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Setting

Let Ω ⊂ R𝑑, 𝑑 ≥ 2, be an open connected polytopal domain

We focus on the Poisson problem: Find 𝑢 ∈ 𝐻1
0 (Ω) s.t.

𝑎(𝑢, 𝑣) :=
∫
Ω

∇𝑢 · ∇𝑣 =

∫
Ω

𝑓 𝑣 ∀𝑣 ∈ 𝐻1
0 (Ω)

The well-posedness of this problem hinges on the Poincaré inequality

∥𝑣∥𝐿2 (Ω) ≲ ∥∇𝑣∥𝐿2 (Ω)𝑑 ∀𝑣 ∈ 𝐻1
0 (Ω)
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The Crouzeix–Raviart (CR) element

<latexit sha1_base64="W3nQXHUJC7CMcSaE7oWZ0ECaU4s="></latexit>

•

••

Let P1 (𝑇) be the space of affine functions on 𝑇

Define the degrees of freedom 𝜎 ≔ (𝜎𝐹)𝐹∈F𝑇 s.t.

𝜎𝐹 : P1 (𝑇) ∋ 𝑣 ↦→ 𝑣𝐹 ≔
1

|𝐹 |

∫
𝐹

𝑣 ∈ R

The triplet (𝑇,P1 (𝑇), 𝜎) is a FE in the sense of [Ciarlet, 2002]
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A non-conforming FE scheme

Let Tℎ be a conforming simplicial mesh

Let 𝑉ℎ,0 be the global CR space on Tℎ with zero boundary DOFs

We consider the scheme: Find 𝑢ℎ ∈ 𝑉ℎ,0 s.t.∫
Ω

∇ℎ𝑢ℎ · ∇ℎ𝑣ℎ =

∫
Ω

𝑓 𝑣ℎ ∀𝑣ℎ ∈ 𝑉ℎ,0

Well-posedness follows from the discrete Poincaré inequality:

∥𝑣ℎ∥𝐿2 (Ω) ≲ ∥∇ℎ𝑣ℎ∥𝐿2 (Ω)𝑑 ∀𝑣ℎ ∈ 𝑉ℎ,0

Assuming for the exact solution 𝑢 ∈ 𝐻1
0 (Ω) ∩ 𝐻2 (Tℎ), one can prove that

∥∇ℎ (𝑢 − 𝑢ℎ)∥𝐿2 (Ω)2 ≲ ℎ|𝑢 |𝐻2 (Tℎ )
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Limitations

Construction valid only on standard meshes

Devising higher-order versions is not trivial

Can we remove these limitations?
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General meshes

Figure: Examples of applications of general meshes, for which a finite family of
reference elements cannot be identified
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Shifting point of view I

Let 𝑣 ∈ P1 (𝑇) and set, for all 𝐹 ∈ F𝑇 ,

𝑣𝐹 ≔
1

|𝐹 |

∫
𝐹

𝑣

∇𝑣 is fully determined in terms of the values (𝑣𝐹)𝐹∈F𝑇 by the equation∫
𝑇

∇𝑣·∇𝑤 IBP
=

∑︁
𝐹∈F𝑇

∫
𝐹

𝑣 (∇𝑤 · 𝑛𝑇𝐹)︸       ︷︷       ︸
∈P0 (𝐹 )

=
∑︁
𝐹∈F𝑇

∫
𝐹

𝑣𝐹 (∇𝑤·𝑛𝑇𝐹) ∀𝑤 ∈ P1 (𝑇)

To express the average value of 𝑣 in terms of (𝑣𝐹)𝐹∈F𝑇 , we can write∫
𝑇

𝑣 =
1

𝑑

∫
𝑇

𝑣 div(𝑥−𝑥𝑇 )
IBP
=

1

𝑑

∑︁
𝐹∈F𝑇

∫
𝐹

𝑣 (𝑥 − 𝑥𝑇 ) · 𝑛𝑇𝐹︸            ︷︷            ︸
≕𝑑𝑇𝐹 ∈R

=
∑︁
𝐹∈F𝑇

𝑑𝑇𝐹

𝑑

∫
𝐹

𝑣𝐹
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Shifting point of view II

In conclusion, 𝑣 is the unique solution of∫
𝑇

∇𝑣 · ∇𝑤 =
∑︁
𝐹∈F𝑇

∫
𝐹

𝑣𝐹 (∇𝑤 · 𝑛𝑇𝐹) ∀𝑤 ∈ P1 (𝑇),∫
𝑇

𝑣 =
∑︁
𝐹∈F𝑇

𝑑𝑇𝐹

𝑑

∫
𝐹

𝑣𝐹

This remains true if 𝑇 is a (reasonable) polytope with planar faces!
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A lowest-order hybrid space

Denote by Mℎ = (Tℎ, Fℎ) a polytopal mesh of Ω

We define the following space, spanned by vectors of local polynomials:

𝑉0
ℎ
≔

{
𝑣
ℎ
= (𝑣𝐹)𝐹∈Fℎ

: 𝑣𝐹 ∈ P0 (𝐹) for all 𝐹 ∈ Fℎ

}
Smooth functions are interpolated through 𝐼0

ℎ
: 𝐻1 (Ω) → 𝑉0

ℎ
s.t.

𝐼0ℎ𝑣 := (𝜋0𝐹𝑣)𝐹∈Fℎ
∀𝑣 ∈ 𝐻1 (Ω)

with 𝜋0
𝐹
𝑣 := 1

|𝐹 |
∫
𝐹
𝑣 𝐿2-orthogonal projection of 𝑣 |𝐹 on P0 (𝐹)
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An affine potential reconstruction

Let 𝑇 ∈ Tℎ and denote by 𝑉0
𝑇
the restriction of 𝑉0

ℎ
to 𝑇

Inspired by the previous remark, we let 𝑝1
𝑇
: 𝑉0

𝑇
→ P1 (𝑇) be s.t., for all

𝑣
𝑇
∈ 𝑉0

𝑇
,∫
𝑇

∇𝑝1𝑇𝑣𝑇 · ∇𝑤 =
∑︁
𝐹∈F𝑇

∫
𝐹

𝑣𝐹 (∇𝑤 · 𝑛𝑇𝐹) ∀𝑤 ∈ P1 (𝑇),∫
𝑇

𝑝1𝑇𝑣𝑇 =
∑︁
𝐹∈F𝑇

𝑑𝑇𝐹

𝑑

∫
𝐹

𝑣𝐹

With 𝐼0
𝑇
restriction of 𝐼0

ℎ
to 𝑇 , it holds, by construction,

𝑝1𝑇 (𝐼0𝑇𝑣) = 𝑣 ∀𝑣 ∈ P1 (𝑇)
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Extension to arbitrary order I

We need to recover arbitrary-order polynomials in P𝑘+1 (𝑇), 𝑘 ≥ 0

Given 𝑌 ∈ Tℎ ∪ Fℎ and ℓ ≥ 0, let 𝜋ℓ
𝑌
: 𝐿2 (𝑌 ) → Pℓ (𝑌 ) be s.t.∫

𝑌

𝜋ℓ𝑌 𝑣 𝑤 =

∫
𝑌

𝑣 𝑤 ∀𝑤 ∈ Pℓ (𝑌 )

We notice that, for all 𝑣 ∈ P𝑘+1 (𝑇),∫
𝑇

∇𝑣·∇𝑤 = −
∫
𝑇

𝜋𝑘−1
𝑇 𝑣 Δ𝑤︸︷︷︸

∈P𝑘−1 (𝑇 )

+
∑︁
𝐹∈F𝑇

∫
𝐹

𝜋𝑘
𝐹𝑣 (∇𝑤 · 𝑛𝑇𝐹)︸       ︷︷       ︸

∈P𝑘 (𝐹 )

∀𝑤 ∈ P𝑘+1 (𝑇)

Moreover, ∫
𝑇

𝑣 =

∫
𝑇

𝜋𝑘−1
𝑇 𝑣 if 𝑘 ≥ 1
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Extension to arbitrary order II

Hence, 𝑣 ∈ P𝑘+1 (𝑇) is the unique solution of∫
𝑇

∇𝑣 · ∇𝑤 = −
∫
𝑇

𝜋𝑘−1
𝑇 𝑣Δ𝑤 +

∑︁
𝐹∈F𝑇

∫
𝐹

𝜋𝑘
𝐹𝑣 (∇𝑤 · 𝑛𝑇𝐹) ∀𝑤 ∈ P𝑘+1 (𝑇),

∫
𝑇

𝑣 =

{∑
𝐹∈F𝑇

𝑑𝑇𝐹

𝑑

∫
𝐹
𝜋0
𝐹
𝑣 if 𝑘 = 0,∫

𝑇
𝜋𝑘−1
𝑇

𝑣 if 𝑘 ≥ 1

This suggests to consider the following extension of 𝑉0
ℎ
:

𝑉 𝑘
ℎ
≔

{
𝑣
ℎ
=

(
(𝑣𝑇 )𝑇∈Tℎ , (𝑣𝐹)𝐹∈Fℎ

)
)
: 𝑣𝑇 ∈ P𝑘−1 (𝑇) for all 𝑇 ∈ Tℎ,
𝑣𝐹 ∈ P𝑘 (𝐹) for all 𝐹 ∈ Fℎ

}
The natural interpolator 𝐼𝑘

ℎ
: 𝐻1 (Ω) → 𝑉 𝑘

ℎ
is s.t., for all 𝑣 ∈ 𝐻1 (Ω),

𝐼𝑘ℎ𝑣 := ((𝜋𝑘−1
𝑇 𝑣)𝑇∈Tℎ , (𝜋𝑘

𝐹𝑣)𝐹∈Fℎ
)
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An arbitrary-order potential reconstruction

Denote by 𝑉 𝑘
𝑇
the restriction of 𝑉 𝑘

ℎ
to 𝑇

We introduce 𝑝𝑘+1
𝑇

: 𝑉 𝑘
𝑇
→ P𝑘+1 (𝑇) s.t., for all 𝑣

𝑇
∈ 𝑉 𝑘

𝑇
,∫

𝑇

∇𝑝𝑘+1𝑇 𝑣
𝑇
· ∇𝑤 = −

∫
𝑇

𝑣𝑇Δ𝑤 +
∑︁
𝐹∈F𝑇

∫
𝐹

𝑣𝐹 (∇𝑤 · 𝑛𝑇𝐹) ∀𝑤 ∈ P𝑘+1 (𝑇),

∫
𝑇

𝑝𝑘+1𝑇 𝑣
𝑇
=

{∑
𝐹∈F𝑇

𝑑𝑇𝐹

𝑑

∫
𝐹
𝑣𝐹 if 𝑘 = 0,∫

𝑇
𝑣𝑇 if 𝑘 ≥ 1

This problem has to be solved numerically inside each 𝑇 ∈ Tℎ!
By similar arguments as before, we have polynomial consistency:

𝑝𝑘+1𝑇 (𝐼𝑘𝑇𝑣) = 𝑣 ∀𝑣 ∈ P𝑘+1 (𝑇)
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Elliptic projector

The projector 𝜛𝑘+1
𝑇

:= 𝑝𝑘+1
𝑇

◦ 𝐼𝑘
𝑇
is characterized by: For all 𝑣 ∈ 𝐻1 (𝑇),∫

𝑇

∇𝜛𝑘+1
𝑇 𝑣 · ∇𝑤 =

∫
𝑇

∇𝑣 · ∇𝑤 ∀𝑤 ∈ P𝑘+1 (𝑇),∫
𝑇

𝜛𝑘+1
𝑇 𝑣 =

{∑
𝐹∈F𝑇

𝑑𝑇𝐹

𝑑

∫
𝐹
𝑣 if 𝑘 = 0,∫

𝑇
𝑣 if 𝑘 ≥ 1

This shows that it is an elliptic projector

𝜛𝑘+1
𝑇

has optimal approximation properties, in particular:

∥∇(𝑣 −𝜛𝑘+1
𝑇 𝑣)∥𝐿2 (𝜕𝑇 )𝑑 ≲ ℎ

𝑘+ 1
2

𝑇
|𝑣 |𝐻𝑘+2 (𝑇 ) ∀𝑣 ∈ 𝐻𝑘+2 (𝑇)
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A discrete Poincaré inequality in hybrid spaces I

For all 𝑣
ℎ
∈ 𝑉 𝑘

ℎ
, let 𝑣ℎ ∈ 𝐿2 (Ω) (not underlined) be s.t.

(𝑣ℎ) |𝑇 = 𝑣𝑇 ∀𝑇 ∈ Tℎ

Define the subspace of 𝑉 𝑘
ℎ
with homogeneous boundary conditions

𝑉 𝑘
ℎ,0

:=
{
𝑣
ℎ
∈ 𝑉 𝑘

ℎ
: 𝑣𝐹 = 0 for all 𝐹 ∈ Fℎ s.t. 𝐹 ⊂ 𝜕Ω

}
The equivalent of | · |𝐻1 (Ω) on this space is ∥ · ∥1,ℎ s.t., for all 𝑣

ℎ
∈ 𝑉 𝑘

ℎ,0
,

∥𝑣
ℎ
∥21,ℎ :=

∑︁
𝑇∈Tℎ

∥𝑣
𝑇
∥21,𝑇 ,

∥𝑣
𝑇
∥21,𝑇 := ∥∇𝑣𝑇 ∥2𝐿2 (𝑇 ) + ℎ−1𝑇

∑︁
𝐹∈F𝑇

∥𝑣𝐹 − 𝑣𝑇 ∥2𝐿2 (𝐹 )︸                           ︷︷                           ︸
≕ |𝑣

𝑇
|2
1,𝜕𝑇
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A discrete Poincaré inequality in hybrid spaces II

Lemma (Discrete Poincaré inequality in hybrid spaces)

For all 𝑣
ℎ
∈ 𝑉 𝑘

ℎ,0
, it holds

∥𝑣ℎ∥𝐿2 (Ω) ≲ ∥𝑣
ℎ
∥1,ℎ .
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A discrete Poincaré inequality in hybrid spaces III

By surjectivity of div : 𝐻1 (Ω)𝑑 → 𝐿2 (Ω), there is 𝜏 ∈ 𝐻1 (Ω)𝑑 s.t.

div 𝜏 = 𝑣ℎ and ∥𝜏∥𝐻1 (Ω)𝑑 ≲ ∥𝑣ℎ∥𝐿2 (Ω)

We thus have

∥𝑣ℎ∥2𝐿2 (Ω) =

∫
Ω

𝑣ℎ div 𝜏 =
∑︁
𝑇∈Tℎ

∫
𝑇

𝑣𝑇 div 𝜏

IBP
=

∑︁
𝑇∈Tℎ

[
−

∫
𝑇

∇𝑣𝑇 · 𝜏 +
∑︁
𝐹∈F𝑇

∫
𝐹

𝑣𝑇 (𝜏 · 𝑛𝑇𝐹)
]

=
∑︁
𝑇∈Tℎ

[
−

∫
𝑇

∇𝑣𝑇 · 𝜏 +
∑︁
𝐹∈F𝑇

∫
𝐹

(𝑣𝑇 − 𝑣𝐹) (𝜏 · 𝑛𝑇𝐹)
]
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A discrete Poincaré inequality in hybrid spaces IV

Applying Cauchy–Schwarz to integrals and sums, we go on writing

∥𝑣ℎ∥2𝐿2 (Ω) ≤
[ ∑︁
𝑇∈Tℎ

(
∥∇𝑣𝑇 ∥2𝐿2 (𝑇 )𝑑 + ℎ−1𝑇

∑︁
𝐹∈F𝑇

∥𝑣𝐹 − 𝑣𝑇 ∥2𝐿2 (𝐹 )

)] 1
2

×
[ ∑︁
𝑇∈Tℎ

(
∥𝜏∥2

𝐿2 (𝑇 )𝑑 + ℎ𝑇 ∥𝜏∥2𝐿2 (𝜕𝑇 )

)] 1
2

Recalling the definition of ∥ · ∥1,ℎ and using trace inequalities, we get

∥𝑣ℎ∥2𝐿2 (Ω) ≲ ∥𝑣
ℎ
∥1,ℎ ∥𝜏∥𝐻1 (Ω)𝑑 ≲ ∥𝑣

ℎ
∥1,ℎ ∥𝑣ℎ∥𝐿2 (Ω)

Simplifying, the result follows
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A coercive bilinear form

We let 𝑎ℎ : 𝑉 𝑘
ℎ
×𝑉 𝑘

ℎ
→ R be s.t.

𝑎ℎ (𝑢ℎ, 𝑣ℎ) ≔
∑︁
𝑇∈Tℎ

𝑎𝑇 (𝑢𝑇 , 𝑣𝑇 ),

𝑎𝑇 (𝑢𝑇 , 𝑣𝑇 ) ≔
∫
𝑇

∇𝑝𝑘+1𝑇 𝑢
𝑇
· ∇𝑝𝑘+1𝑇 𝑣

𝑇
+ 𝑠𝑇 (𝑢𝑇 , 𝑣𝑇 )

We assume that, for all 𝑇 ∈ Tℎ, 𝑠𝑇 is s.t., for all 𝑣
𝑇
∈ 𝑉 𝑘

𝑇
,

𝑎𝑇 (𝑣𝑇 , 𝑣𝑇 ) = ∥∇𝑝𝑘+1𝑇 𝑣
𝑇
∥2
𝐿2 (𝑇 )𝑑 + 𝑠𝑇 (𝑣𝑇 , 𝑣𝑇 ) ≃ ∥𝑣

𝑇
∥21,𝑇 (ST1)

Summing over 𝑇 ∈ Tℎ, we infer coercivity for 𝑎ℎ:

∥𝑣
ℎ
∥21,ℎ ≲ 𝑎ℎ (𝑣ℎ, 𝑣ℎ) ∀𝑣

ℎ
∈ 𝑉 𝑘

ℎ,0
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Discrete problem and basic error estimate I

We consider the following scheme: Find 𝑢
ℎ
∈ 𝑉 𝑘

ℎ,0
s.t.

𝑎ℎ (𝑢ℎ, 𝑣ℎ) =
∫
Ω

𝑓 𝑣ℎ ∀𝑣
ℎ
∈ 𝑉 𝑘

ℎ,0

Unlike FEM, we cannot plug 𝑢 into 𝑎ℎ to prove convergence!

We instead study the discrete error defined as

𝑒
ℎ
:= 𝑢

ℎ
− 𝐼𝑘ℎ𝑢
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Discrete problem and basic error estimate II

𝑒
ℎ
is solution to the following equation:

𝑎ℎ (𝑒ℎ, 𝑣ℎ) =
∫
Ω

𝑓 𝑣ℎ − 𝑎ℎ (𝐼𝑘ℎ𝑢, 𝑣ℎ) ≕ Eℎ (𝑣ℎ) ∀𝑣
ℎ
∈ 𝑉 𝑘

ℎ,0,

where Eℎ : 𝑉 𝑘
ℎ,0

→ R is the consistency error linear form

Denoting by ∥ · ∥1,ℎ,∗ the norm dual to ∥ · ∥1,ℎ, we thus have

∥𝑒
ℎ
∥21,ℎ ≲ 𝑎ℎ (𝑒ℎ, 𝑒ℎ) ≤ ∥Eℎ∥1,ℎ,∗∥𝑒ℎ∥1,ℎ,

leading to the error estimate

∥𝑒
ℎ
∥1,ℎ ≲ ∥Eℎ∥1,ℎ,∗
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Consistency error estimate I

A complete characterization of 𝑠𝑇 comes from the study of ∥Eℎ∥1,ℎ,∗
We assume in what follows that the exact solution satisfies

𝑢 ∈ 𝐻1
0 (Ω) ∩ 𝐻𝑘+2 (Tℎ)

To estimate ∥Eℎ∥1,ℎ,∗, we recast Eℎ to highlight the differences

(𝑢 −𝜛𝑘+1
𝑇 𝑢)𝑇∈Tℎ ,

which, by the approximation properties of 𝜛𝑘+1
𝑇

, satisfy, for all 𝑇 ∈ Tℎ,

∥∇(𝑢 −𝜛𝑘+1
𝑇 𝑢)∥𝐿2 (𝜕𝑇 )𝑑 ≲ ℎ

𝑘+ 1
2

𝑇
|𝑢 |𝐻𝑘+2 (𝑇 )
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Consistency error estimate II

For the first contribution in Eℎ (𝑣ℎ), we write∫
Ω

𝑓 𝑣ℎ = −
∫
Ω

Δ𝑢 𝑣ℎ
IBP
=

∑︁
𝑇∈Tℎ

(∫
𝑇

∇𝑢 · ∇𝑣𝑇 +
∑︁
𝐹∈F𝑇

∫
𝐹

∇𝑢 · 𝑛𝑇𝐹 (𝑣𝐹 − 𝑣𝑇 )
)

For the second, by definition of 𝑝𝑘+1
𝑇

𝑣
𝑇
with 𝑤 = 𝜛𝑘+1

𝑇
𝑢, we have

𝑎ℎ (𝐼𝑘ℎ𝑢, 𝑣ℎ) =
∑︁
𝑇∈Tℎ

(∫
𝑇

∇𝜛𝑘+1
𝑇 𝑢 · ∇𝑣𝑇 +

∑︁
𝐹∈F𝑇

∫
𝐹

∇𝜛𝑘+1
𝑇 𝑢 · 𝑛𝑇𝐹 (𝑣𝐹 − 𝑣𝑇 )

)
+

∑︁
𝑇∈Tℎ

𝑠𝑇 (𝐼𝑘𝑇𝑢, 𝑣𝑇 )
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Consistency error estimate III

By the characterization of 𝜛𝑘+1
𝑇

, since 𝑣𝑇 ∈ P𝑘−1 (𝑇) ⊂ P𝑘+1 (𝑇),∫
𝑇

∇(𝑢 −𝜛𝑘+1
𝑇 𝑢) · ∇𝑣𝑇 = 0

Hence, gathering the previous results, we obtain

Eℎ (𝑢; 𝑣ℎ) =
∑︁
𝑇∈Tℎ

∑︁
𝐹∈F𝑇

∫
𝐹

∇(𝑢 −𝜛𝑘+1
𝑇 𝑢) · 𝑛𝑇𝐹 (𝑣𝐹 − 𝑣𝑇 )︸                                                     ︷︷                                                     ︸

𝔗1

−
∑︁
𝑇∈Tℎ

𝑠𝑇 (𝐼𝑘𝑇𝑢, 𝑣𝑇 )︸                  ︷︷                  ︸
𝔗2

For the first term, we have, using Cauchy–Schwarz inequalities,

𝔗1 ≲

( ∑︁
𝑇∈Tℎ

ℎ𝑇 ∥∇(𝑢 −𝜛𝑘+1
𝑇 𝑢)∥2

𝐿2 (𝜕𝑇 )

) 1
2

∥𝑣
ℎ
∥1,ℎ ≲ ℎ𝑘+1 |𝑢 |𝐻𝑘+2 (Tℎ ) ∥𝑣ℎ∥1,ℎ
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Consistency error estimate IV

We would like the second term to scale in ℎ𝑘+1 as well

This is the case if 𝑠𝑇 is polynomially consistent:

𝑠𝑇 (𝐼𝑘𝑇𝑤, 𝑣𝑇 ) = 0 ∀(𝑤, 𝑣
𝑇
) ∈ P𝑘+1 (𝑇) ×𝑉 𝑘

𝑇
(ST2)

Can we find 𝑠𝑇 satisfying (ST1) and (ST2)?
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Local stabilization I

Proposition (Structure of the stabilization bilinear form)

Let 𝛿𝑘
𝑇
: 𝑉 𝑘

𝑇
→ 𝑉 𝑘

𝑇
be s.t., for all 𝑣

𝑇
∈ 𝑉 𝑘

𝑇
,

𝛿𝑘
𝑇
𝑣
𝑇
:= 𝐼𝑘𝑇 𝑝

𝑘+1
𝑇 𝑣

𝑇
− 𝑣

𝑇
.

(ST1)-(ST2) hold iff there is a symmetric bilinear form S𝑇 : 𝑉 𝑘
𝑇
×𝑉 𝑘

𝑇
→ R s.t.

𝑠𝑇 (𝑣𝑇 , 𝑤𝑇
) = S𝑇 (𝛿𝑘𝑇𝑣𝑇 , 𝛿

𝑘
𝑇
𝑤
𝑇
) ∀(𝑣

𝑇
, 𝑤

𝑇
) ∈ 𝑉 𝑘

𝑇
×𝑉 𝑘

𝑇

and
|𝑣
𝑇
|21,𝜕𝑇 ≲ S𝑇 (𝑣𝑇 , 𝑣𝑇 ) ≲ ∥𝑣

𝑇
∥21,𝑇 ∀𝑣

𝑇
∈ 𝑉 𝑘

𝑇
.
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Local stabilization II

Example (Original HHO stabilization)

The original HHO stabilization of [DP, Ern, Lemaire, 2014] is obtained setting

S𝑇 (𝑤𝑇
, 𝑣

𝑇
) := ℎ−1𝑇

∑︁
𝐹∈F𝑇

∫
𝐹

(𝑤𝐹 − 𝑤𝑇 ) (𝑣𝐹 − 𝑣𝑇 ).

Example (VEM-type stabilization)

A stabilization inspired by Virtual Elements [Beirão da Veiga et al., 2013] is
obtained with

S𝑇 (𝑤𝑇
, 𝑣

𝑇
) := ℎ−2𝑇

∫
𝑇

𝑤𝑇 𝑣𝑇 + ℎ−1𝑇

∑︁
𝐹∈F𝑇

∫
𝐹

𝑤𝐹 𝑣𝐹 .
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A variation based on a gradient reconstruction

Alternatively, one can reconstruct the gradient instead of the potential

Specifically, let 𝐺𝑘
𝑇
: 𝑉 𝑘

𝑇
→ P𝑘 (𝑇)𝑑 be s.t., for all 𝑣

𝑇
∈ 𝑉 𝑘

𝑇
,∫

𝑇

𝐺𝑘
𝑇𝑣𝑇 · 𝜏 = −

∫
𝑇

𝑣𝑇 div 𝜏 +
∑︁
𝐹∈F𝑇

∫
𝐹

𝑣𝐹 (𝜏 · 𝑛𝑇𝐹) ∀𝜏 ∈ P𝑘 (𝑇)𝑑

Given 𝑠𝑇 satisfying (ST1)-(ST2), a different method is obtained setting

𝑎𝑇 (𝑢𝑇 , 𝑣𝑇 ) :=
∫
𝑇

𝐺𝑘
𝑇𝑢𝑇 · 𝐺𝑘

𝑇𝑣𝑇 + 𝑠𝑇 (𝑢𝑇 , 𝑣𝑇 )

This variation is better suited to treat locally variable diffusion

For further details, see, e.g., [Di Pietro and Droniou, 2020, Section 4.2]
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Other spaces

(Much) more complicated spaces/reconstructions exist

Need for a polytopal-oriented DS(E)L!

Space Vertices 𝑉 Edges 𝐸 Element 𝑇

𝑋grad,𝐹 R P𝑘−1 (𝐸) P𝑘−1 (𝑇)
𝑋curl,𝐹 P𝑘 (𝐸) R𝑘−1 (𝑇) × Rc,𝑘 (𝑇)
P𝑘 (𝑇) P𝑘 (𝑇)

Table: Examples of spaces appearing in the two-dimensional Discrete de Rham
method of [Di Pietro and Droniou, 2023]. Above, R𝑘−1 (𝑇) := rotP𝑘 (𝑇) and
Rc,𝑘 (𝑇) := (𝑥 − 𝑥𝑇 )P𝑘−1 (𝑇).
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