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Eddy Current Testing (ECT) in nuclear power plants

Probe coil

Conductive plate

Figure: A probe coil assessing the presence of cracks in a conductive material

m Crack geometries too complicated to use standard meshes

m Faint control signal (comparable to the numerical error)

m Complicated topology

= DDR methods (high-order, general meshes, compatible,...)
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Magnetostatics / First formulation

m Assume, for the moment, Q with trivial topology (b1 = b3 =0)
m Let u > 0 and Jecurl H(curl; Q). The first formulation reads:

Find the magnetic field H : Q — R3 and vector potential A : Q — R3 s.t.

UH —curlA =0 in Q, (vector potential)
curlH =J in Q, (Ampere’s law)
divAa =0 in Q, (
AxXxn=0 on 4Q (boundary condition)

Coulomb's gauge)

m Weak formulation: Find (H, A) € H(curl; Q) x H(div; Q) s.t.
/yH-T—/A-curlrzo V1 € H(curl; Q),
Q Q

/curlH-v+/diVAdivv=/J-v Vv € H(div; Q)
Q Q Q

4/20



Magnetostatics / Second formulation

m A second formulation of magnetostatics reads:
Find the vector potential u : @ — R3 and Lagrange multiplier p : Q - R

s.t.

u teurleurlu +gradp=J in Q, (Ampere's law)
divu=0 inQ, (Coulomb’s gauge)

curlu xn=0andu-r=0 on dQ, (boundary conditions)
Jap =0
m Weak formulation: Find (u, p) € H(curl; Q) x H'(Q) s.t. fgp =0 and
/vcurlu - curly +/gradp-v = / f-v Vv € H(curl; Q),
Q Q Q

—/u~gradq=0 Vg € HY(Q)
Q
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A unified tool for well-posedness: The de Rham complex

HY(Q) 2% H(curl; Q) —Ly H(div;Q) —1Y £2(Q) —% {0}

m The above problems are mixed formulations involving two fields

m Well-posedness hinges on key properties depending on the topology of Q:

Im grad c Ker curl,

Im curl c Kerdiv
QcR?(b3=0) = Imdiv=L*Q) (1° formulation)
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A unified tool for well-posedness: The de Rham complex

HY(Q) 2% H(curl; Q) —Ly H(div;Q) —1Y £2(Q) —% {0}

m The above problems are mixed formulations involving two fields

m Well-posedness hinges on key properties depending on the topology of Q:

no “tunnels’ crossing Q (b; =0) = Imgrad = Kercurl (2" formulation)
no “voids” contained in Q (b2 =0) = Imcurl = Kerdiv (1 formulation)

QcR?(b3=0) = Imdiv=L*Q) (1° formulation)
m When by # 0 or by # 0, de Rham’s cohomology characterizes

Kercurl/Imgrad and Kerdiv/Im curl
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Generalization through differential forms

m A generalization to n-dimensional domains (and manifolds) is possible

m The de Rham complex of differential forms on Q c R"™ connected domain is

HAY(Q) —Ly ... 4y HAK(Q) _dt Ay HA"(Q) — {0}

m For n = 3, the following links are established through vector proxies:

HAY(Q) — s HAY(Q) —X 5 HA2(Q) —Z 3 HAY(Q) — {0}

! ! [ [

grad

HY(Q) 2% H(curl; Q) 2% H(div; Q) —3 12(Q) — {0}
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Domain and polytopal mesh

m Assume Q C R" polytopal (polygon if n =2, polyhedron if n=3,...)
m We consider a polytopal mesh M, containing all (flat) d-cells, 0 < d <n

m d-cells in My, are collected in Ag(My), so that, when n = 3,

Ag(Mp,) = Vy, is the set of vertices
A1 (My) = &y, is the set of edges
Ao (My) = Fy, is the set of faces
As(My) = Ty, is the set of elements
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General ideas

n-1

7r h =r.,h

7r h X:l’_hl

> X", — {0)

m Discrete spaces with polynomial components attached to mesh entities
m We recursively construct on d-cells

m A discrete potential playing the role of a k-form inside f
m A discrete exterior derivative playing the role of its exterior derivative

m Reconstructions mimic the Stokes formula

/dgw/\/lz(—1)f+1/w/\d"_[_1,u+/ trof w Atrgr p
S S of

V(w, 1) € A(f) x A1 ()
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Trimmed polynomial spaces

m Let feAg(Mp), de[l,n], fixxy € f, and define the Koszul complement
KE(f) = kP, AN with  (kw)x (. ..) == wxe(x —Xp,...)
m For £ > 1 we define the trimmed polynomial spaces
PrA(f) = AP, AT @ KL (f)
m In terms of vector proxies, we recover the Raviart—Thomas—Nédélec spaces

VE=FeFn P-A(f) = N.(F) = RT,(F)*
PIAN(f) = N,(T),

Vf=TeT, {Pr—AQ(f)ERTr(T)
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N

Discrete HAK(Q) spaces and interpolator

Pr (721) = K,?:’h

x5 ,= X X PR
d=k feAa(Mp)
k. Ak —,d-k k
L A (Q)30m (”r,f (xtry w))feAd(f),de[k,n] €Xn
Space | o=V  fi=E  fo=F  f3=T

X;rad,h = KE,h R Pr—l(E) Pr—l(F) Pr—l(T)
Xown =X, P.(E) RT,(F) RT.(T)
X = X7, P(F)  Ny(T)

#,(T)
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Discrete potential and exterior derivative

For d = k,...,n, all f € Aq(Mp), and all 0, € X¥ =
mIfd=k, welet Pf,f&f =*"lwr e P.AY(S)
mIfd>k+1, we first let, for all u € P, A 1(f),

/f‘dlrc,fgf/\/lz(_1)k+1/*_1wf/\d/“t+'/6fPlf<v0fwﬁfAtr5fﬂ
. I .

then we enforce ﬂ;’(}d—kPI’f, w,=x"twy and, for all u e KI1(f),

f

k k
(-1t ‘/f Prywpndp = /fdl;f,fgf Ap— ./af Py 5Was Ntros u
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Discrete potential and exterior derivative

For d = k,...,n, all f € Aq(Mp), and all 0, € X¥ =
mIfd=k, welet Pf,f&f =*"lwr e P.AY(S)
mIfd>k+1, we first let, for all u € P, A 1(f),

/df’f.gf/\,uz(—l)k*’l/*_lwf/\d,u+/ Pf,Oanf‘Atraf/“‘
o f of ‘

then we enforce nz’(}d_kPI’f,fgf =*"lw; and, for all u € K4 F71(f),

(—1)k+1/Pk W /\du:/dk w /\,u—/ Pr o w,, Atros

h rfEr ¢ rfLf of r,0fLof f

The global discrete exterior derivative d , : XY, — XKl is defined setting
- d—k-1

k W k
4y pw), = (”r,f (*dr,fﬂf))feAd(Mm,de[k+1,n1
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Thecasen=3and k=11

m Recall that, for all f =T € 7y,

= X #,(E)| x

Ecér

X RT,(T)

X RT,(F)

Fe¥r

f - —curl T

m Let
vy = (VE)Eeer, WF)Fer»vT) € X 1

and denote by v, its restriction to ¥ € & U Fr
m For all E € & (d = k = 1), the edge tangential trace is simply

y‘lcﬁ,EKE =VE VE € ST
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Thecasen=3and k=1 Il

m For all F € 1 (d = 2), the face curl is given by: For all ¢ € P,.(F),

/C;Kp q:/VF'I‘Oth— Z 8FE/7€,EKE q
F F

Ec&Ep E

m The face tangential trace is such that, for all (g, w) € P’ (F) x RE(F),

r+l

./7:,%‘2#‘ “(rotp g +w) = / Crvr q- Z SFE/V:,EEE q+./VF v
F F F

EE(S[-‘ E
m For all T € 7}, (d = 3), the element curl satisfies, for all w € P,.(T),
/C;"KT W = /vT -curlw + Z 6TF/”C,FB]S . (w X nF)
T T FeFr F

m Finally, by similar principles, we can construct P, ;- : X{ 7 — P, (T)

14 /20



Polynomial consistency

Theorem (Polynomial consistency)

For all integers 0 < k < d < n and all f € Ag(My,), it holds
Pfflr fw=w Vo € P,A(f),
and, ifd > k +1,

a5 jw=do Yo e P A ().

Example (The case n =3 and k = 1)

For n =3 and k = 1, the above properties translate as follows:

Porlomry =V v e P.(T),
Ch Ifml sV = curly Vv € N1 (7).
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Cohomology

dO dl n-1

=r,h =r,h =r.,h

0 1 -1
Kr,h — Xr,h — X:l,h

> X", — {0)

Theorem (Cohomology of the Discrete de Rham complex)

The DDR sequence is a complex and its cohomology is isomorphic to the
cohomology of the continuous de Rham complex, i.e., for all k,

Kergfh/hnc_lf’_hl = Ker d*/Im d*~1.

Example (The case n = 3)
For n = 3, in terms of vector proxies, this implies, in particular:
no “tunnels” crossing Q (b1 =0) = ImG) = Ker C),
no “voids” contained in Q (b2 =0) = ImC) = Ker D),

QCcR3(b3=0) = ImD} =P.(Th)
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Discrete L?-products

m We can define on X, the discrete L-product

(Wpo 1, e = Z (/ P} 0w, /\*P’,‘,fgfﬂk,f(gf,gf)
fednMy) T

m Above, s; r is a polynomially consistent stabilisation
sepUf jon ) =0 VYo e PANS)

m Stable numerical schemes are obtained replacing spaces, differential
operators, and L2-products with their discrete counterparts

17/20



Discretization of the magnetostatics problem

m We seek (H, A) € H(curl; Q) x H(div; Q) s.t.
/,uH~T—/A~cur1‘r=O V1 € H(curl; Q),
Q Q
/curlH-v+/divAdivv =/J-v Vv € H(div; Q)
Q Q Q
m The DDR scheme reads: Find (H,,A,) € X{ ), X de n St
(ﬂﬂh, zh)curl,h - (éh, QZZh)div,h =0 VTh € Xcurl h’

(CLH,,v,)div.h +/QD2A11 Dy, =1ln(v),) Vv, € Xy,

m For smooth enough solutions, the energy error is O(h"™*1)
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Numerical examples
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Table: Energy error vs. meshsize
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