An arbitrary-order mixed method for anisotropic heterogeneous diffusion on general meshes

Daniele A. Di Pietro

GT Calcul Scientifique, 18 February, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 • のへ⊙

Motivations I

- Handling general polyhedral meshes comes in handy in many situations
 - Degenerate cells as a result of mesh deformation
 - Nonconforming interfaces in adaptive mesh refining
 - Adaptive mesh coarsening
- Extending the classical FE framework is not straightforward

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Recent works only consider lowest-order methods

Motivations II

Figure: Adaptive mesh coarsening [DP et al., 2011]

(日)、

- Consistency on general polyhedral meshes
- Stability and robustness with respect to the physical parameters
 - Highly heterogeneous and anisotropic permeability in Darcy flow
 - Numerical locking for quasi-incompressible elasticity
 - Vanishing constrained specific storage coefficient in poroelasticity

- Inf-sup stability in incompressible flows
- Reduced cost (stencil, parallel communications, conditioning)

Definition (Mesh regularity)

A sequence $(\mathcal{T}_h)_{h \in \mathcal{H}}$ of poly{gonal,hedral} meshes is regular if

- every \mathcal{T}_h admits a simplicial submesh \mathcal{S}_h ;
- $(\mathcal{S}_h)_{h \in \mathcal{H}}$ is shape-regular in the sense of Ciarlet;
- $(\mathcal{S}_h)_{h \in \mathcal{H}}$ is contact regular: every simplex $S \subset T$ is s.t. $h_S \approx h_T$.

Definition (Cell centers)

We fix a family of points $(\boldsymbol{x}_T)_{T \in \mathcal{T}_h}$ s.t.

- all $T \in \mathcal{T}_h$ is star-shaped w.r. to \boldsymbol{x}_T ;
- for all $T \in \mathcal{T}_h$, and all $F \in \mathcal{F}_T$, $d_{T,F} := \operatorname{dist}(\boldsymbol{x}_T, F) \approx h_T$.

Admissible mesh sequences II

Figure: Pyramidal submesh

Setting I

We consider the pure diffusion problem

$$oldsymbol{K}^{-1}oldsymbol{s} +
abla u = oldsymbol{0}$$
 in Ω
 $-
abla \cdot oldsymbol{s} = f$ in Ω

with K piecewise constant diffusion tensor with spectrum $\subset [k_{\flat}, k_{\sharp}]$ The weak formulation reads: Find $(s, u) \in \Sigma \times U$ such that

$$\begin{aligned} (\boldsymbol{K}^{-1}\boldsymbol{s},\boldsymbol{t}) + (\boldsymbol{u},\nabla\cdot\boldsymbol{t}) &= 0 & \forall \boldsymbol{t}\in\boldsymbol{\Sigma} \\ -(\nabla\cdot\boldsymbol{s},\boldsymbol{v}) &= (f,\boldsymbol{v}) & \forall \boldsymbol{v}\in\boldsymbol{U} \end{aligned} \tag{M}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

with $\Sigma := H(\operatorname{div}; \Omega)$ and $U := L^2(\Omega)$

DP and Ern, preprint hal-00918482, 2014

- Designing a classical FE method requires to
 - Devise a $H(\operatorname{div}; \Omega)$ -conforming flux space
 - Select a L^2 -conforming pressure space
 - Make sure that the two are inf-sup compatible
- Finding a *H*(div; Ω)-conforming space for arbitrary element shapes and approximation orders can be challenging
- Idea: renounce conformity and build the method from the DOFs up

A FE example: The $\mathbb{RT}_d^0 - \mathbb{P}_d^0$ element

 $\mathbb{R}\mathbb{T}^0_d := [\mathbb{P}^0_d]^d \oplus \boldsymbol{x}\mathbb{P}^0_d \qquad \qquad \mathbb{P}^0_d$

Figure: An example of healthy FE approximation. Flux basis functions are given by $\left(\varphi_{TF}(\boldsymbol{x}) = \frac{1}{d|T|_d}(\boldsymbol{x} - \boldsymbol{x}_{v(F)})\right)_{F \in \mathcal{F}_T}$

- We need discrete counterparts of a flux and its divergence
- The discrete divergence D_T^k must allow to prove inf-sup stability
- The flux reconstruction \Re^k_T must be consistent and coercive

Remark (Virtualization)

The flux reconstruction need not be explicit provided we can approximate the (K^{-1}, \cdot) -product (leading to a virtual method)

Degrees of freedom II

• Let, for a fixed integer $k \ge 0$ and, with $\mathbb{F}_F^k := \mathbb{P}_{d-1}^k(F)$,

$$\mathbb{T}_T^k := \mathbf{K}_T \nabla \mathbb{P}_d^{k,0}(T), \quad \mathbb{F}_T^k := \bigotimes_{F \in \mathcal{F}_T} \mathbb{F}_F^k \qquad \forall T \in \mathcal{T}_h$$

For all $T \in \mathcal{T}_h$, the local spaces of flux and potential DOFs are

$$\boldsymbol{\Sigma}^k_T \coloneqq \mathbb{T}^k_T \times \mathbb{F}^k_T, \qquad U^k_T \coloneqq \mathbb{P}^k_d(T)$$

Figure: Σ_T^k for k = 0, 1, 2

Degrees of freedom III

The global flux DOFs space is obtained by patching interface values

$$\boldsymbol{\Sigma}_h^k := \mathbb{T}_h^k \times \mathbb{F}_h^k, \quad \mathbb{T}_h^k := \bigotimes_{T \in \mathcal{T}_h} \mathbb{T}_T^k, \quad \mathbb{F}_h^k := \bigotimes_{F \in \mathcal{F}_h} \mathbb{F}_F^k$$

■ For all T ∈ T_h, we introduce the restriction operator L_T : Σ_h^k → Σ_T^k
 ■ The global spaces of potential DOFs is

$$U_h^k := \bigotimes_{T \in \mathcal{T}_h} U_T^k$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Discrete divergence I

• Local divergence: $D_T^k : \Sigma_T^k \to U_T^k$ s.t., $\forall \boldsymbol{\tau} = (\boldsymbol{\tau}_T, \{\tau_F\}_{F \in \mathcal{F}_T}) \in \Sigma_T^k$,

$$(D_T^k \boldsymbol{\tau}, v)_T = -(\nabla v, \boldsymbol{\tau}_T)_T + \sum_{F \in \mathcal{F}_T} (v, \boldsymbol{\tau}_F \boldsymbol{\epsilon}_{TF})_F \quad \forall v \in U_T^k$$

• Correspondingly, the global divergence $D_h^k : \Sigma_h^k \to U_h^k$ is s.t.

$$\forall \boldsymbol{\tau}_h \in \boldsymbol{\Sigma}_h^k, \quad (D_h^k \boldsymbol{\tau}_h, v_h) = \sum_{T \in \mathcal{T}_h} (D_T^k(L_T \boldsymbol{\tau}_h), v_h)_T \quad \forall v_h \in U_h^k$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

where we have identified U_h^k with $\mathbb{P}_d^k(\mathcal{T}_h)$

Definition (Fortin interpolator)

• For all
$$T \in \mathcal{T}_h$$
 we define $I_T^k : \Sigma^+(T) \to \Sigma_T^k$ s.t., $\forall t \in \Sigma^+(T)$,

$$I_T^k m{t} = (m{ au}_T, \{ au_F\}_{F \in \mathcal{F}_T})$$
 with $m{ au}_T = arpi_T^k m{t}$ and $au_F = \pi_F^k (m{t} \cdot m{n}_F)$

with ϖ_T^k energy projector and π_F^k L^2 -orthogonal projector.

• The corresponding global version $I_h^k: \Sigma^+ \to \Sigma_h^k$ is s.t., $\forall t \in \Sigma^+$,

$$I_h^k \boldsymbol{t} = (\{\boldsymbol{\tau}_T\}_{T \in \mathcal{T}_h}, \{\tau_F\}_{F \in \mathcal{F}}) \text{ with } \boldsymbol{\tau}_T = \varpi_T^k \boldsymbol{t} \text{ and } \tau_F = \pi_F^k(\boldsymbol{t} \cdot \boldsymbol{n}_F).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

Proposition (Commuting property for discrete divergence operator)

Denoting by π_T^k and π_h^k the L^2 -orthogonal projectors on $\mathbb{P}_d^k(T)$ and $\mathbb{P}_d^k(\mathcal{T}_h)$, respectively, the following commuting diagrams hold:

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Flux reconstruction: Consistency I

- Goal: reproduce exactly the fluxes of potentials in $\mathbb{P}_d^{k+1}(T)$
- For all $t \in \Gamma_T^k := K_T \nabla \mathbb{P}_d^{k+1,0}(T)$, integration by parts yields

$$(\boldsymbol{t}, \nabla v)_T = -(v, \nabla \cdot \boldsymbol{t})_T + \sum_{F \in \mathcal{F}_T} (v, \boldsymbol{t} \cdot \boldsymbol{n}_{TF})_F \quad \forall v \in \mathbb{P}_d^{k+1,0}(T)$$

• With $\boldsymbol{\tau} = (\boldsymbol{\tau}_T, \{\tau_F\}_{F \in \mathcal{F}_T}) = I_T^k \boldsymbol{t}$ one has

$$(\boldsymbol{t}, \nabla v)_T = -(v, \boldsymbol{D}_T^k \boldsymbol{\tau})_T + \sum_{F \in \mathcal{F}_T} (v, \boldsymbol{\tau}_F \boldsymbol{\epsilon}_{TF})_F \quad \forall v \in \mathbb{P}_d^{k+1,0}(T),$$

- ロ ト - 4 回 ト - 4 □

that is to say, we can express $(t,
abla v)_T$ in terms of the DOFs au

Flux reconstruction: Consistency II

• Consistent part:
$$\mathfrak{C}_T^k : \Sigma_T^k \to \Gamma_T^k$$
 s.t., $\forall \boldsymbol{\tau} = (\boldsymbol{\tau}_T, \{\tau_F\}_{F \in \mathcal{F}_T}) \in \Sigma_T^k$,

$$(\mathfrak{C}_T^k \boldsymbol{\tau}, \nabla v)_T = -(v, D_T^k \boldsymbol{\tau})_T + \sum_{F \in \mathcal{F}_T} (v, \tau_F \epsilon_{TF})_F \quad \forall v \in \mathbb{P}_d^{k+1,0}(T)$$

Recalling that $\mathfrak{C}_T^k \boldsymbol{\tau} = \boldsymbol{K}_T \nabla z$ with $z \in \mathbb{P}_d^{k+1,0}(T)$, this can be reformulated as the (well-posed) Neumann problem in z

$$(\mathbf{K}_T \nabla z, \nabla v)_T = -(v, D_T^k \boldsymbol{\tau})_T + \sum_{F \in \mathcal{F}_T} (v, \tau_F \epsilon_{TF})_F \quad \forall v \in \mathbb{P}_d^{k+1,0}(T)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

This trivially parallel task can benefit from GPU linear solvers

Flux reconstruction: Consistency III

Lemma (Properties of \mathfrak{C}_T^k)

The following consistency condition holds:

$$(\mathfrak{C}_T^k \circ I_T^k)(\mathbf{K}_T \nabla v) = \mathbf{K}_T \nabla v \quad \forall v \in \mathbb{P}_d^{k+1}(T).$$

Additionally, there is $\eta_1 > 0$ independent of h and K s.t., for all $\boldsymbol{\tau} \in \boldsymbol{\Sigma}_T^k$,

$$k_{\sharp,T}^{-1} \| \boldsymbol{\tau}_T \|_T^2 \leqslant \| \boldsymbol{K}_T^{-1/2} \mathfrak{C}_T^k \boldsymbol{\tau} \|_T^2 \leqslant \eta_1^{-1} k_{\flat,T}^{-1} \| \boldsymbol{\tau} \|_T^2,$$

where we have defined on the space $\mathbf{\Sigma}_T^k$ the norm

$$\forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{T}^{k}, \quad \| \boldsymbol{\tau} \|_{T}^{2} := \| \boldsymbol{\tau}_{T} \|_{T}^{2} + h_{T}^{2} \| D_{T}^{k} \boldsymbol{\tau} \|_{T}^{2} + \sum_{F \in \mathcal{F}_{T}} h_{F} \| \tau_{F} \|_{F}^{2}.$$

Flux reconstruction: Consistency IV

- Let, for all $F \in \mathcal{F}_h$, x_F denote the face barycenter
- Explicit formula for \mathfrak{C}^0_T : For all $\boldsymbol{\tau} = (\tau_F)_{F \in \mathcal{F}_T} \in \boldsymbol{\Sigma}^0_T$,

$$\mathcal{C}_T^0 \boldsymbol{\tau} = \frac{1}{|T|_d} \sum_{F \in \mathcal{F}_T} |F|_{d-1} (\boldsymbol{x}_F - \boldsymbol{x}_T) \tau_F \epsilon_{TF}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Flux reconstruction: Stability I

- \mathfrak{C}_T^k does not control all the DOFs in T
- For all $F \in \mathcal{F}_T$, we define the pyramidal residual

$$\mathfrak{J}_{TF}^k: \mathbf{\Sigma}_T^k \to \mathbf{\Gamma}_{TF}^k \coloneqq \mathbf{K}_T
abla \mathbb{P}_d^{k+1,0}(\mathcal{P}_{TF})$$

s.t., for all
$$oldsymbol{ au} = (oldsymbol{ au}_T, \{ au_F\}_{F\in\mathcal{F}_T}) \in oldsymbol{\Sigma}_T^k$$
 and all $v\in \mathbb{P}_d^{k+1,0}(\mathcal{P}_{TF})$

$$(\mathfrak{J}_{TF}^k \boldsymbol{\tau}, \nabla v)_{\mathcal{P}_{TF}} = ((\nabla \cdot \mathfrak{C}_T^k - D_T^k) \boldsymbol{\tau}, v)_{\mathcal{P}_{TF}} - \epsilon_{TF} (\mathfrak{C}_T^k \boldsymbol{\tau} \cdot \boldsymbol{n}_F - \tau_F, v)_F$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• \mathfrak{J}_T^k can be computed solving a Neumann problem inside \mathcal{P}_{TF} • Virtualizing the method this step can be avoided

- We can find an explicit formula for \mathfrak{J}^0_{TF}
- For all $T \in \mathcal{T}_h$ and all $F \in \mathcal{F}_h$, x_{TF} denotes the barycenter of \mathcal{P}_{TF}
- lacksquare We have for all $oldsymbol{ au}\in oldsymbol{\Sigma}_T^k$,

$$\mathfrak{J}_{TF}^{0}\boldsymbol{\tau} = \mu \frac{d}{d_{TF}} \epsilon_{TF} (\tau_F - \mathfrak{C}_T^0 \boldsymbol{\tau} \cdot \boldsymbol{n}_F) (\boldsymbol{x}_F - \boldsymbol{x}_{TF})$$

For μ = d+1/d² we recover the reconstruction of [Codecasa et al., 2010]
 For μ = d+1/d² μ̃ with μ̃ > 0 that of [Droniou et al., 2010]

Flux reconstruction: Stability III

$$\mathfrak{J}_T^k := \sum_{F \in \mathcal{F}_T} \mathfrak{J}_{TF}^k$$

Lemma (Properties of \mathfrak{J}_T^k)

The following consistency and orthogonality conditions hold:

$$\begin{aligned} (\mathfrak{J}_T^k \circ I_T^k)(\boldsymbol{K}_T \nabla v) &= 0 \quad \forall v \in \mathbb{P}_d^{k+1}(T), \\ (\boldsymbol{K}_T^{-1} \mathfrak{J}_T^k \boldsymbol{\tau}, \boldsymbol{w})_T &= 0 \quad \forall (\boldsymbol{\tau}, \boldsymbol{w}) \in \boldsymbol{\Sigma}_T^k \times \boldsymbol{\Gamma}_T^k \end{aligned}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Flux reconstruction: Stability IV

$$\mathfrak{R}^k_T=\mathfrak{C}^k_T+\mathfrak{J}^k_T$$

Lemma (Properties of \mathfrak{R}^k_T)

The following consistency property holds:

$$(\mathfrak{R}^k_T \circ I^k_T)(\boldsymbol{K}_T \nabla v) = 0 \quad \forall v \in \mathbb{P}^{k+1}_d(T).$$

Additionally, there is $\eta > 0$ independent of h and K s.t. for all $T \in \mathcal{T}_h$,

$$\begin{aligned} \|\boldsymbol{\tau}\|_{H,T}^{2} &\geq k_{\sharp,T}^{-1}\eta \|\boldsymbol{\tau}\|_{T}^{2} \qquad \forall \boldsymbol{\tau} \in \operatorname{ker}(D_{T}^{k}), \\ \|\boldsymbol{\tau}\|_{H,T}^{2} &\leq \eta^{-1}k_{\flat,T}^{-1} \|\boldsymbol{\tau}\|_{T}^{2} \quad \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{T}^{k}. \end{aligned}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Let \mathcal{T}_h be a simplicial mesh
- We define the high-order residuals supported on T: For all $x \in T$,

$$(\mathfrak{J}_{TF}^{0}\boldsymbol{ au})(\boldsymbol{x}) = |F|_{d-1}\epsilon_{TF}(\tau_{F} - (\mathfrak{C}_{T}^{0}\boldsymbol{ au})\cdot\boldsymbol{n}_{F})\boldsymbol{\varphi}_{TF}(\boldsymbol{x})$$

Then, the stabilization

$$\mathfrak{J}_T^0 := \sum_{F \in \mathcal{F}_T} \mathfrak{J}_{TF}^0$$

can be shown to matches the consistency and stability requirements

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What about Raviart-Thomas? II

• To prove orthogonality, observe that, for all $(\boldsymbol{ au}, \boldsymbol{w}) \in \boldsymbol{\Sigma}_T^0 imes \boldsymbol{\Gamma}_T^0$,

$$(\boldsymbol{K}_T^{-1}\boldsymbol{\mathfrak{J}}_T^0\boldsymbol{\tau},\boldsymbol{w})_T = \left\{\sum_{F\in\mathcal{F}_T} |F|_{d-1}\epsilon_{TF}(\tau_F - (\mathfrak{C}_T^0\boldsymbol{\tau})\cdot\boldsymbol{n}_F)(\boldsymbol{x}_F - \boldsymbol{x}_T)\right\} \cdot \boldsymbol{K}_T^{-1}\boldsymbol{w},$$

since $\int_T arphi_{TF} = oldsymbol{x}_F - oldsymbol{x}_T$

The term between braces is equal to

$$|T|_{d}\mathfrak{C}_{T}^{0}\boldsymbol{\tau} - \left\{\sum_{F\in\mathcal{F}_{T}}|F|_{d-1}(\boldsymbol{x}_{F}-\boldsymbol{x}_{T})\otimes\boldsymbol{n}_{TF}\right\}\mathfrak{C}_{T}^{0}\boldsymbol{\tau} = 0$$

since $\sum_{F \in \mathcal{F}_T} |F|_{d-1} (\boldsymbol{x}_F - \boldsymbol{x}_T) \otimes \boldsymbol{n}_{TF} = |T|_d \mathrm{Id}_d$

Mixed approximation I

• Let H_T be the local bilinear form s.t., for all $\sigma, \tau \in \Sigma_T^k$,

$$H_T(\boldsymbol{\sigma}, \boldsymbol{\tau}) \coloneqq (\boldsymbol{K}_T^{-1} \mathfrak{R}_T^k \boldsymbol{\sigma}, \mathfrak{R}_T^k \boldsymbol{\tau})_T$$

• The global bilinear form H on $\Sigma_h^k \times \Sigma_h^k$ is s.t. that, $\forall \sigma_h, \tau_h \in \Sigma_h^k$,

$$H(\boldsymbol{\sigma}_h, \boldsymbol{\tau}_h) \coloneqq \sum_{T \in \mathcal{T}_h} H_T(L_T \boldsymbol{\sigma}_h, L_T \boldsymbol{\tau}_h)$$

• The discrete problem reads: Find $(\boldsymbol{\sigma}_h, u_h) \in \boldsymbol{\Sigma}_h^k imes U_h^k$ such that

$$H(\boldsymbol{\sigma}_{h},\boldsymbol{\tau}_{h}) + (u_{h}, D_{h}^{k}\boldsymbol{\tau}_{h}) = 0 \qquad \forall \boldsymbol{\tau}_{h} \in \boldsymbol{\Sigma}_{h}^{k} \\ - (D_{h}^{k}\boldsymbol{\sigma}_{h}, v_{h}) = (f, v_{h}) \quad \forall v_{h} \in U_{h}^{k}$$
(M_h)

Lemma (Basic error estimate)

Let $\hat{\sigma}_h := I_h^k s$ and $\hat{u}_h := \pi_h^k u$. Then, the following estimate holds:

$$\max\left(\frac{1}{2}\beta(\eta k_{\flat})^{1/2}\|\widehat{u}_{h}-u_{h}\|,\|\widehat{\boldsymbol{\sigma}}_{h}-\boldsymbol{\sigma}_{h}\|_{H}\right) \leq \sup_{\boldsymbol{\tau}_{h}\in\boldsymbol{\Sigma}_{h}^{k},\|\boldsymbol{\tau}_{h}\|_{H}=1} \mathcal{E}_{h}(\boldsymbol{\tau}_{h}),$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

with consistency error $\mathcal{E}_h(\boldsymbol{\tau}_h) := H(\hat{\boldsymbol{\sigma}}_h, \boldsymbol{\tau}_h) + (\hat{u}_h, D_h^k \boldsymbol{\tau}_h).$

Theorem (Convergence rate)

Assuming the regularity $u \in H^1_0(\Omega) \cap H^{k+2}(\mathcal{T}_h)$, we have

$$\|\widehat{\boldsymbol{\sigma}}_h - \boldsymbol{\sigma}_h\|_H \lesssim \left(\sum_{T \in \mathcal{T}_h} \rho_{\boldsymbol{K},T} k_{\sharp,T} h_T^{2(k+1)} \|u\|_{H^{k+2}(T)}^2\right)^{1/2},$$

with local anisotropy ratio $\rho_{K,T} := k_{\sharp,T}/k_{\flat,T}$.

Theorem (Supercloseness of the potential)

Under the above assumptions, and assuming elliptic regularity, the following holds:

$$\|\widehat{u}_h - u_h\| \lesssim Ch^{k+2} \|u\|_{H^{k+2}(\Omega)}.$$

A virtual variation

• Assume $K_T = \lambda_T \mathrm{Id}_d$ and let for all $T \in \mathcal{T}_h$ and all $\sigma, \tau \in \Sigma_T^k$,

$$H_T^{\mathrm{V}}(\boldsymbol{\sigma},\boldsymbol{\tau}) := (\boldsymbol{K}_T^{-1}\mathfrak{C}_T^k \boldsymbol{\sigma}, \mathfrak{C}_T^k \boldsymbol{\tau})_T + J_T^{\mathrm{V}}(\boldsymbol{\sigma},\boldsymbol{\tau}),$$

with stabilization bilinear form

$$J_T^{\mathrm{V}}(\boldsymbol{\sigma},\boldsymbol{\tau}) \coloneqq \sum_{F \in \mathcal{F}_T} \frac{h_F}{\lambda_T} (\mathfrak{C}_T^k \boldsymbol{\sigma} \cdot \boldsymbol{n}_F - \sigma_F, \mathfrak{C}_T^k \boldsymbol{\tau} \cdot \boldsymbol{n}_F - \tau_F)_F$$

• The discrete problem reads: Find $(\boldsymbol{\sigma}_h, u_h) \in \boldsymbol{\Sigma}_h^k imes U_h^k$ such that

$$H^{\mathbf{V}}(\boldsymbol{\sigma}_{h},\boldsymbol{\tau}_{h}) + (u_{h}, D_{h}^{k}\boldsymbol{\tau}_{h}) = 0 \qquad \forall \boldsymbol{\tau}_{h} \in \boldsymbol{\Sigma}_{h}^{k} \\
 -(D_{h}^{k}\boldsymbol{\sigma}_{h}, v_{h}) = (f, v_{h}) \qquad \forall v_{h} \in U_{h}^{k}
 \qquad (\mathsf{MV}_{h})$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Analogous convergence results hold for (MV_h)

Numerical example I

Figure: Triangular, Kershaw, and hexagonal meshes for the numerical example

◆□> ◆□> ◆豆> ◆豆> □豆

Numerical example II

Figure: Triangular mesh, Dirichlet problem with $u = \sin(\pi x_1) \sin(\pi x_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Numerical example III

Figure: Kershaw mesh, Dirichlet problem with $u = \sin(\pi x_1) \sin(\pi x_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Numerical example IV

Figure: Hexagonal mesh, Dirichlet problem with $u = \sin(\pi x_1) \sin(\pi x_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Implementation in primal form I

- Some paper work allows a primal implementation
- Lagrange multipliers to enforce uniqueness of interface unknowns:

$$\Lambda_T^k := \bigotimes_{F \in \mathcal{F}_T} \Lambda_F^k \quad \forall T \in \mathcal{T}_h, \qquad \Lambda_h^k := \bigotimes_{F \in \mathcal{F}_h} \Lambda_F^k,$$

where

$$\Lambda_F^k := \begin{cases} \mathbb{P}_{d-1}^k(F) & \text{if } F \in \mathcal{F}_h^i \\ \{0\} & \text{if } F \in \mathcal{F}_h^b \end{cases}$$

Lagrange multipliers can be interpreted as traces of the potential

Aghili, Boyaval, DP, in preparation 2014

Implementation in primal form II

We define local and global hybrid DOF spaces for the potential as

$$W_T^k := U_T^k \times \Lambda_T^k \quad \forall T \in \mathcal{T}_h, \qquad W_h^k := U_h^k \times \Lambda_h^k,$$

and we denote by $\check{L}_T: W_h^k \mapsto W_T^k$ the restriction operator

• Let the discrete gradient G_T^k be s.t., $\forall z = (v_T, (\mu_F)_{F \in \mathcal{F}_T}) \in W_T^k$,

$$(\boldsymbol{G}_T^k \boldsymbol{z}, \mathfrak{R}_T^k \boldsymbol{\tau})_T = -(\boldsymbol{v}_T, \boldsymbol{D}_T^k \boldsymbol{\tau})_T + \sum_{F \in \mathcal{F}_T} (\mu_F, \tau_{TF})_F \quad \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_T^k$$

Implementation in primal form III

Lemma (Primal hybrid version)

Let $G_h^k: W_h^k \to L^2(\Omega)^d$ be s.t., for all $z_h \in W_h^k$,

$$\boldsymbol{G}_{h}^{k} z_{h|T} = \boldsymbol{G}_{T}^{k} \widecheck{L}_{T} z_{h} \quad \forall T \in \mathcal{T}_{h},$$

and let $w_h \in (u_h, \lambda_h) \in W_h^k$ solve: For all $z_h = (v_h, \mu_h) \in W_h^k$,

$$(\boldsymbol{K}\boldsymbol{G}_{h}^{k}\boldsymbol{w}_{h},\boldsymbol{G}_{h}^{k}\boldsymbol{z}_{h}) = (f,v_{h}) \tag{PH}_{h}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Then, u_h coincides with the potential in (M_h) and

$$\mathfrak{R}_T^k L_T \boldsymbol{\sigma}_h = \boldsymbol{K}_T \boldsymbol{G}_T^k \check{L}_T(u_h, \lambda_h) \qquad \forall T \in \mathcal{T}_h.$$

Implementation in primal form IV

- The equivalent formulation (PH_h) yields a SPD rather than a saddle-point matrix
- Cell DOFs can be locally eliminated leading to a global system of size

$$\operatorname{card}(\mathcal{F}_h^{\mathbf{i}}) \times \dim(\mathbb{P}_{d-1}^k) = \operatorname{card}(\mathcal{F}_h^{\mathbf{i}}) \times \binom{k+d-1}{k}$$

• The method of [Di Pietro and Lemaire, 2013] can be recovered as a special case when k = 0

References

Aghili, J., Boyaval, S., and Di Pietro, D. A. (2014).

An arbitrary-order primal hybrid method for diffusion on general meshes with application to the Stokes equations. In preparation.

Codecasa, L., Specogna, R., and Trevisan, F. (2010).

A new set of basis functions for the discrete geometric approach. J. Comput. Phys., 19(299):7401–7410.

Di Pietro, D. A. and Ern, A. (2013).

A family of arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. Submitted. Preprint hal-00918482.

Di Pietro, D. A. and Lemaire, S. (2013).

An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Math. Comp. Accepted for publication. Preprint hal-00753660.

Droniou, J., Eymard, R., Gallouët, T., and Herbin, R. (2010).

A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. M3AS Mathematical Models and Methods in Applied Sciences, 20(2):1–31.