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Figure: Entries with the keyword “discontinuous Galerkin” in MathSciNet
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Figure: Accuracy in advective problems [DP et al., 2006]
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Introduction Il

Figure: Unsteady compressible Navier-Stokes, Onera M6 wing
[Bassi, Crivellini, DP, & Rebay, 2006]
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Figure: High-order accuracy in convection-dominated flows (3d lid-driven

cavity, [Botti and DP, 2011])
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Figure: Unsteady incompressible Navier-Stokes, Turek
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Figure: High-order in space-time
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Figure: Adaptive derefinement [Bassi, Botti, Colombo, DP, Tesini, 2012]




The origins: First-order PDEs

B [Reed and Hill, 1973], dG for steady neutron transport

m [Lesaint and Raviart, 1974], first error estimate

m [Johnson and Pitkdranta, 1986], improved estimate

m [Cockburn and Shu, 1989], explicit Runge-Kutta dG methods




The origins: Second-order PDES

m [Nitsche, 1971], boundary penalty methods

m [Babuska and Zlamal, 1973], Interior Penalty for bcs

m [Arnold, 1982], Symmetric Interior Penalty (SIP) dG method

m [Bassi and Rebay, 1997], compressible Navier—Stokes equations
m [Arnold et al., 2002], unified analysis
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Broken spaces and operators

Abstract nonconforming error analysis

Mesh regularity
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Faces, averages, and jumps |

Definition (Mesh)

A mesh T of (2 is a finite collection of disjoint open polyhedra 7" = {T'}
st. Uper T = . Each T € T is called a mesh element.

Definition (Element diameter, meshsize)

Let 7 be a mesh of Q. For all T € T, hr denotes the diameter T', and
the meshsize is defined as

h := max hr.
TeT T

We use the notation 7j, for a mesh 7 with meshsize h.
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Faces, averages, and jumps

Figure: Example of mesh
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Faces, averages, and jumps IlI

Definition (Mesh faces)

Let 75, be a mesh of the domain . A closed subset F of Q is a mesh
face if |F'|4—1 > 0 and either one of the two following conditions holds:
[ ] E'Tl,TQ € 7;“ T 75 Ty, st. F =0T, N1y (interface);
m 3T €Ty st. FF=9T NI (boundary face).

Figure: Examples of interfaces



Faces, averages, and jumps IV

m Interfaces are collected in F}, boundary faces in 77, and
Fn = Fh UF}.
m For all T € T, we let
Fr:={F e F, | FCoT},
and we set
Ny := max card(Fr)

m Symmetrically, for all F' € Fj,, we let

Tr:={T€T, | FCoT}




Faces, averages, and jumps V

Definition (Interface averages and jumps)

Assume v : 2 — R smooth enough to admit a possibly two-valued trace

on all interfaces. Then, for all F' € 7} we let
1
{vl = §(U|T1 +v|,), [v] :=vln —vlr,.

For all /' € 7} with F C 0T we conventionally set {v} = [v] = v|7.



Broken polynomial spaces |

W N = Ol

Table: Dimension of P for 1 <d<3and 0< k<3

Discontinuous Galerkin methods hinge on broken polynomial spaces,

PE(Th) := {v € L*(Q) | VT € Th, v|r € P5(T)}

Hence, the number of DOFs is

Am(PH(T3) = card(75) x card(P}) = card(73) x 10"

N
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Figure: Orthonormal polynomial basis functions for an L-shaped element



Basic facts on Lebesgue and Sobolev spaces |

m Let v: 2 — R be Lebesgue measurable

m Let 1 < p < oo be a real number. We set
1/;0
ol = ([ 1) 1<p<oe,
Q

|v]| oo (@) = Inf{M >0 | Ju(z)] < M a.e. z € Q}

and

m In either case, we define the Lebesgue space

‘LP(Q) := {v Lebesgue measurable | [|[v||1»q) < oo} ‘




Basic facts on Lebesgue and Sobolev spaces |l

= Equipped with||-|| s (). LP(€2) is a Banach space for all p
m L?(Q) is a Hilbert space when equipped with the scalar product

(v, w)r2(q) ::/vw
Q

m We record the Cauchy-Schwarz inequality: For all v,w € L?(Q2),

(v, w)r2(0) < [vllz2@llwll L2




Basic facts on Lebesgue and Sobolev spaces ||

m Let 0; denote the distributional partial derivative with respect to x;

m For a d-uple a = (g, ..., aq) € N? we note
0% = 07" ...05"

m For an integer m > 0 we define the Sobolev space

H™(Q) = {ve L*(Q) |Vae A}, 0 € L*(V)}




Basic facts on Lebesgue and Sobolev spaces IV

m H™(Q) is a Hilbert space when equipped with the scalar product

(v,w)gm () = Z (0%, 0%w) 12(q,

acA

leading to (with A% := {a € N? | |a|n < k}),

1

1
3 2
HUHH’”(Q) = ( Z |8av||i2(n)> ) |U‘H’“(ﬂ) = ( Z |8av|i2(n))

OtGAg]’ QEZQL

m For m = 1, letting Vv = (01v,...,04v)! yields

(U,w)Hl(Q) = (’U,w)L2(Q) + (V”U, Vw)[L2(Q)]d




Basic facts on Lebesgue and Sobolev spaces V

m It is useful to record the following trace inequality:

1 1
0]l z20m) < ClIvll iy IV ()

which implies that functions in //'(D) have traces in L?(0D)




Broken Sobolev spaces and broken gradient |

m In the analysis we need to formulate local regularity requirements for
the exact solution

m To this purpose we introduce the broken Sobolev spaces

H™(T;) = {v € L*(Q) | VT € Ty, vlr € H™(T)} |

m Clearly, H™(Q) c H™(T)

= Owing to the trace inequality,

functions in H'(T},) have trace in L2(9T) for all T € Ty,




Broken Sobolev spaces and broken gradient |l

Definition (Broken gradient)
The broken gradient V, : H(Tz) — [L2(Q)]¢ is defined s.t.

Yo e HY(Tp), (Vpo)|r :==V(v|r) VT € Th.



Broken Sobolev spaces and broken gradient Il

Lemma (Characterization of H!(2))
A function v € H*(Ty,) belongs to H'(Q) if and only if

[v] =0 VFeF.
Moreover there holds, for all v € H' (),

Vyv = Vo in [L*(Q)]%.



Abstract nonconforming error analysis |

m Let X be a function space s.t.
X = L*(Q)=L*(Q) — X'

with dense and continuous injection

uuuuuuuuuuuuuuuuuuuuuu



Abstract nonconforming error analysis |l

m We consider the model linear problem

‘Find u € X st a(u,w) = (f,w)x x forall we X‘ (1)

with a bounded bilinear form in X x X and f € X’
m For V, := P%(7},) the dG problem reads

‘Flnd up € Vi, s.t. ah(uh,wh) = lh(wh) for all wy, € Vh‘ (Hh)

with a;, bilinear form on Vj, x V}, and [}, linear form on V},

m In general dG methods are nonconforming, i.e.,

Vi =Pi(Th) ¢ X




Abstract nonconforming error analysis Il

m We formulate general conditions to bound the error
llw = unll
in terms of the approximation properties of 1,
inf |lu—
it fu= il
m In the analysis of dG methods we often have

-0 -1«
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Abstract nonconforming error analysis [V

Definition (Discrete stability)

We say that the discrete bilinear form a;, enjoys discrete stability on V}, if
there is Cyy, > 0 independent of A s.t.

ap(Vp, W o
Yon € Vi,  Csallon]l < sup @A (Vh, Wn) (inf-sup)
wrevi\{oy  llwall
or, equivalently,
G,h(/Uh,’LUh)

Cya < inf su _—
7T eV \0} wyevi\{oy onlllleon

Stability is a purely discrete property which is intimately linked with
the well-posedness of the discrete problem




Abstract nonconforming error analysis V

m A sufficient condition for discrete stability is coercivity,

[Yon € Vi, Cuallonl® < an(vn,vn) |

m Discrete coercivity implies (inf-sup) since, for all v, € Vj, \ {0},

Cuiallonl) < 2L 0) gy anlonwn)

llon wnevin{oy  [lwnll



Abstract nonconforming error analysis VI

m For consistency we need to plug u into the first argument of a;,

m However, in most cases a;, cannot be extended to X x V},

Assumption (Regularity of the exact solution)
We assume that there is X, C X s.t.
m ay can be extended to X, x Vj, and

m the exact solution u is s.t. u € X,.



Abstract nonconforming error analysis VI

Definition (Consistency)

The discrete problem (I1,) is consistent if for the exact solution u € X,

ah(u, wh) = lh(wh) Ywy, € Vp,. (cons.)

Lemma (Galerkin orthogonality)

If u € X, and ay, is consistent, Galerkin orthogonality holds, i.e.,

ap(u — up,wp) =0 Ywy, € V.

UNVERSITE MONTPELUIER 2



Abstract nonconforming error analysis VIII

‘X*h :X*‘i'vh‘

m The error u — uy, belongs to X,

m It is often not possible to express boundedness in terms of the |||
norm, so we introduce a second norm ||-||. s.t.

Vo€ Xan, vl <ol

Definition (Boundedness)

We say that the discrete bilinear form aj, is bounded in X,j x V}, if there
is Cpna independent of h s.t.

V(v,wn) € Xan X Vi, |an(v,wn)| < Cpnallv]|+ lwnl]-



Abstract nonconforming error analysis IX

Theorem (Abstract error estimate)

Let u solve (II) and assume u € X,.. Then, assuming discrete stability,
consistency, and boundedness, there holds

Chnd

|||u—uh|||s(1+ ) inf flu - ynln. (est.)
Y€V

sta



Abstract nonconforming error analysis X

inf [Jlu— < flu—upl| <C inf |u—
il fu—wl < le-wl <C inf Tu—yl.

Definition (Optimal, quasi-optimal, and suboptimal error estimate)

We say that the above error estimate is
m optimal if ||-| = ||-|I«

m quasi-optimal if ||| # ||-||«, but the lower and upper bounds
converge, for smooth u, at the same convergence rate as h — 0

m suboptimal if the upper bound converges more slowly



Abstract nonconforming error analysis XI

m Let y, € V4. Owing to discrete stability and consistency,

fun —goll < C51  sup  Cn(8n =¥ wn)

wp €V \{0} |||wh |||
—Cl s an(u = Yn, W) + @ (Ur—TTh)
sta
wp, €V \{0} |||wh |||

m Hence, using boundedness,

llun — yall < CiraConallv — yall«

m Estimate (est.) then results from the triangle inequality, the fact
that lu — yn|| < [lw — yn|«, and that y; is arbitrary in V4,



Roadmap for the design of dG methods

Extend the continuous bilinear form to X, x X}, by replacing

V(*Vh

Check for

= remove bothering terms in a consistent way
m if necessary, tighten stability by penalizing jumps

If things have been properly done, is preserved
Prove by appropriately selecting |||




Mesh regularity |

m To prove discrete stability, consistency, and boundedness we need
basic results such as trace and inverse inequalities

m To assert the convergence of a method, the discrete space must
enjoy approximation properties of the form

inf - < C,h
f lu —yull« < Cu

This requires regularity assumptions on the mesh sequence

T = (Th)nhen




Mesh regularity |1

Definition (Shape and contact regularity)

The mesh sequence T3 is shape- and contact-regular if for all h € H, Tp,
admits a matching simplicial submesh &, s.t.

(i) Thereis a p; > 0, independent of A, s.t.
VT/ S Gha @lhT’ S rT,

with 77 radius of the largest ball inscribed in T”;
(ii) there is g2 > 0, independent of A s.t.

VT € Ty, vT' e &7, o02hr < hypr.

If T3, is itself matching and simplicial, the only requirement is shape-
regularity with parameter ¢; > 0 independent of h.




Mesh regularity I

Figure: Mesh 75, and matching simplicial submesh &,




Mesh regularity IV

Lemma (Discrete inverse and trace inequalities)

Let T3 be a shape- and contact-regular mesh sequence. Then, for all
h €M, all v, € Pk(T,), and all T € Ty,

Vo2 (e < CinthIH’UhHm(T),
||vh||L2(F) < Ctrh;1/2||vh||L2(T) VF € Fr

where Cy,y and Cy, only depend on o, d, and k.

Lemma (Continuous trace inequality)

Moreover, for all h € H, all v € H*(T},), all T € T;,, and all F € Fr,
[v]1Z2 ) < Cei (2 Vollizacrye + dhrtl|vllz2 @) lvllz2 (),

with C.y; only depending on o and d.



Mesh regularity V

m The last requirement is that the spaces

(Pa(Th))nen

enjoy optimal approximation properties
m Since we consider continuous problems posed in a space X s.t.
X = L}(Q) = L*(Q) — X/,
it is natural to focus on the L?-orthogonal projector 7/

m This also allows to deal naturally with polyhedral elements

mmmmmmmmmmmmmmmm



Mesh regularity VI

Lemma (Optimal polynomial approximation)
Let T3 denote a shape- and contact-regular mesh sequence. Then, for all
h € H, all T € Ty, and all polynomial degree k, there holds

Vs € {0,....,k+ 1}, Ym € {0,...,s}, Yv € H*(T),

v — Wﬁv|Hm(T) < Copphy ™o

Hs(T)»

where Cypy, is independent of both T and h.

Follows from [Dupont and Scott, 1980] O

UNVERSITE MONTPELUIER 2
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The continuous setting
Centered fluxes

Upwind fluxes

The unsteady case

«O>» «Fr o«



The continuous problem |

m We consider the following steady advection-reaction problem:

B-NVu+pu=f inQQ,
u=0 on N,

where f € L?(Q2) and
o0t = {z € 00| £ p(x)n(z) > 0}
m We further assume
peI®(Q), pelip@] A=p— V6> p

m This implies, in particular, 3 € [W1>°(Q)]4




Traces in the graph space |

m To follow the roadmap, we first rework the continuous problem to
enforce BCs weakly
m The natural space to look for the solution is the graph space

V:={veL*Q)|BVve L)},
equipped with the inner product
(v, W)y = (v,w)r2(0) + (B-Vv, B:-Vw) L2 ()

m It can be proved that V' is a Hilbert space




Traces in the graph space |l

m To formulate BCs, we investigate the traces on 0f) of functions in V'

m Our aim is to give a meaning to such traces in the space
L?(|B-n|;00) := {v is measurable on 90 ‘ / |B-njv? < oo}
a0
m We assume henceforth inflow/outflow separation,

dist (09,00 = min lz—y| >0
(z,y) €00~ x0O0t+

mmmmmmmmmmmmmmmm



Traces in the graph space |l

T2

> 11

Figure: Counter-example for inflow/outflow separation
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Traces in the graph space IV

Lemma (Traces and integration by parts)

In the above framework, the trace operator
7 CO@) 5 v — y(v) := vlog € L*(|Bnl; 99)
extends continuously to V, i.e., there is C, s.t., for allv €V,

v ()| 2 (18-n);00) < Cyllvllv-

Moreover, the following IBP formula holds true: For all v,w € V,

[0+ EFwo+ (v-Huul = [ (Bap@ri)
Q o0




Weak formulation and well-posedness |

m We introduce the following bilinear form:

ao.w) = [ pows [ @Vt [ (n)vw,

where )
(|| +2),  a® =5 (2] — @)

m For all v,w € V, the Cauchy—-Schwarz inequality together with the
bound [|v(v)|[2(|g-nj:00) < Cyllv]lv yield

®._

N | =

X

1
2
la(,w)] < (1+ lliwy) " I0llv lwllza) + Clolly iy,

i.e., ais bounded in V x V




Weak formulation and well-posedness ||

Lemma (L2-coercivity of a)

The bilinear form a is L*-coercive on V, namely,

1
VeV,  a(v,v) > pollvlliaq) + /Q §|ﬂ‘n|vz~
o



Weak formulation and well-posedness Ill

atv.w)i= [ pows [ @Evow+ [ (3now,

For all v € V, IBP yields

a(v,v) = /Q <,u - %V-ﬁ) v? + /89 %(ﬁ-n)vQ + /39(5{1)6“2

1
:/Av2+/ —|B-njv?
Q o0 2
1
ZN0||U||%2(Q)+/ §|5'H|U2a
o0

where we have used the assumption A > g > 0 to conclude.



Weak formulation and well-posedness IV

Find u € V s.t. a(u,w) = / fwforallweV (IT)
Q

Lemma (Well-posedness and characterization of (II))

Problem (II) is well-posed and its solution u € V is s.t.

B-Vu+ pu=f a.e. in Q,
u=0 a.e. in 0 .

m We have devised a weak formulation with weakly enforced
homogeneous inflow BCs

m The ideas can be extended to inhomogeneous BCs and systems
of equations [Ern et al., 2007]




Roadmap for the design of dG methods

Extend the continuous bilinear form to X, x X}, by replacing

V(*Vh

Check for

= remove bothering terms in a consistent way
m if necessary, tighten stability by penalizing jumps

If things have been properly done, is preserved
Prove by appropriately selecting |||




Heuristic derivation |

Assumption (Regularity of exact solution and space V)

We assume that there is a partition Po = {Q; }1<i<ng of Q into disjoint
polyhedra s.t., for the exact solution u,

u€ V=V nH (Py).

Additionally, we set V,p, := Vi, + V.

Lemma (Jumps of u across interfaces)

If u € V., then, for all F € F!,

(Bnp)[u]r(z) =0 for a.e. z € F.

UNVERSITE MONTPELUIER 2



Heuristic derivation Il

m Let V, := P5(T;), k> 1

m Our starting point is the (consistent) extension of a to Vi, X Vj,,

ago)(v,wh) = /Q {/wwh + (g’ﬂ-Vh'U)wh} + /(m(ﬁn)evwh

We mimic L?-coercivity at the discrete level by introducing additional
consistent terms that vanish when we plug u into the first argument

ume
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Heuristic derivation [l

m Element-by-element IBP yields for all v, € V},,
aglo)(vh,vh) =/ {uvi + (B-thh)vh} +/ (Bn)%v
/,uvh—l- Z / B-Vup vh—l—/ (B1)°vi

TeThH

/lwh"‘ Z / B-Vuy) /@Q(ﬁ'n)@”i

TeT)

1
= [ Avi+ g / *\d‘ll"lr,‘i’/ Bn)°v2,
/Q " TGT.OT2< ™)V OQ( )
h

where we have used A :=p — V-3
m Let us focus on the boundary terms




Heuristic derivation IV

m Using the continuity of (8-nr) across all F € F,

= [ o= 5 [ owntts 5 [ 1o

TeTh FeF;) FeF}

m For all ]:;L > F =0T; N0Ts, v; = vyl

i € {1, 2}, there holds

Ti»

STA1 = 207 —08) = (01— 02) (1 + v2) = [on] i}




Heuristic derivation V

m As a result,

aglo)(vh,vh)z /Avh—f- Z / Bur)[vn]{vn}

FeF}

+ 3 [ gt [ o

FeF}

m Combining the two rightmost terms, we arrive at

o) = [ M+ [ Gunoliod |+ [

FeF}

m The boxed term is nondefinite




Heuristic derivation VI

m A natural idea is to modify ago) as follows:
aSt (v, wy) == / {,wah + (ﬂvhv)wh} +/ (Bn)vwy,
Q o0
- > /F (B-np)[v]§wn}

FeF}"
m The highlighted term is consistent since u € Vi implies
(Bnp)ulrp(z) =0 forae. z € F

m Moreover, it ensures L>-coercivity since, this time,

1
aSt (v, vp) = / Avj +/ i\ﬂ-nh)i Yo € Vy,
Q a0




Heuristic derivation VII

popwp, + (B-Vpop)wh ¢y (Bn) vpwy,
Q a0

3 /F (Bnp) o] fwn}

FeF;}

Figure: Stencil of the different terms




Heuristic derivation VIII

_ 1 _
ol = 7 ol + [ 51802 i (max] ey, £)}

Lemma (Consistency and discrete coercivity)

The discrete bilinear form oSt satisfies the following properties:
h 4

(i) Consistency, i.e., assuming u € Vi,
ag! (u, vp) = / fon  Vup € Vp;
Q

(ii) Coercivity on Vi, with Cyt, = min(1, 7cpg),

Yuy, € Vh, a(;:lf('Uh,Uh) > Cstal””hmzf'



Error estimate |

Lemma (Boundedness)

There holds

V(v,wn) € Vap X Vi, a5 (v, wn) < Conallv]

cf % wh”'cfa

with Cyna independent of h and of ;1 and 3, and with f. := || B[ [ ()},

IollZ,. = NollZe + D 7ellB-Voliary + D meB2hz [vll32om)-
TeTh TETh




Error estimate |l

Find u, € Vj, s.t. azf(uh,'uh) = / fop, for all v, €'V},
Q

Theorem (Error estimate)

(I15)

Let u solve (I) and let uy, solve (I1S') where Vi, = PX(T;,) with k > 1.

Then, there holds

e = unlles < C inf Jlu —yalles.x,

with C' independent of h and depending on the data only through the

factor
Cs_t; = {min(1, TC,LL())}_l.



Error estimate |1I

Corollary (Convergence rate for smooth solutions)

Assume u € H**1(Q). Then, there holds
lu —unlles < Cuh®,

with Cy, = C||ul| gr+1(qy and C independent of h and depending on the
data only through the factor {min(1, 7cp)} .

Proof.
Let y, = W’iu in the error estimate and use the approximation properties
of the sequence of discrete spaces (Vi,)nen- O

NVERSITE MoNTPELLER 2



Error estimate |V

m This estimate is suboptimal by % power of h

m Indeed, in the inequalities
inf — < |luw— < C inf —
it fu = yalls < Ju = wnller < C it Ju— gl

the upper bound converges more slowly than the lower bound

_ 1
ol =7 ol + [ 1B,
o0

oz, o= Wolle + D ellB-Volltairy + D mefhz!llol
TeTh T<Th

2
L2(0T)




Numerical fluxes |

achf(y,wh) = / {;wwh + (ﬁ.th)wh} + /aQ(ﬁ.n)@q;wh

DN KCEDIGIEN:

FeF}

Lemma (Equivalent expression for a5?)

For all (v, wy) € Vip X Vi, there holds
ait(won) = [ {= By — (55}
+/Bﬂ(ﬁ Pvwy, + Z / Bng) v} w]-

FeF}



Numerical fluxes Il

m IBP of the advective term leads to
a5t (v, wp) = / {(u - V-B)vwy, — U(ﬁ-Vhwh)}
Q

+ Z / (B-nr)vwy, / (8-n)%vwy,
o0

TeTh

= / Ben ) [o] n

FeF}

m Exploiting the continuity of 5-nr we obtain

Z/ (Bnr)owy, = Z/ﬁnF [vwa] + Z/ n)vwy,

TETh FeF} FeFp




Numerical fluxes Il

m To conclude we use the magic formula

[vwp] = viwy — vows
1 1
= §(U1 —v2) (w1 +w2) + 5(111 + v2) (w1 — w2)

= [olfwn} + fo[wal,

where v; 1= v|, and w; := wy |7, for i € {1,2}

uuuuuuuuuuuuuuuuuuuu



Numerical fluxes IV

m We now consider a point of view closer to finite volumes
m Let T € 7; and £ € PH(T)
m For aset S C €, denote by xs the characteristic function of S s.t.

() 1 ifzels,
xTr) =
Xs 0 otherwise

m With the goal of setting vj, = &xr in (II5F) observe that

[éxr] = er,pé  with  epp:=npnp

vvvvvvvvvvvvvvvvvv



Numerical fluxes V

aﬁf(uh,vh) = /Q {(M — V-Bupvn, — Uh(ﬁ'vhvh)}
+/69(ﬂ~n)@uhvh+ Z /F(B'HF){{“h]}[[Uh]]-

FeF}

m Letting v, = &xr in the alternative form for a; (cf. above) we infer

ah(“mﬁXT)=/T{(,ufv-ﬁ)uh£fuh(ﬁ-vg)}+ > ET’F/F¢F(uh)£:/Tf§’

FeFp

where the numerical fluxes ¢ (up) given by
L (ﬁ-np){{uh}} if ' ¢ ]:}ll,
or(up) = {(ﬁ-n)@uh §F T



Numerical fluxes VI

m For &|r = 1 we recover the FV local conservation,

vT €T /T(,u—Vﬂ)uh+ Z /F¢T,F(Uh):/Tﬁ

FeFr

where ¢ p(up) := er por(un)

m We next modify the numerical flux to recover quasi-optimality

vvvvvvvvvvvvvvvvvv



Upwinding |

m The error estimate for centered fluxes is suboptimal

m This can be improved by tightening stability with a least-square
penalization of interface jumps

m In terms of fluxes this approach amounts to upwinding

m As a side benefit, we can estimate the advective derivative error




Upwinding Il

m We consider the new bilinear form

ap,™" (v, wy) = aﬁf(vh, wp) + SK(Vh, Wh),

where, for n > 0,

s(onwn) = 30 [ Fipurlfollon]

FeF}

m This term is consistent under the regularity assumption




Upwinding Il

m Specifically,

upw

ap™" (vn, wy) = /{,Lwhwh-i- B-Vhvp wh} /BQ Cvnwn
-3 / G [olfwnd + S / 7 g |[on] [ion]

FE]—" FeFy;

m Or, after element-by-element IBP,

ap™ (vp,wp) = / {(u V-B)vrwp, — vp, ﬂVhwh} / Conwy,
nr){v w n ngl|fonlwn
+F;/ Bonr) {on } mg/ |Bonp | [on] [eon]



Upwinding IV

/Q {;whwh + (ﬂvhvh)wh}, Ag(ﬁ'n)evhwh

Y [ Gueelfund, \

FeFj} ]

> [ Jisnrlton]un]

FeF}

Figure: Stencil of the different terms
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Upwinding V

Find up, € Vi, s.t. @™ (up, vn) = / fuy, for all v, € V3, (IL,”Y)
Q




Upwinding VI

n .
ol = Tl + Y [ Fipnritol

FeF;

Lemma (Consistency and discrete coercivity)

upw

The discrete bilinear form a;*" satisfies the following properties:

(i) Consistency, i.e., assuming u € Vi,
ap™ (u,vp) = / fon Yoy, € Vp,
Q

(i1) Coercivity on Vi, with Cga = min(1, 7cpo),

Von € Vi, @™ (0n,08) > Cotallonlfaws-



Numerical fluxes

m Proceeding as for a§' we infer for all T € T,
ap (un, EXT) (b= V-B)upé —up(B-VE) ¢ + ET,F or(un)é = [ f€,
= [ { e 5 o[- |
where, this time,

Bopfunl} + 2Bnp|u,] f Fe Fi,

O (n) = {<5.n)@uh if F e 7!

m The choice 7 = 1 leads to the classical upwind fluxes

| Bupul, i FeF,
¢F(Uh) - {(ﬂ'n)@uh if I c ]:’l:




Error estimates based on inf-sup stability |

u We define the stronger norm (8. := ||B||{1 (q))«)

Iolias = Noliaws + D B hellB-VollZa )
TET,

m We assume in what follows that the model is well-resolved and
reaction is not dominant,

h < ﬂc'rc

vvvvvvvvvvvvvvvvvv



Error estimates based on inf-sup stability I

Lemma (Discrete inf-sup condition for a;”™)

There is C".

.a > 0, independent of h, y, and j3, s.t.
a;P" (vp,, wp,

Vop € Vi, Cétacstamvh |||L1W1i <S:= sup M

wr eV \{0} |||wh|||uwu

with | Csta = min(1, 7cpp) < 1 | L2-coercivity constant.




Error estimates based on inf-sup stability IlI

Lemma (Boundedness)
There holds

V(v,wp) € Van X Vi, [a”" (v, wp)| < Conallvlluws <l wnlluws,

with Cypnq independent of h, u, and 3 and

Bl o = BBy + 3 Be (BT lolEecry + NolEaom)) -
TETh




Error estimates based on inf-sup stability 1V

Theorem (Error estimate)

Let u solve (II) and let uy, solve (IL;*") where Vi, = PX(T,) with k > 0.
Then, there holds

lw = unlluwg < € inf Jlu = yalluws,
YnEVh

with C independent of h and depending on the data only through the
factor {min(1, 7o)} 1.

Corollary (Convergence rate for smooth solutions)
Assume u € H**1(Q). Then, there holds
lw — un fluws < Cuthrl/za

with C, = C||ul| gr+1(q) and C independent of h and depending on the
data only through the factor {min(1, 7cp)} .



The unsteady case |

Oou+ B-Vu+ pu = f
u=0
u(-t=0) =g

in Q x (O,tp),
on Q™ x (0,tr), (T1(¢))
in

uuuuuuuuuuuuuuuuuuuuuu



The unsteady case |l

m We define A;P" : V., — Vj, s.t. with n = 1 (upwind),

V(v,wp) € Vip X Vi, (AP v, wp) 2 (0) = ap™ (v, wp,)

m The space semidiscrete problem reads

dun(t) + AP () = fut) Ve 0] (T(8))

with initial condition uj(0) = mxuo and source term
fh(t) = Wh,f(t) Vt € [O, tF],

m (II5(t)) is a system of coupled ODEs




The unsteady case Il

Lemma (Consistency and discrete dissipation for A;"")

The discrete operator A;"™ satisfies the following properties:
m Consistency: For the exact solution uw € C°(H'(Q)) N C*(L%(Q)),

mhdyu(t) + AUPW () = fu(t) vt € [0, tr].
m Discrete dissipation: For all vy, € V3,
(AP vp, va) r2() = |val3 + (Avk, vn)2(),

where we have defined on V., the seminorm

= [ gBakt+ 0 [ Sipuribl®

FeF}




Time discretization |

m Let 0t be the (constant) time step s.t.
t"i=ndt, YO<n<N,  tp=NGt
m We assume that the time step resolves the reference time 7
ot < 7. and 6t < tp

m For a function of time ¢ € C°(V) we set

P = p(t")



Time discretization |l

m The simplest time marching scheme is the forward Euler scheme,

UZ+1 =up — 0tAPVup + ot fy
= Equivalently,

upw_ n __ fn
+ A upy = fj)

mmmmmmmmmmmmmmmm



Time discretization Il|

m To improve the accuracy of time discretization, one possibility is to
consider explicit Runge—-Kutta (RK) schemes

m Such schemes are one-step methods where, at each time step,
starting from u}, s stages, s > 1, are performed to compute uﬁ“

m Explicit RK schemes can be formulated in various forms




Time discretization 1V

m Herein we focus on the increment form

k; = —Azpw (’LL;Ll + StZaiij) + fh(tn + Ci(St) Vi € {17 .. .,S}7

j=1

uz+1 = ’U,Z + 5t Z bzkz
i=1
where

m (a;j)1<i,j<s are real numbers
m (bi)1<i<s are real numbers s.t. >0 b =1
m (ci)1<i<s are real numbers in [0,1] s.t. ¢; = E;Zl ai; V1<i<s

m The k; can be interpreted as intermediate increments

vvvvvvvvvvvvvvvvvv



Time discretization V

m These quantities are usually collected in the so-called Butcher's array
C1 ; ai] ... QA1s
CsiQs1 :.- ! Ass.
bl bs

m The scheme is explicit whenever

a,-j:OforaIIjZi

Explicit schemes require to invert the mass matrix at each stage

For dG method, the mass matrix is (block) diagonal



Time discretization VI

m The forward Euler scheme is actually a one-stage RK method with

[0.0] k= A+
uptt = up + otk




Time discretization VII

m Two examples of two-stage RK schemes are the improved Euler

0:0 0 ky = — AP up + fp!
2 ife 0 ke = — A (07 + $otka) + 1+
i 0 ]. u’]f—"l'ﬁ-l — uz +(5tk2

with f,’fl/z = fu(t" + 36t) and Heun schemes

00 0 by = A+ £
110 o = — A () + 6thy) + £
12 1/2 uptt = + 6t (k1 + ko)




Time discretization VIII

m For f =0, since A;" is linear, both schemes can be written
+1 _ upw 16,2 upwy 2
up T = uy — 6tA g + 567 (AT) Ry,

m On the right-hand side, we recognize a second-order Taylor expansion
in time at ¢t where the time derivatives have been substituted using

dpu(t™) = — AP u(t"),

and replacing u <+ uy,




Time discretization IX

m An example of three-stage RK scheme is the three-stage Heun
scheme for which

0:0 00 ky = — Al + fi

Ysiifs 00 ky = — AP (up + Lothy) + fr 0

W 00 ks = — AP (uf + 2othy) + f
11/4 0 3/4 UZH _ uﬁ + %Jt(kl I 3k3)

m Straightforward algebra shows
Wt = — LAY LR (AR — 30t (A P

m We recognize now a third-order Taylor expansion in time




Time discretization X

m Finally, an example of four-stage RK scheme is

0/0 0 0 0
Y2i1/2 0 0 0
200 12 0 0
130 0 1 0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1/6 1/3 1/3 1/6

— APV ug + £,

AP (4 Lothy) +
ks = — AV (uf! + L6thy) + fh+1/2
b = A+ otk + 7

= a4 L1l + 2k + 2k 4 )




Time discretization Xl

m An alternative formulation of RK schemes consists in introducing
intermediate stages for the discrete solution instead of the
intermediate increments k;

m When A;P" is linear, the two formulations are equivalent in the
absence of external forcing

m In the nonlinear case, the form based on intermediate stages for the
discrete solution is more appropriate




Main convergence results |

m We next state some error estimates under CFL conditions of the form

&SQB

0>0 (CFL)

h

m For the forward Euler scheme, we only consider the case k = 0 since
the CFL to achieve stability is too stringent for k > 1

m For explicit RK2 and RK3 schemes, we consider dG schemes with
polynomial degree k > 0 for space semidiscretization

uuuuuuuuuuuuuuuuuuuu



Main convergence results Il

Theorem (Convergence for forward Euler)

Set V;, = PY(Ty), assume u € C°(H'(2)) N C*(L*(Q)) and (CFL) with
0 < o™ for o™ independent of h, 6t, f, i, and B. Then, there holds

N—-1 2
t
||UN — UhNHL?(Q) + (Z 5t|um — u;ﬂ%) 5 605“‘%()(1(% 4= X2h%)’

m=0

1 1 AL
where x1 = et ||dt2U||CO(L2(Q)) and xo = tgBe ||U|ICO(H1(Q)), and Cg;,
is independent of h, 6t, and the data f, i1, and 5.



Main convergence results Il

m We reformulate the RK2 scheme as

wyy = up — 6tA upy + 5t fy,
1_1 1 1
uptt = 5 (upy +wy) — 30t A wy + S0ty

with initial condition u) = mjuo.
m We assume f € C?(L?(2)) and

lp = fir = tde f7 || 2y S 62|d7 £ ()]l co(z2(ay)-




Main convergence results IV

Theorem (Convergence for RK2)
Assume u € C3(L?(Q)) N CO(HY(Q)). Set Vj, = PE(Ty,) with k > 1.
m In the case k > 2, assume the 4/3-CFL condition

4
_1 h\ 3
ot <7, 3 (*) , o > 0;
Be
m In the case k = 1, assume the CFL condition (CFL), that is,
5t < QRK2£7
Be

with o%¥2 jndependent of h, t, f, wn, and S.
Finally, assume dju € CO(H*t1=5(Q)) for s € {0,1}. Then,

N-1 2 .
Cata & 1
™ — w20y + <Z otlu™ — u?%) S e (xa6t? + xohF T 2),

m=0

where Csta is independent of h, 6t, and the data f, u, and B, and x1 and x2 depend

only on tg, T«, Bc, and bounded norms of f and u.
umes
ST



Main convergence results V

m We reformulate the RK3 scheme as

wyy = up — 6tA up + 6t fy,
yn = 5(upy +wp) — $6LAT Wil + SOL(fi + Stdy f7),
up ™ = g (uf w +yp) — §OLA YR+ SOty

with initial condition u) = mjuo.
m We assume f € C*(L?(Q2)) and

i — fir = otde fit — $083d fitll 2oy S 683 (|d3 fllcor2ay)-




Main convergence results VI

Theorem (Convergence for RK3)

Assume u € C*(L*(Q2)) N C°(H(2)). Set V}, = PX(Ty) for k > 1.
Assume b
5t < oRK3
= B
for o"¥3 independent of h, 6t, f, i1, and 3. Finally, assume
diu € CO(H*1=3(Q)) for s € {0,1,2}. Then,

N-1 2
t
[ = ui N2 + (Z otju™ — u}ﬂ%) S €% (18t + xohF ),

m=0

where Cyy, is independent of h, ot, and the data f, u, and 3, and x; and
x2 depend only on tg, 7., B., and bounded norms of f and u.

ume
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Setting |

m For f € L?(Q2) we consider the model problem

—Au=f inQ,
u=0 on 99,

m The weak formulation reads with V := H{ (),

Find u € V s.t. a(u,v) = / fvforallveV, (IT)
Q

where

a(u,v) :== [ Vu-Vov
Q




Setting Il

m The well-posedness of (IT) hinges on Poincaré’s inequality,
Yo e Hy(Q), [vllr2) < CalVollpzqaye

m Indeed, a classical result is the coercivity of a,

1
Yo e Hi(Q), a(v,v) > m”“”%{l(ﬂ)

Lemma (Continuity of the potential and of the diffusive flux)
Letting [v]r = {v}r = v for all F € F?, there holds

[[u]] =0 VF € Fp,
[Vulnp =0  VF e Fi.



Setting Il

Assumption (Regularity of exact solution and space V)

We assume that the exact solution w is s.t.
weV,:=V HHQ(Q).

We set V., := V. + V},. This implies, in particular, that the traces of
both w and Vu-np are square-integrable.



Roadmap for the design of dG methods

Extend the continuous bilinear form to X, x X}, by replacing

V(*Vh

Check for

= remove bothering terms in a consistent way
m if necessary, tighten stability by penalizing jumps

If things have been properly done, is preserved
Prove by appropriately selecting |||




Symmetric Interior Penalty: Heuristic derivation |

Vi =PE(Th), k>1

m We derive a dG method for (IT) based on a bilinear form ay,

m For all (v,wy) € Vi, X V, we set

aéo)(v,wh) :/th,v-vhwhz Z /TVU-th

TETh




Consistency |

m Integrating by parts element-by-element we arrive at
ago (v, wp) Z/AvthrZ/ (Vongr)wy,
TETh TETh

m The second term in the RHS can be reformulated as follows:

Z/ (Vonr)w, = Z/[[thwh]]nF+ Z/anp

TE€Th FeF} FeFp




Consistency |l

m Moreover,
[(Vrv)wn] = {Vro}wn] + [Vav][{wn },
since letting a; = (Vv)|1,, b; = w1, @ € {1,2}, yields

[(Vrv)wn] = a1by — azbs
= %(al +az)(by — b2) + (a1 — 02)%(51 + b2)
= {Viv}wn] + [Vrv]{wr}.

m As a result, and accounting also for boundary faces,

S [ wonnun= 3 [ vpncinl+ 3 [ [9adnefund

TeT), ¢ FeFy, FeFi

uuuuuuuuuuuuuuuuuuuuu



Consistency Il

m In conclusion,

a( ) (v, wp) Z/ (Av)wy, + Z /{{VhL}} npwp]

TETh FeFp

+ > /HW’ e fwnd

Fery

m To check consistency, set v = u. For all wy, € V},

aEl (u, wp) /fwh+ Z / Vunp)[w]

FeFy,

m Hence, we modify ago) as follows:

ag (v, wp) /th Viwy — Z /{{th}} npJwp]

FeFy




Symmetry |

m A desirable property is symmetry since

m it simplifies the solution of the linear system
m it is used to prove optimal L? error estimates

m We consider the following modification of ag):

a'ff(uwh) ::/th-Vhwh

o Z / Vvt ap[wn] + [V]{Vrw, }nr)

FeFn




Symmetry |

m Element-by-element integration by parts yields

a$? (v, wp,) Z/ Av)wy, + Z /[[Vh npfwn}

TETh FeFi
- Z / U]]{{Vh’wh]} ng
FeFy

m This shows that aj® retains consistency since

[Viulpnp =0  forall F e F,
[ulp =0  forall FeF,




Coercivity |

m For all v, € V}, there holds

a5 (vn, vn) = IVhonF2e =2 D /{thh}} n [vn]

FeFn

m The boxed term is nondefinite

m We further modify af® as follows: For all (v,wy) € Vip, X Vp,

a3 (v, wp) = a$ (v, wy) + sp(v,wh),

with the stabilization bilinear form

)= 3 7 [ pllwn]

FeFn




Coercivity

m We aim at asserting coercivity in the norm

Nl

Ve Vo, Dol = (IVaollzaay + 03)

with jump seminorm

o]y = (0" sn(v,0))% = ( > ,;Ilﬂvﬂliw))

FeFy

= We anticipate the following discrete Poincaré’s inequality:

Yo € Vi, llonllzec) < oallonllsp, |

with o5 > 0 is independent of A

mmmmmmmmmmmmmmmm



Coercivity Il

The choice for sy, is justified by the following result.

Lemma (Bound on consistency and symmetry terms)
For all (’U,U}h) € Vin X Vp,

1

> /F{{th}nF[[wh]] < (Z > hF||VU|T'nF||i2(F)) [wh 5.

FEFp TeTy, FEFT

Moreover, if v = vy, € V},,

1
< Cu NG | Vavn 2 @yelvnls-

> /F{thh}‘nF[[wh]]

FeFy



Coercivity IV

Lemma (Discrete coercivity)

For all 1) > 1) := CZ Ny there holds
Yon € Vi, a3 (un,n) 2 Cyllonll

with Cyy := (n — CZNa)(1+n)~".

2
sip»



Coercivity V

a;ip(v,wh)z Avhv~vhwh7 Z /;: ({{Vh’u}-npﬂ’whﬂ+[[’Uﬂ{{vhwh}}~np)

FeFy,

U
+ 3 2 [l

FEFy,

m Using the bound on consistency and symmetry terms,
sip 2 1/2 2
a,”(vn,vn) > |Vavrllz2ye — 2Cu Ny " [[Vavnll 12 ()evnls + nlvals

m Forall 5 € Rt, > 32, x,y € R, there holds

a? — 2Bxy +ny? > ——




Coercivi

ty VI

Lemma (Boundedness)

There is Cyq, independent of h, s.t.

where

V(v,wn) € Vin x Vi, a2 (v, wp) < Conallvllsip,s lwn llsip-

Ivllsip,« := <

lolZe + D hrllVolrnrlliz e
TETh

)

1
2




Basic energy error estimate |

Find uy, € Vj, s.t. as;;p(uh,vh) = / fup forall v, €V,
Q

Theorem (Energy error estimate)

Assume u € V, and n > 7. Then, there is C, independent of h, s.t.

v = unllsip < € inf flu—vnlsip,s-



Basic energy error estimate ||

Corollary (Convergence rate in ||-||sip-norm)

Additionally assume w € H**1(Q). Then, there holds
lu — unllsip < Cuh®,

with C, = C||ul| gr+1(q) and C independent of h.

m The above estimate shows that convergence requires k > 1, i.e.,
we cannot take k =0

m For an extension to the lowest-order case, cf. [DP, 2012]




L2-norm error estimate |

m Using the broken Poincaré inequality of [Brenner, 2004] one can infer
lw — up| 20y < oHCuh

m This estimate is suboptimal by one power in h
m An optimal estimate can be recovered exploiting symmetry

m Further regularity for the problem needs to be assumed

mmmmmmmmmmmmmmmm



L2-norm error estimate |l

Definition (Elliptic regularity)
Elliptic regularity holds true for the model problem (II) if there is Cey,

only depending on €2, s.t., for all ¢» € L?(12), the solution to the problem,
Find ¢ € H}(Q) s.t. a(¢,v) /¢U for all v € Hj(Q),
is in V. and satisfies

Il z2(0) < Ceanll¥llz2()-

[Elliptic regularity holds, e.g., if the domain € is convex [Grisvard, 1992]}




L2-norm error estimate Ill

Theorem (L2-norm error estimate)

Let u € V, solve (II) and assume elliptic regularity. Then, there is C,
independent of h, s.t.

llu — Uh||L2(Q) < Chllu — uplsip,+-

Corollary (Convergence rate in ||-|| 2 (q)-norm)
Additionally assume v € H**1(Q). Then, there holds
||u — uh”Lz(Q) < Cuthrl.

with C, = C||ul| gr+1(q) and C independent of h.
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Liftings |

m Liftings map jumps onto vector-valued functions defined on elements
m Liftings play a key role in several developments

m Flux and mixed formulations
= Computable lower bound for n
m Convergence to minimal regularity solutions

m The theoretical developments will eventually allow us to analyze dG
methods for nonlinear problems such as the Navier-Stokes equations

ume



Liftings Il

m For an integer [ > 0, we define the (local) lifting operator
v« L*(F) — [Py(Th)],

as follows: For all ¢ € L?(F),

/ (i) h = / {r}nre Vo€ PLT
Q F

= We observe that supp(rly) = Uper, T




Liftings Il

m For all 1 >0 and v € H'(T},), we define the (global) lifting

Ri,([]) = ) ria([v]) € [Po(Th))

FeFy

® R} ([v]) maps the jumps of v into a global, vector-valued volumic
contribution which is homogeneous to a gradient




Liftings IV

Lemma (Bound on local lifting)

Let F € Fy, and let 1 > 0. For all v € H(T}), there holds

e (D llz2 @ < Colip® 0Dl 22 (-

Lemma (Bound on global lifting)
Let 1 > 0. For allv € H'(T}), there holds

Rl < N% ! 2 ’ < C N%
| h([[v]])ll[L2(Q)]d > Ny Z ||1"F([[U]])||[L2(Q)]d = LrdVp |v]5-
FeFy,
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Discrete gradients |

m For [ > 0, we define the discrete gradient operator
Gy, - H'(Th) — [L*(Q)],

as follows: For all v € H(Ty),

G} (v) == Vv = Ry ([v])

m The discrete gradient accounts for inter-element and boundary jumps

Lemma (Bound on discrete gradient)

Let 1 > 0. For allv € H'(Ty), there holds

1
IGH ()llz2@ye < (1 + CENa)2 v llsip-



Reformulation of azlp I

Let | € {k—1,k} and set V}, = P%(T;,) with k > 1
m There holds for all vy, wy, € V4,

ap (vn, wn) =/Qthh~Vhwh—/Qthh-Rﬁl([[wh]])—/QVhmeﬁl([[vh]})

Indeed Vv, € [Pé(ﬁ)]d withl >k —1,

WEH,L@mﬁmwﬂaéwW¢mm>

Using the definition of discrete gradients,

ﬁ%mm=A%WWWW—L%WWRMWM




Reformulation of a;"

. . . sip
m Plugging the above expression into a; ",

azip(vh, wp) = [ G (vn)-GY (wr) + §Zip(vh, wp),
Q

with

8P (0, ) 1= / on][n] — / RL([on])- R ([wn])

FG]—'

= Dropping the negative term in &3 leads to the Local Discontinuous
Galerkin (LDG) method of [Cockburn and Shu, 1998]

m This method has the drawback of having a significantly larger stencil




Reformulation of azlp 1l

/ Vpvp-Viwp
Q

/Q (thh' RZ}L([[wh]])+vhwh'Rl}z([[Uhﬂ))r

> o [ Il

FeFy,

[ RuQunD: ReTen). | Ghon)Ghatwn)
Q Q

Figure: Stencil of the different terms

ume
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Reformulation of azip \Y

Lemma (Coercivity (alternative form))

For all vy, € V,,

IGh (R IFr2(aye + (1 — CocNa)|vnl < an(vn, vn)-

Observe that
an(vn, v) = |G (vn)|IF2 e + 1lonl3 = 1RA([vR]) 172 (qyjas

and use the L2-stability of R}, to conclude. O
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Numerical fluxes |

m Let T € Ty, € € PE(T). Element-by-element IBP yields

/T fe=— /T (Au)é = /T Vu-vE - /8 (Vun)s.

m Hence, letting ®r(u) := —Vu-np and ep p = nr-np,
[vuves S e [ @rwe- [ e
T FeFr F T

m Our goal is to identify a similar local conservation property for up,




Numerical fluxes Il

m Using v, = {xr as test function we obtain

[ fe=aPunen) = [ vuve- S [ (0w partu]

FEFy

-3 /F {Vhundnrléxl + S /F 2L funlléxr]

FeFy FeFrp

m Letl e {k—1,k}. Forall T € T, and all £ € P5(T),

/T Gl (un)-VE+ Z €T, F /F @F(“h)E:/Tffa

FeFr
with .
or(up) == —{Viup}np+ hfﬂuh]]
—_——
HF,_/

consistency
penalty



Numerical fluxes Il

m Taking £ = 1 we infer the FV flux conservation property,

Z €T,F/F¢F(uh):/Tf

FeFr

Also in the elliptic case local conservation holds on the computational
mesh (as opposed to vertex- or face-centered dual mesh)

ume
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Part IV

Applications in fluid dynamics
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Stokes

NaViEr_Stokes
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The Stokes problem |

m We consider the flow of a highly viscous fluid

m The governing Stokes equations read

—Au+Vp=f in Q
Vau=0 in ,
u=20 on 09,

(P)a=0




The Stokes problem |l

m Let L3(Q) := {v e L*(Q) | (v)o = 0} and set
U:=[H}V]Y, P:=L}Q), X:=UxP

m The spaces U, P, and X are Hilbert spaces when equipped with the
inner products inducing the norms

d /2
[vllo = vl @y = (Z |Ui||%11(9)>

i=1

lallp = llgll 2,
1/2
(v, 9)llx = (lvllZ + llall?)




The Stokes problem [l

m For all (u,p), (v,q) € X let
a(u,v) ::/Vu:Vv, b(v,q) := —/ gV, B(v):= [ fw,
Q Q

m The weak formulation reads: Find (u,p) € X s.t.

a(u,v) + b(v,p) = B(v) Yo e U,

—b(u,q) =0 Vq e P (Tls)

m (Ilg) is a constrained minimization problem with the pressure acting
as the Lagrange multiplier of the incompressibility constraint




The Stokes problem IV

m Equivalently, letting

S((U,p), (’U, (])) = a(u7 U) + b(’l),p) - b(uv (]),

we can formulate the problem as

‘Find (u,p) € X s.t. S((u,p), (v,q)) = B(v) for all (v,q) € X‘

uuuuuuuuuuuuuuuuuuuuuu



The Stokes problem V

m Well-posedness hinges on the coercivity of a and on the inf-sup

condition
b

> g >0
a€P\{0} verr\qoy lvllullgllp

= Equivalently,

b(v,
Vee P, Baldlp< sup 09
veU\{0} vl




The Stokes problem VI

Lemma (Surjectivity of the divergence operator from U to P)

Let Q € R% d > 1, be a connected domain. Then, there exists Ba >0
s.t. for all ¢ € P, there isv € U satisfying

q=Vw and Ballvllv < |lgllp-

See, e.g., [Girault and Raviart, 1986]. O
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The Stokes problem VII

Proof of the continuous inf-sup condition

Let ¢ € P and let v € U denote its velocity lifting. The case v = 0 is
trivial, so let us suppose v # 0:

lall? = /Q Vv = —b(v, q)

b(w, q)
< vl
weU\{0} ||w||U
_ b(w, q
<87 sp @Dy

weU\{0} |wllor

and the conclusion follows.



Equal-order discretization |

m For an integer k& > 1 define the following spaces:
Up o= PHTIY,  Pu=Pa(Ta) N L5(Q), X := Uy x Py

m Discrete pressure-velocity coupling: For all (vp,,qn) € X}, set

b (Vh, qn) == —/Q(Vh-vh)Qh + Z /F[[vh]]nF{{Qh}} = — /) Dj,(vi)qn

FerFy,

:/th-th— Z /F{{Uh}}'nF[[qh]]’

FeF;

with [ = k£ and

Dy (von) := tx(G} (vn) = Vi-vn — te(R) ([vn]))




Equal-order discretization |l

m Extending the domain of b, to [H*(73,)]? x H'(T},), we obtain the
consistency properties

V(anh) e U x Ph7 bh(Uth) = _/ th‘U7
Q
V('Uh,q) S Uh X Hl(Q)7 bh(”ha‘]) = / Uh'VCL
Q

since, for all v € U and all ¢ € H'(9),

[[’U]]ZO VF € Fp
[eqf=0 VFeF




Equal-order discretization |ll

Lemma (Discrete inf-sup condition)

There is B > 0 independent of h s.t. s.t.

b (vn, qn
Van € Pn, Bllgnllp < sup bn(vr, gn)

=+ |Qh|P7
vn €UL\{0} vrllac

where

lanly == > PrelllandllFece)-
FeF:



Equal-order discretization 1V

m We stabilize the pressure-velocity coupling using the bilinear form

V(Pn,an) € Ph, n(pnrn) ==Y hF/[[ph]][[Qhﬂ

FEF}

m We consider the bilinear form

Sh((un,pn); (Vhyqn)) =
an(un,vr) + bn(vn, pr) — bn(un, qn) + su(Ph, qn),

where

d
v) = Z ay? (wi, v;)
i=1




Equal-order discretization V

m The discrete problem reads: Find (up,pr) € Xj, s.t.

[ Su((un, pr), (ns ) = Blon) Vo, gn) € X | (Us,)

m Equivalently: Find (up,pr) € X, s.t.

an(un,vn) + bn(vn, pr) = B(vn) Yoy, € Up,
—bn(un,qn) + sn(Prsqn) =0 Yan € Py

m This corresponds to a linear system of the form

A, B:| |Us _ Fp
-B! C,||Py| |0




Stability |

m Equip X, with the the following norm:

1(vrs @) 1§ = lonlizer + lanllB + lanl3,

where
d
IollZe == > vill%,
i=1
m Owing to partial coercivity,

V(vn, qn) € Xn, alloalia + |th12, < Sn((vhs qn); (vn, qn))




Stability |1

Lemma (Discrete inf-sup for Sy)

There is cs > 0 independent of h s.t., for all (vp,qp) € Xp,

Sh((vhv Qh)? (wh7 ’I‘h))
cs|[(Vhy qn)|ls < sup
I anlls< - swp T Tlommls

Consequence of the coercivity of a;, and the discrete inf-sup on by,. Ol
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Convergence to smooth solutions |

Assumption (Regularity of the exact solution and space X,)

We assume that the exact solution (u,p) is in X, := U, x P, where
U, =UNn[H*(Q))Y,  P.:=PnH(Q).
We set

Usp = U, + Uy, Py = Py + Py, Xin = X + X3

Lemma (Jumps of Vu and p across interfaces)

Assume (u,p) € X.. Then,

[Vulnp =0 and [p]=0 VF € F..
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Convergence to smooth solutions |l

Lemma (Consistency)

Assume that (u,p) € X,. Then,

Su((u, p), (vn,qn)) / fon V(vh, qn) € Xp.



Convergence to smooth solutions Ill

m We have proved an inf-sup condition for S},

m It remains to investigate the boundedness of S},
m Letting

I, Dlo,e = 10, Dot D hrlVolrnrliaor+ D hrllallizor),
TET;, TET,

there holds for all (v,q) € X, and all (wp, 1) € Xp,

Sn((v; @), (wn; 1)) < Conall (0, @) llsto,«ll (wn, mr) llstos

with Cpnq independent of the meshsize

uuuuuuuuuuuuuuuuuuuuuu



Convergence to smooth solutions IV

Theorem (||-||sto-norm error estimate and convergence rate)

Let (u,p) € X, denote the unique solution of problem (Ils). Let
(un,prn) € Xy, solve (Ils 1,). Then, there is C, independent of h, such
that

I —un,p = pr)llsto <C  inf  |l(u—vn,p — qn)llsto,«-
(Vh,qn)EXn

Moreover, if (u,p) € [H*1(Q)]4 x H*(Q),
ll(u = un, = pr)llsto < Cuph®,

with Cyp = C (||U||[Hk+1(n)]d + ||P||Hk(a))-



Numerical fluxes |

m Define the inviscid fluxes

P2\ fFeR,

oo JHund +helpp]ne it F e 7,
' if F e 7,

m Additionally, we consider here the vector-valued viscous flux

S8 (up) = —{Viur} nr + %uuhﬂ




Numerical fluxes Il

mletTeT, and let f S [Pg(T)]d with f = (gi)lgigd

m Setting vy, = Exr in the discrete momentum conservation equation,
we obtain for [ € {k — 1, k},

/Ting(uh,i)'Vfi—/phV.g
+ Z ETF/ dlﬁ (un) +pnF /ff

FeFr




Numerical fluxes Il

m Similarly, let ¢ € PX(T)

m Setting g, = (x1 — ({xT)q in the discrete mass conservation
equation, we obtain

— | up- V(¢ + €T, /f/-n =0
/T Z TE | PG

FeFr

uuuuuuuuuuuuuuuuuuuuuu



Convergence to minimal regularity solutions |

Theorem (Convergence to minimal regularity solutions)
Let (up,p1e) := ((un,pn))nen solve (s ) on the admissible mesh
sequence T. Then, as h — 0,
up —u  strongly in [L?(Q)]%,
Ghn(up) — Vu  strongly in [L*(€)]%4,
Viuy, — Vu  strongly in [L? ()],
|urly — 0,
pn —p  strongly in L*(),
lplp — 0,

where (u,p) € X is the unique solution to (Ilg).




Convergence to minimal regularity solutions ||

Lemma (A priori estimate)

The problem (Ilg 1) is well-posed with the following a priori estimate:

P
| (un, pr)lls < g”f”[m(n)]d-

m A priori estimate + discrete Rellich theorem [DP and Ern, 2010]:
convergence of (uy,py) up to a subsequence

m Test using regular functions and conclude using density that the
limit solves (IIg)

m Use continuous uniqueness to infer that the whole sequence
converges

m Use partial coercivity to prove convergence of the gradients



The incompressible Navier—Stokes problem |

m The Navier-Stokes problem reads

—vAu+ (uV)u+Vp=f inQ,

Vu=0 inQ,
u=0 on 99,
(P)a=0

m The nonlinear advection term is the physical source of turbulence

m Uniqueness holds only under a suitable small data assumption




The incompressible Navier—Stokes problem Il

m We introduce the trilinear form ¢ € L(U x U x U,R) is such that

t(w,u,v) == /Q(w.Vu).v = /ﬂ .zd: w; (0u;)v;.

1,7=1

m The weak formulation reads: Find (u,p) € X s.t., for all (v,q) € X,

‘ va(u,v) + b(v, p) + t(u, u,v) — b(u,q) = B(v) ‘ (TIns)




The incompressible Navier—Stokes problem Il

Lemma (Skew-symmetry of trilinear form)

Letting

t'(w,u,v) == t(w,u,v) + % / (Vw)u-v,
Q

there holds, for all w € U,

|Vv ev, t'(w,v,v) = 0. |

Moreover, ifw € V :={v e U | V-v =0},

Yo € U, t(w,v,v) = 0.



The incompressible Navier—Stokes problem 1V

m Let w € U. We observe that, for all v € U,
1 2 1 2 1 2 1 2
tw,v,0)+5 [ (Vw)lol" = | SwVp['+5 [ (Vw)l" = [ SV-(w[v]"),
2 Q Q 2 2 Q Q 2
m The divergence theorem yields
1 2 1 2
t(w,v,v)+ = [ (Vw)|" == [ (wn)v]*=0,
2 Ja 2 Joa

since (w-n) vanishes on OS2 thus proving the first point

m The second point is an immediate consequence of the first




The incompressible Navier—Stokes problem V

m As a consequence, letting (v, q) = (u,p) in (IIns),

IValfsye = | fu

where we have used V-u =0

m This shows that convection does not influence energy balance




Design of the discrete trilinear form |

m Our starting point is, for wy,, up, v, € Uy,
(0) _ 1
t;, (wh, uh,vh) = (wh-thh)-vh + 5 (Vh-wh)uh~vh
Q Q

[ Skew—symmetry: For all wy, vy, € Uy, element-wise IBP yields,

5 ) = 5 3 / [wn nrfonond+ 3 / Luon}nplonl-fon}

FGT FeF}

= We modify tl(zo) as

twtwn o) = [ (wnFrun)vn = 3 / fwnynrfur]-fon)

FerFy

+%/§;(V}1'U)h)(uh ) 2 /HU n]ne fun-on




Design of the discrete trilinear form Il

Lemma (Skew-symmetry of discrete trilinear form)

For all wy, € Uy, there holds

Yoy, € Up, th(wh, vp, vg) = 0.



Design of the discrete trilinear form Il

m Let

Nh((uh,ph), (Uhaqh)) =
z/ah(u;“ 'Uh) + bh(vh,ph) — bh(uh, Qh) + fh,(“l;,~ Uh, 7’/:)

m The discrete problem reads: Find (up,pr) € X, s.t.

‘Nh((uh,ph% (vn,qn)) = B(vn)  Y(vn,qn) € Xn ‘ (Ins,n)

m The existence of a solution to (Ilxg ;) can be proved by a
topological degree argument




A priori estimate

Lemma (A priori estimate)

There are ¢y, co independent of h such that

ll(wns pr)lls < el fllip2 e + c2ll FIIF2 e

Also in this case, this a priori estimate is instrumental to apply the
discrete Rellich theorem of [DP and Ern, 2010]




Convergence to minimal regularity solutions

Theorem (Convergence to minimal regularity solutions)
Let (up,p1e) := ((un,pn))nen solve (Ilns,n) on the admissible mesh
sequence T3 . Then, as h — 0 and up to a subsequence,
up, — u  strongly in [L?(Q)]%,
Gh(up) — Vu  strongly in [L*()]%4,
Vyun — Vu  strongly in [L?(Q)]%4,
|unly — 0,
Ph— P weakly in L?(9),

|ph|p — 0.

Moreover, under the small data condition, the whole sequence converges.

ume
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Numerical validation |

= Let Q = (—0.5,1.5) x (0,2)

m We consider Kovasznay's solution

up =1—e "2 cos(2mxs),

1
Uy = —ie’ml sin(2mxs),

1 ~
p= —56”1 cos(2mxs) — P,
with p ~ —0.920735694, v = 3% and f =0

m T3 is a family of uniformly refined triuangular meshes, with h
ranging from 0.5 down to 0.03125

uuuuuuuuuuuuuuuuuuuuuu



Numerical validation 1l

h llenulliz2ye  order llenpll2() order llenlls order
ho 8.87e — 01 - 1.62e + 00 - 1.19e + 01 -
ho/2 2.39e — 01 1.89 6.11e—01 141 7.26e+00 0.71
ho/4 5.94e — 02 201 2.0le—01 1.60 3.68e+4+00 0.98
ho/s 1.59e — 02 190 7.40e—02 144 1.85e+00 0.99
ho/16 4.17e — 03 1.93 3.14e—-02 1.23 9.25e—01 1.00




A variation with a simple physical interpretation |

ou+ V-(—vVu + F(u,p)) = f, in Q,
V=0, in Q,
u =0, on 012,

=
Q

Fij(u,p) = usuj + pdij




A variation with a simple physical interpretation |

m Let F € F}, P € F and define
Uy = Unp, U = UTE

m Restricting the problem to the normal direction we have

h% )
Tdtp + Oyu, =0,
C

Oruy, + 0, (uZ +p) = 0,
Opur + Oy (upur) =0

m To recover a hyperbolic problem we add an artificial compressibility
term

m The inviscid flux can be obtained as the solution associated Riemann
problem with initial datum (u;",p)"), (u; ,p, ) at P

uuuuuuuuuuuuuuuuuuuuu



A variation with a simple physical interpretation IlI

centered wave

contact discontinuity
centered wave

Figure: Structure of the Riemann problem.
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A variation with a simple physical interpretation 1V

m The exact solution can be found using the Riemann invariants
(rarefactions) and the Rankine-Hugoniot jump conditions (shocks)

m Following a similar procedure, it is possible to write the Riemann
problem associated to the Stokes equations

m Let (u*,p*) be the solution We define the inviscid flux as

F(uf,piiuy,py) = F(u®,p*) = wju} + p*éj,
ﬂ(uz’pﬁ;u;,p;) =

m In the Stokes case, an explicit expression is available for the fluxes




Numerical Fluxes for the Linearized Problems

m We introduce the pressure flux p = p* so that (@, p) = (u*, p*)

m In the Stokes case we obtain
. hr
0= fup} + 5 [pn]nr,
c
]3 = {{ph} —+ TIZF [[?I}I’]]-IIF

m Take ¢ = 2 and compare with the numerical fluxes for the method
we have analyzed!

uuuuuuuuuuuuuuuuuuuu
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