete trilinear form I

■ Our starting point is, for $w_{h}, u_{h}, v_{h} \in U_{h}$,

$$
t_{h}^{(0)}\left(w_{h}, u_{h}, v_{h}\right):=\int_{\Omega}\left(w_{h} \cdot \nabla_{h} u_{h}\right) \cdot v_{h}+\frac{1}{2} \int_{\Omega}\left(\nabla_{h} \cdot w_{h}\right) u_{h} \cdot v_{h}
$$

- Skew-symmetry: For all $w_{h}, v_{h} \in U_{h}$, element-wise IBP yields,

$$
\left.\left.t_{h}^{(0)}\left(w_{h}, v_{h}, v_{h}\right)=\frac{1}{2} \sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket w_{h} \rrbracket \cdot n_{F}\left\{v_{h} \cdot v_{h}\right\}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left\{w_{h}\right\}\right\} \cdot n_{F} \llbracket v_{h} \rrbracket \cdot\left\{v_{h}\right\}\right\}
$$

- We modify $t_{h}^{(0)}$ as

$$
\begin{aligned}
t_{h}\left(w_{h}, u_{h}, v_{h}\right) & :=\int_{\Omega}\left(w_{h} \cdot \nabla_{h} u_{h}\right) \cdot v_{h}-\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left\{\left\{w_{h}\right\}\right\} \cdot \mathrm{n}_{F} \llbracket u_{h} \rrbracket \cdot\left\{\left\{v_{h}\right\}\right\} \\
+ & \frac{1}{2} \int_{\Omega}\left(\nabla_{h} \cdot w_{h}\right)\left(u_{h} \cdot v_{h}\right)-\frac{1}{2} \sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket w_{h} \rrbracket \cdot \mathrm{n}_{F}\left\{\left\{u_{h} \cdot v_{h}\right\}\right\}
\end{aligned}
$$

Design of the discrete trilinear form II

Lemma (Skew-symmetry of discrete trilinear form)
For all $w_{h} \in U_{h}$, there holds

$$
\forall v_{h} \in U_{h}, \quad t_{h}\left(w_{h}, v_{h}, v_{h}\right)=0
$$

Design of the discrete trilinear form III

- Let

$$
\begin{aligned}
& N_{h}\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right):= \\
& \nu a_{h}\left(u_{h}, v_{h}\right)+b_{h}\left(v_{h}, p_{h}\right)-b_{h}\left(u_{h}, q_{h}\right)+t_{h}\left(u_{h}, u_{h}, v_{h}\right)
\end{aligned}
$$

- The discrete problem reads: Find $\left(u_{h}, p_{h}\right) \in X_{h}$ s.t.

$$
\begin{equation*}
N_{h}\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right)=B\left(v_{h}\right) \quad \forall\left(v_{h}, q_{h}\right) \in X_{h} \tag{NS,h}
\end{equation*}
$$

- The existence of a solution to $\left(\Pi_{\mathrm{NS}, h}\right)$ can be proved by a topological degree argument

A priori estimate

Lemma (A priori estimate)

There are c_{1}, c_{2} independent of h such that

$$
\left\|\left(u_{h}, p_{h}\right)\right\|_{\mathrm{S}} \leq c_{1}\|f\|_{\left[L^{2}(\Omega)\right]^{d}}+c_{2}\|f\|_{\left[L^{2}(\Omega)\right]^{d}}^{2} .
$$

Also in this case, this a priori estimate is instrumental to apply the discrete Rellich theorem of [DP and Ern, 2010]

Convergence to minimal regularity solutions

Theorem (Convergence to minimal regularity solutions)

Let $\left(u_{\mathcal{H}}, p_{\mathcal{H}}\right):=\left(\left(u_{h}, p_{h}\right)\right)_{h \in \mathcal{H}}$ solve $\left(\Pi_{\mathrm{NS}, h}\right)$ on the admissible mesh sequence $\mathcal{T}_{\mathcal{H}}$. Then, as $h \rightarrow 0$ and up to a subsequence,

$$
\begin{aligned}
u_{h} & \rightarrow u \quad \begin{array}{ll}
\text { strongly in }\left[L^{2}(\Omega)\right]^{d}, \\
G_{h}\left(u_{h}\right) & \rightarrow \nabla u \quad \\
\text { strongly in }\left[L^{2}(\Omega)\right]^{d, d}, \\
\nabla_{h} u_{h} & \rightarrow \nabla u \quad \\
\text { strongly in }\left[L^{2}(\Omega)\right]^{d, d}, \\
\left|u_{h}\right|_{\mathrm{J}} & \rightarrow 0, \\
p_{h} & \rightarrow p \quad \text { weakly in } L^{2}(\Omega), \\
\left|p_{h}\right|_{p} & \rightarrow 0 .
\end{array}
\end{aligned}
$$

Moreover, under the small data condition, the whole sequence converges.

Numerical validation I

- Let $\Omega=(-0.5,1.5) \times(0,2)$
- We consider Kovasznay's solution

$$
\begin{aligned}
u_{1} & =1-e^{-\pi x_{2}} \cos \left(2 \pi x_{2}\right), \\
u_{2} & =-\frac{1}{2} e^{\pi x_{1}} \sin \left(2 \pi x_{2}\right), \\
p & =-\frac{1}{2} e^{\pi x_{1}} \cos \left(2 \pi x_{2}\right)-\widetilde{p},
\end{aligned}
$$

with $\widetilde{p} \simeq-0.920735694, \nu=\frac{1}{3 \pi}$ and $f=0$

- $\mathcal{T}_{\mathcal{H}}$ is a family of uniformly refined triuangular meshes, with h ranging from 0.5 down to 0.03125

Numerical validation II

h	$\left\\|e_{h, u}\right\\|_{\left[L^{2}(\Omega)\right]^{d}}$	order	$\left\\|e_{h, p}\right\\|_{L^{2}(\Omega)}$	order	$\left\\|e_{h}\right\\|_{\mathrm{S}}$	order
h_{0}	$8.87 e-01$	-	$1.62 e+00$	-	$1.19 e+01$	-
$h_{0} / 2$	$2.39 e-01$	1.89	$6.11 e-01$	1.41	$7.26 e+00$	0.71
$h_{0} / 4$	$5.94 e-02$	2.01	$2.01 e-01$	1.60	$3.68 e+00$	0.98
$h_{0} / 8$	$1.59 e-02$	1.90	$7.40 e-02$	1.44	$1.85 e+00$	0.99
$h_{0} / 16$	$4.17 e-03$	1.93	$3.14 e-02$	1.23	$9.25 e-01$	1.00

A variation with a simple physical interpretation I

$$
\begin{array}{rlrl}
\partial_{t} u+\nabla \cdot(-\nu \nabla u+F(u, p)) & =f, & & \text { in } \Omega \\
\nabla \cdot u & =0, & & \text { in } \Omega \\
u & =0, & & \text { on } \partial \Omega \\
\int_{\Omega} p & =0 & & \\
\hline
\end{array}
$$

$$
F_{i j}(u, p):=u_{i} u_{j}+p \delta_{i j}
$$

A variation with a simple physical interpretation II

■ Let $F \in \mathcal{F}_{h}^{i}, P \in F$ and define

$$
u_{\nu}:=u \cdot \mathrm{n}_{F}, \quad u_{\tau}:=u \cdot \tau_{F}
$$

- Restricting the problem to the normal direction we have

$$
\begin{aligned}
\frac{h_{F}^{2}}{c^{2}} \partial_{t} p+\partial_{x} u_{\nu} & =0, \\
\partial_{t} u_{\nu}+\partial_{x}\left(u_{\nu}^{2}+p\right) & =0, \\
\partial_{t} u_{\tau}+\partial_{x}\left(u_{\nu} u_{\tau}\right) & =0
\end{aligned}
$$

- To recover a hyperbolic problem we add an artificial compressibility term
- The inviscid flux can be obtained as the solution associated Riemann problem with initial datum $\left(u_{h}^{+}, p_{h}^{+}\right),\left(u_{h}^{-}, p_{h}^{-}\right)$at P

A variation with a simple physical interpretation III

Figure: Structure of the Riemann problem.

A variation with a simple physical interpretation IV

- The exact solution can be found using the Riemann invariants (rarefactions) and the Rankine-Hugoniot jump conditions (shocks)
- Following a similar procedure, it is possible to write the Riemann problem associated to the Stokes equations
■ Let $\left(u^{*}, p^{*}\right)$ be the solution We define the inviscid flux as

$$
\begin{aligned}
\hat{F}\left(u_{h}^{+}, p_{h}^{+} ; u_{h}^{-}, p_{h}^{-}\right) & :=F\left(u^{*}, p^{*}\right)=u_{i}^{*} u_{j}^{*}+p^{*} \delta_{i j} \\
\hat{u}\left(u_{h}^{+}, p_{h}^{+} ; u_{h}^{-}, p_{h}^{-}\right) & :=u^{*} .
\end{aligned}
$$

- In the Stokes case, an explicit expression is available for the fluxes

Numerical Fluxes for the Linearized Problems

■ We introduce the pressure flux $\hat{p}=p^{*}$ so that $(\hat{u}, \hat{p})=\left(u^{*}, p^{*}\right)$
■ In the Stokes case we obtain

$$
\begin{aligned}
& \hat{u}:=\left\{\left\{u_{h}\right\}+\frac{h_{F}}{2 c} \llbracket p_{h} \rrbracket \mathrm{n}_{F},\right. \\
& \hat{p}:=\left\{\left\{p_{h}\right\}\right\}+\frac{c}{2 h_{F}} \llbracket u_{h} \rrbracket \cdot \mathrm{n}_{F}
\end{aligned}
$$

- Take $c=2$ and compare with the numerical fluxes for the method we have analyzed!

References I

Arnold, D. N. (1982).
An interior penalty finite element method with discontinuous elements.
SIAM J. Numer. Anal., 19:742-760.

Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2002).
Unified analysis of discontinuous Galerkin methods for elliptic problems.
SIAM J. Numer. Anal., 39(5):1749-1779.
Babus̄ka, I. and Zlámal, M. (1973).
Nonconforming elements in the finite element method with penalty.
SIAM J. Numer. Anal., 10(5):863-875.
Bassi, F., Botti, L., Colombo, A., Di Pietro, D. A., and Tesini, P. (2012).
On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations.
J. Comput. Phys., 231(1):45-65.

Bassi, F., Crivellini, A., Di Pietro, D. A., and Rebay, S. (2006).
A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent flows.
In Wesseling, P., Oñate, E., and Périaux, J., editors, ECCOMAS CFD 2006 Proceedings (Egmond an Zee, Netherlands).

Bassi, F., Crivellini, A., Di Pietro, D. A., and Rebay, S. (2007).
An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows.
Comp. \& Fl., 36(10):1529-1546.
Bassi, F. and Rebay, S. (1997).
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations.
J. Comput. Phys., 131(2):267-279.

References II

Botti, L. and Di Pietro, D. A. (2011).
A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure.

```
J. Comput. Phys., 230(3):572-585.
```

Brenner, S. C. (2004).
Korn's inequalities for piecewise H^{1} vector fields.
Math. Comp., 73(247):1067-1087 (electronic).
Cockburn, B. and Shu, C.-W. (1989).
TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework.
Math. Comp., 52(186):411-435.
Cockburn, B. and Shu, C.-W. (1998).
The local discontinuous Galerkin finite element method for convection-diffusion systems.
SIAM J. Numer. Anal., 35:2440-2463.

Di Pietro, D. A. (2012).
Cell centered Galerkin methods for diffusive problems.
M2AN Math. Model. Numer. Anal., 46(1):111-144.
Di Pietro, D. A. and Ern, A. (2010).
Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations.
Math. Comp., 79(271):1303-1330.
Di Pietro, D. A., Ern, A., and Guermond, J.-L. (2008).
Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection. SIAM J. Numer. Anal., 46(2):805-831.

References III

Di Pietro, D. A., Lo Forte, S., and Parolini, N. (2006).
Mass preserving finite element implementations of the level set method.
App. Num. Math., 56:1179-1195.
DOI: 10.1016/j.apnum.2006.03.003.
Dupont, T. and Scott, R. (1980).
Polynomial approximation of functions in Sobolev spaces.
Math. Comp., 34(150):441-463.

Ern, A., Guermond, J.-L., and Caplain, G. (2007).
An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems.
Comm. Partial Differ. Eq., 32:317-341.
Girault, V. and Raviart, P.-A. (1986).
Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin.
Theory and algorithms.
Grisvard, P. (1992).
Singularities in Boundary Value Problems.
Masson, Paris.
Johnson, C. and Pitkäranta, J. (1986).
An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation.
Math. Comp., 46(173):1-26.
Lesaint, P. and Raviart, P.-A. (1974).
On a finite element method for solving the neutron transport equation.
In Mathematical Aspects of Finite Elements in Partial Differential Equations, pages 89-123. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York.

References IV

Nitsche, J. (1971).
Ober ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind.
Abh. Math. Sem. Univ. Hamburg, 36:9-15.
Collection of articles dedicated to Lothar Collatz on his sixtieth birthday.
Reed, W. H. and Hill, T. R. (1973).
Triangular mesh methods for the neutron transport equation.
Technical Report LA-UR-73-0479, http://lib-www.lanl.gov/cgi-bin/getfile?00354107.pdf, Los Alamos Scientific Laboratory, Los Alamos, NM.

