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Figure: Accuracy in advective problems [DP et al., 2006]
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Figure: Unsteady compressible Navier�Stokes, Onera M6 wing
[Bassi, Crivellini, DP, & Rebay, 2006]
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Figure: High-order accuracy in convection-dominated �ows (3d lid-driven
cavity, [Botti and DP, 2011])
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Figure: Unsteady incompressible Navier�Stokes, Turek
cylinder [Bassi, Crivellini, DP, & Rebay, 2007]
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Figure: High-order in space-time
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Figure: Degenerate advection-di�usion [DP et al., 2008]
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Figure: Adaptive dere�nement [Bassi, Botti, Colombo, DP, Tesini, 2012]



The origins: First-order PDEs

[Reed and Hill, 1973], dG for steady neutron transport

[Lesaint and Raviart, 1974], �rst error estimate

[Johnson and Pitkäranta, 1986], improved estimate

[Cockburn and Shu, 1989], explicit Runge�Kutta dG methods



The origins: Second-order PDES

[Nitsche, 1971], boundary penalty methods

[Babu²ka and Zlámal, 1973], Interior Penalty for bcs

[Arnold, 1982], Symmetric Interior Penalty (SIP) dG method

[Bassi and Rebay, 1997], compressible Navier�Stokes equations

[Arnold et al., 2002], uni�ed analysis



Part I

Basic concepts
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1 Broken spaces and operators

2 Abstract nonconforming error analysis

3 Mesh regularity



Faces, averages, and jumps I

De�nition (Mesh)

A mesh T of Ω is a �nite collection of disjoint open polyhedra T = {T}
s.t.

⋃
T∈T T = Ω. Each T ∈ T is called a mesh element.

De�nition (Element diameter, meshsize)

Let T be a mesh of Ω. For all T ∈ T , hT denotes the diameter T , and
the meshsize is de�ned as

h := max
T∈T

hT .

We use the notation Th for a mesh T with meshsize h.



Faces, averages, and jumps II

Figure: Example of mesh



Faces, averages, and jumps III

De�nition (Mesh faces)

Let Th be a mesh of the domain Ω. A closed subset F of Ω is a mesh
face if |F |d−1 > 0 and either one of the two following conditions holds:

∃T1, T2 ∈ Th, T1 6= T2, s.t. F = ∂T1 ∩ ∂T2 (interface);

∃T ∈ Th s.t. F = ∂T ∩ ∂Ω (boundary face).

Figure: Examples of interfaces



Faces, averages, and jumps IV

Interfaces are collected in F ih, boundary faces in Fbh, and

Fh := F ih ∪ Fbh.

For all T ∈ Th we let

FT := {F ∈ Fh | F ⊂ ∂T} ,

and we set

N∂ := max
T∈Th

card(FT )

Symmetrically, for all F ∈ Fh, we let

TF := {T ∈ Th | F ⊂ ∂T}



Faces, averages, and jumps V

T1 T2

F

nF

De�nition (Interface averages and jumps)

Assume v : Ω→ R smooth enough to admit a possibly two-valued trace
on all interfaces. Then, for all F ∈ F ih we let

{{v}} :=
1

2
(v|T1

+ v|T2
), JvK := v|T1

− v|T2
.

For all F ∈ Fbh with F ⊂ ∂T we conventionally set {{v}} = JvK = v|T .



Broken polynomial spaces I

k d = 1 d = 2 d = 3

0 1 1 1
1 2 3 4
2 3 6 10
3 4 10 20

Table: Dimension of Pkd for 1 ≤ d ≤ 3 and 0 ≤ k ≤ 3

Discontinuous Galerkin methods hinge on broken polynomial spaces,

Pkd(Th) :=
{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Pkd(T )

}
Hence, the number of DOFs is

dim(Pkd(Th)) = card(Th)× card(Pkd) = card(Th)× (k + d)!

k!d!



Broken polynomial spaces II

Figure: Orthonormal polynomial basis functions for an L-shaped element



Basic facts on Lebesgue and Sobolev spaces I

Let v : Ω→ R be Lebesgue measurable

Let 1 ≤ p ≤ ∞ be a real number. We set

‖v‖Lp(Ω) :=

(∫
Ω

|v|p
)1/p

1 ≤ p <∞,

and

‖v‖L∞(Ω) := inf{M > 0 | |v(x)| ≤M a.e. x ∈ Ω}

In either case, we de�ne the Lebesgue space

Lp(Ω) := {v Lebesgue measurable | ‖v‖Lp(Ω) <∞}



Basic facts on Lebesgue and Sobolev spaces II

Equipped with‖·‖Lp(Ω), L
p(Ω) is a Banach space for all p

L2(Ω) is a Hilbert space when equipped with the scalar product

(v, w)L2(Ω) :=

∫
Ω

vw

We record the Cauchy�Schwarz inequality: For all v, w ∈ L2(Ω),

(v, w)L2(Ω) ≤ ‖v‖L2(Ω)‖w‖L2(Ω)



Basic facts on Lebesgue and Sobolev spaces III

Let ∂i denote the distributional partial derivative with respect to xi

For a d-uple α = (α1, . . . , αd) ∈ Nd we note

∂αv := ∂α1
1 . . . ∂αdd v

For an integer m ≥ 0 we de�ne the Sobolev space

Hm(Ω) =
{
v ∈ L2(Ω) | ∀α ∈ Amd , ∂αv ∈ L2(Ω)

}



Basic facts on Lebesgue and Sobolev spaces IV

Hm(Ω) is a Hilbert space when equipped with the scalar product

(v, w)Hm(Ω) :=
∑
α∈Amd

(∂αv, ∂αw)L2(Ω),

leading to (with Akd :=
{
α ∈ Nd | |α|`1 ≤ k

}
),

‖v‖Hm(Ω) :=

 ∑
α∈Am

d

‖∂αv‖2L2(Ω)

 1
2

, |v|Hm(Ω) :=

 ∑
α∈Amd

‖∂αv‖2L2(Ω)

 1
2

For m = 1, letting ∇v = (∂1v, . . . , ∂dv)t yields

(v, w)H1(Ω) = (v, w)L2(Ω) + (∇v,∇w)[L2(Ω)]d



Basic facts on Lebesgue and Sobolev spaces V

It is useful to record the following trace inequality:

‖v‖L2(∂D) ≤ C‖v‖
1/2
L2(D)‖v‖

1/2
H1(D),

which implies that functions in H1(D) have traces in L2(∂D)



Broken Sobolev spaces and broken gradient I

In the analysis we need to formulate local regularity requirements for
the exact solution

To this purpose we introduce the broken Sobolev spaces

Hm(Th) :=
{
v ∈ L2(Ω) | ∀T ∈ Th, v|T ∈ Hm(T )

}
Clearly, Hm(Ω) ⊂ Hm(Th)

Owing to the trace inequality,

functions in H1(Th) have trace in L2(∂T ) for all T ∈ Th



Broken Sobolev spaces and broken gradient II

De�nition (Broken gradient)

The broken gradient ∇h : H1(Th)→ [L2(Ω)]d is de�ned s.t.

∀v ∈ H1(Th), (∇hv)|T := ∇(v|T ) ∀T ∈ Th.



Broken Sobolev spaces and broken gradient III

Lemma (Characterization of H1(Ω))

A function v ∈ H1(Th) belongs to H1(Ω) if and only if

JvK = 0 ∀F ∈ F ih.

Moreover there holds, for all v ∈ H1(Ω),

∇hv = ∇v in [L2(Ω)]d.



Abstract nonconforming error analysis I

Let X be a function space s.t.

X ↪→ L2(Ω) ≡ L2(Ω)′ ↪→ X ′

with dense and continuous injection



Abstract nonconforming error analysis II

We consider the model linear problem

Find u ∈ X s.t. a(u,w) = 〈f, w〉X′,X for all w ∈ X (Π)

with a bounded bilinear form in X ×X and f ∈ X ′

For Vh := Pkd(Th) the dG problem reads

Find uh ∈ Vh s.t. ah(uh, wh) = lh(wh) for all wh ∈ Vh (Πh)

with ah bilinear form on Vh × Vh and lh linear form on Vh

In general dG methods are nonconforming, i.e.,

Vh = Pkd(Th) 6⊂ X



Abstract nonconforming error analysis III

We formulate general conditions to bound the error

|||u− uh|||

in terms of the approximation properties of Vh,

inf
yh∈Vh

|||u− yh|||∗

In the analysis of dG methods we often have

|||·||| 6= |||·|||∗



Abstract nonconforming error analysis IV

De�nition (Discrete stability)

We say that the discrete bilinear form ah enjoys discrete stability on Vh if
there is Csta > 0 independent of h s.t.

∀vh ∈ Vh, Csta|||vh||| ≤ sup
wh∈Vh\{0}

ah(vh, wh)

|||wh|||
, (inf-sup)

or, equivalently,

Csta ≤ inf
vh∈Vh\{0}

sup
wh∈Vh\{0}

ah(vh, wh)

|||vh||||||wh|||
.

Stability is a purely discrete property which is intimately linked with
the well-posedness of the discrete problem



Abstract nonconforming error analysis V

A su�cient condition for discrete stability is coercivity,

∀vh ∈ Vh, Csta|||vh|||2 ≤ ah(vh, vh)

Discrete coercivity implies (inf-sup) since, for all vh ∈ Vh \ {0},

Csta|||vh||| ≤
ah(vh, vh)

|||vh|||
≤ sup
wh∈Vh\{0}

ah(vh, wh)

|||wh|||



Abstract nonconforming error analysis VI

For consistency we need to plug u into the �rst argument of ah

However, in most cases ah cannot be extended to X × Vh

Assumption (Regularity of the exact solution)

We assume that there is X∗ ⊂ X s.t.

ah can be extended to X∗ × Vh and

the exact solution u is s.t. u ∈ X∗.



Abstract nonconforming error analysis VII

De�nition (Consistency)

The discrete problem (Πh) is consistent if for the exact solution u ∈ X∗,

ah(u,wh) = lh(wh) ∀wh ∈ Vh. (cons.)

Lemma (Galerkin orthogonality)

If u ∈ X∗ and ah is consistent, Galerkin orthogonality holds, i.e.,

ah(u− uh, wh) = 0 ∀wh ∈ Vh.



Abstract nonconforming error analysis VIII

X∗h := X∗ + Vh

The error u− uh belongs to X∗h

It is often not possible to express boundedness in terms of the |||·|||
norm, so we introduce a second norm |||·|||∗ s.t.

∀v ∈ X∗h, |||v||| ≤ |||v|||∗

De�nition (Boundedness)

We say that the discrete bilinear form ah is bounded in X∗h × Vh if there
is Cbnd independent of h s.t.

∀(v, wh) ∈ X∗h × Vh, |ah(v, wh)| ≤ Cbnd|||v|||∗|||wh|||.



Abstract nonconforming error analysis IX

Theorem (Abstract error estimate)

Let u solve (Π) and assume u ∈ X∗. Then, assuming discrete stability,

consistency, and boundedness, there holds

|||u− uh||| ≤
(

1 +
Cbnd

Csta

)
inf

yh∈Vh
|||u− yh|||∗. (est.)



Abstract nonconforming error analysis X

inf
yh∈Vh

|||u− yh||| ≤ |||u− uh||| ≤ C inf
yh∈Vh

|||u− yh|||∗

De�nition (Optimal, quasi-optimal, and suboptimal error estimate)

We say that the above error estimate is

optimal if |||·||| = |||·|||∗
quasi-optimal if |||·||| 6= |||·|||∗, but the lower and upper bounds
converge, for smooth u, at the same convergence rate as h→ 0

suboptimal if the upper bound converges more slowly



Abstract nonconforming error analysis XI

Proof.

Let yh ∈ Vh. Owing to discrete stability and consistency,

|||uh − yh||| ≤ C−1
sta sup

wh∈Vh\{0}

ah(uh − yh, wh)

|||wh|||

= C−1
sta sup

wh∈Vh\{0}

ah(u− yh, wh) +(((((((
ah(uh − u,wh)

|||wh|||

Hence, using boundedness,

|||uh − yh||| ≤ C−1
staCbnd|||u− yh|||∗

Estimate (est.) then results from the triangle inequality, the fact
that |||u− yh||| ≤ |||u− yh|||∗, and that yh is arbitrary in Vh



Roadmap for the design of dG methods

1 Extend the continuous bilinear form to X∗h ×Xh by replacing

∇ ← ∇h

2 Check for stability

remove bothering terms in a consistent way
if necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved

4 Prove boundedness by appropriately selecting |||·|||∗



Mesh regularity I

To prove discrete stability, consistency, and boundedness we need
basic results such as trace and inverse inequalities

To assert the convergence of a method, the discrete space must
enjoy approximation properties of the form

inf
yh∈Vh

|||u− yh|||∗ ≤ Cuhl

This requires regularity assumptions on the mesh sequence

TH := (Th)h∈H



Mesh regularity II

De�nition (Shape and contact regularity)

The mesh sequence TH is shape- and contact-regular if for all h ∈ H, Th
admits a matching simplicial submesh Sh s.t.

(i) There is a %1 > 0, independent of h, s.t.

∀T ′ ∈ Sh, %1hT ′ ≤ rT ′ ,

with rT ′ radius of the largest ball inscribed in T ′;

(ii) there is %2 > 0, independent of h s.t.

∀T ∈ Th, ∀T ′ ∈ ST , %2hT ≤ hT ′ .

If Th is itself matching and simplicial, the only requirement is shape-
regularity with parameter %1 > 0 independent of h.



Mesh regularity III

Figure: Mesh Th and matching simplicial submesh Sh



Mesh regularity IV

Lemma (Discrete inverse and trace inequalities)

Let TH be a shape- and contact-regular mesh sequence. Then, for all

h ∈ H, all vh ∈ Pkd(Th), and all T ∈ Th,

‖∇vh‖[L2(T )]d ≤ Cinvh
−1
T ‖vh‖L2(T ),

‖vh‖L2(F ) ≤ Ctrh
−1/2
T ‖vh‖L2(T ) ∀F ∈ FT

where Cinv and Ctr only depend on %, d, and k.

Lemma (Continuous trace inequality)

Moreover, for all h ∈ H, all v ∈ H1(Th), all T ∈ Th, and all F ∈ FT ,

‖v‖2L2(F ) ≤ Ccti

(
2‖∇v‖[L2(T )]d + dh−1

T ‖v‖L2(T )

)
‖v‖L2(T ),

with Ccti only depending on % and d.



Mesh regularity V

The last requirement is that the spaces

(Pkd(Th))h∈H,

enjoy optimal approximation properties

Since we consider continuous problems posed in a space X s.t.

X ↪→ L2(Ω) ≡ L2(Ω)′ ↪→ X ′,

it is natural to focus on the L2-orthogonal projector πkh

This also allows to deal naturally with polyhedral elements



Mesh regularity VI

Lemma (Optimal polynomial approximation)

Let TH denote a shape- and contact-regular mesh sequence. Then, for all

h ∈ H, all T ∈ Th, and all polynomial degree k, there holds

∀s ∈ {0, . . . , k + 1}, ∀m ∈ {0, . . . , s}, ∀v ∈ Hs(T ),

|v − πkhv|Hm(T ) ≤ Capph
s−m
T |v|Hs(T ),

where Capp is independent of both T and h.

Proof.

Follows from [Dupont and Scott, 1980]



Part II

Scalar �rst-order PDES
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4 The continuous setting

5 Centered �uxes

6 Upwind �uxes

7 The unsteady case



The continuous problem I

We consider the following steady advection-reaction problem:

β·∇u+ µu = f in Ω,

u = 0 on ∂Ω−,

where f ∈ L2(Ω) and

∂Ω± := {x ∈ ∂Ω | ± β(x)·n(x) > 0}

We further assume

µ ∈ L∞(Ω), β ∈ [Lip(Ω)]d, Λ := µ− 1

2
∇·β ≥ µ0

This implies, in particular, β ∈ [W 1,∞(Ω)]d



Traces in the graph space I

To follow the roadmap, we �rst rework the continuous problem to
enforce BCs weakly

The natural space to look for the solution is the graph space

V :=
{
v ∈ L2(Ω) | β·∇v ∈ L2(Ω)

}
,

equipped with the inner product

(v, w)V := (v, w)L2(Ω) + (β·∇v, β·∇w)L2(Ω)

It can be proved that V is a Hilbert space



Traces in the graph space II

To formulate BCs, we investigate the traces on ∂Ω of functions in V

Our aim is to give a meaning to such traces in the space

L2(|β·n|; ∂Ω) :=

{
v is measurable on ∂Ω

∣∣∣ ∫
∂Ω

|β·n|v2 <∞
}

We assume henceforth in�ow/out�ow separation,

dist(∂Ω−, ∂Ω+) := min
(x,y)∈∂Ω−×∂Ω+

|x− y| > 0



Traces in the graph space III

Ω

x1

x2

β

Figure: Counter-example for in�ow/out�ow separation



Traces in the graph space IV

Lemma (Traces and integration by parts)

In the above framework, the trace operator

γ : C0(Ω) 3 v 7−→ γ(v) := v|∂Ω ∈ L2(|β·n|; ∂Ω)

extends continuously to V , i.e., there is Cγ s.t., for all v ∈ V ,

‖γ(v)‖L2(|β·n|;∂Ω) ≤ Cγ‖v‖V .

Moreover, the following IBP formula holds true: For all v, w ∈ V ,∫
Ω

[(β·∇v)w + (β·∇w)v + (∇·β)vw] =

∫
∂Ω

(β·n)γ(v)γ(w).



Weak formulation and well-posedness I

We introduce the following bilinear form:

a(v, w) :=

∫
Ω

µvw +

∫
Ω

(β·∇v)w +

∫
∂Ω

(β·n)	vw,

where

x⊕ :=
1

2
(|x|+ x) , x	 :=

1

2
(|x| − x)

For all v, w ∈ V , the Cauchy�Schwarz inequality together with the
bound ‖γ(v)‖L2(|β·n|;∂Ω) ≤ Cγ‖v‖V yield

|a(v, w)| ≤
(

1 + ‖µ‖2L∞(Ω)

) 1
2 ‖v‖V ‖w‖L2(Ω) + C2

γ‖v‖V ‖w‖V ,

i.e., a is bounded in V × V



Weak formulation and well-posedness II

Lemma (L2-coercivity of a)

The bilinear form a is L2-coercive on V , namely,

∀v ∈ V, a(v, v) ≥ µ0‖v‖2L2(Ω) +

∫
∂Ω

1

2
|β·n|v2.



Weak formulation and well-posedness III

a(v, w) :=

∫
Ω

µvw +

∫
Ω

(β·∇v)w +

∫
∂Ω

(β·n)	vw,

Proof.

For all v ∈ V , IBP yields

a(v, v) =

∫
Ω

(
µ− 1

2
∇·β

)
v2 +

∫
∂Ω

1

2
(β·n)v2 +

∫
∂Ω

(β·n)	v2

=

∫
Ω

Λv2 +

∫
∂Ω

1

2
|β·n|v2

≥ µ0‖v‖2L2(Ω) +

∫
∂Ω

1

2
|β·n|v2,

where we have used the assumption Λ ≥ µ0 > 0 to conclude.



Weak formulation and well-posedness IV

Find u ∈ V s.t. a(u,w) =

∫
Ω

fw for all w ∈ V (Π)

Lemma (Well-posedness and characterization of (Π))

Problem (Π) is well-posed and its solution u ∈ V is s.t.

β·∇u+ µu = f a.e. in Ω,

u = 0 a.e. in ∂Ω−.

We have devised a weak formulation with weakly enforced
homogeneous in�ow BCs

The ideas can be extended to inhomogeneous BCs and systems
of equations [Ern et al., 2007]



Roadmap for the design of dG methods

1 Extend the continuous bilinear form to X∗h ×Xh by replacing

∇ ← ∇h

2 Check for stability

remove bothering terms in a consistent way
if necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved

4 Prove boundedness by appropriately selecting |||·|||∗



Heuristic derivation I

Assumption (Regularity of exact solution and space V∗)

We assume that there is a partition PΩ = {Ωi}1≤i≤NΩ
of Ω into disjoint

polyhedra s.t., for the exact solution u,

u ∈ V∗ := V ∩H1(PΩ).

Additionally, we set V∗h := V∗ + Vh.

Lemma (Jumps of u across interfaces)

If u ∈ V∗, then, for all F ∈ F ih,

(β·nF )JuKF (x) = 0 for a.e. x ∈ F .



Heuristic derivation II

Let Vh := Pkd(Th), k ≥ 1

Our starting point is the (consistent) extension of a to V∗h × Vh,

a
(0)
h (v, wh) :=

∫
Ω

{
µvwh + (β·∇hv)wh

}
+

∫
∂Ω

(β·n)	vwh

We mimic L2-coercivity at the discrete level by introducing additional
consistent terms that vanish when we plug u into the �rst argument



Heuristic derivation III

Element-by-element IBP yields for all vh ∈ Vh,

a
(0)
h (vh, vh) =

∫
Ω

{
µv2

h + (β·∇hvh)vh

}
+

∫
∂Ω

(β·n)	v2
h

=

∫
Ω

µv2
h +

∑
T∈Th

∫
T

(β·∇vh)vh +

∫
∂Ω

(β·n)	v2
h

=

∫
Ω

µv2
h +

∑
T∈Th

∫
T

1

2
(β·∇v2

h) +

∫
∂Ω

(β·n)	v2
h

=

∫
Ω

Λv2
h +

∑
T∈Th

∫
∂T

1

2
(β·nT )v2

h +

∫
∂Ω

(β·n)	v2
h,

where we have used Λ := µ− 1
2∇·β

Let us focus on the boundary terms



Heuristic derivation IV

T1 T2

F

nF

Using the continuity of (β·nF ) across all F ∈ F ih,∑
T∈Th

∫
∂T

1

2
(β·nT )v2

h =
∑
F∈Fih

∫
F

1

2
(β·nF )Jv2

hK +
∑
F∈Fbh

∫
F

1

2
(β·n)v2

h

For all F ih 3 F = ∂T1 ∩ ∂T2, vi = vh|Ti , i ∈ {1, 2}, there holds

1

2
Jv2
hK =

1

2
(v2

1 − v2
2) =

1

2
(v1 − v2)(v1 + v2) = JvhK{{vh}}



Heuristic derivation V

As a result,

a
(0)
h (vh, vh) =

∫
Ω

Λv2
h +

∑
F∈Fih

∫
F

(β·nF )JvhK{{vh}}

+
∑
F∈Fbh

∫
F

1

2
(β·n)v2

h +

∫
∂Ω

(β·n)	v2
h,

Combining the two rightmost terms, we arrive at

a
(0)
h (vh, vh) =

∫
Ω

Λv2
h +

∑
F∈Fih

∫
F

(β·nF )JvhK{{vh}} +

∫
∂Ω

1

2
|β·n|v2

h

The boxed term is nonde�nite



Heuristic derivation VI

A natural idea is to modify a
(0)
h as follows:

acf
h (v, wh) :=

∫
Ω

{
µvwh + (β·∇hv)wh

}
+

∫
∂Ω

(β·n)	vwh

−
∑
F∈Fih

∫
F

(β·nF )JvK{{wh}}

The highlighted term is consistent since u ∈ V∗ implies

(β·nF )JuKF (x) = 0 for a.e. x ∈ F

Moreover, it ensures L2-coercivity since, this time,

acf
h (vh, vh) =

∫
Ω

Λv2
h +

∫
∂Ω

1

2
|β·n|v2

h ∀vh ∈ Vh



Heuristic derivation VII

∫
Ω

{
µvhwh + (β·∇hvh)wh

}
,

∫
∂Ω

(β·n)	vhwh

∑
F∈Fi

h

∫
F

(β·nF )JvhK{{wh}}

Figure: Stencil of the di�erent terms



Heuristic derivation VIII

|||v|||2cf := τ−1
c ‖v‖2L2(Ω) +

∫
∂Ω

1

2
|β·n|v2, τc := {max(‖µ‖L∞(Ω), Lβ)}−1

Lemma (Consistency and discrete coercivity)

The discrete bilinear form acf
h satis�es the following properties:

(i) Consistency, i.e., assuming u ∈ V∗,

acf
h (u, vh) =

∫
Ω

fvh ∀vh ∈ Vh;

(ii) Coercivity on Vh with Csta := min(1, τcµ0),

∀vh ∈ Vh, acf
h (vh, vh) ≥ Csta|||vh|||2cf .



Error estimate I

Lemma (Boundedness)

There holds

∀(v, wh) ∈ V∗h × Vh, acf
h (v, wh) ≤ Cbnd|||v|||cf,∗|||wh|||cf ,

with Cbnd independent of h and of µ and β, and with βc := ‖β‖[L∞(Ω)]d ,

|||v|||2cf,∗ := |||v|||2cf +
∑
T∈Th

τc‖β·∇v‖2L2(T ) +
∑
T∈Th

τcβ
2
ch
−1
T ‖v‖

2
L2(∂T ).



Error estimate II

Find uh ∈ Vh s.t. acf
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh (Πcf
h )

Theorem (Error estimate)

Let u solve (Π) and let uh solve (Πcf
h ) where Vh = Pkd(Th) with k ≥ 1.

Then, there holds

|||u− uh|||cf ≤ C inf
yh∈Vh

|||u− yh|||cf,∗,

with C independent of h and depending on the data only through the

factor

C−1
sta = {min(1, τcµ0)}−1.



Error estimate III

Corollary (Convergence rate for smooth solutions)

Assume u ∈ Hk+1(Ω). Then, there holds

|||u− uh|||cf ≤ Cuhk,

with Cu = C‖u‖Hk+1(Ω) and C independent of h and depending on the

data only through the factor {min(1, τcµ0)}−1.

Proof.

Let yh = πkhu in the error estimate and use the approximation properties
of the sequence of discrete spaces (Vh)h∈H.



Error estimate IV

This estimate is suboptimal by 1
2 power of h

Indeed, in the inequalities

inf
yh∈Vh

|||u− yh|||cf ≤ |||u− uh|||cf ≤ C inf
yh∈Vh

|||u− yh|||cf,∗,

the upper bound converges more slowly than the lower bound

|||v|||2cf := τ−1
c ‖v‖2L2(Ω) +

∫
∂Ω

1

2
|β·n|v2,

|||v|||2cf,∗ := |||v|||2cf +
∑
T∈Th

τc‖β·∇v‖2L2(T ) +
∑
T∈Th

τcβ
2
ch
−1
T ‖v‖

2
L2(∂T ).



Numerical �uxes I

acf
h (v, wh) :=

∫
Ω

{
µvwh + (β·∇hv)wh

}
+

∫
∂Ω

(β·n)	vwh

−
∑
F∈Fih

∫
F

(β·nF )JvK{{wh}}

Lemma (Equivalent expression for acf
h )

For all (v, wh) ∈ V∗h × Vh, there holds

acf
h (v, wh) =

∫
Ω

{
(µ−∇·β)vwh − v(β·∇hwh)

}
+

∫
∂Ω

(β·n)⊕vwh +
∑
F∈Fih

∫
F

(β·nF ){{v}}JwhK.



Numerical �uxes II

IBP of the advective term leads to

acf
h (v, wh) =

∫
Ω

{
(µ−∇·β)vwh − v(β·∇hwh)

}
+
∑
T∈Th

∫
∂T

(β·nT )vwh +

∫
∂Ω

(β·n)	vwh

−
∑
F∈Fih

∫
F

(β·nF )JvK{{wh}}

Exploiting the continuity of β·nF we obtain∑
T∈Th

∫
∂T

(β·nT )vwh =
∑
F∈Fih

∫
F

(β·nF )JvwhK +
∑
F∈Fbh

∫
F

(β·n)vwh



Numerical �uxes III

To conclude we use the magic formula

JvwhK = v1w1 − v2w2

=
1

2
(v1 − v2)(w1 + w2) +

1

2
(v1 + v2)(w1 − w2)

= JvK{{wh}}+ {{v}}JwhK,

where vi := v|Ti and wi := wh|Ti for i ∈ {1, 2}



Numerical �uxes IV

We now consider a point of view closer to �nite volumes

Let T ∈ Th and ξ ∈ Pkd(T )

For a set S ⊂ Ω, denote by χS the characteristic function of S s.t.

χS(x) =

{
1 if x ∈ S,
0 otherwise

With the goal of setting vh = ξχT in (Πcf
h ) observe that

JξχT K = εT,F ξ with εT,F := nT ·nF



Numerical �uxes V

acf
h (uh, vh) =

∫
Ω

{
(µ−∇·β)uhvh − uh(β·∇hvh)

}
+

∫
∂Ω

(β·n)⊕uhvh +
∑
F∈Fih

∫
F

(β·nF ){{uh}}JvhK.

Letting vh = ξχT in the alternative form for ah (cf. above) we infer

ah(uh, ξχT ) =

∫
T

{
(µ−∇·β)uhξ−uh(β·∇ξ)

}
+
∑
F∈FT

εT,F

∫
F
φF (uh)ξ =

∫
T
fξ,

where the numerical �uxes φF (uh) given by

φF (uh) :=

{
(β·nF ){{uh}} if F ∈ F ih,
(β·n)⊕uh if F ∈ Fbh



Numerical �uxes VI

For ξ|T ≡ 1 we recover the FV local conservation,

∀T ∈ Th
∫
T

(µ−∇·β)uh +
∑
F∈FT

∫
F

φT,F (uh) =

∫
T

f,

where φT,F (uh) := εT,FφF (uh)

We next modify the numerical �ux to recover quasi-optimality



Upwinding I

The error estimate for centered �uxes is suboptimal

This can be improved by tightening stability with a least-square
penalization of interface jumps

In terms of �uxes this approach amounts to upwinding

As a side bene�t, we can estimate the advective derivative error



Upwinding II

We consider the new bilinear form

aupw
h (vh, wh) := acf

h (vh, wh) + sh(vh, wh),

where, for η > 0,

sh(vh, wh) =
∑
F∈Fih

∫
F

η

2
|β·nF |JvhKJwhK

This term is consistent under the regularity assumption



Upwinding III

Speci�cally,

aupw
h (vh, wh) :=

∫
Ω

{
µvhwh + (β·∇hvh)wh

}
+

∫
∂Ω

(β·n)	vhwh

−
∑
F∈Fi

h

∫
F

(β·nF )JvhK{{wh}}+
∑
F∈Fi

h

∫
F

η

2
|β·nF |JvhKJwhK

Or, after element-by-element IBP,

aupw
h (vh, wh) =

∫
Ω

{
(µ−∇·β)vhwh − vh(β·∇hwh)

}
+

∫
∂Ω

(β·n)⊕vhwh

+
∑
F∈Fi

h

∫
F

(β·nF ){{vh}}JwhK +
∑
F∈Fi

h

∫
F

η

2
|β·nF |JvhKJwhK



Upwinding IV

∫
Ω

{
µvhwh + (β·∇hvh)wh

}
,

∫
∂Ω

(β·n)	vhwh

∑
F∈Fi

h

∫
F

(β·nF )JvhK{{wh}},

∑
F∈Fi

h

∫
F

η

2
|β·nF |JvhKJwhK

Figure: Stencil of the di�erent terms



Upwinding V

Find uh ∈ Vh s.t. aupw
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh (Πupw
h )



Upwinding VI

|||v|||2uw[ := |||v|||2cf +
∑
F∈Fih

∫
F

η

2
|β·nF |JvK2

Lemma (Consistency and discrete coercivity)

The discrete bilinear form aupw
h satis�es the following properties:

(i) Consistency, i.e., assuming u ∈ V∗,

aupw
h (u, vh) =

∫
Ω

fvh ∀vh ∈ Vh,

(ii) Coercivity on Vh with Csta = min(1, τcµ0),

∀vh ∈ Vh, aupw
h (vh, vh) ≥ Csta|||vh|||2uw[.



Numerical �uxes

Proceeding as for acf
h we infer for all T ∈ Th,

ah(uh, ξχT ) =

∫
T

{
(µ−∇·β)uhξ − uh(β·∇ξ)

}
+
∑
F∈FT

εT,F

∫
F
φF (uh)ξ =

∫
T
fξ,

where, this time,

φF (uh) =

{
β·nF {{uh}}+ η

2 |β·nF |JuhK if F ∈ F ih,
(β·n)⊕uh if F ∈ Fbh

The choice η = 1 leads to the classical upwind �uxes

φF (uh) =

{
β·nFu↑h if F ∈ F ih,
(β·n)⊕uh if F ∈ Fbh



Error estimates based on inf-sup stability I

We de�ne the stronger norm (βc := ‖β‖[L∞(Ω)]d)

|||v|||2uw] := |||v|||2uw[ +
∑
T∈Th

β−1
c hT ‖β·∇v‖2L2(T )

We assume in what follows that the model is well-resolved and
reaction is not dominant,

h ≤ βcτc



Error estimates based on inf-sup stability II

Lemma (Discrete inf-sup condition for aupw
h )

There is C ′sta > 0, independent of h, µ, and β, s.t.

∀vh ∈ Vh, C ′staCsta|||vh|||uw] ≤ S := sup
wh∈Vh\{0}

aupw
h (vh, wh)

|||wh|||uw]
,

with Csta = min(1, τcµ0) ≤ 1 L2-coercivity constant.



Error estimates based on inf-sup stability III

Lemma (Boundedness)

There holds

∀(v, wh) ∈ V∗h × Vh, |aupw
h (v, wh)| ≤ Cbnd|||v|||uw],∗|||wh|||uw],

with Cbnd independent of h, µ, and β and

|||v|||2uw],∗ := |||v|||2uw] +
∑
T∈Th

βc

(
h−1
T ‖v‖

2
L2(T ) + ‖v‖2L2(∂T )

)
.



Error estimates based on inf-sup stability IV

Theorem (Error estimate)

Let u solve (Π) and let uh solve (Πupw
h ) where Vh = Pkd(Th) with k ≥ 0.

Then, there holds

|||u− uh|||uw] ≤ C inf
yh∈Vh

|||u− yh|||uw],∗,

with C independent of h and depending on the data only through the

factor {min(1, τcµ0)}−1.

Corollary (Convergence rate for smooth solutions)

Assume u ∈ Hk+1(Ω). Then, there holds

|||u− uh|||uw] ≤ Cuhk+1/2,

with Cu = C‖u‖Hk+1(Ω) and C independent of h and depending on the

data only through the factor {min(1, τcµ0)}−1.



The unsteady case I

∂tu+ β·∇u+ µu = f in Ω× (0, tF),

u = 0 on ∂Ω− × (0, tF),

u(·, t = 0) = u0 in Ω

(Π(t))



The unsteady case II

We de�ne Aupw
h : V∗h → Vh s.t. with η = 1 (upwind),

∀(v, wh) ∈ V∗h × Vh, (Aupw
h v, wh)L2(Ω) = aupw

h (v, wh)

The space semidiscrete problem reads

dtuh(t) +Aupw
h uh(t) = fh(t) ∀t ∈ [0, tF] (Πh(t))

with initial condition uh(0) = πhu0 and source term

fh(t) = πhf(t) ∀t ∈ [0, tF],

(Πh(t)) is a system of coupled ODEs



The unsteady case III

Lemma (Consistency and discrete dissipation for Aupw
h )

The discrete operator Aupw
h satis�es the following properties:

Consistency: For the exact solution u ∈ C0(H1(Ω)) ∩ C1(L2(Ω)),

πhdtu(t) +Aupw
h u(t) = fh(t) ∀t ∈ [0, tF].

Discrete dissipation: For all vh ∈ Vh,

(Aupw
h vh, vh)L2(Ω) = |vh|2β + (Λvh, vh)L2(Ω),

where we have de�ned on V∗h the seminorm

|v|2β :=

∫
∂Ω

1

2
|β·n|v2 +

∑
F∈Fih

∫
F

1

2
|β·nF |JvK2.



Time discretization I

Let δt be the (constant) time step s.t.

tn := nδt, ∀0 ≤ n ≤ N, tF = Nδt

We assume that the time step resolves the reference time τc

δt ≤ τc and δt ≤ tF

For a function of time ϕ ∈ C0(V ) we set

ϕn := ϕ(tn)



Time discretization II

The simplest time marching scheme is the forward Euler scheme,

un+1
h = unh − δtA

upw
h unh + δtfnh

Equivalently,

un+1
h − unh
δt

+Aupw
h unh = fnh



Time discretization III

To improve the accuracy of time discretization, one possibility is to
consider explicit Runge�Kutta (RK) schemes

Such schemes are one-step methods where, at each time step,
starting from unh, s stages, s ≥ 1, are performed to compute un+1

h

Explicit RK schemes can be formulated in various forms



Time discretization IV

Herein we focus on the increment form

ki = −Aupw
h

(
unh + δt

s∑
j=1

aijkj

)
+ fh(t

n + ciδt) ∀i ∈ {1, . . . , s},

un+1
h = unh + δt

s∑
i=1

biki.

(RKs)
where

(aij)1≤i,j≤s are real numbers

(bi)1≤i≤s are real numbers s.t.
∑s
i=1 bi = 1

(ci)1≤i≤s are real numbers in [0, 1] s.t. ci =
∑s
j=1 aij ∀1 ≤ i ≤ s

The ki can be interpreted as intermediate increments



Time discretization V

These quantities are usually collected in the so-called Butcher's array
c1 a11 . . . a1s

...
...

...
cs as1 . . . ass

b1 . . . bs


The scheme is explicit whenever

aij = 0 for all j ≥ i

Explicit schemes require to invert the mass matrix at each stage

For dG method, the mass matrix is (block) diagonal



Time discretization VI

The forward Euler scheme is actually a one-stage RK method with[
0 0

1

] {
k1 = −Aupw

h unh + fnh

un+1
h = unh + δtk1



Time discretization VII

Two examples of two-stage RK schemes are the improved Euler 0 0 0
1/2 1/2 0

0 1




k1 = −Aupw
h unh + fnh

k2 = −Aupw
h (unh + 1

2δtk1) + f
n+1/2
h

un+1
h = unh + δtk2

with f
n+1/2
h = fh(tn + 1

2δt) and Heun schemes 0 0 0
1 1 0

1/2 1/2




k1 = −Aupw
h unh + fnh

k2 = −Aupw
h (unh + δtk1) + fn+1

h

un+1
h = unh + δt 1

2 (k1 + k2)



Time discretization VIII

For f = 0, since Aupw
h is linear, both schemes can be written

un+1
h = unh − δtA

upw
h unh + 1

2δt
2(Aupw

h )2unh.

On the right-hand side, we recognize a second-order Taylor expansion
in time at tn where the time derivatives have been substituted using

dtu(tn) = −Aupw
h u(tn),

and replacing u← uh



Time discretization IX

An example of three-stage RK scheme is the three-stage Heun
scheme for which

0 0 0 0
1/3 1/3 0 0

2/3 0 2/3 0

1/4 0 3/4




k1 = −Aupw
h unh + fnh ,

k2 = −Aupw
h (unh + 1

3δtk1) + f
n+1/3
h

k3 = −Aupw
h (unh + 2

3δtk2) + f
n+2/3
h

un+1
h = unh + 1

4δt(k1 + 3k3)

Straightforward algebra shows

un+1
h = unh − δtA

upw
h unh + 1

2δt
2(Aupw

h )2unh − 1
6δt

3(Aupw
h )3unh

We recognize now a third-order Taylor expansion in time



Time discretization X

Finally, an example of four-stage RK scheme is



0 0 0 0 0
1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0
1/6 1/3 1/3 1/6





k1 = −Aupw
h unh + fnh ,

k2 = −Aupw
h (unh + 1

2δtk1) + f
n+1/2
h

k3 = −Aupw
h (unh + 1

2δtk2) + f
n+1/2
h

k4 = −Aupw
h (unh + δtk3) + fn+1

h

un+1
h = unh + 1

6δt(k1 + 2k2 + 2k3 + k4)



Time discretization XI

An alternative formulation of RK schemes consists in introducing
intermediate stages for the discrete solution instead of the
intermediate increments ki

When Aupw
h is linear, the two formulations are equivalent in the

absence of external forcing

In the nonlinear case, the form based on intermediate stages for the
discrete solution is more appropriate



Main convergence results I

We next state some error estimates under CFL conditions of the form

δt ≤ % h
βc
, % > 0 (CFL)

For the forward Euler scheme, we only consider the case k = 0 since
the CFL to achieve stability is too stringent for k ≥ 1

For explicit RK2 and RK3 schemes, we consider dG schemes with
polynomial degree k ≥ 0 for space semidiscretization



Main convergence results II

Theorem (Convergence for forward Euler)

Set Vh = P0
d(Th), assume u ∈ C0(H1(Ω)) ∩ C2(L2(Ω)) and (CFL) with

% ≤ %Eul for %Eul independent of h, δt, f , µ, and β. Then, there holds

‖uN − uNh ‖L2(Ω) +

(
N−1∑
m=0

δt|um − umh |2β

) 1
2

. eCsta
tF
τ∗ (χ1δt+ χ2h

1
2 ),

where χ1 = t
1
2

Fτ
1
2
∗ ‖d2

tu‖C0(L2(Ω)) and χ2 = t
1
2

Fβ
1
2
c ‖u‖C0(H1(Ω)), and Csta

is independent of h, δt, and the data f , µ, and β.



Main convergence results III

We reformulate the RK2 scheme as

wnh = unh − δtA
upw
h unh + δtfnh ,

un+1
h = 1

2 (unh + wnh)− 1
2δtA

upw
h wnh + 1

2δtψ
n
h ,

with initial condition u0
h = πhu0.

We assume f ∈ C2(L2(Ω)) and

‖ψnh − fnh − δtdtfnh ‖L2(Ω) . δt2‖d2
tf(t)‖C0(L2(Ω)).



Main convergence results IV

Theorem (Convergence for RK2)

Assume u ∈ C3(L2(Ω)) ∩ C0(H1(Ω)). Set Vh = Pkd(Th) with k ≥ 1.

In the case k ≥ 2, assume the 4/3-CFL condition

δt ≤ %′τ−
1
3

∗

(
h

βc

) 4
3

, %′ > 0;

In the case k = 1, assume the CFL condition (CFL), that is,

δt ≤ %RK2 h

βc
,

with %RK2 independent of h, δt, f , µ, and β.

Finally, assume dstu ∈ C0(Hk+1−s(Ω)) for s ∈ {0, 1}. Then,

‖uN − uNh ‖L2(Ω) +

(
N−1∑
m=0

δt|um − umh |
2
β

) 1
2

. e
Csta

tF
τ∗ (χ1δt

2 + χ2h
k+ 1

2 ),

where Csta is independent of h, δt, and the data f , µ, and β, and χ1 and χ2 depend
only on tF, τ∗, βc, and bounded norms of f and u.



Main convergence results V

We reformulate the RK3 scheme as

wnh = unh − δtA
upw
h unh + δtfnh ,

ynh = 1
2 (unh + wnh)− 1

2δtA
upw
h wnh + 1

2δt(f
n
h + δtdtf

n
h ),

un+1
h = 1

3 (unh + wnh + ynh)− 1
3δtA

upw
h ynh + 1

3δtψ
n
h ,

with initial condition u0
h = πhu0.

We assume f ∈ C3(L2(Ω)) and

‖ψnh − fnh − δtdtfnh − 1
2δt

2d2
tf
n
h ‖L2(Ω) . δt3‖d3

tf‖C0(L2(Ω)).



Main convergence results VI

Theorem (Convergence for RK3)

Assume u ∈ C4(L2(Ω)) ∩ C0(H1(Ω)). Set Vh = Pkd(Th) for k ≥ 1.
Assume

δt ≤ %RK3 h

βc
,

for %RK3 independent of h, δt, f , µ, and β. Finally, assume

dstu ∈ C0(Hk+1−s(Ω)) for s ∈ {0, 1, 2}. Then,

‖uN − uNh ‖L2(Ω) +

(
N−1∑
m=0

δt|um − umh |2β

) 1
2

. eCsta
tF
τ∗ (χ1δt

3 + χ2h
k+ 1

2 ),

where Csta is independent of h, δt, and the data f , µ, and β, and χ1 and

χ2 depend only on tF, τ∗, βc, and bounded norms of f and u.



Part III

Scalar second-order PDEs
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Setting I

For f ∈ L2(Ω) we consider the model problem

−4u = f in Ω,

u = 0 on ∂Ω,

The weak formulation reads with V := H1
0 (Ω),

Find u ∈ V s.t. a(u, v) =

∫
Ω

fv for all v ∈ V , (Π)

where

a(u, v) :=

∫
Ω

∇u·∇v



Setting II

The well-posedness of (Π) hinges on Poincaré's inequality,

∀v ∈ H1
0 (Ω), ‖v‖L2(Ω) ≤ CΩ‖∇v‖[L2(Ω)]d

Indeed, a classical result is the coercivity of a,

∀v ∈ H1
0 (Ω), a(v, v) ≥ 1

1 + C2
Ω

‖v‖2H1(Ω)

Lemma (Continuity of the potential and of the di�usive �ux)

Letting JvKF = {{v}}F = v for all F ∈ Fbh, there holds

JuK = 0 ∀F ∈ Fh,
J∇uK·nF = 0 ∀F ∈ F ih.



Setting III

Assumption (Regularity of exact solution and space V∗)

We assume that the exact solution u is s.t.

u ∈ V∗ := V ∩H2(Ω).

We set V∗h := V∗ + Vh. This implies, in particular, that the traces of

both u and ∇u·nF are square-integrable.



Roadmap for the design of dG methods

1 Extend the continuous bilinear form to X∗h ×Xh by replacing

∇ ← ∇h

2 Check for stability

remove bothering terms in a consistent way
if necessary, tighten stability by penalizing jumps

3 If things have been properly done, consistency is preserved

4 Prove boundedness by appropriately selecting |||·|||∗



Symmetric Interior Penalty: Heuristic derivation I

Vh := Pkd(Th), k ≥ 1

We derive a dG method for (Π) based on a bilinear form ah

For all (v, wh) ∈ V∗h × Vh we set

a
(0)
h (v, wh) :=

∫
Ω

∇hv·∇hwh =
∑
T∈Th

∫
T

∇v·∇wh



Consistency I

T1 T2

F

nF

Integrating by parts element-by-element we arrive at

a
(0)
h (v, wh) = −

∑
T∈Th

∫
T

(4v)wh +
∑
T∈Th

∫
∂T

(∇v·nT )wh

The second term in the RHS can be reformulated as follows:∑
T∈Th

∫
∂T

(∇v·nT )wh =
∑
F∈Fi

h

∫
F

J(∇hv)whK·nF +
∑
F∈Fb

h

∫
F

(∇v·nF )wh



Consistency II

Moreover,

J(∇hv)whK = {{∇hv}}JwhK + J∇hvK{{wh}},

since letting ai = (∇v)|Ti , bi = wh|Ti , i ∈ {1, 2}, yields

J(∇hv)whK = a1b1 − a2b2

= 1
2 (a1 + a2)(b1 − b2) + (a1 − a2) 1

2 (b1 + b2)

= {{∇hv}}JwhK + J∇hvK{{wh}}.

As a result, and accounting also for boundary faces,∑
T∈Th

∫
∂T

(∇v·nT )wh =
∑
F∈Fh

∫
F

{{∇hv}}·nF JwhK+
∑
F∈Fi

h

∫
F

J∇hvK·nF {{wh}}



Consistency III

In conclusion,

a
(0)
h (v, wh) = −

∑
T∈Th

∫
T

(4v)wh +
∑
F∈Fh

∫
F

{{∇hv}}·nF JwhK

+
∑
F∈Fih

∫
F

J∇hvK·nF {{wh}}

To check consistency, set v = u. For all wh ∈ Vh,

a
(0)
h (u,wh) =

∫
Ω

fwh +
∑
F∈Fh

∫
F

(∇u·nF )JwhK

Hence, we modify a
(0)
h as follows:

a
(1)
h (v, wh) :=

∫
Ω

∇hv·∇hwh −
∑
F∈Fh

∫
F

{{∇hv}}·nF JwhK



Symmetry I

A desirable property is symmetry since

it simpli�es the solution of the linear system

it is used to prove optimal L2 error estimates

We consider the following modi�cation of a
(1)
h :

acs
h (v, wh) :=

∫
Ω

∇hv·∇hwh

−
∑
F∈Fh

∫
F

({{∇hv}}·nF JwhK + JvK{{∇hwh}}·nF )



Symmetry II

Element-by-element integration by parts yields

acs
h (v, wh) = −

∑
T∈Th

∫
T

(4v)wh +
∑
F∈Fih

∫
F

J∇hvK·nF {{wh}}

−
∑
F∈Fh

∫
F

JvK{{∇hwh}}·nF

This shows that acs
h retains consistency since

J∇huKF ·nF = 0 for all F ∈ F ih,
JuKF = 0 for all F ∈ Fh



Coercivity I

For all vh ∈ Vh there holds

acs
h (vh, vh) = ‖∇hvh‖2[L2(Ω)]d −2

∑
F∈Fh

∫
F

{{∇hvh}}·nF JvhK

The boxed term is nonde�nite

We further modify acs
h as follows: For all (v, wh) ∈ V∗h × Vh,

asip
h (v, wh) := acs

h (v, wh) + sh(v, wh),

with the stabilization bilinear form

sh(v, wh) :=
∑
F∈Fh

η

hF

∫
F

JvKJwhK



Coercivity II

We aim at asserting coercivity in the norm

∀v ∈ V∗h, |||v|||sip :=
(
‖∇hv‖2[L2(Ω)]d + |v|2J

) 1
2

,

with jump seminorm

|v|J := (η−1sh(v, v))
1
2 =

( ∑
F∈Fh

1

hF
‖JvK‖2L2(F )

) 1
2

We anticipate the following discrete Poincaré's inequality:

∀vh ∈ Vh, ‖vh‖L2(Ω) ≤ σ2|||vh|||sip,

with σ2 > 0 is independent of h



Coercivity III

The choice for sh is justi�ed by the following result.

Lemma (Bound on consistency and symmetry terms)

For all (v, wh) ∈ V∗h × Vh,∣∣∣∣∣∣
∑
F∈Fh

∫
F

{{∇hv}}·nF JwhK

∣∣∣∣∣∣ ≤
∑
T∈Th

∑
F∈FT

hF ‖∇v|T ·nF ‖2L2(F )

 1
2

|wh|J.

Moreover, if v = vh ∈ Vh,∣∣∣∣∣ ∑
F∈Fh

∫
F

{{∇hvh}}·nF JwhK

∣∣∣∣∣ ≤ CtrN
1
2

∂ ‖∇hvh‖[L2(Ω)]d |vh|J.



Coercivity IV

Lemma (Discrete coercivity)

For all η > η := C2
trN∂ there holds

∀vh ∈ Vh, asip
h (vh, vh) ≥ Cη|||vh|||2sip,

with Cη := (η − C2
trN∂)(1 + η)−1.



Coercivity V

asip
h (v, wh) =

∫
Ω
∇hv·∇hwh −

∑
F∈Fh

∫
F

(
{{∇hv}}·nF JwhK + JvK{{∇hwh}}·nF

)
+
∑
F∈Fh

η

hF

∫
F

JvKJwhK,

Using the bound on consistency and symmetry terms,

asip
h (vh, vh) ≥ ‖∇hvh‖2[L2(Ω)]d − 2CtrN

1/2
∂ ‖∇hvh‖[L2(Ω)]d |vh|J + η|vh|2J

For all β ∈ R+, η > β2, x, y ∈ R, there holds

x2 − 2βxy + ηy2 ≥ η − β2

1 + η
(x2 + y2)

Let β = CtrN
1/2
∂ , x = ‖∇hvh‖[L2(Ω)]d , y = |vh|J to conclude



Coercivity VI

Lemma (Boundedness)

There is Cbnd, independent of h, s.t.

∀(v, wh) ∈ V∗h × Vh, asip
h (v, wh) ≤ Cbnd|||v|||sip,∗|||wh|||sip.

where

|||v|||sip,∗ :=

(
|||v|||2sip +

∑
T∈Th

hT ‖∇v|T ·nT ‖2L2(∂T )

) 1
2



Basic energy error estimate I

Find uh ∈ Vh s.t. asip
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh

Theorem (Energy error estimate)

Assume u ∈ V∗ and η > η. Then, there is C, independent of h, s.t.

|||u− uh|||sip ≤ C inf
vh∈Vh

|||u− vh|||sip,∗.



Basic energy error estimate II

Corollary (Convergence rate in |||·|||sip-norm)

Additionally assume u ∈ Hk+1(Ω). Then, there holds

|||u− uh|||sip ≤ Cuhk,

with Cu = C‖u‖Hk+1(Ω) and C independent of h.

The above estimate shows that convergence requires k ≥ 1, i.e.,
we cannot take k = 0

For an extension to the lowest-order case, cf. [DP, 2012]



L2-norm error estimate I

Using the broken Poincaré inequality of [Brenner, 2004] one can infer

‖u− uh‖L2(Ω) ≤ σ′2Cuhk

This estimate is suboptimal by one power in h

An optimal estimate can be recovered exploiting symmetry

Further regularity for the problem needs to be assumed



L2-norm error estimate II

De�nition (Elliptic regularity)

Elliptic regularity holds true for the model problem (Π) if there is Cell,
only depending on Ω, s.t., for all ψ ∈ L2(Ω), the solution to the problem,

Find ζ ∈ H1
0 (Ω) s.t. a(ζ, v) =

∫
Ω

ψv for all v ∈ H1
0 (Ω),

is in V∗ and satis�es

‖ζ‖H2(Ω) ≤ Cell‖ψ‖L2(Ω).

Elliptic regularity holds, e.g., if the domain Ω is convex [Grisvard, 1992]



L2-norm error estimate III

Theorem (L2-norm error estimate)

Let u ∈ V∗ solve (Π) and assume elliptic regularity. Then, there is C,
independent of h, s.t.

‖u− uh‖L2(Ω) ≤ Ch|||u− uh|||sip,∗.

Corollary (Convergence rate in ‖·‖L2(Ω)-norm)

Additionally assume u ∈ Hk+1(Ω). Then, there holds

‖u− uh‖L2(Ω) ≤ Cuhk+1.

with Cu = C‖u‖Hk+1(Ω) and C independent of h.



Liftings I

Liftings map jumps onto vector-valued functions de�ned on elements

Liftings play a key role in several developments

Flux and mixed formulations

Computable lower bound for η

Convergence to minimal regularity solutions

The theoretical developments will eventually allow us to analyze dG
methods for nonlinear problems such as the Navier�Stokes equations



Liftings II

T1 T2

F

nF

For an integer l ≥ 0, we de�ne the (local) lifting operator

rlF : L2(F ) −→ [Pld(Th)]d,

as follows: For all ϕ ∈ L2(F ),∫
Ω

rlF (ϕ)·τh =

∫
F

{{τh}}·nFϕ ∀τh ∈ [Pld(Th)]d

We observe that supp(rlF ) =
⋃
T∈TF T



Liftings III

For all l ≥ 0 and v ∈ H1(Th), we de�ne the (global) lifting

Rl
h(JvK) :=

∑
F∈Fh

rlF (JvK) ∈ [Pld(Th)]d

Rl
h(JvK) maps the jumps of v into a global, vector-valued volumic

contribution which is homogeneous to a gradient



Liftings IV

Lemma (Bound on local lifting)

Let F ∈ Fh and let l ≥ 0. For all v ∈ H1(Th), there holds

‖ rlF (JvK)‖[L2(Ω)]d ≤ Ctrh
− 1

2

F ‖JvK‖L2(F ).

Lemma (Bound on global lifting)

Let l ≥ 0. For all v ∈ H1(Th), there holds

‖Rl
h(JvK)‖[L2(Ω)]d ≤ N

1
2

∂

( ∑
F∈Fh

‖ rlF (JvK)‖2[L2(Ω)]d

) 1
2

≤ CtrN
1
2

∂ |v|J.



Discrete gradients I

For l ≥ 0, we de�ne the discrete gradient operator

Glh : H1(Th) −→ [L2(Ω)]d,

as follows: For all v ∈ H1(Th),

Glh(v) := ∇hv − Rl
h(JvK)

The discrete gradient accounts for inter-element and boundary jumps

Lemma (Bound on discrete gradient)

Let l ≥ 0. For all v ∈ H1(Th), there holds

‖Glh(v)‖[L2(Ω)]d ≤ (1 + C2
trN∂)

1
2 |||v|||sip.



Reformulation of asip
h I

Let l ∈ {k − 1, k} and set Vh = Pkd(Th) with k ≥ 1

There holds for all vh, wh ∈ Vh,

acs
h (vh, wh) =

∫
Ω

∇hvh·∇hwh−
∫

Ω

∇hvh·Rlh(JwhK)−
∫

Ω

∇hwh·Rlh(JvhK)

Indeed ∇hvh ∈ [Pld(Th)]d with l ≥ k − 1,

∀F ∈ Fh,
∫
F

{{∇hvh}}·nF JwhK =

∫
Ω

∇hvh· rlF (JwhK)

Using the de�nition of discrete gradients,

acs
h (vh, wh) =

∫
Ω

Glh(vh)·Glh(wh)−
∫

Ω

Rl
h(JvhK)·Rl

h(JwhK)



Reformulation of asip
h II

Plugging the above expression into asip
h ,

asip
h (vh, wh) =

∫
Ω

Glh(vh)·Glh(wh) + ŝsip
h (vh, wh),

with

ŝsip
h (vh, wh) :=

∑
F∈Fh

η

hF

∫
F

JvhKJwhK−
∫

Ω

Rl
h(JvhK)·Rl

h(JwhK)

Dropping the negative term in ŝsip
h leads to the Local Discontinuous

Galerkin (LDG) method of [Cockburn and Shu, 1998]

This method has the drawback of having a signi�cantly larger stencil



Reformulation of asip
h III

∫
Ω
∇hvh·∇hwh

∫
Ω

(
∇hvh·Rlh(JwhK)+∇hwh·Rlh(JvhK)

)
,∑

F∈Fh

η

hF

∫
F

JvhKJwhK

∫
Ω

Rlh(JuhK)·Rlh(JvhK),
∫

Ω
Glh(vh)·Glh(wh)

Figure: Stencil of the di�erent terms



Reformulation of asip
h IV

Lemma (Coercivity (alternative form))

For all vh ∈ Vh,

‖Gh(vh)‖2[L2(Ω)]d + (η − C2
trN∂)|vh|2J ≤ ah(vh, vh).

Proof.

Observe that

ah(vh, vh) = ‖Gh(vh)‖2[L2(Ω)]d + η|vh|2J − ‖Rh(JvhK)‖2[L2(Ω)]d ,

and use the L2-stability of Rh to conclude.



Numerical �uxes I

Let T ∈ Th, ξ ∈ Pkd(T ). Element-by-element IBP yields∫
T

fξ = −
∫
T

(4u)ξ =

∫
T

∇u·∇ξ −
∫
∂T

(∇u·nT )ξ.

Hence, letting ΦF (u) := −∇u·nF and εT,F = nT ·nF ,∫
T

∇u·∇ξ +
∑
F∈FT

εT,F

∫
F

ΦF (u)ξ =

∫
T

fξ.

Our goal is to identify a similar local conservation property for uh



Numerical �uxes II

Using vh = ξχT as test function we obtain∫
T
fξ = asip

h (uh, ξχT ) =

∫
T
∇uh·∇ξ −

∑
F∈FT

∫
F
{{(∇ξ)χT }}·nF JuhK

−
∑
F∈FT

∫
F
{{∇huh}}·nF JξχT K +

∑
F∈FT

∫
F

η

hF
JuhKJξχT K

Let l ∈ {k − 1, k}. For all T ∈ Th and all ξ ∈ Pkd(T ),∫
T

Glh(uh)·∇ξ+
∑
F∈FT

εT,F

∫
F

φF (uh)ξ =

∫
T

fξ,

with
φF (uh) := −{{∇huh}}·nF︸ ︷︷ ︸

consistency

+
η

hF
JuhK︸ ︷︷ ︸

penalty



Numerical �uxes III

Taking ξ ≡ 1 we infer the FV �ux conservation property,∑
F∈FT

εT,F

∫
F

φF (uh) =

∫
T

f

Also in the elliptic case local conservation holds on the computational
mesh (as opposed to vertex- or face-centered dual mesh)



Part IV

Applications in �uid dynamics



Outline

12 Stokes

13 Navier�Stokes



The Stokes problem I

We consider the �ow of a highly viscous �uid

The governing Stokes equations read

−4u+∇p = f in Ω,

∇·u = 0 in Ω,

u = 0 on ∂Ω,

〈p〉Ω = 0



The Stokes problem II

Let L2
0(Ω) :=

{
v ∈ L2(Ω) | 〈v〉Ω = 0

}
and set

U := [H1
0 (Ω)]d, P := L2

0(Ω), X := U × P

The spaces U , P , and X are Hilbert spaces when equipped with the
inner products inducing the norms

‖v‖U := ‖v‖[H1(Ω)]d :=

(
d∑
i=1

‖vi‖2H1(Ω)

)1/2

‖q‖P := ‖q‖L2(Ω),

‖(v, q)‖X :=
(
‖v‖2U + ‖q‖2P

)1/2



The Stokes problem III

For all (u, p), (v, q) ∈ X let

a(u, v) :=

∫
Ω

∇u:∇v, b(v, q) := −
∫

Ω

q∇·v, B(v) :=

∫
Ω

f ·v,

The weak formulation reads: Find (u, p) ∈ X s.t.

a(u, v) + b(v, p) = B(v) ∀v ∈ U,
−b(u, q) = 0 ∀q ∈ P

(ΠS)

(ΠS) is a constrained minimization problem with the pressure acting
as the Lagrange multiplier of the incompressibility constraint



The Stokes problem IV

Equivalently, letting

S((u, p), (v, q)) := a(u, v) + b(v, p)− b(u, q),

we can formulate the problem as

Find (u, p) ∈ X s.t. S((u, p), (v, q)) = B(v) for all (v, q) ∈ X



The Stokes problem V

Well-posedness hinges on the coercivity of a and on the inf-sup
condition

inf
q∈P\{0}

sup
v∈U\{0}

b(v, q)

‖v‖U‖q‖P
≥ βΩ > 0

Equivalently,

∀q ∈ P, βΩ‖q‖P ≤ sup
v∈U\{0}

b(v, q)

‖v‖U



The Stokes problem VI

Lemma (Surjectivity of the divergence operator from U to P )

Let Ω ∈ Rd, d ≥ 1, be a connected domain. Then, there exists βΩ > 0
s.t. for all q ∈ P , there is v ∈ U satisfying

q = ∇·v and βΩ‖v‖U ≤ ‖q‖P .

Proof.

See, e.g., [Girault and Raviart, 1986].



The Stokes problem VII

Proof of the continuous inf-sup condition

Let q ∈ P and let v ∈ U denote its velocity lifting. The case v = 0 is
trivial, so let us suppose v 6= 0:

‖q‖2P =

∫
Ω

q∇·v = −b(v, q)

≤ sup
w∈U\{0}

b(w, q)

‖w‖U
‖v‖U

≤ β−1
Ω sup

w∈U\{0}

b(w, q)

‖w‖U
‖q‖P ,

and the conclusion follows.



Equal-order discretization I

For an integer k ≥ 1 de�ne the following spaces:

Uh := [Pkd(Th)]d, Ph := Pkd(Th) ∩ L2
0(Ω), Xh := Uh × Ph

Discrete pressure-velocity coupling: For all (vh, qh) ∈ Xh, set

bh(vh, qh) := −
∫

Ω

(∇h·vh)qh +
∑
F∈Fh

∫
F

JvhK·nF {{qh}} = −
∫

Ω

Dl
h(vh)qh

=

∫
Ω

vh·∇qh −
∑
F∈Fi

h

∫
F

{{vh}}·nF JqhK,

with l = k and

Dl
h(vh) := tr(Glh(vh)) = ∇h·vh − tr(Rlh(JvhK))



Equal-order discretization II

Extending the domain of bh to [H1(Th)]d ×H1(Th), we obtain the
consistency properties

∀(v, qh) ∈ U × Ph, bh(v, qh) = −
∫

Ω

qh∇·v,

∀(vh, q) ∈ Uh ×H1(Ω), bh(vh, q) =

∫
Ω

vh·∇q,

since, for all v ∈ U and all q ∈ H1(Ω),

JvK = 0 ∀F ∈ Fh
JqK = 0 ∀F ∈ F ih



Equal-order discretization III

Lemma (Discrete inf-sup condition)

There is β > 0 independent of h s.t. s.t.

∀qh ∈ Ph, β‖qh‖P ≤ sup
vh∈Uh\{0}

bh(vh, qh)

‖vh‖dG
+ |qh|p,

where

|qh|2p :=
∑
F∈Fih

hF ‖JqhK‖2L2(F ).



Equal-order discretization IV

We stabilize the pressure-velocity coupling using the bilinear form

∀(ph, qh) ∈ Ph, sh(ph, rh) :=
∑
F∈Fih

hF

∫
F

JphKJqhK

We consider the bilinear form

Sh((uh, ph), (vh, qh)) :=

ah(uh, vh) + bh(vh, ph)− bh(uh, qh) + sh(ph, qh),

where

ah(w, v) :=

d∑
i=1

asip
h (wi, vi)



Equal-order discretization V

The discrete problem reads: Find (uh, ph) ∈ Xh s.t.

Sh((uh, ph), (vh, qh)) = B(vh) ∀(vh, qh) ∈ Xh (ΠS,h)

Equivalently: Find (uh, ph) ∈ Xh s.t.

ah(uh, vh) + bh(vh, ph) = B(vh) ∀vh ∈ Uh,
−bh(uh, qh) + sh(ph, qh) = 0 ∀qh ∈ Ph

This corresponds to a linear system of the form[
Ah Bh

−Bt
h Ch

] [
Uh

Ph

]
=

[
Fh
0

]



Stability I

Equip Xh with the the following norm:

‖(vh, qh)‖2S := |||vh|||2vel + ‖qh‖2P + |qh|2p,

where

|||v|||2vel :=

d∑
i=1

|||vi|||2sip

Owing to partial coercivity,

∀(vh, qh) ∈ Xh, α|||vh|||2vel + |qh|2p ≤ Sh((vh, qh), (vh, qh))



Stability II

Lemma (Discrete inf-sup for Sh)

There is cS > 0 independent of h s.t., for all (vh, qh) ∈ Xh,

cS‖(vh, qh)‖S ≤ sup
(wh,rh)∈Xh\{0}

Sh((vh, qh), (wh, rh))

‖(wh, rh)‖S
.

Proof.

Consequence of the coercivity of ah and the discrete inf-sup on bh.



Convergence to smooth solutions I

Assumption (Regularity of the exact solution and space X∗)

We assume that the exact solution (u, p) is in X∗ := U∗ × P∗ where

U∗ := U ∩ [H2(Ω)]d, P∗ := P ∩H1(Ω).

We set

U∗h := U∗ + Uh, P∗h := P∗ + Ph, X∗h := X∗ +Xh.

Lemma (Jumps of ∇u and p across interfaces)

Assume (u, p) ∈ X∗. Then,

J∇uK·nF = 0 and JpK = 0 ∀F ∈ F ih.



Convergence to smooth solutions II

Lemma (Consistency)

Assume that (u, p) ∈ X∗. Then,

Sh((u, p), (vh, qh)) =

∫
Ω

f ·vh ∀(vh, qh) ∈ Xh.



Convergence to smooth solutions III

We have proved an inf-sup condition for Sh

It remains to investigate the boundedness of Sh

Letting

|||(v, q)|||2sto,∗ := |||(v, q)|||2sto+
∑
T∈Th

hT ‖∇v|T ·nT ‖2L2(∂T )+
∑
T∈Th

hT ‖q‖2L2(∂T ),

there holds for all (v, q) ∈ X∗h and all (wh, rh) ∈ Xh,

Sh((v, q), (wh, rh)) ≤ Cbnd|||(v, q)|||sto,∗|||(wh, rh)|||sto,

with Cbnd independent of the meshsize



Convergence to smooth solutions IV

Theorem (|||·|||sto-norm error estimate and convergence rate)

Let (u, p) ∈ X∗ denote the unique solution of problem (ΠS). Let
(uh, ph) ∈ Xh solve (ΠS,h). Then, there is C, independent of h, such
that

|||(u− uh, p− ph)|||sto ≤ C inf
(vh,qh)∈Xh

|||(u− vh, p− qh)|||sto,∗.

Moreover, if (u, p) ∈ [Hk+1(Ω)]d ×Hk(Ω),

|||(u− uh, p− ph)|||sto ≤ Cu,phk,

with Cu,p = C
(
‖u‖[Hk+1(Ω)]d + ‖p‖Hk(Ω)

)
.



Numerical �uxes I

De�ne the inviscid �uxes

p̂ :=

{
{{ph}} if F ∈ F ih,
ph if F ∈ Fbh,

û :=

{
{{uh}}+ hF JphKnF if F ∈ F ih,
0 if F ∈ Fbh,

Additionally, we consider here the vector-valued viscous �ux

φdiff
F (uh) = −{{∇huh}}·nF +

η

hF
JuhK



Numerical �uxes II

Let T ∈ Th and let ξ ∈ [Pkd(T )]d with ξ = (ξi)1≤i≤d

Setting vh = ξχT in the discrete momentum conservation equation,
we obtain for l ∈ {k − 1, k},

∫
T

d∑
i=1

Glh(uh,i)·∇ξi −
∫
T

ph∇·ξ

+
∑
F∈FT

εT,F

∫
F

[
φdiff
F (uh) + p̂nF

]
·ξ =

∫
T

f ·ξ



Numerical �uxes III

Similarly, let ζ ∈ Pkd(T )

Setting qh = ζχT − 〈ζχT 〉Ω in the discrete mass conservation
equation, we obtain

−
∫
T

uh·∇ζ +
∑
F∈FT

εT,F

∫
F

û·nF ζ = 0



Convergence to minimal regularity solutions I

Theorem (Convergence to minimal regularity solutions)

Let (uH, pH) := ((uh, ph))h∈H solve (ΠS,h) on the admissible mesh

sequence TH. Then, as h→ 0,

uh → u strongly in [L2(Ω)]d,

Gh(uh)→ ∇u strongly in [L2(Ω)]d,d,

∇huh → ∇u strongly in [L2(Ω)]d,d,

|uh|J → 0,

ph → p strongly in L2(Ω),

|ph|p → 0,

where (u, p) ∈ X is the unique solution to (ΠS).



Convergence to minimal regularity solutions II

Lemma (A priori estimate)

The problem (ΠS,h) is well-posed with the following a priori estimate:

‖(uh, ph)‖S ≤
σ2

cS
‖f‖[L2(Ω)]d .

A priori estimate + discrete Rellich theorem [DP and Ern, 2010]:
convergence of (uH, pH) up to a subsequence

Test using regular functions and conclude using density that the
limit solves (ΠS)

Use continuous uniqueness to infer that the whole sequence
converges

Use partial coercivity to prove convergence of the gradients



The incompressible Navier�Stokes problem I

The Navier�Stokes problem reads

−ν4u+ (u·∇)u+∇p = f in Ω,

∇·u = 0 in Ω,

u = 0 on ∂Ω,

〈p〉Ω = 0

The nonlinear advection term is the physical source of turbulence

Uniqueness holds only under a suitable small data assumption



The incompressible Navier�Stokes problem II

We introduce the trilinear form t ∈ L(U × U × U,R) is such that

t(w, u, v) :=

∫
Ω

(w·∇u)·v =

∫
Ω

d∑
i,j=1

wj(∂jui)vi.

The weak formulation reads: Find (u, p) ∈ X s.t., for all (v, q) ∈ X,

νa(u, v) + b(v, p) + t(u, u, v)− b(u, q) = B(v) (ΠNS)



The incompressible Navier�Stokes problem III

Lemma (Skew-symmetry of trilinear form)

Letting

t′(w, u, v) := t(w, u, v) +
1

2

∫
Ω

(∇·w)u·v,

there holds, for all w ∈ U ,

∀v ∈ U, t′(w, v, v) = 0.

Moreover, if w ∈ V := {v ∈ U | ∇·v = 0},

∀v ∈ U, t(w, v, v) = 0.



The incompressible Navier�Stokes problem IV

Let w ∈ U . We observe that, for all v ∈ U ,

t(w, v, v)+
1

2

∫
Ω

(∇·w)|v|2 =

∫
Ω

1

2
w·∇|v|2+1

2

∫
Ω

(∇·w)|v|2 =

∫
Ω

1

2
∇·(w|v|2),

The divergence theorem yields

t(w, v, v) +
1

2

∫
Ω

(∇·w)|v|2 =
1

2

∫
∂Ω

(w·n)|v|2 = 0,

since (w·n) vanishes on ∂Ω thus proving the �rst point

The second point is an immediate consequence of the �rst



The incompressible Navier�Stokes problem V

As a consequence, letting (v, q) = (u, p) in (ΠNS),

ν‖∇u‖2[L2(Ω)]d,d =

∫
Ω

f ·u,

where we have used ∇·u = 0

This shows that convection does not in�uence energy balance



Design of the discrete trilinear form I

Our starting point is, for wh, uh, vh ∈ Uh,

t
(0)
h (wh, uh, vh) :=

∫
Ω

(wh·∇huh)·vh +
1

2

∫
Ω

(∇h·wh)uh·vh

Skew-symmetry: For all wh, vh ∈ Uh, element-wise IBP yields,

t
(0)
h (wh, vh, vh) =

1

2

∑
F∈Fh

∫
F

JwhK·nF {{vh·vh}}+
∑
F∈Fi

h

∫
F
{{wh}}·nF JvhK·{{vh}}

We modify t
(0)
h as

th(wh, uh, vh) :=

∫
Ω

(wh·∇huh)·vh −
∑
F∈Fi

h

∫
F

{{wh}}·nF JuhK·{{vh}}

+
1

2

∫
Ω

(∇h·wh)(uh·vh)−
1

2

∑
F∈Fh

∫
F

JwhK·nF {{uh·vh}}



Design of the discrete trilinear form II

Lemma (Skew-symmetry of discrete trilinear form)

For all wh ∈ Uh, there holds

∀vh ∈ Uh, th(wh, vh, vh) = 0.



Design of the discrete trilinear form III

Let

Nh((uh, ph), (vh, qh)) :=

νah(uh, vh) + bh(vh, ph)− bh(uh, qh) + th(uh, uh, vh)

The discrete problem reads: Find (uh, ph) ∈ Xh s.t.

Nh((uh, ph), (vh, qh)) = B(vh) ∀(vh, qh) ∈ Xh (ΠNS,h)

The existence of a solution to (ΠNS,h) can be proved by a
topological degree argument



A priori estimate

Lemma (A priori estimate)

There are c1, c2 independent of h such that

‖(uh, ph)‖S ≤ c1‖f‖[L2(Ω)]d + c2‖f‖2[L2(Ω)]d .

Also in this case, this a priori estimate is instrumental to apply the
discrete Rellich theorem of [DP and Ern, 2010]



Convergence to minimal regularity solutions

Theorem (Convergence to minimal regularity solutions)

Let (uH, pH) := ((uh, ph))h∈H solve (ΠNS,h) on the admissible mesh

sequence TH. Then, as h→ 0 and up to a subsequence,

uh → u strongly in [L2(Ω)]d,

Gh(uh)→ ∇u strongly in [L2(Ω)]d,d,

∇huh → ∇u strongly in [L2(Ω)]d,d,

|uh|J → 0,

ph ⇀ p weakly in L2(Ω),

|ph|p → 0.

Moreover, under the small data condition, the whole sequence converges.



Numerical validation I

Let Ω = (−0.5, 1.5)× (0, 2)

We consider Kovasznay's solution

u1 = 1− e−πx2 cos(2πx2),

u2 = −1

2
eπx1 sin(2πx2),

p = −1

2
eπx1 cos(2πx2)− p̃,

with p̃ ' −0.920735694, ν = 1
3π and f = 0

TH is a family of uniformly re�ned triuangular meshes, with h
ranging from 0.5 down to 0.03125



Numerical validation II

h ‖eh,u‖[L2(Ω)]d order ‖eh,p‖L2(Ω) order ‖eh‖S order

h0 8.87e− 01 � 1.62e+ 00 � 1.19e+ 01 �
h0/2 2.39e− 01 1.89 6.11e− 01 1.41 7.26e+ 00 0.71
h0/4 5.94e− 02 2.01 2.01e− 01 1.60 3.68e+ 00 0.98
h0/8 1.59e− 02 1.90 7.40e− 02 1.44 1.85e+ 00 0.99
h0/16 4.17e− 03 1.93 3.14e− 02 1.23 9.25e− 01 1.00



A variation with a simple physical interpretation I

∂tu+∇·(−ν∇u+ F (u, p)) = f, in Ω,

∇·u = 0, in Ω,

u = 0, on ∂Ω,∫
Ω

p = 0

Fij(u, p) := uiuj + pδij



A variation with a simple physical interpretation II

Let F ∈ F ih, P ∈ F and de�ne

uν := u·nF , uτ := u·τF

Restricting the problem to the normal direction we have

h2
F

c2
∂tp+ ∂xuν = 0,

∂tuν + ∂x(u2
ν + p) = 0,

∂tuτ + ∂x(uνuτ ) = 0

ντ

xy

P

To recover a hyperbolic problem we add an arti�cial compressibility
term

The inviscid �ux can be obtained as the solution associated Riemann
problem with initial datum (u+

h , p
+
h ), (u−h , p

−
h ) at P



A variation with a simple physical interpretation III

x

t

centered wavecentered wave

contact discontinuity

RL

∗

Figure: Structure of the Riemann problem.



A variation with a simple physical interpretation IV

The exact solution can be found using the Riemann invariants
(rarefactions) and the Rankine-Hugoniot jump conditions (shocks)

Following a similar procedure, it is possible to write the Riemann
problem associated to the Stokes equations

Let (u∗, p∗) be the solution We de�ne the inviscid �ux as

F̂ (u+
h , p

+
h ;u−h , p

−
h ) := F (u∗, p∗) = u∗i u

∗
j + p∗δij ,

û(u+
h , p

+
h ;u−h , p

−
h ) := u∗.

In the Stokes case, an explicit expression is available for the �uxes



Numerical Fluxes for the Linearized Problems

We introduce the pressure �ux p̂ = p∗ so that (û, p̂) = (u∗, p∗)

In the Stokes case we obtain

û := {{uh}}+
hF
2c

JphKnF ,

p̂ := {{ph}}+
c

2hF
JuhK·nF

Take c = 2 and compare with the numerical �uxes for the method
we have analyzed!



References I

Arnold, D. N. (1982).

An interior penalty �nite element method with discontinuous elements.
SIAM J. Numer. Anal., 19:742�760.

Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D. (2002).

Uni�ed analysis of discontinuous Galerkin methods for elliptic problems.
SIAM J. Numer. Anal., 39(5):1749�1779.

Babu²ka, I. and Zlámal, M. (1973).

Nonconforming elements in the �nite element method with penalty.
SIAM J. Numer. Anal., 10(5):863�875.

Bassi, F., Botti, L., Colombo, A., Di Pietro, D. A., and Tesini, P. (2012).

On the �exibility of agglomeration based physical space discontinuous Galerkin discretizations.
J. Comput. Phys., 231(1):45�65.

Bassi, F., Crivellini, A., Di Pietro, D. A., and Rebay, S. (2006).

A high-order discontinuous Galerkin solver for 3D aerodynamic turbulent �ows.
In Wesseling, P., Oñate, E., and Périaux, J., editors, ECCOMAS CFD 2006 Proceedings (Egmond an Zee,
Netherlands).

Bassi, F., Crivellini, A., Di Pietro, D. A., and Rebay, S. (2007).

An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible �ows.
Comp. & Fl., 36(10):1529�1546.

Bassi, F. and Rebay, S. (1997).

A high-order accurate discontinuous �nite element method for the numerical solution of the compressible
Navier-Stokes equations.
J. Comput. Phys., 131(2):267�279.



References II

Botti, L. and Di Pietro, D. A. (2011).

A pressure-correction scheme for convection-dominated incompressible �ows with discontinuous velocity and
continuous pressure.
J. Comput. Phys., 230(3):572�585.

Brenner, S. C. (2004).

Korn's inequalities for piecewise H1 vector �elds.
Math. Comp., 73(247):1067�1087 (electronic).

Cockburn, B. and Shu, C.-W. (1989).

TVB Runge-Kutta local projection discontinuous Galerkin �nite element method for conservation laws. II.
General framework.
Math. Comp., 52(186):411�435.

Cockburn, B. and Shu, C.-W. (1998).

The local discontinuous Galerkin �nite element method for convection-di�usion systems.
SIAM J. Numer. Anal., 35:2440�2463.

Di Pietro, D. A. (2012).

Cell centered Galerkin methods for di�usive problems.
M2AN Math. Model. Numer. Anal., 46(1):111�144.

Di Pietro, D. A. and Ern, A. (2010).

Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible
Navier-Stokes equations.
Math. Comp., 79(271):1303�1330.

Di Pietro, D. A., Ern, A., and Guermond, J.-L. (2008).

Discontinuous Galerkin methods for anisotropic semi-de�nite di�usion with advection.
SIAM J. Numer. Anal., 46(2):805�831.



References III

Di Pietro, D. A., Lo Forte, S., and Parolini, N. (2006).

Mass preserving �nite element implementations of the level set method.
App. Num. Math., 56:1179�1195.
DOI: 10.1016/j.apnum.2006.03.003.

Dupont, T. and Scott, R. (1980).

Polynomial approximation of functions in Sobolev spaces.
Math. Comp., 34(150):441�463.

Ern, A., Guermond, J.-L., and Caplain, G. (2007).

An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems.
Comm. Partial Di�er. Eq., 32:317�341.

Girault, V. and Raviart, P.-A. (1986).

Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational
Mathematics.
Springer-Verlag, Berlin.
Theory and algorithms.

Grisvard, P. (1992).

Singularities in Boundary Value Problems.
Masson, Paris.

Johnson, C. and Pitkäranta, J. (1986).

An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation.
Math. Comp., 46(173):1�26.

Lesaint, P. and Raviart, P.-A. (1974).

On a �nite element method for solving the neutron transport equation.
In Mathematical Aspects of Finite Elements in Partial Di�erential Equations, pages 89�123. Publication
No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York.

http://dx.doi.org/10.1016/j.apnum.2006.03.003


References IV

Nitsche, J. (1971).

Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen
Randbedingungen unterworfen sind.
Abh. Math. Sem. Univ. Hamburg, 36:9�15.
Collection of articles dedicated to Lothar Collatz on his sixtieth birthday.

Reed, W. H. and Hill, T. R. (1973).

Triangular mesh methods for the neutron transport equation.
Technical Report LA-UR-73-0479, http://lib-www.lanl.gov/cgi-bin/getfile?00354107.pdf, Los Alamos
Scienti�c Laboratory, Los Alamos, NM.


	Basic concepts
	Broken spaces and operators
	Abstract nonconforming error analysis
	Mesh regularity

	Scalar first-order PDES
	The continuous setting
	Centered fluxes
	Upwind fluxes
	The unsteady case

	Scalar second-order PDEs
	Setting
	Heuristic derivation
	Convergence analysis
	Liftings and discrete gradients

	Applications in fluid dynamics
	Stokes
	Navier–Stokes


