Recent advances on nonconforming methods for diffusive problems on general meshes

Daniele A. Di Pietro

IFP Energies nouvelles, dipietrd@ifpen.fr

Montpellier, November 8, 2011

Broken polynomial spaces on general meshes Admissible mesh sequences Sobolev embeddings

The SWIP-dG method

Darcy flow through heterogeneous media Poroelasticity

Cell centered Galerkin methods

Incomplete polynomial spaces Incompressible Navier-Stokes

Broken polynomial spaces on general meshes Admissible mesh sequences Sobolev embeddings

The SWIP-dG method

Darcy flow through heterogeneous media Poroelasticity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cell centered Galerkin methods Incomplete polynomial spaces Incompressible Navier–Stokes

General meshes I

- Avoid remeshing (e.g. in subsoil modeling)
- Improve domain/solution fitting
- Improve performance (fewer DOFs, reduced fill-in)
- Nonconforming/aggregative mesh adaptivity

Figure: Near wellbore mesh

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Figure: NACA0012 airfoil, computational mesh (*left*) and Mach number contours (*right*) following [Bassi et al., 2012]

◆□> <畳> <目> <目> <目> <目> <<=>

Admissible mesh sequences for h-convergence I

- Let $\Omega \subset \mathbb{R}^d$ be an open connected bounded polyhedral domain
- · Let $(\mathfrak{T}_h)_{h\in\mathcal{H}}$ be a sequence of refined meshes of Ω
- For $k \ge 0$ we define the broken polynomial spaces

$$\mathbb{P}_{d}^{k}(\mathfrak{T}_{h}) \coloneqq \left\{ \nu \in L^{2}(\Omega) \mid \forall T \in \mathfrak{T}_{h}, \, \nu_{|T} \in \mathbb{P}_{d}^{k}(T) \right\}$$

Figure: Mesh \mathfrak{T}_h with polygonal elements and nonmatching interfaces

Trace and inverse inequalities

- Every \mathfrak{T}_h admits a simplicial submesh \mathfrak{S}_h
- + $(\mathfrak{S}_h)_{h\in\mathcal{H}}$ is shape-regular in the sense of Ciarlet
- Every simplex $S \subset T$ is s.t. $h_S \approx h_T$

 $\begin{array}{l} \mbox{Optimal polynomial approximation (for error estimates)} \\ \mbox{Every element T is star-shaped w.r.t. a ball of diameter } \delta_T \approx h_T \end{array}$

Figure: Admissible (*left*) and non-admissible (*right*) mesh elements

Figure: Notation for an interface $F \in \mathcal{F}_h^i$

• For
$$F \subset \partial T_1 \cap \partial T_2$$
 let

$$\{\boldsymbol{\nu}\} := \frac{1}{2} \left(\nu_{|T_1} + \nu_{|T_2} \right), \qquad \llbracket \boldsymbol{\nu} \rrbracket := \nu_{|T_1} - \nu_{|T_2}$$

• We introduce the discrete $W^{1,p}(\mathcal{T}_h)$ -norms

$$\|\boldsymbol{\nu}\|_{\mathsf{dG},p} \coloneqq \left(\|\nabla_{h}\boldsymbol{\nu}\|_{L^{p}(\Omega)^{d}}^{p} + \sum_{F \in \mathcal{F}_{h}} \frac{1}{h_{F}^{p-1}} \|[\![\boldsymbol{\nu}]\!]\|_{L^{p}(F)}^{p} \right)^{1/p}$$

Discrete Sobolev embeddings [DP and Ern, 2010]

Let $k \ge 0$. For all q such that

- $1 \leqslant q \leqslant p^* := \frac{pd}{d-p}$ if $1 \leqslant p < d$
- $\blacktriangleright \ 1 \leqslant q < \infty \ \text{if} \ d \leqslant p < \infty$

there exists $\sigma_{p,q}$ such that

 $\forall \nu_h \in \mathbb{P}_d^k(\mathcal{T}_h), \qquad \|\nu_h\|_{L^q(\Omega)} \leqslant \sigma_{p,q} \|\nu_h\|_{dG,p}$

Proof.

- $\label{eq:posterior} \bullet \mbox{ For } p = 1 \mbox{ use } \| \nu_h \|_{L^{1*}(\Omega)} \lesssim \| \nu_h \|_{\text{BV}} \lesssim \| \nu_h \|_{\text{dG},1}$
- \blacktriangleright For $1 use <math display="inline">L^{1*}\text{-estimate}$ for $|\nu_h|^{\alpha},$ Hölder's and trace inequalities
- \blacktriangleright For $d\leqslant p<\infty$ use the previous point together with the comparison of broken $W^{1,p}(\mathfrak{T}_h)\text{-norms}$

• In the Hilbertian case p = 2 we have the usual

$$\|\boldsymbol{\nu}\|_{\mathsf{dG}} \coloneqq \left(\|\nabla_h \boldsymbol{\nu}\|_{L^2(\Omega)^d}^2 + \sum_{F \in \mathcal{F}_h} \frac{1}{h_F} \|[\![\boldsymbol{\nu}]\!]\|_{L^2(F)}^2 \right)^{1/2}$$

An important Sobolev embedding is the Poincaré inquality

$$\forall v_h \in \mathbb{P}_d^k(\mathcal{T}_h) \qquad \|v_h\|_{L^2(\Omega)} \leqslant \sigma_{2,2} \|v_h\|_{\mathsf{dG}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Broken polynomial spaces on general meshes Admissible mesh sequences Sobolev embeddings

The SWIP-dG method Darcy flow through heterogeneous media Poroelasticity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cell centered Galerkin methods

Incomplete polynomial spaces Incompressible Navier-Stokes

Motivations and goals

- Darcy flow through heterogeneous anisotropic media
 - [DP and Ern, 2011a]
- Convergence to nonsmooth solutions in faulted media
 - ▶ [DP and Ern, 2011b]
- Darcy flow through deformable porous media
 - [DP, 2011b]
- Reactive transport with singular interfaces (not detailed)
 - [Gastaldi and Quarteroni, 1989]
 - [DP et al., 2008]
- Important references for weighted averages
 - [Stenberg, 1998]
 - ▶ [Hansbo and Hansbo, 2002]
 - F [Heinrich and Pietsch, 2002, Heinrich and Nicaise, 2003]

[Burman and Zunino, 2006]

$$-\nabla (\kappa \nabla u) = f \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega$$

• There is a partition P_{Ω} s.t.

 $\kappa\in \mathbb{P}^0_d(P_\Omega)$ with $0<\underline{\kappa}\leqslant \kappa\leqslant \overline{\kappa}$

- For all $h \in \mathcal{H}$, \mathcal{T}_h is compatible with P_{Ω}
- We seek an approximate solution $u_h \in V_h$ with

$$V_h := \mathbb{P}_d^k(\mathcal{T}_h), \qquad k \ge 1$$

Find $u_h \in V_h$ s.t. $a_h(u_h, v_h) = \int_O fv_h$ for all $v_h \in V_h$

The heterogeneous Darcy problem II

Figure: P_{Ω} and compatible mesh (stratigraphy of a sedimentary bassin)

シック・単純 (油)、(油)、(山)、(山)、

The heterogeneous Darcy problem III

$$\begin{split} a_{h}^{sip}(w,v_{h}) &\coloneqq \int_{\Omega} \kappa \nabla_{h} w \cdot \nabla_{h} v_{h} - \sum_{F \in \mathcal{F}_{h}} \int_{F} \{ \kappa \nabla_{h} w \} \cdot n_{F} \llbracket v_{h} \rrbracket \\ &- \sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket w \rrbracket \{ \kappa \nabla_{h} v_{h} \} \cdot n_{F} + \sum_{F \in \mathcal{F}_{h}} \int_{F} \frac{\eta}{h_{F}} \llbracket w \rrbracket \llbracket v_{h} \rrbracket \end{split}$$

 $\begin{array}{l} \mbox{Error estimate (SIP, [Arnold, 1982])} \\ \mbox{Assume } u \in V_* := H^1_0(\Omega) \cap H^2(P_\Omega). \mbox{ Then, } \exists C \neq C(h,\kappa) \mbox{ s.t.} \end{array}$

$$\|\boldsymbol{\mathfrak{u}}-\boldsymbol{\mathfrak{u}}_{h}\|_{\mathsf{dG}}\leqslant C\max\left(1,\frac{\overline{\mathsf{K}}}{\underline{\mathsf{K}}}\right)\inf_{\boldsymbol{\nu}_{h}\in \mathbf{V}_{h}}\|\boldsymbol{\mathfrak{u}}-\boldsymbol{\nu}_{h}\|_{\mathsf{dG},*}$$

This estimate is not robust w.r.t. the heterogeneity of κ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The SWIP method I

Figure: Notation for an interface $F \in \mathcal{F}_{h}^{i}$

• For $F \subset \partial T_1 \cap \partial T_2$ and $(\omega_1, \omega_2) > 0$, $\omega_1 + \omega_2 = 1$ let

$$\{\mathbf{v}\}_{\mathbf{\omega}} \coloneqq \mathbf{\omega}_1 \mathbf{v}_{|\mathsf{T}_1} + \mathbf{\omega}_2 \mathbf{v}_{|\mathsf{T}_2}$$

• For $\omega_1 = \omega_2 = rac{1}{2}$ we recover the standard average $\{ v \}$

The SWIP method II

$$\begin{split} a_{h}^{swip}(w,v_{h}) &\coloneqq \int_{\Omega} \kappa \nabla_{h} w \cdot \nabla_{h} v_{h} - \sum_{F \in \mathcal{F}_{h}} \int_{F} \{\kappa \nabla_{h} w\}_{\omega_{\kappa}} \cdot n_{F} \llbracket v_{h} \rrbracket \\ &- \sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket w \rrbracket \{\kappa \nabla_{h} v_{h}\}_{\omega_{\kappa}} \cdot n_{F} + \sum_{F \in \mathcal{F}_{h}} \int_{F} \eta \frac{\gamma_{\kappa}}{h_{F}} \llbracket w \rrbracket \llbracket v_{h} \rrbracket \end{split}$$

Weighted averages + harmonic mean in penalty

$$\{\Phi\}_{\boldsymbol{\omega}_{\boldsymbol{\kappa}}} \coloneqq \frac{\kappa_2}{\kappa_1 + \kappa_2} \Phi_{|\mathsf{T}_1} + \frac{\kappa_1}{\kappa_1 + \kappa_2} \Phi_{|\mathsf{T}_2}, \quad \boldsymbol{\gamma}_{\boldsymbol{\kappa}} \coloneqq 2\frac{\kappa_1 \kappa_2}{\kappa_1 + \kappa_2}$$

 \blacktriangleright Data-dependent energy norm on $H^1(\mathfrak{T}_h)$

$$\|\boldsymbol{\nu}\|_{\kappa}^{2} := \|\boldsymbol{\kappa}^{\frac{1}{2}} \nabla_{h} \boldsymbol{\nu}\|_{L^{2}(\Omega)^{d}}^{2} + \sum_{F \in \mathcal{F}_{h}} \frac{\boldsymbol{\gamma}_{\kappa}}{h_{F}} \|[\![\boldsymbol{\nu}]\!]\|_{L^{2}(F)}^{2}$$

Properties of a_h^{swip} [DP and Ern, 2011b]

Let $V_{*h}\mathrel{\mathop:}= V_h+V_*$ and assume $u\in V_*.$ Then,

Consistency. There holds

$$\forall v_h \in V_h$$
, $a_h^{swip}(u, v_h) = \int_{\Omega} f v_h$,

• Coercivity. There exists $C_{sta} \neq C_{sta}(h, \kappa)$ s.t.

$$\forall \nu_h \in V_h, \qquad a_h^{\mathsf{swip}}(\nu_h, \nu_h) \geqslant C_{\mathsf{sta}} \| \nu_h \|_{\kappa}^2$$

▶ Boundedness. There exists $C_{bnd} \neq C_{bnd}(h, \kappa)$ s.t. $\forall (w, v_h) \in V_{*h} \times V_h^{ccg}, \qquad a_h^{swip}(w, v_h) \leqslant C_{bnd} ||w||_{\kappa,*} ||v_h||_{\kappa}.$

・ロト・< ・<

Error estimate (SWIP, [DP et al., 2008]) Assume $u \in V_* = H_0^1(\Omega) \cap H^2(P_\Omega)$. Then, $\exists C \neq C(h, \kappa)$ s.t. $|||u - u_h|||_{\kappa} \leq C \inf_{\nu_h \in V_h} |||u - \nu_h|||_{\kappa,*}$

Convergence rate

If, moreover $u \in H^{k+1}(P_{\Omega})$, $\exists C \neq C(h, \kappa)$ s.t.

$$\|\|\mathbf{u} - \mathbf{u}_{\mathbf{h}}\|\|_{\kappa} \lesssim C \overline{\kappa}^{1/2} \mathbf{h}^{\mathbf{k}} \|\mathbf{u}\|_{\mathbf{H}^{k+1}(\mathbf{P}_{\Omega})}.$$

- Nonconsistent for k = 0 except on κ -orthogonal \mathfrak{T}_h
- Minor modifications allow to treat the case

$$\mathfrak{u}\in H^1_0(\Omega)\cap H^{3/2+\varepsilon}(P_\Omega)$$

Convergence of the SWIP method to nonsmooth solutions

However, in general we only have [Nicaise and Sändig, 1994]

$$\mathfrak{u} \in W^{2,p}(\mathsf{P}_{\Omega}) \Rightarrow \mathfrak{u} \in \mathsf{H}^{1+\alpha}(\mathsf{P}_{\Omega}), \quad \alpha = 1 + d\left(\frac{1}{2} - \frac{1}{p}\right) > 0$$

- Optimal convergence rates for d = 2 [DP and Ern, 2011a]
- Convergence by compactness for d > 2

Figure: Faulted medium, $u \in H^{1.29}(P_{\Omega})$, $\kappa_1/\kappa_2 = 30$

 \blacktriangleright For $F\in \mathfrak{F}_h$ and $l\geqslant 0$ the local lifting solves

$$\int_{\Omega} r^{l}_{\omega,F}(\llbracket v \rrbracket) \cdot \tau_{h} = \int_{F} \llbracket v \rrbracket \{\tau_{h}\}_{\omega} \cdot \mathsf{n}_{F} \qquad \forall \tau_{h} \in \mathbb{P}^{l}_{d}(\mathcal{T}_{h})^{d}$$

The global lifting is defined as

$$\mathsf{R}^{\mathsf{l}}_{\mathsf{h},\omega}(\mathsf{v}) := \sum_{\mathsf{F} \in \mathcal{F}_{\mathsf{h}}} \mathsf{r}^{\mathsf{l}}_{\omega,\mathsf{F}}(\llbracket \mathsf{v} \rrbracket)$$

• For all $l \ge 0$ we define the gradient

$$\mathsf{G}^{\mathsf{l}}_{\mathsf{h},\boldsymbol{\omega}}(\mathsf{v}) \coloneqq \nabla_{\mathsf{h}}\mathsf{v} - \mathsf{R}^{\mathsf{l}}_{\mathsf{h},\boldsymbol{\omega}}(\mathsf{v})$$

- The subscript ω is omitted if $\omega_1=\omega_2=1/2$

 $\begin{array}{ll} \mbox{Compactness [DP and Ern, 2010]} \\ \mbox{Let } (\nu_h)_{h\in \mathcal{H}} \mbox{ be a sequence in } (\mathbb{P}^k_d(\mathcal{T}_h))_{h\in \mathcal{H}}, \ k \ge 0 \\ & \forall h \in \mathcal{H}, \qquad \|\nu_h\|_{dG} \leqslant C \neq C(h). \end{array} \\ \mbox{Then, } \exists \nu \in H^1_0(\Omega) \ s.t., \ as \ h \to 0, \ up \ to \ a \ subsequence \\ & \nu_h \to \nu \qquad \mbox{ in } L^2(\Omega), \\ & G^1_h(\nu_h) \to \nabla \nu \qquad \mbox{ for all } l \ge 0 \ weakly \ in \ L^2(\Omega)^d. \end{array}$

Proof.

- Kolmogorov criterion to prove compactness in $L^1(\Omega)$
- \blacktriangleright Sobolev embeddings to prove compactness in $L^2(\Omega)$
- Asymptotic consistency of G_h^l yields regularity of the limit

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Convergence [DP and Ern, 2011a]

Let $(u_h)_{h\in\mathcal{H}}$ denote the sequence of discrete solutions on the admissible mesh family $(\mathcal{T}_h)_{h\in\mathcal{H}}$. Then,

$$\begin{split} & \mathfrak{u}_h \to \mathfrak{u} & \text{ strongly in } L^2(\Omega), \\ & \nabla_h \mathfrak{u}_h \to \nabla \mathfrak{u} & \text{ strongly in } [L^2(\Omega)]^d, \\ & |\mathfrak{u}_h|_J \to 0. \end{split}$$

Proof.

Use the equivalent form for a_h^{swip} : For $l \in \{k - 1, k\}$,

$$a_{h}^{\mathsf{swip}}(\mathfrak{u}_{h},\mathfrak{v}_{h}) = \int_{\Omega} \kappa G_{h,\omega_{\kappa}}^{l}(\mathfrak{u}_{h}) \cdot G_{h,\omega_{\kappa}}^{l}(\mathfrak{v}_{h}) + s_{h}(\mathfrak{u}_{h},\mathfrak{v}_{h}),$$

with $s_h(\cdot, \cdot) \ge 0$.

Motivations and goals

- Darcy flow through deformable porous media
 - [DP, 2011b]
- Robustness w.r.t. in the heterogeneous case
- Robustness w.r.t. incompressibility of both the medium and the fluid (not detailed here)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Important references
 - [Wihler, 2006]
 - ▶ [Phillips and Wheeler, 2008]
 - ▶ [Ern and Meunier, 2009]
 - [Girault et al., 2011]

$$\begin{split} & -\nabla{\cdot}\sigma(\mathfrak{u}){+}\nabla p=f & \text{ in } \Omega{\times}(0,t_F), \\ & c_0d_tp{+}\nabla{\cdot}(d_t\mathfrak{u})-\nabla{\cdot}(\kappa\nabla p)=0 & \text{ in } \Omega{\times}(0,t_F), \\ & (\mathfrak{u},p)=0 & \text{ on } \partial\Omega{\times}(0,t_F), \\ & (\mathfrak{u}(0),p(0))=(\mathfrak{u}_0,p_0) & \text{ in } \Omega, \end{split}$$

where $\sigma(w) \coloneqq 2\mu\varepsilon(w) + \lambda(\nabla \cdot w)\mathbf{1}_d$ and $\varepsilon(w) \coloneqq \frac{1}{2}(\nabla w + \nabla w^t)$.

- Assume $c_0 > 0$, λ , μ , and κ positive but heterogeneous
- Let $\delta t = t_F/N$ denote the time step and set $t^n \coloneqq n \delta t$
- For $1 \leq n \leq N$ we seek $(u_h^n, p_h^n) \in U_h \times P_h$ with

$$\mathbf{U}_{\mathbf{h}} := \mathbb{P}^{1}_{\mathbf{d}}(\mathcal{T}_{\mathbf{h}})^{\mathbf{d}}, \qquad \mathbf{P}_{\mathbf{h}} := \mathbb{P}^{1}_{\mathbf{d}}(\mathcal{T}_{\mathbf{h}})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

$$\begin{split} e_{h}(w,v) &\coloneqq \int_{\Omega} \sigma_{h}(w) :\epsilon_{h}(v) \\ &- \sum_{F \in \mathcal{F}_{h}} \int_{F} \left(\{ \sigma_{h}(w) \} : \langle \llbracket v \rrbracket \rangle_{F} \otimes n_{F} + \llbracket w \rrbracket \otimes n_{F} : \{ \sigma_{h}(v) \} \right) \\ &+ \sum_{F \in \mathcal{F}_{h}} \int_{F} \eta \left(2 \mu r_{F}^{0}(\llbracket w \rrbracket) : r_{F}^{0}(\llbracket v \rrbracket) + \lambda I_{F}(\llbracket w \rrbracket) I_{F}(\llbracket w \rrbracket) \right) \\ &+ \sum_{F \in \mathcal{F}_{h}} \int_{F} \frac{\eta \gamma_{\mu}}{h_{F}} \llbracket w \rrbracket \cdot \llbracket v \rrbracket \end{split}$$

 $\mathsf{I}_F(\phi) := \mathsf{tr}(\mathsf{r}_F(\phi))$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Properties of e_h [DP, 2011a] Let $U_h := \mathbb{P}^1_d(\mathcal{T}_h)^d$ and $U_{*h} := U_h + [H^1_0(\Omega) \cap H^2(P_\Omega)]^d$. Then, • Coercivity. There exists $C_{sta} \neq C_{sta}(h, \lambda, \mu)$ s.t.

$$\forall v_h \in U_h, \quad e_h(v_h, v_h) \ge C_{\mathsf{sta}} ||\!| v_h ||\!|_{\mu, \lambda}^2,$$

• Boundedness. There exists $C_{bnd} \neq C_{bnd}(h, \lambda, \mu)$ s.t.

 $\forall (w, v_h) \in U_{*h} \times U_h, \quad e_h(w, v_h) \leqslant C_{\mathsf{bnd}} ||\!| w ||\!|_{\mu, \lambda, *} ||\!| v_h ||\!|_{\mu, \lambda}.$

- For a discrete Korn inequality see [Brenner, 2004]
- Locking-free on conforming simplicial meshes since

 $\mathbb{CR}(\mathcal{T}_h) \subset \mathbb{P}^1_d(\mathcal{T}_h)$

Displacement-pressure coupling

$$\begin{split} b_h(\nu_h, q_h) &\coloneqq -\int_{\Omega} \nabla_h \cdot \nu_h q_h + \sum_{F \in \mathcal{F}_h} \int_F \llbracket \nu_h \rrbracket \cdot n_F \{q_h\} \\ &= -\int_{\Omega} D_h^0(\nu_h) q_h, \qquad D_h^0(\nu_h) := tr(G_h^0(\nu_h)) \end{split}$$

Discrete stability for b_h [DP, 2007] There is $0 < \beta \neq \beta(h)$ s.t., for all $q_h \in P_h$,

$$\beta \|q_{h}\|_{/} \leqslant \sup_{\nu_{h} \in U_{h} \setminus \{0\}} \frac{b_{h}(\nu_{h}, q_{h})}{\|\nu_{h}\|_{dG}} + |q_{h}|_{p},$$

where $|q_h|_p^2 := \sum_{F \in \mathcal{F}_h^i} \int_F h_F \llbracket q_h \rrbracket^2$.

The discrete problem I

For $n \ge 1$, find $(u_h^n, p_h^n) \in U_h \times P_h$ s.t. for all $(v_h, q_h) \in U_h \times P_h$, $\begin{aligned} e_h(u_h^n, v_h) + b_h(v_h, p_h^n) &= (f_h^n, v_h) \\ (c_0 \delta_t^{(1)} p_h^n, q_h) - b_h(\delta_t^{(1)} u_h^n, q_h) + a_h^{swip}(p_h^n, q_h) &= 0 \end{aligned}$

Discrete stability Assume $f \in C^1(L^2(\Omega)^d)$. Then,

$$|\!|\!| u_h^N |\!|\!|_{\mu,\lambda}^2 + c_0 |\!| p_h^N |\!|_{L^2(\Omega)}^2 + \sum_{n=0}^N \delta t |\!|\!| p_h^n |\!|\!|_{\kappa}^2 \leqslant C \exp(t_F),$$

where C depends on the mesh regularity parameters, on μ , and linearly in $|||u_0|||_{\mu,\lambda}^2$, $|||p_0|||_{\kappa}^2$, and $||f||_{C^1(L^2(\Omega)^d)}^2$.

Convergence

Assume $u \in C^2(U) \cap C^1(H^2(P_{\Omega})^d)$ and $p \in C^0(P_*) \cap C^2(L^2(\Omega))$. Then, there exists $C \neq C(h, \lambda, \underline{\kappa})$ s.t.

$$\begin{split} \| u^N - u^N_h \|_{\mu,\lambda} + \| p^N - p^N_h \|_{L^2(\Omega)} \\ + \left(\sum_{n=0}^N \delta t \| p^n - p^n_h \|_{\kappa}^2 \right)^{\frac{1}{2}} \leqslant C(h + \delta t). \end{split}$$

Second order in time can be proved using the BDF2 operator $\delta_t^{(2)}$ instead of the BE operator $\delta_t^{(1)}$ (cf. [DP and Ern, 2011b, Ch. 4])

Numerical examples I

• Let
$$\Omega = (-1, 1)^2$$
, $t_F = 1$, $c_0 = \lambda = \mu = 1$, and
 $\kappa = \begin{cases} 1 & \text{if } x > 0, \\ \varepsilon & \text{otherwise} \end{cases}$

• We consider the following analytical solution in d = 2:

$$\begin{split} u_1 &= e^{-t} x^2 y, \qquad u_2 = -e^{-t} x y^2, \qquad p_\epsilon = e^{-t} \cos(\kappa^{-1/2} x) \\ \\ \hline \\ \kappa &= \varepsilon \quad \kappa = 1 \end{split}$$

シック・単純 (油)、(油)、(山)、(山)、

Numerical examples II

Figure: h-convergence, heterogeneous case

Broken polynomial spaces on general meshes

Admissible mesh sequences Sobolev embeddings

The SWIP-dG method

Darcy flow through heterogeneous media Poroelasticity

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cell centered Galerkin methods Incomplete polynomial spaces Incompressible Navier–Stokes

- Design consistent dG methods with 1 DOF per element
- Work on general polyhedral meshes as in dG methods
- Formulation of FV and lowest-order methods suitable for FreeFEM-like implementation
- ▶ See [DP, 2010, DP, 2012] and also [Botti and DP, 2011]

- Important references
 - [Aavatsmark et al., 1994–11]
 - [Edwards *et al.*, 1994–11]
 - ▶ [Eymard, Gallouët, Herbin et al., 2000–11]
 - ▶ [Brezzi, Lipnikov, Shashkov et al., 2005–11]

Cell centers

We fix a set of points $(x_T)_{T \in \mathcal{T}_h}$ s.t.

- ▶ all $T \in \mathfrak{T}_h$ is star-shaped w.r.t. x_T
- for all $T \in \mathcal{T}_h$, and all $F \in \mathcal{F}_T$, $dist(x_T, F) \approx h_T$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1) Fix the vector space of DOFs, e.g.,

$$\mathbb{V}_{h} = \mathbb{R}^{\mathcal{T}_{h}}, \qquad \mathbf{v}_{h} = (v_{T})_{T \in \mathcal{T}_{h}} \in \mathbb{R}^{\mathcal{T}_{h}}$$

2) Reconstruct an asymptotically consistent gradient

$$\mathfrak{G}_{h}: \mathbb{V}_{h} \to \mathbb{P}^{0}_{d}(\mathfrak{T}_{h})^{d}$$

3) Reconstruct a broken affine function

 $\forall T \in \mathfrak{T}_{h}, \quad \mathfrak{R}_{h}(\mathbf{v}_{h})|_{T}(x) = v_{T} + \mathfrak{G}_{h}(\mathbf{v}_{h})|_{T} \cdot (x - x_{T})$

Use as a discrete space in dG methods

$$\mathbf{V}_{\mathbf{h}}^{\mathsf{ccg}} := \mathfrak{R}_{\mathbf{h}}(\mathbb{V}_{\mathbf{h}}) \subset \mathbb{P}_{\mathbf{d}}^{1}(\mathfrak{T}_{\mathbf{h}})$$

Find $u_h \in V_h^{\text{ccg}}$ s.t. for all $v_h \in V_h^{\text{ccg}}$ $a_h^{\text{swip}}(u_h, v_h) = \int_{\Omega} f v_h$

Consistency, coercivity, and boundedness hold a fortiori since

$$V_h^{\mathsf{ccg}} \subset \mathbb{P}^1_d(\mathfrak{T}_h)$$

Fewer DOFs since

$$\dim(V_h^{\mathsf{ccg}}) = \dim(\mathbb{P}^0_d(\mathcal{T}_h))$$

- Optimal convergence rate for $u \in H^2(P_{\Omega})$
- Aubin–Nitsche trick yields optimal L²-convergence

A gradient reconstruction based on Green's formula

• Observe that, for all $\nu_h \in \mathbb{P}^0_d(\mathfrak{T}_h)$ and all $T \in \mathfrak{T}_h$,

$$G_{h}^{0}(\nu_{h})_{|T} = \frac{1}{|T|_{d}} \sum_{F \in \mathcal{F}_{T}} |F|_{d-1} \left(\{\nu_{h}\} - \nu_{T} \right) n_{T,F}$$

• Let $(\mathbf{v}_h^{\mathfrak{T}}, \mathbf{v}_h^{\mathfrak{F}}) \in \mathbb{R}^{\mathcal{T}_h} \times \mathbb{R}^{\mathfrak{F}_h}$. For all $T \in \mathfrak{T}_h$ we set

$$\mathfrak{G}_{h}(\mathbf{v}_{h}^{\mathfrak{T}},\mathbf{v}_{h}^{\mathfrak{F}})_{|\mathsf{T}} = \frac{1}{|\mathsf{T}|_{d}} \sum_{\mathsf{F} \in \mathfrak{F}_{\mathsf{T}}} |\mathsf{F}|_{d-1} (v_{\mathsf{F}} - v_{\mathsf{T}}) \mathsf{n}_{\mathsf{T},\mathsf{F}}$$

- ► The trace unknowns (v_F)_{F∈𝔅h} can be expressed as linear combinations of the cell unknowns (v_T)_{T∈𝔅h}
- ▶ For the heterogeneous case cf. [Agélas, DP, Droniou, 2010]

Application to the incompressible Navier-Stokes equations I

$$\begin{split} -\nu \bigtriangleup u + (u \cdot \nabla) u + \nabla p &= f & \text{ in } \Omega, \\ \nabla \cdot u &= 0 & \text{ in } \Omega \\ u &= 0 & \text{ on } \partial \Omega, \\ \langle p \rangle_{\Omega} &= 0. \end{split}$$

• We consider a discretization based on the following spaces:

$$\mathbf{U}_{\mathbf{h}} := [\mathbf{V}_{\mathbf{h}}^{\mathsf{ccg}}]^{d}, \quad \mathbf{P}_{\mathbf{h}} := \mathbb{P}_{d}^{0}(\mathcal{T}_{\mathbf{h}})/\mathbb{R}$$

 \blacktriangleright The discrete problem reads: For all $(\nu_h, q_h) \in U_h \times P_h,$

$$a_{h}^{swip}(u_{h},v_{h}) + t_{h}(u_{h},u_{h},v_{h}) + b_{h}(v_{h},p_{h}) = \int_{\Omega} f \cdot v_{h}$$
$$-b_{h}(u_{h},q_{h}) + s_{h}(p_{h},q_{h}) = 0$$

◆□> <畳> <目> <目> <目> <目> <</p>

$$\begin{split} t_{h}(w, u, v) &\coloneqq \int_{\Omega} (w \cdot \nabla_{h} u_{i}) v_{i} - \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{w\} \cdot n_{F} \llbracket u \rrbracket \cdot \{v\} \\ &+ \frac{1}{2} \int_{\Omega} (\nabla_{h} \cdot w) (u \cdot v) - \frac{1}{2} \sum_{F \in \mathcal{F}_{h}} \int_{F} \llbracket w \rrbracket \cdot n_{F} \{u \cdot v\} \end{split}$$

- Extension of Temam's device to broken spaces
- Non-dissipative since

$$t_h(\nu_h,\nu_h,\nu_h)=0 \qquad \forall \nu_h \in U_h$$

Asymptotically consistent for smooth and discrete functions

Lemma (Alternative expression for t_h) For all w_h , u_h , $v_h \in U_h$ there holds $t_h(w_h, u_h, v_h) = \int_{\Omega} w_h \cdot \frac{g_h^2(u_{h,i})}{g_h(u_{h,i})} v_{h,i} + \frac{1}{2} \int_{\Omega} \frac{D_h^2(w_h)(u_h \cdot v_h)}{u_h \cdot v_h} + \frac{1}{4} \sum_{F \in \mathcal{F}^i} \int_F (\llbracket w_h \rrbracket \cdot n_F)(\llbracket u_h \rrbracket \cdot \llbracket v_h \rrbracket).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma (Existence of a discrete solution)

There exists at least one discrete solution $(u_h, p_h) \in X_h$.

Convergence

Let $((u_h, p_h))_{h \in \mathcal{H}}$ be a sequence of approximate solutions on $(\mathcal{T}_h)_{h \in \mathcal{H}}$. Then, as $h \to 0$, up to a subsequence,

$$\begin{split} & \mathfrak{u}_{h} \to \mathfrak{u}, & \text{ in } [L^{2}(\Omega)]^{d}, \\ & \nabla_{h}\mathfrak{u}_{h} \to \nabla \mathfrak{u}, & \text{ in } [L^{2}(\Omega)]^{d,d}, \\ & |\mathfrak{u}_{h}|_{J} \to 0, \\ & p_{h} \to p, & \text{ in } L^{2}(\Omega), \\ & |p_{h}|_{p} \to 0. \end{split}$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへぐ

If (u, p) is unique, the whole sequence converges.

Numerical examples I

Figure: Convergence results for the Kovasznay problem

◆□> <畳> <目> <目> <目> <目> <</p>

Numerical examples II

Figure: Lid-driven cavity problem in d = 2 (ccG vs. dG)

◆□> <畳> <目> <目> <目> <目> <</p>

Mathématiques et Applications 69

Daniele Antonio Di Pietro Alexandre Ern

Mathematical Aspects of Discontinuous Galerkin Methods

Deringer

References I

Agélas, L., Di Pietro, D. A., and Droniou, J. (2010).

The G method for heterogeneous anisotropic diffusion on general meshes. M2AN Math. Model. Numer. Anal., 44(4):597–625.

Arnold, D. N. (1982).

An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19:742–760.

Bassi, F., Botti, L., Colombo, A., Di Pietro, D. A., and Tesini, P. (2012).

On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys., 231(1):45-65.

A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure.

J. Comput. Phys., 230(3):572-585.


```
Brenner, S. C. (2004).
```

Korn's inequalities for piecewise H^1 vector fields. Math. Comp., 73(247):1067-1087 (electronic).

Burman, E. and Zunino, P. (2006).

A domain decomposition method for partial differential equations with non-negative form based on interior penalties.

SIAM J. Numer. Anal., 44:1612-1638.

Di Pietro, D. A. (2007).

Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux.

Int. J. Numer. Methods Fluids, 55:793-813.

References II

Di Pietro, D. A. (2010).

Cell centered Galerkin methods. C. R. Math. Acad. Sci. Paris, 348:31-34.

Di Pietro, D. A. (2011a).

A compact cell-centered Galerkin method with subgrid stabilization.

C. R. Math. Acad. Sci. Paris, 349(1-2):93-98.

Di Pietro, D. A. (2011b).

A weighted interior penalty discontinuous Galerkin method for the heterogeneous biot equations. In preparation.

Di Pietro, D. A. (2012).

Cell centered Galerkin methods for diffusive problems. M2AN Math. Model. Numer. Anal., 46(1):111-144.

Di Pietro, D. A. and Ern, A. (2010).

Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations.

Math. Comp., 79(271):1303-1330.

Di Pietro, D. A. and Ern, A. (2011a).

Analysis of a discontinuous Galerkin method for heterogeneous diffusion problems with low-regularity solutions.

Numer. Methods Partial Differential Equations. Published online, DOI 10.1002/num.20675.

Di Pietro, D. A. and Ern, A. (2011b).

Mathematical Aspects of Discontinuous Galerkin Methods. Number 69 in Mathématiques & Applications. Springer, Berlin.

References III

Di Pietro, D. A., Ern, A., and Guermond, J.-L. (2008).

Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection. SIAM J. Numer. Anal., 46(2):805-831.

Ern, A. and Meunier, S. (2009).

A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems. M2AN Math. Model. Numer. Anal., 43(2):353-375.

Gastaldi, F. and Quarteroni, A. (1989).

On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach. *Appl. Numer. Math.*, 6:3-31.

Girault, V., Pencheva, G., Wheeler, M. F., and Wildey, T. (2011).

Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. M3AS, 21(1):169-213.

Hansbo, A. and Hansbo, P. (2002).

An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191(47-48):5537-5552.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Heinrich, B. and Nicaise, S. (2003).

The Nitsche mortar finite-element method for transmission problems with singularities. IMA J. Numer. Anal., 23(2):331–358.

Heinrich, B. and Pietsch, K. (2002).

Nitsche type mortaring for some elliptic problem with corner singularities. Computing, 68(3):217-238.


```
Nicaise, S. and Sändig, A.-M. (1994).
General interface problems. I, II.
Math. Methods Appl. Sci., 17(6):395-429, 431-450.
```


Phillips, P. J. and Wheeler, M. F. (2008).

A coupling of mixed and discontinuous Galerkin methods for poroelasticity. *Comput. Geosci.*, 12:417-435.

Stenberg, R. (1998).

Mortaring by a method of J.A. Nitsche.

In S.R., I., nate E., O., and E.N., D., editors, Computational Mechanics: New trends and applications, pages 1-6, Barcelona, Spain. Centro Internacional de Métodos Numéricos en Ingenieria.

Wihler, T. P. (2006).

Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comp., 75(255):1087-1102.

・ロト < 団ト < 三ト < 三ト < 回ト < ロト

Vanishing diffusion with advection

A FreeFEM-like library for lowest-order methods on general meshes

$abla \cdot (-\kappa \nabla u + \beta u) + \mu u = f \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega$

· Let $\beta \in [W^{1,\infty}(\Omega)]^d$, $\mu > 0$ with $0 < \mu_0 \leqslant \mu - 1/2 \nabla \cdot \beta$ and

 $0 \leq \underline{\kappa} \leq \kappa \leq \overline{\kappa}$,

The exact solution u may have singularities [DP et al., 2008]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The SWIP method for vanishing diffusion with advection II

Characterization of the exact solution

- Flux continuity $[-\kappa \nabla u + \beta u] \cdot n_F = 0$ on \mathfrak{I}^{\pm}
- ▶ Potential continuity $\llbracket u \rrbracket = 0$ on J^+

Goal: Automatic detection of singular interfaces

$$a_h^{\text{dar}}(w, \nu_h) \coloneqq a_h^{\text{swip}}(w, \nu_h) + a_h^{\text{upw}}(w, \nu_h) + \int_{\Omega} \mu w \nu_h$$

Energy norm error estimate Using SWIP diffusion + upwind advection, $\exists C \neq C(h, \kappa)$ s.t.

$$||\!|| \boldsymbol{u} - \boldsymbol{u}_h ||\!|_{\mathsf{dar}} \lesssim C \inf_{\boldsymbol{w}_h \in \boldsymbol{V}_h} ||\!| \boldsymbol{u} - \boldsymbol{w}_h ||\!|_{\mathsf{dar},*},$$

with $\| \cdot \|_{dar}$ inf-sup norm and $\| \cdot \|_{dar,*}$ continuity norm.

- $\kappa \equiv 0 \implies$ [Johnson & Pitkäranta, 1986]
- $\beta \equiv 0, \ \kappa > 0 \Longrightarrow$ [Arnold, Brezzi, Cockburn, & Marini, 2002]

Vanishing diffusion with advection

A FreeFEM-like library for lowest-order methods on general meshes

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

evaluate(ah, context);

```
// 1) Define the discrete space
typedef FunctionSpace < span < Polynomial <d, 1> >,
                          gradient < GreenFormula < LInterpolator > >
                          >::type CCGSpace;
CCGSpace Vh(T_h);
// 2) Create test and trial functions
CCGSpace::TrialFunction uh(Vh, "uh");
CCGSpace::TestFunction vh(Vh, "vh");
// 3) Define the bilinear form
Form2 ah =
  integrate(All<Cell>(T<sub>h</sub>),dot(grad(uh),grad(vh)))
 -integrate(All<Face>(\mathcal{T}_h),dot(N(),avg(grad(uh)))*jump(vh)
                              +dot(N(), avg(grad(vh)))*jump(uh))
 +integrate(All<Face>(\mathcal{T}_h),\eta/H()*jump(uh)*jump(vh));
// 4) Evaluate the bilinear form
MatrixContext context(A);
```

- Elements of arbitrary shape may be present
- ${\scriptstyle \bullet}\,$ The linear operators \mathfrak{G}_h and \mathfrak{R}_h have unconventional stencil
 - data-dependent (cf. L-construction)
 - non-local (neighbours are involved)
- We cannot rely on reference element(s) + table of DOFs

Instead, global DOF numbering + embedded stencil

Linear operator with embedded stencil \longleftrightarrow LinearCombination

- Let $\mathbb{I} \subset \mathbb{V}_h$ denote the stencil of a discrete linear operator
- A LinearCombination $lc^r = (I, \tau_I)_{I \in I}$ implements

$$\texttt{lc}^{\texttt{r}}(\mathbf{v}_{\texttt{h}}) = \sum_{I \in \texttt{I}} \tau_{I} \nu_{I} + \tau_{0} \in \mathbb{T}_{\texttt{r}}$$

- + $r \in \{0, \ldots, 2\}$ denotes the tensor rank of the result
- Algebraic composition of LinearCombinations is available

// Cell unknown v_T as a linear combination (I_T is the global DOF number) LinearCombination<0> vT = Term(I_T ,1.);

```
// Linear combination corresponding to \mathfrak{G}_{h}^{grm}|_{T}
LinearCombination<1> GT;
for (F \in \mathfrak{F}_{T}) {
    // Face unknown v<sub>F</sub> (possibly resulting from interpolation)
    const LinearCombination<0> & vF = T<sub>h</sub>.eval(F);
    GT += \frac{|F|_{d-1}}{|T|_d} (vF - vT) n_{T,F};
}
```

// Actually perform algebraic operations on coefficients
GT.compact();

Figure: Implementation of the Green gradient \mathfrak{G}_{h}^{grn}

Linear combination IV

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Operator stencils | and J +---->table of DOFs

 \blacktriangleright Let $u_h \text{, } \nu_h \in V_h^{\text{ccg}}$ and observe that

$$\int_{T} (\kappa \nabla_{h} u_{h})_{|T} \cdot (\nabla_{h} \nu_{h})_{|T} \longleftrightarrow |T|_{d} lc_{u} \cdot lc_{v}$$
$$\longleftrightarrow \mathbf{A}_{T} := [|T|_{d} \tau_{v,I} \cdot \tau_{u,J}]_{I \in \mathbb{I}, J \in \mathbb{J}}$$

where $\texttt{lc}_{u}=(J,\tau_{u,J})_{J\in \mathbb{J}}$ and $\texttt{lc}_{\nu}=(I,\tau_{\nu,I})_{I\in \mathbb{I}}$

The assembly step reads

$$\mathbf{A}([\![, J]\!] \leftarrow \mathbf{A}([\![, J]\!] + \mathbf{A}_{\mathsf{T}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・