Recent advances on Hybrid High-Order methods for problems in incompressible fluid mechanics

Daniele A. Di Pietro

joint work with L. Botti and J. Droniou

Institut Montpelliérain Alexander Grothendieck, University of Montpellier

ICIAM, 16 July 2019

Outline

2 Application to the incompressible Navier–Stokes problem

Features

Figure: Examples of supported meshes $\mathcal{M}_h = (\mathcal{T}_h, \mathcal{F}_h)$ in 2d and 3d

- Capability of handling general polyhedral meshes
- Construction valid for both d = 2 and d = 3
- Arbitrary approximation order (including k = 0)
- Inf-sup stability on general meshes
- Robust handling of dominant advection
- Local conservation of momentum and mass
- Reduced computational cost after static condensation

HHO for incompressible flows

- HHO for Stokes [Aghili, Boyaval, DP, 2015]
- Péclet-robust HHO for Oseen [Aghili and DP, 2018]
- Darcy-robust HHO for Brinkman [Botti, DP, Droniou, 2018]
- Skew-symmetric HHO for Navier–Stokes [DP and Krell, 2018]
- Temam's device for HHO [Botti, DP, Droniou, 2018]
- See also D. Castanon-Quiroz's presentation

New book!

D. A. Di Pietro and J. Droniou
The Hybrid High-Order Method for Polytopal Meshes
Design, Analysis, and Applications
516 pages, http://hal.archives-ouvertes.fr/hal-02151813

Outline

1 Basics of HHO methods

2 Application to the incompressible Navier–Stokes problem

■ Let $\Omega \subset \mathbb{R}^d$, $d \ge 1$, denote a bounded connected polyhedral domain ■ For $f \in L^2(\Omega)$, we consider the Poisson problem

$$-\Delta u = f \qquad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial \Omega$$

In weak form: Find $u \in U \coloneqq H_0^1(\Omega)$ s.t.

$$a(u, v) \coloneqq \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v \qquad \forall v \in U$$

• With $X \in \mathcal{T}_h \cup \mathcal{F}_h$, the L^2 -projector $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$ is s.t.

$$\pi_X^{0,l} v = \arg\min_{w \in \mathbb{P}^l(X)} \|w - v\|_X^2$$

• The elliptic projector $\pi_T^{1,l}: H^1(T) \to \mathbb{P}^l(T)$ is s.t.

$$\pi_T^{1,l} v = \arg\min_{w \in \mathbb{P}^l(T), \ \int_T (w-v) = 0} \|\boldsymbol{\nabla}(w-v)\|_T^2$$

• With $X \in \mathcal{T}_h \cup \mathcal{F}_h$, the L^2 -projector $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$ is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

• The elliptic projector $\pi_T^{1,l}: H^1(T) \to \mathbb{P}^l(T)$ is s.t.

$$\pi_T^{1,l}v = \arg\min_{w\in\mathbb{P}^l(T),\,\int_T(w-v)=0}\|\boldsymbol{\nabla}(w-v)\|_T^2$$

• With $X \in \mathcal{T}_h \cup \mathcal{F}_h$, the L^2 -projector $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$ is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

• The elliptic projector $\pi_T^{1,l}: H^1(T) \to \mathbb{P}^l(T)$ is s.t.

$$\pi_T^{1,l}v = \arg\min_{w\in\mathbb{P}^l(T),\,\int_T(w-v)=0}\|\boldsymbol{\nabla}(w-v)\|_T^2$$

• With $X \in \mathcal{T}_h \cup \mathcal{F}_h$, the L^2 -projector $\pi_X^{0,l} : L^2(X) \to \mathbb{P}^l(X)$ is s.t.

$$\int_X (\pi_X^{0,l} v - v) w = 0 \text{ for all } w \in \mathbb{P}^l(X)$$

• The elliptic projector $\pi_T^{1,l}: H^1(T) \to \mathbb{P}^l(T)$ is s.t.

$$\int_{T} \nabla(\pi_{T}^{1,l}v - v) \cdot \nabla w = 0 \text{ for all } w \in \mathbb{P}^{l}(T) \text{ and } \int_{T} (\pi_{T}^{1,l}v - v) = 0$$

Computing $\pi_T^{1,k+1}$ from L^2 -projections of degree k

Recall the following IBP valid for all $v \in H^1(T)$ and all $w \in C^{\infty}(\overline{T})$:

$$\int_{T} \nabla v \cdot \nabla w = -\int_{T} v \Delta w + \sum_{F \in \mathcal{F}_{T}} \int_{F} v \nabla w \cdot \boldsymbol{n}_{TF}$$

Taking $w \in \mathbb{P}^{k+1}(T)$ and using the definitions above, we can write

$$\int_{T} \boldsymbol{\nabla} \boldsymbol{\pi}_{T}^{1,k+1} \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{w} = -\int_{T} \boldsymbol{\pi}_{T}^{0,k} \boldsymbol{v} \Delta \boldsymbol{w} + \sum_{F \in \mathcal{F}_{T}} \int_{F} \boldsymbol{\pi}_{F}^{0,k} \boldsymbol{v} \boldsymbol{\nabla} \boldsymbol{w} \cdot \boldsymbol{n}_{TF}$$

Hence, $\pi_T^{1,k+1}v$ can be computed from $\pi_T^{0,k}v$ and $(\pi_F^{0,k}v)_{F \in \mathcal{F}_T}$!

Discrete unknowns

Figure: \underline{U}_T^k for $k \in \{0, 1, 2\}$ and d = 2

For $k \ge 0$ and $T \in \mathcal{T}_h$, define the local space of discrete unknowns

$$\underline{U}_T^k \coloneqq \left\{ \underline{v}_T = (v_T, (v_F)_{F \in \mathcal{F}_T}) : v_T \in \mathbb{P}^k(T) \text{ and } v_F \in \mathbb{P}^k(F) \quad \forall F \in \mathcal{F}_T \right\}$$

• The local interpolator $\underline{I}_T^k: H^1(T) \to \underline{U}_T^k$ is s.t., for all $v \in H^1(T)$,

$$\underline{I}_T^k v \coloneqq \left(\pi_T^{0,k} v, (\pi_F^{0,k} v)_{F \in \mathcal{F}_T}\right)$$

Local potential reconstruction

• Let $T \in \mathcal{T}_h$. We define the local potential reconstruction operator

$$r_T^{k+1}: \underline{U}_T^k \to \mathbb{P}^{k+1}(T)$$

s.t., for all $\underline{v}_T \in \underline{U}_T^k$, $\int_T (r_T^{k+1} \underline{v}_T - v_T) = 0$ and

$$\int_{T} \boldsymbol{\nabla} \boldsymbol{r}_{T}^{k+1} \underline{\boldsymbol{v}}_{T} \cdot \boldsymbol{\nabla} \boldsymbol{w} = -\int_{T} \boldsymbol{v}_{T} \Delta \boldsymbol{w} + \sum_{F \in \mathcal{F}_{T}} \int_{F} \boldsymbol{v}_{F} \boldsymbol{\nabla} \boldsymbol{w} \cdot \boldsymbol{n}_{TF} \quad \forall \boldsymbol{w} \in \mathbb{P}^{k+1}(T)$$

By construction, we have

$$r_T^{k+1} \circ \underline{I}_T^k = \pi_T^{1,k+1}$$

• $(r_T^{k+1} \circ \underline{I}_T^k)$ has therefore optimal approximation properties in $\mathbb{P}^{k+1}(T)$

Local bilinear form

We approximate $a_{|T}(u, v)$ with

$$\mathbf{a}_T(\underline{u}_T,\underline{v}_T) \coloneqq a_{|T}(r_T^{k+1}\underline{u}_T,r_T^{k+1}\underline{v}_T) + \mathbf{s}_T(\underline{u}_T,\underline{v}_T)$$

Assumption (Stabilization bilinear form)

The bilinear form $\mathbf{s}_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ satisfies the following properties:

- Symmetry and positivity. s_T is symmetric and positive semidefinite.
- Stability. It holds, with hidden constant independent of h and T,

$$\mathbf{a}_T(\underline{v}_T, \underline{v}_T) \simeq \|\underline{v}_T\|_{1,T}^2 \coloneqq \|\nabla v_T\|_T^2 + \sum_{F \in \mathcal{F}_T} h_F^{-1} \|v_F - v_T\|_F^2 \quad \forall \underline{v}_T \in \underline{U}_T^k.$$

Polynomial consistency. For all $w \in \mathbb{P}^{k+1}(T)$ and all $\underline{v}_T \in \underline{U}_T^k$,

$$s_T(\underline{I}_T^k w, \underline{v}_T) = 0.$$

Discrete problem

Define the global space with single-valued interface unknowns

$$\begin{split} \underline{U}_{h}^{k} &\coloneqq \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{T}_{h}}) : \\ v_{T} \in \mathbb{P}^{k}(T) \quad \forall T \in \mathcal{T}_{h} \text{ and } v_{F} \in \mathbb{P}^{k}(F) \quad \forall F \in \mathcal{F}_{h} \end{split} \right.$$

and its subspace with strongly enforced boundary conditions

$$\underline{U}_{h,0}^k \coloneqq \left\{ \underline{v}_h \in \underline{U}_h^k \ : \ v_F = 0 \quad \forall F \in \mathcal{F}_h^\mathrm{b} \right\}$$

• The discrete problem reads: Find $\underline{u}_h \in \underline{U}_{h,0}^k$ s.t.

$$\mathbf{a}_{h}(\underline{u}_{h},\underline{v}_{h}) \coloneqq \sum_{T \in \mathcal{T}_{h}} \mathbf{a}_{T}(\underline{u}_{T},\underline{v}_{T}) = \sum_{T \in \mathcal{T}_{h}} \int_{T} f v_{T} \quad \forall \underline{v}_{h} \in \underline{U}_{h,0}^{k}$$

Convergence

Theorem (Energy-norm error estimate)

Assume $u \in H^1_0(\Omega) \cap H^{k+2}(\mathcal{T}_h)$. The following energy error estimate holds:

$$\|\underline{u}_{h} - \underline{I}_{h}^{k}u\|_{1,h} \leq \frac{h^{k+1}}{|u|_{H^{k+2}(\mathcal{T}_{h})}}$$

where $\|\underline{v}_{h}\|_{1,h}^{2} \coloneqq \sum_{T \in \mathcal{T}_{h}} \|\underline{v}_{T}\|_{1,T}^{2}$.

Theorem (Superconvergence in the L^2 -norm)

Further assuming elliptic regularity and $f \in H^1(\mathcal{T}_h)$ if k = 0,

$$\|u_h - \pi_h^{0,k} u\| \lesssim \begin{cases} h^{k+2} \|f\|_{H^1(\mathcal{T}_h)} & \text{ if } k = 0, \\ h^{k+2} |u|_{H^{k+2}(\mathcal{T}_h)} & \text{ if } k \geq 1. \end{cases}$$

Outline

2 Application to the incompressible Navier–Stokes problem

The incompressible Navier-Stokes equations

• Let $d \in \{2,3\}$, $v \in \mathbb{R}^*_+$, $f \in L^2(\Omega)^d$, $U := H^1_0(\Omega)^d$, and $P := L^2_0(\Omega)$

• The INS problem reads: Find $(u, p) \in U \times P$ s.t.

$$\begin{aligned} \mathbf{v}a(\mathbf{u},\mathbf{v}) + t(\mathbf{u},\mathbf{u},\mathbf{v}) + b(\mathbf{v},p) &= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \qquad \forall \mathbf{v} \in \mathbf{U}, \\ -b(\mathbf{u},q) &= 0 \qquad \forall q \in L^2(\Omega), \end{aligned}$$

with viscous and pressure-velocity coupling bilinear forms

$$a(\mathbf{w}, \mathbf{v}) \coloneqq \int_{\Omega} \nabla \mathbf{w} : \nabla \mathbf{v}, \quad b(\mathbf{v}, q) \coloneqq -\int_{\Omega} q \nabla \cdot \mathbf{v}$$

and convective trilinear form

$$t(\boldsymbol{w},\boldsymbol{v},\boldsymbol{z}) \coloneqq \int_{\Omega} (\boldsymbol{w} \cdot \boldsymbol{\nabla}) \boldsymbol{v} \cdot \boldsymbol{z} = \sum_{i=1}^{d} \sum_{j=1}^{d} \int_{\Omega} w_j (\partial_j v_i) z_i$$

Discrete spaces

Figure: Local velocity space \underline{U}_T^k for $k \in \{0, 1, 2\}$ and d=2

For $k \ge 0$, we define the global space of discrete velocity unknowns

$$\begin{split} \underline{U}_{h}^{k} &\coloneqq \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{F}_{h}}) : \\ v_{T} \in \mathbb{P}^{k}(T)^{d} \quad \forall T \in \mathcal{T}_{h} \text{ and } v_{F} \in \mathbb{P}^{k}(F)^{d} \quad \forall F \in \mathcal{F}_{h} \end{split}$$

The velocity and pressure spaces are

$$\underline{U}_{h,0}^k \coloneqq \left\{ \underline{v}_h \in \underline{U}_h^k \ : \ v_F = \mathbf{0} \quad \forall F \in \mathcal{F}_h^{\mathrm{b}} \right\} \text{ and } P_h^k \coloneqq \mathbb{P}^k(\mathcal{T}_h) \cap P$$

• The viscous term is discretized by means of the bilinear form a_h s.t.

$$\mathbf{a}_h(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h)\coloneqq\sum_{T\in\mathcal{T}_h}\mathbf{a}_T(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T)$$

where, letting $\mathbf{r}_T^{k+1}: \underline{U}_T^k \to \mathbb{P}^{k+1}(T)^d$ as for Poisson component-wise,

$$\mathbf{a}_T(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T) \coloneqq \int_T \boldsymbol{\nabla} \boldsymbol{r}_T^{k+1} \underline{\boldsymbol{w}}_T \colon \boldsymbol{\nabla} \boldsymbol{r}_T^{k+1} \underline{\boldsymbol{v}}_T + \mathbf{s}_T(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T)$$

■ Variable viscosity can be treated following [DP and Ern, 2015] for $k \ge 1$ or [Botti, DP, Guglielmana, 2019] for k = 0

Divergence reconstruction

• Let $\ell \ge 0$. Inspired by the IBP formula: $\forall (\mathbf{v}, q) \in H^1(T)^d \times C^{\infty}(\overline{T})$,

$$\int_{T} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) \ q = - \int_{T} \boldsymbol{v} \cdot \boldsymbol{\nabla} q + \sum_{F \in \mathcal{F}_{T}} \int_{F} (\boldsymbol{v} \cdot \boldsymbol{n}_{TF}) \ q$$

we introduce divergence reconstruction $D_T^{\ell} : \underline{U}_T^k \to \mathbb{P}^{\ell}(T)$ s.t.

$$\int_{T} D_{T}^{\ell} \underline{\boldsymbol{\nu}}_{T} \ q = -\int_{T} \boldsymbol{\nu}_{T} \cdot \boldsymbol{\nabla} q + \sum_{F \in \mathcal{F}_{T}} \int_{F} (\boldsymbol{\nu}_{F} \cdot \boldsymbol{n}_{TF}) \ q \quad \forall q \in \mathbb{P}^{\ell}(T)$$

• By construction, it holds, for all $v \in H^1(T)^d$,

$$D_T^k \underline{I}_T^k \boldsymbol{v} = \pi_T^{0,k} (\boldsymbol{\nabla} \cdot \boldsymbol{v})$$

Pressure-velocity coupling

$$\mathbf{b}_h(\underline{\boldsymbol{v}}_h,q_h)\coloneqq -\sum_{T\in\mathcal{T}_h}\int_T D_T^k\underline{\boldsymbol{v}}_T \ q_T$$

Lemma (Uniform inf-sup condition)

There is $\beta > 0$ independent of h s.t.

$$\forall q_h \in P_h^k, \quad \beta \| q_h \|_{L^2(\Omega)} \leq \sup_{\underline{\nu}_h \in \underline{U}_{h,0}^k, \| \underline{\nu}_h \|_{1,h} = 1} \mathbf{b}_h(\underline{\nu}_h, q_h).$$

Stability result valid on general meshes and for any $k \ge 0$

Convective term: A key remark

• We have the following IBP formula: For all $w, v, z \in U$,

$$\int_{\Omega} (\boldsymbol{w} \cdot \boldsymbol{\nabla}) \boldsymbol{v} \cdot \boldsymbol{z} + \int_{\Omega} (\boldsymbol{w} \cdot \boldsymbol{\nabla}) \boldsymbol{z} \cdot \boldsymbol{v} + \int_{\Omega} (\boldsymbol{\nabla} \cdot \boldsymbol{w}) (\boldsymbol{v} \cdot \boldsymbol{z}) = 0$$

• Using this formula with w = v = z = u, we get

$$t(\boldsymbol{u},\boldsymbol{u},\boldsymbol{u}) = \int_{\Omega} (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \cdot \boldsymbol{u} = -\frac{1}{2} \int_{\Omega} (\boldsymbol{\nabla} \cdot \boldsymbol{u}) (\boldsymbol{u} \cdot \boldsymbol{u}) = 0$$

- The discrete velocity may not be divergence-free
- Following [Temam, 1979], we use instead of t

$$t^{\mathrm{tm}}(\boldsymbol{w},\boldsymbol{v},\boldsymbol{z}) \coloneqq \int_{\Omega} (\boldsymbol{w} \cdot \boldsymbol{\nabla}) \boldsymbol{v} \cdot \boldsymbol{z} + \frac{1}{2} \int_{\Omega} (\boldsymbol{\nabla} \cdot \boldsymbol{w}) (\boldsymbol{v} \cdot \boldsymbol{z})$$

Directional derivative reconstruction

• Let $\underline{w}_T \in \underline{U}_T^k$. The directional derivative reconstruction along \underline{w}_T is

$$G_T^k(\underline{w}_T; \cdot) : \underline{U}_T^k \to \mathbb{P}^k(T)^d$$

s.t., for all $z \in \mathbb{P}^k(T)^d$,

$$\int_{T} G_{T}^{k}(\underline{w}_{T};\underline{v}_{T}) \cdot z = \int_{T} (w_{T} \cdot \nabla) v_{T} \cdot z + \sum_{F \in \mathcal{F}_{T}} \int_{F} (w_{F} \cdot n_{TF}) (v_{F} - v_{T}) \cdot z$$

• It holds, for all $\underline{w}_h, \underline{v}_h, \underline{z}_h \in \underline{U}_{h,0}^k$,

$$\begin{split} &\sum_{T \in \mathcal{T}_h} \int_T \left(G_T^k(\underline{w}_T; \underline{v}_T) \cdot z_T + v_T \cdot G_T^k(\underline{w}_T; \underline{z}_T) + D_T^{2k} \underline{w}_T(v_T \cdot z_T) \right) \\ &= -\sum_{T \in \mathcal{T}_h} \sum_{F \in \mathcal{F}_T} \int_F (w_F \cdot \boldsymbol{n}_{TF}) (v_F - v_T) \cdot (z_F - z_T). \end{split}$$

Convective term

$$t^{\mathrm{tm}}(w, v, z) \coloneqq \int_{\Omega} (w \cdot \nabla) v \cdot z + \frac{1}{2} \int_{\Omega} (\nabla \cdot w) (v \cdot z) \quad \forall w, v, z \in U$$

• Inspired by t^{tm} , we set

$$\begin{split} \mathbf{t}_{h}(\underline{\boldsymbol{w}}_{h},\underline{\boldsymbol{v}}_{h},\underline{\boldsymbol{z}}_{h}) &\coloneqq \sum_{T\in\mathcal{T}_{h}} \int_{T} G_{T}^{k}(\underline{\boldsymbol{w}}_{T};\underline{\boldsymbol{v}}_{T}) \cdot \boldsymbol{z}_{T} + \frac{1}{2} \sum_{T\in\mathcal{T}_{h}} \int_{T} D_{T}^{2k} \underline{\boldsymbol{w}}_{T}(\boldsymbol{v}_{T}\cdot\boldsymbol{z}_{T}) \\ &+ \frac{1}{2} \sum_{T\in\mathcal{T}_{h}} \sum_{F\in\mathcal{F}_{T}} \int_{F} (\boldsymbol{w}_{F}\cdot\boldsymbol{n}_{TF}) (\boldsymbol{v}_{F}-\boldsymbol{v}_{T}) \cdot (\boldsymbol{z}_{F}-\boldsymbol{z}_{T}) \end{split}$$

■ The second and third terms embody Temam's device

Discrete problem

• The discrete problem reads: Find $(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$ s.t.

$$\begin{aligned} \mathbf{v}\mathbf{a}_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + \mathbf{t}_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + \mathbf{b}_{h}(\underline{\boldsymbol{v}}_{h},p_{h}) &= \int_{\Omega} \boldsymbol{f}\cdot\boldsymbol{v}_{h} \quad \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{U}}_{h,0}^{k}, \\ -\mathbf{b}_{h}(\underline{\boldsymbol{u}}_{h},q_{h}) &= 0 \qquad \forall q_{h} \in \mathbb{P}^{k}(\mathcal{T}_{h}) \end{aligned}$$

Optionally, upwind stabilisation can be added through the term

$$\mathbf{j}_h(\underline{w}_h;\underline{v}_h,\underline{z}_h) \coloneqq \sum_{T \in \mathcal{T}_h} \sum_{F \in \mathcal{F}_T} \int_F \frac{v}{h_F} \rho(\operatorname{Pe}_{TF}(w_F))(v_F - v_T) \cdot (z_F - z_T)$$

Static condensation enables an efficient solution after linearisation

- Weakly enforced boundary conditions can also be considered
- Conservative fluxes can be identified

Theorem (Convergence rates for small data)

Assume $u \in W^{k+1,4}(\mathcal{T}_h)^d \cap H^{k+2}(\mathcal{T}_h)^d$, $p \in H^1(\Omega) \cap H^{k+1}(\Omega)$, and $\|f\|_{L^2(\Omega)^d} \leq C\nu^2$

with C, independent of h and v, small enough. Then, it holds

with hidden constant independent of h and v.

Lid-driven cavity I

Figure: Lid-driven cavity, velocity magnitude contours (10 equispaced values in the range [0, 1]) for k = 7 computations at Re = 1,000 (*left*: 16x16 grid) and Re = 20,000 (*right*: 128x128 grid).

Lid-driven cavity Re = 1,000

Figure: u_1 along the vertical centerline, u_2 along the horizontal centerline

Lid-driven cavity Re = 10,000

Figure: u_1 along the vertical centerline, u_2 along the horizontal centerline

Lid-driven cavity Re = 20,000

Figure: u_1 along the vertical centerline, u_2 along the horizontal centerline

Three-dimensional lid-driven cavity

Figure: Three-dimensional lid-driven cavity, Re = 1000, streamlines

Lid-driven cavity

Figure: 3D Lid-driven cavity flow, horizontal component u_1 of the velocity along the vertical centerline $x_1, x_3 = \frac{1}{2}$ and the vertical component u_2 of the velocity along the horizontal centerline $x_2, x_3 = \frac{1}{2}$ for Re = 1,000, k = 1, 2, 4

Lid-driven cavity

Figure: 3D Lid-driven cavity flow, horizontal component u_1 of the velocity along the vertical centerline $x_1, x_3 = \frac{1}{2}$ and the vertical component u_2 of the velocity along the horizontal centerline $x_2, x_3 = \frac{1}{2}$ for Re = 1,000, k = 4, 8

References

Aghili, J., Boyaval, S., and Di Pietro, D. A. (2015).

Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Meth. Appl. Math., 15(2):111–134.

Botti, L., Di Pietro, D. A., and Droniou, J. (2019a).

A Hybrid High-Order method for the incompressible Navier–Stokes equations based on Temam's device. J. Comput. Phys., 376:786–816.

Botti, M., Di Pietro, D. A., and Guglielmana, A. (2019b).

A low-order nonconforming method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg., 354:96–118.

Di Pietro, D. A. and Droniou, J. (2017a).

A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math. Comp., 86(307):2159-2191.

Di Pietro, D. A. and Droniou, J. (2017b).

W^{S,P}-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems. Math. Models. Methods Appl. Sci., 27(5):879-908.

Di Pietro, D. A. and Ern, A. (2015).

A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg., 283:1-21.

Di Pietro, D. A. and Krell, S. (2018).

A Hybrid High-Order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput., 74(3):1677–1705.