Hybrid High-Order methods on general meshes

Daniele A. Di Pietro

in collaboration with Jérôme Droniou and Alexandre Ern

I3M, University of Montpellier

Lyon, 20th January, 2015

Minimalistic bibliography on high-order polyhedral methods

- Discontinuous Galerkin (DG)
 - Basic analysis tools [Di Pietro and Ern, 2012]
 - Adaptive coarsening [Bassi et al., 2012]
 - Locally degenerate ADR [Di Pietro et al., 2008]
- Hybridizable Discontinuous Galerkin (HDG)
 - Pure diffusion [Cockburn et al., 2009]
 - Diffusion-dominated ADR [Chen and Cockburn, 2014]
- Virtual elements (VEM)
 - Pure diffusion [Beirão da Veiga et al., 2013]
 - Diffusion-dominated ADR [Beirão da Veiga et al., 2014]
- Hybrid High-Order (HHO)
 - Pure diffusion [Di Pietro et al., 2014b]
 - Locally degenerate ADR [Di Pietro et al., 2014a]
 - HHO as HDG on steroids [Cockburn et al., 2015]

Features of HHO

- Capability of handling general polyhedral meshes
- Construction valid for arbitrary space dimensions
- Arbitrary approximation order (including k = 0)
- Reproduction of desirable continuum properties
 - Integration by parts formulas
 - Kernels of operators
 - Symmetries
- Reduced computational cost after hybridization

$$N_{\rm dof}^{\rm hho} \approx \frac{1}{2}k^2 \operatorname{card}(\mathcal{F}_h) \qquad N_{\rm dof}^{\rm dg} \approx \frac{1}{6}k^3 \operatorname{card}(\mathcal{T}_h)$$

Outline

3 Degenerate diffusion-advection-reaction

Outline

2 Variable diffusion

3 Degenerate diffusion-advection-reaction

Definition (Mesh regularity)

We consider a sequence $(\mathcal{T}_h)_{h\in\mathcal{H}}$ of polyhedral meshes s.t., for all $h\in\mathcal{H}$, \mathcal{T}_h admits a simplicial submesh \mathfrak{T}_h and $(\mathfrak{T}_h)_{h\in\mathcal{H}}$ is

- shape-regular in the sense of Ciarlet;
- contact-regular: every simplex $S \subset T$ is s.t. $h_S \approx h_T$.

Main consequences:

- Trace and inverse inequalities
- Optimal approximation for broken polynomial spaces

Mesh regularity II

Figure : Admissible meshes in 2d and 3d: [Herbin and Hubert, 2008, FVCA5] and [Di Pietro and Lemaire, 2015] (above) and [Eymard et al., 2011, FVCA6] (below)

• Let Ω denote a bounded, connected polyhedral domain • For $f \in L^2(\Omega)$, we consider the Poisson problem

$$-\triangle u = f \qquad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial \Omega$$

In weak form: Find $u \in H_0^1(\Omega)$ s.t.

$$a(u,v) := (\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

■ DOFs: polynomials of degree k ≥ 0 at elements and faces
 ■ Differential operators reconstructions taylored to the problem:

$$a_{|T}(u,v) \approx (\boldsymbol{\nabla} p_T^k \underline{\mathbf{u}}_T, \boldsymbol{\nabla} p_T^k \underline{\mathbf{v}}_T) + \mathsf{stab}.$$

with

- high-order reconstruction p_T^k from local Neumann solves
- stabilization via face-based penalty
- Construction yielding superconvergence on general meshes

DOFs

Figure : \underline{U}_T^k for $k \in \{1, 2\}$

For $k \ge 0$ and all $T \in \mathcal{T}_h$, we define the local space of DOFs

$$\underline{\mathsf{U}}_T^k := \mathbb{P}_d^k(T) \times \left\{ \bigotimes_{F \in \mathcal{F}_T} \mathbb{P}_{d-1}^k(F) \right\}$$

■ The global space has single-valued interface DOFs

$$\underline{\mathsf{U}}_h^k := \left\{ \underset{T \in \mathcal{T}_h}{\times} \mathbb{P}_d^k(T) \right\} \times \left\{ \underset{F \in \mathcal{F}_h}{\times} \mathbb{P}_{d-1}^k(F) \right\}$$

Local potential reconstruction (The power) I

• Let $T \in \mathcal{T}_h$. The local potential reconstruction operator

$$p_T^k: \underline{\mathsf{U}}_T^k \to \mathbb{P}_d^{k+1}(T)$$

 $\text{ is s.t. } \forall \underline{\mathsf{v}}_T \in \underline{\mathsf{U}}_T^k, \ (p_T^k \underline{\mathsf{v}}_T, 1)_T = (\mathsf{v}_T, 1)_T \text{ and } \forall w \in \mathbb{P}_d^{k+1}(T) \text{,} \\$

$$(\boldsymbol{\nabla} p_T^k \underline{\mathbf{v}}_T, \boldsymbol{\nabla} w)_T := -(\mathbf{v}_T, \bigtriangleup w)_T + \sum_{F \in \mathcal{F}_T} (\mathbf{v}_F, \boldsymbol{\nabla} w \boldsymbol{n}_{TF})_F$$

SPD linear system of size

$$N_{k,d} := \binom{k+1+d}{k+1}$$

Local potential reconstruction (The power) II

k	d = 1	d = 2	d = 3
0	2	3	4
1	3	6	10
2	4	10	20
3	5	15	35

Table : Size $N_{k,d}$ of the local matrix to invert to compute $p_T^k \underline{v}_T$

Lemma (Approximation properties for $p_T^k \mathbf{I}_T^k$)

Define the local interpolator $\underline{I}_T^k : H^1(T) \to \underline{U}_T^k \ s.t.$

$$\underline{\mathsf{I}}_T^k: v \mapsto \left(\pi_T^k v, (\pi_F^k v)_{F \in \mathcal{F}_T}\right).$$

Then, for all $T \in \mathcal{T}_h$ and all $v \in H^{k+2}(T)$,

$$\|v - p_T^k \mathbf{l}_T^k v\|_T + h_T \|\nabla (v - p_T^k \mathbf{l}_T^k v)\|_T \lesssim h_T^{k+2} \|v\|_{k+2,T}.$$

Local potential reconstruction (The power) IV

• Since $\triangle w \in \mathbb{P}_d^{k-1}(T)$ and $\nabla w_{|F} \cdot n_{TF} \in \mathbb{P}_{d-1}^k(F)$, $(\nabla p_T^k \underline{1}_T^k v, \nabla w)_T = -(\pi_T^k v, \triangle w)_T + \sum_{F \in \mathcal{F}_T} (\pi_F^k v, \nabla w \cdot n_{TF})_F$ $= -(v, \triangle w)_T + \sum_{F \in \mathcal{F}_T} (v, \nabla w \cdot n_{TF})_F$ $= (\nabla v, \nabla w)_T$

• This shows that $p_{T^{\perp}T}^{k}$ is the elliptic projector on $\mathbb{P}_d^{k+1}(T)$:

$$(\boldsymbol{\nabla} p_T^k \mathbf{I}_T^k v - \boldsymbol{\nabla} v, \boldsymbol{\nabla} w)_T = 0 \qquad \forall w \in \mathbb{P}_d^{k+1}(T)$$

The approximation properties follow

Stabilization (The grip) I

We would be tempted to approximate

$$a_{|T}(u,v) \approx (\boldsymbol{\nabla} p_T^k \underline{\mathbf{u}}_T, \boldsymbol{\nabla} p_T^k \underline{\mathbf{v}}_T)_T$$

- However, this choice is not stable
- To remedy, we add a local stabilization term

$$a_{|T}(u,v) \approx a_T(\underline{\mathsf{u}}_T,\underline{\mathsf{v}}_T) := (\nabla p_T^k \underline{\mathsf{u}}_T, \nabla p_T^k \underline{\mathsf{v}}_T)_T + \underline{s_T}(\underline{\mathsf{u}}_T,\underline{\mathsf{v}}_T)$$

Coercivity and boundedness are expressed w.r.t. to

$$\|\underline{\mathbf{v}}_{T}\|_{1,T}^{2} := \|\nabla \mathbf{v}_{T}\|_{T}^{2} + \sum_{F \in \mathcal{F}_{T}} \frac{1}{h_{F}} \|\mathbf{v}_{F} - \mathbf{v}_{T}\|_{F}^{2}$$

Stabilization (The grip) II

• Define, for $T \in \mathcal{T}_h$, the stabilization bilinear form s_T as

$$s_T(\underline{\mathsf{u}}_T,\underline{\mathsf{v}}_T) := \sum_{F \in \mathcal{F}_T} h_F^{-1}(\pi_F^k(P_T^k\underline{\mathsf{u}}_T - \mathsf{u}_F), \pi_F^k(P_T^k\underline{\mathsf{v}}_T - \mathsf{v}_F))_F,$$

with P_T^k high-order correction of cell DOFs based on p_T^k

$$P_T^k \underline{\mathbf{v}}_T := \mathbf{v}_T + (p_T^k \underline{\mathbf{v}}_T - \pi_T^k p_T^k \underline{\mathbf{v}}_T)$$

• With this choice, a_T satisfies for all $\underline{v}_T \in \underline{U}_T^k$,

$$\|\underline{\mathbf{v}}_{h}\|_{1,T}^{2} \lesssim a_{T}(\underline{\mathbf{v}}_{T},\underline{\mathbf{v}}_{T}) \lesssim \|\underline{\mathbf{v}}_{T}\|_{1,T}^{2}$$

Stabilization (The grip) III

- Key point: s_T preserves the approximation properties of $\mathbf{\nabla} p_T^k$
- For all $u \in H^{k+2}(T)$, letting $\underline{\hat{u}}_T := \underline{l}_T^k u = \left(\pi_T^k u, (\pi_F^k u)_{F \in \mathcal{F}_T}\right)$,

$$\begin{aligned} \|\pi_F^k(P_T^k\widehat{\mathbf{u}}_T - \widehat{\mathbf{u}}_F)\|_F &= \|\pi_F^k\left(\pi_T^k u + p_T^k\widehat{\mathbf{u}}_T - \pi_T^k p_T^k\widehat{\mathbf{u}}_T - \pi_F^k u\right)\|_F \\ &\leqslant \|\pi_F^k\left(p_T^k\widehat{\mathbf{u}}_T - u\right)\|_F + \|\pi_T^k\left(u - p_T^k\widehat{\mathbf{u}}_T\right)\|_F \\ &\lesssim h_T^{-1/2}\|p_T^k\widehat{\mathbf{u}}_T - u\|_T \end{aligned}$$

 \blacksquare Recalling the approximation properties of p_T^k , this yields

$$\left\{\|\boldsymbol{\nabla} p_T^k \widehat{\underline{\mathbf{u}}}_T - \boldsymbol{\nabla} u\|_T^2 + s_T(\widehat{\underline{\mathbf{u}}}_T, \widehat{\underline{\mathbf{u}}}_T)\right\}^{1/2} \lesssim h_T^{k+1} \|u\|_{k+2,T}$$

• We enforce boundary conditions strongly considering the space

$$\underline{\mathsf{U}}_{h,0}^k := \left\{ \underline{\mathsf{v}}_h \in \underline{\mathsf{U}}_h^k \mid \mathsf{v}_F \equiv 0 \quad \forall F \in \mathcal{F}_h^b \right\}$$

• The discrete problem reads: Find $\underline{u}_h \in \underline{U}_{h,0}^k$ s.t.

$$a_h(\underline{\mathbf{u}}_h, \underline{\mathbf{v}}_h) := \sum_{T \in \mathcal{T}_h} a_T(\underline{\mathbf{u}}_T, \underline{\mathbf{v}}_T) = \sum_{T \in \mathcal{T}_h} (f, \mathbf{v}_T)_T \qquad \forall \underline{\mathbf{v}}_h \in \underline{\mathbf{U}}_{h,0}^k$$

• Well-posedness follows from the coercivity of a_h

Theorem (Energy-norm error estimate)

Assume $u \in H^{k+2}(\mathcal{T}_h)$ and let

$$\underline{\widehat{\mathbf{u}}}_h := \left((\pi_T^k u)_{T \in \mathcal{T}_h}, (\pi_F^k u)_{F \in \mathcal{F}_h} \right) \in \underline{\mathsf{U}}_{h,0}^k.$$

Then, we have the following energy error estimate:

$$\max\left(\|\underline{\mathsf{u}}_h - \widehat{\mathsf{u}}_h\|_{1,h}, \|\underline{\mathsf{u}}_h - \widehat{\mathsf{u}}_h\|_{a,h}\right) \lesssim h^{k+1} \|u\|_{H^{k+2}(\Omega)},$$

with

$$|\underline{\mathbf{v}}_h\|_{1,h}^2 := \sum_{T \in \mathcal{T}_h} \|\underline{\mathbf{v}}_T\|_{1,T}^2.$$

Theorem (L^2 -norm error estimate)

Further assuming elliptic regularity and $f \in H^1(\Omega)$ if k = 0,

$$\max\left(\|\check{u}_h-u\|,\|\widehat{u}_h-u_h\|\right) \lesssim h^{k+2}\mathcal{N}_k,$$

with $\mathcal{N}_0 := \|f\|_{H^1(\Omega)}$, $\mathcal{N}_k := \|u\|_{H^{k+2}(\mathcal{T}_h)}$ if $k \ge 1$, and

$$\forall T \in \mathcal{T}_h, \qquad \widecheck{u}_{h|T} \mathrel{\mathop:}= p_T^k \underline{\mathsf{u}}_T, \quad \widehat{u}_{h|T} \mathrel{\mathop:}= p_T^k \underline{\mathsf{l}}_T^k u, \quad u_{h|T} \mathrel{\mathop:}= \mathsf{u}_T.$$

Numerical example

Figure : Energy (left) and L^2 -norm (right) of the error vs. h for uniformly refined triangular (top) and hexagonal (bottom) mesh families

Outline

3 Degenerate diffusion-advection-reaction

Variable diffusion I

- Let $\kappa : \Omega \to \mathbb{R}^{d \times d}$ be a SPD tensor-valued field
- We consider the variable diffusion problem

$$\begin{aligned} -\boldsymbol{\nabla} \cdot (\boldsymbol{\kappa} \boldsymbol{\nabla} \boldsymbol{u}) &= f & \text{ in } \boldsymbol{\Omega} \\ \boldsymbol{u} &= 0 & \text{ on } \partial \boldsymbol{\Omega} \end{aligned}$$

In weak form: Find $u \in H_0^1(\Omega)$ s.t.

$$a(u,v) := (\kappa \nabla u, \nabla v) = (f,v) \qquad \forall v \in H_0^1(\Omega)$$

• We confer built-in homogeneization features to p_T^k

$$(\boldsymbol{\kappa} \boldsymbol{\nabla} p_T^k \underline{\mathbf{v}}_T, \boldsymbol{\nabla} w)_T = (\boldsymbol{\kappa} \boldsymbol{\nabla} \mathbf{v}_T, \boldsymbol{\nabla} w)_T + \sum_{F \in \mathcal{F}_T} (\mathbf{v}_F - \mathbf{v}_T, \boldsymbol{\nabla} w \cdot \boldsymbol{\kappa} \cdot \boldsymbol{n}_{TF})_F$$

Lemma (Approximation properties of $p_T^k \mathbf{l}_T^k$)

There is C independent of h_T and κ s.t., for all $v \in H^{k+2}(T)$, it holds with $\alpha = \frac{1}{2}$ if κ is piecewise constant and $\alpha = 1$ otherwise:

$$\|v - p_T^k \mathbf{l}_T^k v\|_T + h_T \|\nabla (v - p_T^k \mathbf{l}_T^k v)\|_T \leq C \rho_T^{\alpha} h_T^{k+2} \|v\|_{k+2,T},$$

with heterogeneity/anisotropy ratio

$$\rho_T := \frac{\kappa_T^{\sharp}}{\kappa_T^{\flat}} \ge 1.$$

Discrete problem and convergence I

• We define the local bilinear form $a_{\kappa,T}$ on $\underline{U}_T^k \times \underline{U}_T^k$ as

$$a_{\boldsymbol{\kappa},T}(\underline{\mathbf{u}}_T,\underline{\mathbf{v}}_T) \mathrel{\mathop:}= (\boldsymbol{\kappa} \boldsymbol{\nabla} p_T^k \underline{\mathbf{u}}_T, \boldsymbol{\nabla} p_T^k \underline{\mathbf{v}}_T)_T + s_{\boldsymbol{\kappa},T}(\underline{\mathbf{u}}_T,\underline{\mathbf{v}}_T)$$

where, letting $\kappa_F := \|\boldsymbol{n}_{TF} \cdot \boldsymbol{\kappa} \cdot \boldsymbol{n}_{TF}\|_{L^{\infty}(F)}$,

$$s_{\kappa,T}(\underline{\mathsf{u}}_T,\underline{\mathsf{v}}_T) := \sum_{F \in \mathcal{F}_T} \frac{\kappa_F}{h_F} (\pi_F^k(P_T^k \underline{\mathsf{u}}_T - \mathsf{u}_F), \pi_F^k(P_T^k \underline{\mathsf{v}}_T - \mathsf{v}_F))_F$$

• The discrete problem reads: Find $\underline{u}_h \in \underline{U}_{h,0}^k$ s.t.

$$a_{\boldsymbol{\kappa},\boldsymbol{h}}(\underline{\mathbf{u}}_{\boldsymbol{h}},\underline{\mathbf{v}}_{\boldsymbol{h}}) := \sum_{T \in \mathcal{T}_{\boldsymbol{h}}} a_{\boldsymbol{\kappa},T}(\underline{\mathbf{u}}_{T},\underline{\mathbf{v}}_{T}) = \sum_{T \in \mathcal{T}_{\boldsymbol{h}}} (f,\mathbf{v}_{T})_{T} \quad \forall \underline{\mathbf{v}}_{\boldsymbol{h}} \in \underline{\mathsf{U}}_{\boldsymbol{h},0}^{k}$$

Theorem (Energy-error estimate)

Assume that $u \in H^{k+2}(\mathcal{T}_h)$. Then, with $\underline{\hat{u}}_h$ and α as above,

$$\|\underline{\widehat{\mathbf{u}}}_h - \underline{\mathbf{u}}_h\|_{\boldsymbol{\kappa},h} \lesssim \left\{ \sum_{T \in \mathcal{T}_h} \kappa_T^{\sharp} \rho_T^{1+2\alpha} h_T^{2(k+1)} \|u\|_{k+2,T}^2 \right\}^{1/2}$$

Outline

3 Degenerate diffusion-advection-reaction

• Let us start by the following 1d problem:

$$\nu = \epsilon \xrightarrow{\beta = 1} \nu = 1$$

$$\mu = 1$$

$$\Omega_1 \qquad \Omega_2$$

- As $\epsilon \to 0^+$, a boundary layer develops at x = 1/2
- When $\epsilon = 0$, it turns into a jump discontinuity
- This was already observed in [Gastaldi and Quarteroni, 1989]

Degenerate diffusion-advection-reaction II

Figure : Solutions for different values of ϵ

Degenerate diffusion-advection-reaction III

Figure : Example of degenerate diffusion-advection-reaction problem in 2d from [Di Pietro et al., 2008]. The diffusive/non-diffusive interface is $\mathcal{I}_{\nu,\beta} := \mathcal{I}_{\nu,\beta}^- \cup \mathcal{I}_{\nu,\beta}^+$.

Degenerate diffusion-advection-reaction IV

 \blacksquare Define the diffusive/inflow portion of $\partial \Omega$

$$\Gamma_{\nu,\beta} := \{ \boldsymbol{x} \in \partial \Omega \mid \nu > 0 \text{ or } \beta \cdot \boldsymbol{n} < 0 \}$$

Consider the possibly degenerate problem

$$\begin{aligned} \boldsymbol{\nabla} \cdot \boldsymbol{\Phi}(u) + \mu u &= f & \text{in } \Omega \backslash \mathcal{I}_{\nu, \boldsymbol{\beta}}, \\ \boldsymbol{\Phi}(u) &= -\nu \boldsymbol{\nabla} u + \boldsymbol{\beta} u & \text{in } \Omega, \\ u &= g & \text{on } \Gamma_{\nu, \boldsymbol{\beta}}, \end{aligned}$$

supplemented with the interface conditions on $\mathcal{I}_{\nu,\beta}$

$$\llbracket \boldsymbol{\Phi}(u)
bracket \cdot \boldsymbol{n}_I = 0 \text{ on } \mathcal{I}_{\nu, \boldsymbol{\beta}} \text{ and } \llbracket u
bracket = 0 \text{ on } \mathcal{I}^+_{\nu, \boldsymbol{\beta}}$$

- Discrete advective derivative satisfying a discrete IBP formula
- Weakly enforced boundary conditions
 - Extension of Nietsche's ideas to HHO
 - Automatic detection of $\Gamma_{\nu,\beta}$
- Upwind stabilization using cell- and face-unknowns
 - Independent control for the advective part
 - Consistency also on $\mathcal{I}^-_{\nu,\beta}$, where u jumps

- \blacksquare Polyhedral meshes and arbitrary approximation order $k \geqslant 0$
- Method valid for the full range of Peclet numbers
- Analysis capturing the variation in the order of convergence in the diffusion-dominated and advection-dominated regimes
- **•** No need to duplicate interface unknowns on $\mathcal{I}^-_{\nu,\beta}$ (!)

Advective derivative I

• The discrete advective derivative $G_{\beta,T}^k : \underline{U}_T^k \to \mathbb{P}_d^k(T)$ is s.t.

$$(G^k_{\beta,T}\underline{\mathbf{v}}_T,w)_T = -(\mathbf{v}_T, \boldsymbol{\beta} \cdot \boldsymbol{\nabla} w)_T + \sum_{F \in \mathcal{F}_T} ((\boldsymbol{\beta} \cdot \boldsymbol{n}_{TF}) \mathbf{v}_F,w)_F$$

for all $\underline{\mathbf{v}}_T \in \underline{\mathbf{U}}_T^k$ and all $w \in \mathbb{P}_d^k(T)$

For advective stability, we need a discrete IBP mimicking

$$(\boldsymbol{\beta} \cdot \boldsymbol{\nabla} w, v)_{\Omega} + (w, \boldsymbol{\beta} \cdot \boldsymbol{\nabla} v)_{\Omega} = ((\boldsymbol{\beta} \cdot \boldsymbol{n}) w, v)_{\partial \Omega}$$

Lemma (Discrete IBP)

For all $\underline{\mathsf{w}}_h, \underline{\mathsf{v}}_h \in \underline{\mathsf{U}}_h^k$ it holds

$$\sum_{T \in \mathcal{T}_{h}} \left\{ (G_{\boldsymbol{\beta},T}^{k} \underline{\mathbf{w}}_{T}, \mathbf{v}_{T})_{T} + (\mathbf{w}_{T}, G_{\boldsymbol{\beta},T}^{k} \underline{\mathbf{v}}_{T})_{T} \right\} = \sum_{F \in \mathcal{F}_{h}^{b}} ((\boldsymbol{\beta} \cdot \boldsymbol{n}_{F}) \mathbf{w}_{F}, \mathbf{v}_{F})_{F} \\ - \sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{h}} ((\boldsymbol{\beta} \cdot \boldsymbol{n}_{TF}) (\mathbf{w}_{F} - \mathbf{w}_{T}), \mathbf{v}_{F} - \mathbf{v}_{T})_{F}.$$

We modify the diffusion bilinear form to weakly enforce BCs
The new bilinear form a_{ν,h} reads (after setting κ = νI_d),

$$a_{\nu,h}(\underline{\mathbf{w}}_h,\underline{\mathbf{v}}_h) := \sum_{T \in \mathcal{T}_h} a_{\nu,T}(\underline{\mathbf{w}}_T,\underline{\mathbf{v}}_T) + s_{\partial,\nu,h}(\underline{\mathbf{w}}_h,\underline{\mathbf{v}}_h)$$

with, for a user-defined parameter ς ,

$$\boldsymbol{s_{\partial,\nu,h}(\underline{w}_h,\underline{v}_h)} \coloneqq \sum_{F \in \mathcal{F}_h^{\mathrm{b}}} \left\{ -(\nu_F \boldsymbol{\nabla} p_{T(F)}^k \underline{w}_T \cdot \boldsymbol{n}_{TF}, \boldsymbol{v}_F)_F + \frac{\varsigma \nu_F}{h_F} (\boldsymbol{w}_F, \boldsymbol{v}_F)_F \right\}$$

Lemma (inf-sup stability of $a_{\nu,h}$)

Assuming that

$$\zeta > \frac{C_{\mathrm{tr}}^2 N_{\hat{\theta}}}{4}$$

it holds for all $\underline{v}_h \in \underline{U}_h^k$

$$a_{\nu,h}(\underline{\mathbf{v}}_h,\underline{\mathbf{v}}_h) =: \|\underline{\mathbf{v}}_h\|_{\nu,h}^2 \simeq \sum_{T \in \mathcal{T}_h} \nu_T \|\underline{\mathbf{v}}_T\|_{1,T}^2 + \sum_{F \in \mathcal{F}_h^{\mathrm{b}}} \frac{\nu_F}{h_F} \|\mathbf{v}_F\|_F^2.$$

Advection-reaction I

• For all $T \in \mathcal{T}_h$, we let

$$a_{\boldsymbol{\beta},\boldsymbol{\mu},T}(\underline{\mathbf{w}}_{T},\underline{\mathbf{v}}_{T}) := -(\mathbf{w}_{T},G_{\boldsymbol{\beta},T}^{k}\underline{\mathbf{v}}_{T})_{T} + \mu(\mathbf{w}_{T},\mathbf{v}_{T})_{T} + s_{\boldsymbol{\beta},T}^{-}(\underline{\mathbf{w}}_{T},\underline{\mathbf{v}}_{T})$$

with local upwind stabilization bilinear form s.t.

$$s_{\boldsymbol{\beta},T}^{-}(\underline{\mathsf{w}}_{T},\underline{\mathsf{v}}_{T}) := \sum_{F \in \mathcal{F}_{T}} ((\boldsymbol{\beta} \cdot \boldsymbol{n}_{TF})^{-} (\mathsf{w}_{F} - \mathsf{w}_{T}), \mathsf{v}_{F} - \mathsf{v}_{T})_{F},$$

Including weak enforcement of BCs, we let

$$a_{\boldsymbol{\beta},\mu,h}(\underline{\mathsf{w}}_{h},\underline{\mathsf{v}}_{h}) := \sum_{T \in \mathcal{T}_{h}} a_{\boldsymbol{\beta},\mu,T}(\underline{\mathsf{w}}_{h},\underline{\mathsf{v}}_{h}) + \sum_{F \in \mathcal{F}_{h}^{\mathrm{b}}} ((\boldsymbol{\beta} \cdot \boldsymbol{n})^{+} \mathsf{w}_{F},\mathsf{v}_{F})_{F}$$

Advection-reaction II

Lemma (Stability of $a_{\beta,\mu,h}$)

Let $\eta := \min_{T \in \mathcal{T}_h} (1, \tau_{\text{ref},T} \mu)$ with $\tau_{\text{ref},T} := \{\max(\|\mu\|_{L^{\infty}(T)}, L_{\beta,T})\}^{-1}$. Then,

$$\forall \underline{\mathsf{v}}_h \in \underline{\mathsf{U}}_h^k, \qquad \eta \| \underline{\mathsf{v}}_h \|_{\mathcal{B},\mu,h}^2 \leqslant a_{\mathcal{B},\mu,h}(\underline{\mathsf{v}}_h,\underline{\mathsf{v}}_h),$$

with global advection-reaction norm

$$\|\underline{\mathsf{v}}_h\|_{\boldsymbol{\beta},\mu,h}^2 := \sum_{T \in \mathcal{T}_h} \|\underline{\mathsf{v}}_T\|_{\boldsymbol{\beta},\mu,T}^2 + \frac{1}{2} \sum_{F \in \mathcal{F}_h^h} \||\boldsymbol{\beta} \cdot \boldsymbol{n}_{TF}|^{1/2} \mathsf{v}_F\|_F^2,$$

and, for all $T \in \mathcal{T}_h$,

$$\|\underline{\mathbf{v}}_{T}\|_{\boldsymbol{\beta},\mu,T}^{2} := \frac{1}{2} \sum_{F \in \mathcal{F}_{T}} \||\boldsymbol{\beta} \cdot \boldsymbol{n}_{TF}|^{1/2} (\mathbf{v}_{F} - \mathbf{v}_{T})\|_{F}^{2} + \tau_{\mathrm{ref},T}^{-1} \|\mathbf{v}_{T}\|_{T}^{2}.$$

Let, accounting for boundary conditions,

$$l_h(\underline{\mathbf{v}}_h) := \sum_{T \in \mathcal{T}_h} (f, \mathbf{v}_T)_T + \sum_{F \in \mathcal{F}_h^{\mathrm{b}}} \left\{ ((\boldsymbol{\beta} \cdot \boldsymbol{n}_{TF})^- g, \mathbf{v}_F)_F + \frac{\nu_F \varsigma}{h_F} (g, \mathbf{v}_F)_F \right\}$$

• The discrete problem reads: Find $\underline{u}_h \in \underline{U}_h^k$ s.t., $\forall \underline{v}_h \in \underline{U}_h^k$,

$$a_h(\underline{\mathbf{u}}_h,\underline{\mathbf{v}}_h) \coloneqq a_{\nu,h}(\underline{\mathbf{u}}_h,\underline{\mathbf{v}}_h) + a_{\mathcal{B},\mu,h}(\underline{\mathbf{u}}_h,\underline{\mathbf{v}}_h) = l_h(\underline{\mathbf{v}}_h)$$

Lemma (Stability of a_h)

There is $\gamma_{\varrho,\varsigma} > 0$ independent of h, ν , β and μ s.t., for all $\underline{w}_h \in \underline{U}_h^k$,

$$\|\underline{\mathbf{w}}_{h}\|_{\sharp,h} \leqslant \gamma_{\varrho,\varsigma} \zeta^{-1} \sup_{\underline{\mathbf{v}}_{h} \in \underline{\mathbf{U}}_{h}^{k} \setminus \{0\}} \frac{a_{h}(\underline{\mathbf{w}}_{h}, \underline{\mathbf{v}}_{h})}{\|\underline{\mathbf{v}}_{h}\|_{\sharp,h}},$$

with $\zeta := \tau_{\mathrm{ref},T} \mu$ and stability norm

$$\|\underline{\mathbf{v}}_{h}\|_{\sharp,h}^{2} \coloneqq \|\underline{\mathbf{v}}_{h}\|_{\nu,h}^{2} + \|\underline{\mathbf{v}}_{h}\|_{\boldsymbol{\beta},\mu,h}^{2} + \sum_{T \in \mathcal{T}_{h}} h_{T}\beta_{\mathrm{ref},T}^{-1}\|G_{\boldsymbol{\beta},T}^{k}\underline{\mathbf{v}}_{h}\|_{T}^{2}$$

A modified interpolator

- Let $F \in \mathcal{F}_h^i$ be such that $F \subset \mathcal{I}_{\nu, \boldsymbol{\beta}}^-$
- The trace of u is two-valued on F
- We interpolate the face unknown from the diffusive side

Theorem (Error estimate)

Assume that, for all $T \in \mathcal{T}_h$, $u \in H^{k+2}(T)$ and

$$h_T L_{\beta,T} \leqslant \beta_{\mathrm{ref},T}$$
 and $h_T \mu \leqslant \beta_{\mathrm{ref},T}$,

Then, there is C > 0 independent of h, ν , β , and μ s.t.

$$\begin{split} \|\widehat{\underline{\mathbf{u}}}_{h} - \underline{\mathbf{u}}_{h}\|_{\sharp,h} &\leq C \Biggl\{ \sum_{T \in \mathcal{T}_{h}} \left[(\nu_{T} \|u\|_{k+2,T}^{2} + \tau_{\mathrm{ref},T}^{-1} \|u\|_{k+1,T}^{2}) h_{T}^{2(k+1)} \\ &+ \beta_{\mathrm{ref},T} \min(1, \mathrm{Pe}_{T}) h_{T}^{2(k+1/2)} \|u\|_{k+1,T}^{2} \Biggr] \Biggr\}^{1/2}, \end{split}$$

where $\operatorname{Pe}_T = \max_{F \in \mathcal{F}_T} \|\operatorname{Pe}_{TF}\|_{L^{\infty}(F)}$.

- This estimate holds across the entire range for Pe_T
- In the diffusion-dominated regime ($\text{Pe}_T \leq h_T$), we have

$$\|\underline{\widehat{\mathbf{u}}}_h - \underline{\mathbf{u}}_h\|_{\sharp,h} = \mathcal{O}(h^{k+1})$$

In the advection-dominated regime ($Pe_T \ge 1$), we have

$$\|\underline{\widehat{\mathbf{u}}}_h - \underline{\mathbf{u}}_h\|_{\sharp,h} = \mathcal{O}(h^{k+1/2})$$

In between, we have intermediate orders of convergence

Numerical example I

• Let
$$\Omega = (-1,1)^2 \setminus [-0.5,0.5]^2$$
 and set

$$\nu(\theta,r) = \begin{cases} \pi & \text{if } 0 < \theta < \pi, \\ 0 & \text{if } \pi < \theta < 2\pi, \end{cases} \quad \beta(\theta,r) = \frac{e_{\theta}}{r}, \quad \mu = 1 \cdot 10^{-6}$$

We consider the exact solution

$$u(\theta, r) = \begin{cases} (\theta - \pi)^2 & \text{if } 0 < \theta < \pi\\ 3\pi(\theta - \pi) & \text{if } \pi < \theta < 2\pi \end{cases}$$

Numerical example II

Figure : Energy (left) and L^2 -norm (right) of the error vs. h

References I

Bassi, F., Botti, L., Colombo, A., Di Pietro, D. A., and Tesini, P. (2012).

On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys., 231(1):45–65.

Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., and Russo, A. (2013). Basic principles of virtual element methods. *Math. Models Methods Appl. Sci.*, 23:199–214.

Beirão da Veiga, L., Brezzi, F., Marini, L., and Russo, A. (2014).

Virtual Element Methods for general second order elliptic problems on polygonal meshes. Submitted. Preprint arXiv:1412.2646.

Chen, Y. and Cockburn, B. (2014).

Analysis of variable-degree HDG methods for convection-diffusion equations. part II: semimatching nonconforming meshes.

Math. Comp., 83(285):87-111.

Cockburn, B., Di Pietro, D. A., and Ern, A. (2015).

Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods. Submitted. Preprint hal-01115318.

Cockburn, B., Gopalakrishnan, J., and Lazarov, R. (2009).

Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems.

SIAM J. Numer. Anal., 47(2):1319-1365.

Di Pietro, D. A., Droniou, J., and Ern, A. (2014a).

A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. Preprint arXiv:1411.0098.

References II

Di Pietro, D. A. and Ern, A. (2012).

Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathématiques & Applications. Springer-Verlag, Berlin.

Di Pietro, D. A. and Ern, A. (2015).

A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg., 283:1–21. DOI: 10.1016/j.cma.2014.09.009.

Di Pietro, D. A., Ern, A., and Guermond, J.-L. (2008).

Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection. SIAM J. Numer. Anal., 46(2):805–831.

Di Pietro, D. A., Ern, A., and Lemaire, S. (2014b).

An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators.

```
Comput. Methods Appl. Math., 14(4):461–472. DOI: 10.1515/cmam-2014-0018.
```


Di Pietro, D. A. and Lemaire, S. (2015).

An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow.

Math. Comp., 84(291):1-31.

Eymard, R., Henry, G., Herbin, R., Hubert, F., Klöfkorn, R., and Manzini, G. (2011).

3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite Volumes for Complex Applications VI - Problems & Perspectives, volume 2, pages 95–130. Springer.

References III

Gastaldi, F. and Quarteroni, A. (1989).

On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach. *Appl. Numer. Math.*, 6:3–31.

Benchmark on discretization schemes for anisotropic diffusion problems on general grids.

In Eymard, R. and Hérard, J.-M., editors, *Finite Volumes for Complex Applications V*, pages 659–692. John Wiley & Sons.