Recent advances on Hybrid High-Order methods for linear and nonlinear problems

D. A. Di Pietro

from joint works with J. Droniou, S. Krell, and G. Manzini

Institut Montpelliérain Alexander Grothendieck

POEMS 2017

References for this presentation

Di Pietro, D. A. and Droniou, J. (2017a).

A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. *Math. Comp.*, 86(307):2159–2191.

Di Pietro, D. A. and Droniou, J. (2017b).

 $W^{s,p}$ -approximation properties of elliptic projectors on polynomial spaces with application to the error analysis of a Hybrid High-Order discretisation of Leray–Lions elliptic problems. *Math. Models Methods Appl. Sci.*, 27(5):879–908.

Di Pietro, D. A. and Krell, S. (2016).

A Hybrid High-Order method for the steady incompressible Navier–Stokes problem. Submitted. Preprint arXiv:1607.08159 [math.NA].

Di Pietro, D. A., Droniou, J., and Manzini, G. (2017). Discontinuous Skeletal Gradient Discretisation Methods on polytopal meshes. Submitted. Preprint arXiv:1706.09683 [math.NA]

Polytopal meshes I

Figure: Admissible meshes in 2d and 3d, and HHO solution on the agglomerated mesh (example taken from [DP and Specogna, 2016])

Definition (Mesh regularity)

We consider a refined sequence $(\mathscr{T}_h)_{h\in\mathscr{H}}$ of polytopal meshes s.t., for all $h\in\mathscr{H}$, \mathscr{T}_h admits a simplicial submesh \mathfrak{T}_h and $(\mathfrak{T}_h)_{h\in\mathscr{H}}$ is

- shape-regular in the sense of Ciarlet;
- contact-regular, i.e., every simplex $S \subset T$ is s.t. $h_S \approx h_T$.

Main consequences [DP and Ern, 2012]:

- Trace and inverse inequalities
- Optimal approximation for broken polynomial spaces

See also [DP and Droniou, 2017a, DP and Droniou, 2017b]

1 Analysis tools for polytopal discretisations of nonlinear problems

2 Application: The incompressible Navier–Stokes equations

3 A stable gradient reconstruction

1 Analysis tools for polytopal discretisations of nonlinear problems

2 Application: The incompressible Navier–Stokes equations

3 A stable gradient reconstruction

For linear problems, we follow the Lax-Richtmyer's principle:

 $consistency \implies (stability \iff convergence)$

As in the FE analysis, we need some key properties:

- Approximability
- Asymptotic consistency
- Stability
- For non linear problems, compactness is also required

A paradigmatic example: The *p*-Laplace problem

- In what follows, we focus on problems set in $W^{1,p}_0(\Omega)$, $p \in (1,+\infty)$
- Consider as an example the *p*-Laplace problem: Find $u: \Omega \rightarrow \mathbb{R}$ s.t.

$$-\operatorname{div}(\sigma(\nabla u)) = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega.$$

where
$$f \in L^{p'}(\Omega)$$
, $p' := rac{p}{p-1}$, and $\sigma : \mathbb{R}^d o \mathbb{R}^d$ is s.t.
 $\sigma(\tau) := |\tau|^{p-2} \tau$

• In weak formulation: Find $u \in W_0^{1,p}(\Omega)$ s.t., for all $v \in W_0^{1,p}(\Omega)$,

$$\int_{\Omega} \sigma(\nabla u) \cdot \nabla v = \int_{\Omega} f v$$

See [DP and Droniou, 2017a] for more general Leray-Lions operators

Discretisation of Leray-Lions type problems

- Conforming Finite Elements
 - *p*-Laplacian, a priori [Barrett and Liu, 1994]
 - A priori and a posteriori [Glowinski and Rappaz, 2003]
- Nonconforming FE for the *p*-Laplacian [Liu and Yan, 2001]
- Mixed Finite Volumes for Leray-Lions [Droniou, 2006]
- Discrete Duality FV, d = 2 [Andreianov, Boyer, Hubert, 2004–07]
- Mimetic FD [Antonietti, Bigoni, Verani, 2014]
- Hybrid High-Order (HHO) for general Leray–Lions operators
 - Convergence by compactness [DP and Droniou, 2017a]
 - Error estimates [DP and Droniou, 2017b]

At the core of HHO are projectors on local polynomial spaces
 For X element or face, the L²-projector π^{0,l}_x: L¹(X) → ℙ^l(X) is s.t.

$$(\pi^{0,l}_Xv-v,w)_X=0$$
 for all $w\in \mathbb{P}^l(X)$

• For $T \in \mathscr{T}_h$, the elliptic projector $\pi_T^{1,l}: W^{1,1}(T) \to \mathbb{P}^l(T)$ is s.t.

$$(
abla(\pi_T^{1,l}v-v),
abla w)_T = 0$$
 for all $w \in \mathbb{P}^l(T)$ and $(\pi_T^{1,l}v-v, 1)_T = 0$

Both projectors have optimal approximation properties in $\mathbb{P}^{l}(T)$

Computing L^2 -gradient projections from L^2 -projections

 \blacksquare Let now $T\in \mathscr{T}_h$ be fixed. For $v\in W^{1,1}(T)$ and $\phi\in C^\infty(\overline{T})^d,$ we have

$$(\nabla v, \phi)_T = -(v, \operatorname{div} \phi)_T + \sum_{F \in \mathscr{F}_T} (v, \phi \cdot \boldsymbol{n}_{TF})_F$$

• Specializing this formula to $\phi \in \mathbb{P}^k(T)^d$, we can write

$$(\boldsymbol{\pi}_T^{0,k} \nabla \boldsymbol{\nu}, \boldsymbol{\phi})_T = -(\boldsymbol{\pi}_T^{0,k} \boldsymbol{\nu}, \operatorname{div} \boldsymbol{\phi})_T + \sum_{F \in \mathscr{F}_T} (\boldsymbol{\pi}_F^{0,k} \boldsymbol{\nu}, \boldsymbol{\phi} \cdot \boldsymbol{n}_{TF})_F,$$

since div $\phi \in \mathbb{P}^{k-1}(T) \subset \mathbb{P}^{k}(T)$ and $\phi_{|F} \cdot \boldsymbol{n}_{TF} \in \mathbb{P}^{k}(F)$ for all $F \in \mathscr{F}_{T}$ **Hence**, $\pi_{T}^{0,k} \nabla v$ can be computed from $\pi_{T}^{0,k} v$ and $\pi_{F}^{0,k} v$, $F \in \mathscr{F}_{T}$

Computing L^2 -gradient projections from L^2 -projections

• Let now $T\in \mathscr{T}_h$ be fixed. For $v\in W^{1,1}(T)$ and $\phi\in C^\infty(\overline{T})^d$, we have

$$(\nabla v, \phi)_T = -(v, \operatorname{div} \phi)_T + \sum_{F \in \mathscr{F}_T} (v, \phi \cdot \boldsymbol{n}_{TF})_F$$

• Specializing this formula to $\phi \in \mathbb{P}^k(T)^d$, we can write

$$(\boldsymbol{\pi}_T^{0,k} \nabla \boldsymbol{\nu}, \boldsymbol{\phi})_T = -(\boldsymbol{\pi}_T^{0,k} \boldsymbol{\nu}, \operatorname{div} \boldsymbol{\phi})_T + \sum_{F \in \mathscr{F}_T} (\boldsymbol{\pi}_F^{0,k} \boldsymbol{\nu}, \boldsymbol{\phi} \cdot \boldsymbol{n}_{TF})_F,$$

since div $\phi \in \mathbb{P}^{k-1}(T) \subset \mathbb{P}^{k}(T)$ and $\phi_{|F} \cdot \boldsymbol{n}_{TF} \in \mathbb{P}^{k}(F)$ for all $F \in \mathscr{F}_{T}$ = Hence, $\pi_{T}^{0,k} \nabla v$ can be computed from $\pi_{T}^{0,k} v$ and $\pi_{F}^{0,k} v$, $F \in \mathscr{F}_{T}$ = $\pi_{T}^{1,k+1} v$ can be computed specializing to $\phi = \nabla w \in \nabla \mathbb{P}^{k+1}(T)$

DOFs and interpolation

Figure: \underline{U}_T^k for $k \in \{0, 1, 2\}$

For $k \ge 0$ and $T \in \mathscr{T}_h$, we define the local space of DOFs

$$\underline{U}_T^k := \mathbb{P}^k(T) \times \left(\bigotimes_{F \in \mathscr{F}_T} \mathbb{P}^k(F) \right)$$

• The local interpolator $\underline{I}_T^k: W^{1,1}(T) \to \underline{U}_T^k$ is s.t.

$$\underline{I}_T^k v = (\pi_T^{0,k} v, (\pi_F^{0,k} v_{|F})_{F \in \mathscr{F}_T})$$

• (Degree k inside T: local conservation, L^2 -convergence for k = 1)

Local reconstructions and approximability

• We define the gradient reconstruction $G_T^k : \underline{U}_T^k \mapsto \mathbb{P}^k(T)^d$ s.t.

$$(\boldsymbol{G}_T^k \underline{v}_T, \boldsymbol{\phi})_T = -(v_T, \operatorname{div} \boldsymbol{\phi})_T + \sum_{F \in \mathscr{F}_T} (v_F, \boldsymbol{\phi} \cdot \boldsymbol{n}_{TF})_F \quad \forall \boldsymbol{\phi} \in \mathbb{P}^k(T)^d$$

• We also need the potential reconstruction $r_T^{k+1} : \underline{U}_T^k \to \mathbb{P}^{k+1}(T)$ s.t.

$$(\nabla r_T^{k+1} \underline{v}_T, \nabla w)_T = -(v_T, \triangle w)_T + \sum_{F \in \mathscr{F}_T} (v_F, \nabla w \cdot \boldsymbol{n}_{TF})_F \quad \forall w \in \mathbb{P}^{k+1}(T)^d$$

Prescribing that $(r_T^{k+1}\underline{v}_T - v_T, 1)_T = 0$, we have for all $v \in W^{1,1}(T)$,

$$\boldsymbol{G}_{T}^{k} \underline{I}_{T}^{k} \boldsymbol{v} = \boldsymbol{\pi}_{T}^{0,k} \nabla \boldsymbol{v}, \qquad \boldsymbol{r}_{T}^{k+1} \underline{I}_{T}^{k} \boldsymbol{v} = \boldsymbol{\pi}_{T}^{1,k+1} \boldsymbol{v}$$

Approximability of smooth functions through G^k_T and r^{k+1}_T follows
 Similar ideas are ubiquitous in POEMS (HDG, (nc)VEM,...)

Asymptotic consistency I

Define the following global space with single-valued interface DOFs:

$$\underline{U}_h^k \mathrel{\mathop:}= \left(\underset{T \in \mathscr{T}_h}{\mathbf{X}} \mathbb{P}^k(T) \right) \times \left(\underset{F \in \mathscr{F}_h}{\mathbf{X}} \mathbb{P}^k(F) \right)$$

Boundary conditions are strongly enforced considering the subspace

$$\underline{U}_{h,0}^{k} := \left\{ \underline{v}_{h} \in \underline{U}_{h}^{k} : v_{F} = 0 \quad \forall F \in \mathscr{F}_{h}^{\mathsf{b}} \right\}$$

• We also define the $W_0^{1,p}$ -like norm $\|\underline{v}_h\|_{1,p,h}^p := \sum_{T \in \mathscr{T}_h} \|\underline{v}_T\|_{1,p,T}^p$ where

$$\|\underline{v}_{T}\|_{1,p,T}^{p} := \|\nabla v_{T}\|_{L^{p}(T)^{d}}^{p} + \sum_{F \in \mathscr{F}_{T}} h_{F}^{1-p} \|v_{F} - v_{T}\|_{L^{p}(F)}^{p} \quad \forall T \in \mathscr{T}_{h}$$

Asymptotic consistency II

• A global gradient reconstruction is obtained setting, for all $\underline{v}_h \in \underline{U}_h^k$,

$$(\boldsymbol{G}_{h}^{k}\boldsymbol{\underline{\nu}}_{h})_{T} := \boldsymbol{G}_{T}^{k}\boldsymbol{\underline{\nu}}_{T}, \qquad \forall T \in \mathscr{T}_{h}$$

• Define $\mathscr{E}_h: W^{p'}(\operatorname{div}; \Omega) \to [0, +\infty)$ s.t., with $(v_h)_{|T} := v_T \ \forall T \in \mathscr{T}_h$,

$$\mathscr{E}_h(\psi) := \sup_{\underline{\nu}_h \in \underline{U}_{h,0}^k, \|\underline{\nu}_h\|_{1,p,h}=1} \left| \int_{\Omega} \left(\underline{G}_h^k \underline{\nu}_h \cdot \psi + \underline{\nu}_h \operatorname{div} \psi \right) \right|$$

Asymptotic consistency holds in the form of a discrete global IBP:

$$\lim_{h\to 0} \mathscr{E}_h(\boldsymbol{\psi}) = 0 \qquad \forall \boldsymbol{\psi} \in \boldsymbol{W}^{p'}(\operatorname{div}; \boldsymbol{\Omega})$$

Moreover, one can prove that

$$\mathscr{E}_h(\psi) \lesssim oldsymbol{h}^{k+1} \|\psi\|_{W^{k+1,p'}(\mathscr{T}_h)^d} \quad orall \psi \in W^{p'}(\mathrm{div};\Omega) \cap W^{k+1,p'}(\mathscr{T}_h)^d$$

Stability through a boundary difference seminorm I

• We seek **stability** in the form of the uniform norm equivalence

$$\|\underline{v}_h\|_{1,p,h}^p \simeq \|\boldsymbol{G}_h^k \underline{v}_h\|_{L^p(\Omega)^d}^p + |\underline{v}_h|_{1,p,h}^p, \quad |\underline{v}_h|_{1,p,h}^p \coloneqq \sum_{T \in \mathcal{T}_h} |\underline{v}_T|_{1,p,T}^p$$

• To inspire stabilisation terms, the seminorm should scale like \mathcal{E}_h :

$$|\underline{I}_{h}^{k}v|_{1,p,h} \lesssim \frac{h^{k+1}}{\|v\|_{W^{k+2,p}(\mathscr{T}_{h})}} \quad \forall v \in W_{0}^{1,p}(\Omega) \cap W^{k+2,p}(\mathscr{T}_{h})$$

A paradigmatic choice is (cf. A. Ern's talk)

$$|\underline{\nu}_{T}|_{1,p,T}^{p} := \sum_{F \in \mathscr{F}_{T}} h_{F}^{1-p} \| (\delta_{TF}^{k} - \delta_{T}^{k}) \underline{\nu}_{T} \|_{L^{p}(F)}^{p}$$

with high-order difference operators

$$\delta_T^k \underline{\nu}_T := \pi_T^{0,k} (r_T^{k+1} \underline{\nu}_T - \boldsymbol{\nu}_T), \qquad \delta_{TF}^k \underline{\nu}_T := \pi_F^{0,k} (r_T^{k+1} \underline{\nu}_T - \boldsymbol{\nu}_F) \quad \forall F \in \mathscr{F}_T$$

Stability through a boundary difference seminorm II

Crucially, we have the discrete Sobolev embeddings

Lemma (Discrete Sobolev embeddings)

For any Lebesgue exponent q s.t.

$$\begin{cases} 1 \le q \le p^* := \frac{dp}{d-p} & \text{if } 1 \le p < d, \\ 1 \le q < +\infty & \text{if } p \ge d, \end{cases}$$

we have for all $\underline{v}_h \in \underline{U}_{h,0}^k$

 $\|v_h\|_{L^q(\Omega)} \lesssim C \|\underline{v}_h\|_{1,p,h}.$

where $a \leq b$ means $a \leq Cb$ with C only depending on Ω , ρ , k, q and p.

Compactness

Lemma (Discrete compactness)

Let $(\underline{v}_h)_{h \in \mathscr{H}}$ be s.t., for all $h \in \mathscr{H}$, $\|\underline{v}_h\|_{1,p,h} \leq C$ for a fixed $C \in \mathbb{R}$. Then, there exists $v \in W_0^{1,p}(\Omega)$ s.t., up to a subsequence as $h \to 0$,

•
$$v_h \rightarrow v$$
 strongly in $L^q(\Omega)$ for all $q \in \begin{cases} [1,p^*) & \text{if } 1 \leq p < d, \\ [1,+\infty) & \text{if } p \geq d; \end{cases}$

•
$$G_{h \underline{\nu}_h}^k o
abla v$$
 weakly in $L^p(\Omega)^d$.

Remark (Alternative compact gradients)

This result extends to any gradient $\mathscr{G}_T : \underline{U}_T^k \to \mathbb{G}_T$ s.t. $\mathbb{P}^0(T)^d \subset \mathbb{G}_T$ and, for all $\underline{v}_T \in \underline{U}_T^k$ and all $\phi \in \mathbb{G}_T$,

$$(\mathscr{G}_T \underline{v}_T, \phi)_T = -(v_T, \operatorname{div} \phi)_T + \sum_{F \in \mathscr{F}_T} (v_F, \phi \cdot \boldsymbol{n}_{TF})_F.$$

This is true, in particular, for $\mathbb{G}_T = \nabla \mathbb{P}^{k+1}(T)$ and $\mathbb{G}_T = \mathbb{P}^l(T)^d$, $l \ge 0$.

An HHO scheme with external stabilisation

• Define, for all $T \in \mathscr{T}_h$, the function $A_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ s.t.

$$A_T(\underline{u}_T, \underline{v}_T) := \int_T \sigma(\boldsymbol{G}_T^k \underline{u}_T) \cdot \boldsymbol{G}_T^k \underline{v}_T + s_T(\underline{u}_T, \underline{v}_T)$$

with stabilisation contribution inspired by $|\cdot|_{1,p,T}$ s.t.

$$s_T(\underline{u}_T, \underline{v}_T) := \sum_{F \in \mathscr{F}_T} h_F^{1-p} \int_F |(\delta_{TF}^k - \delta_T^k) \underline{u}_T|^{p-2} (\delta_{TF}^k - \delta_T^k) \underline{u}_T \ (\delta_{TF}^k - \delta_T^k) \underline{v}_T$$

The HHO scheme for the *p*-Laplacian reads: Find $\underline{u}_h \in \underline{U}_{h,0}^k$ s.t.

$$A_h(\underline{u}_h,\underline{v}_h) := \sum_{T \in \mathscr{T}_h} A_T(\underline{u}_T,\underline{v}_T) = \int_{\Omega} f v_h \quad \forall \underline{v}_h \in \underline{U}_{h,0}^k$$

Theorem (Well-posedness and convergence)

There exists a unique solution to the HHO scheme with a priori estimate

$$\|\underline{\boldsymbol{u}}_{h}\|_{1,p,h} \lesssim \|f\|_{L^{p'}(\Omega)}^{\frac{1}{p-1}}.$$

Moreover, denoting by $(\underline{u}_h)_{h \in \mathscr{H}} \in (\underline{U}_{h,0}^k)_{h \in \mathscr{H}}$ the sequence of discrete solutions on $(\mathscr{T}_h)_{h \in \mathscr{H}}$ it holds, as $h \to 0$,

• $u_h \to u$ strongly in $L^q(\Omega)$ for all $q \in \begin{cases} [1,p^*) & \text{if } 1 \le p < d, \\ [1,+\infty) & \text{if } p \ge d; \end{cases}$

•
$$G_h^k \underline{u}_h o
abla u$$
 strongly in $L^p(\Omega)^d$

No regularity on the exact solution beyond $W_0^{1,p}(\Omega)$ required!

Theorem (Convergence rates)

Further assuming $u \in W^{k+2,p}(\Omega)$ and $\sigma(\nabla u) \in W^{k+1,p'}(\Omega)^d$, it holds:

$$\begin{split} & \|\underline{I}_{h}^{k}u - \underline{u}_{h}\|_{1,p,h} \lesssim \\ & \begin{cases} h^{k+1}|u|_{W^{k+2,p}(\Omega)} + h^{\frac{k+1}{p-1}} \left(|u|_{W^{k+2,p}(\Omega)}^{\frac{1}{p-1}} + |\sigma(\nabla u)|_{W^{k+1,p'}(\Omega)^{d}}^{\frac{1}{p-1}} \right) & \text{if } p \geq 2, \\ & h^{(k+1)(p-1)}|u|_{W^{k+2,p}(\Omega)}^{p-1} + h^{k+1}|\sigma(\nabla u)|_{W^{k+1,p'}(\Omega)^{d}} & \text{if } p < 2. \end{cases} \end{split}$$

Figure: Triangular, locally refined, and predominantly hexagonal meshes

• Trigonometric solution ($p \ge 2$)

$$u(\mathbf{x}) = \sin(2\pi x_1)\sin(2\pi x_2)$$

• Exponential solution (p < 2)

$$u(\boldsymbol{x}) = \exp(x_1 + \pi x_2)$$

Trigonometric solution, $\|\underline{I}_{h}^{k}u - \underline{u}_{h}\|_{1,p,h}$ v. $h, p \in \{2,3,4\}$

Figure: $\|\underline{I}_{h}^{k}u - \underline{u}_{h}\|_{1,p,h}$ versus h.

Exponential solution, $\|\underline{I}_{h}^{k}u - \underline{u}_{h}\|_{1,p,h}$ v. h, p = 3/4

Figure: $\|\underline{I}_{h}^{k}u - \underline{u}_{h}\|_{1,p,h}$ versus h.

1 Analysis tools for polytopal discretisations of nonlinear problems

2 Application: The incompressible Navier–Stokes equations

3 A stable gradient reconstruction

The steady incompressible Navier–Stokes equations

• Letting $v \in \mathbb{R}^*_+$ (extension to variable v is possible), $f \in L^2(\Omega)^d$, and

$$\boldsymbol{U} := H_0^1(\Omega)^d, \qquad \boldsymbol{P} := L_0^2(\Omega),$$

the INS problem in $d \in \{2,3\}$ reads: Find $(u,p) \in U \times P$ s.t.

$$\begin{aligned} \mathbf{v}a(\mathbf{u},\mathbf{v}) + t(\mathbf{u},\mathbf{u},\mathbf{v}) + b(\mathbf{v},p) &= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \qquad \forall \mathbf{v} \in \mathbf{U}, \\ -b(\mathbf{u},q) &= 0 \qquad \forall q \in \mathbf{P}, \end{aligned}$$

with bilinear forms a and b and trilinear form t s.t.

$$a(\boldsymbol{u},\boldsymbol{v}) := \int_{\Omega} \nabla \boldsymbol{u} : \nabla \boldsymbol{v}, \quad b(\boldsymbol{v},q) := -\int_{\Omega} (\operatorname{div} \boldsymbol{v}) q, \quad t(\boldsymbol{w},\boldsymbol{u},\boldsymbol{v}) := \int_{\Omega} \boldsymbol{v}^{\mathrm{T}} \nabla \boldsymbol{u} \, \boldsymbol{w}$$

• We use the matrix-product notation: $\nabla \boldsymbol{v} \boldsymbol{w} = \left(\sum_{j=1}^{d} w_j \partial_j v_i\right)_{1 \le i \le d}$

Some related works (among many on the subject)

- DG, artificial compressibility flux [Bassi et al., 2006]
- DG, agglomerated meshes [Bassi et al., 2012]
- DG, analysis by compactness [DP and Ern, 2010]
- HDG, error estimates [Nguyen, Peraire, Cockburn, 2011, Çeşmelioğlu, Cockburn, Qiu, 2016]
- VEM, *H*(div)-conforming [Beirão da Veiga, Lovadina, Vacca 2016–2017]
- HHO, Stokes [Aghili, Boyaval, DP, 2015, DP, Ern, Linke, Schieweck, 2016]
- HHO, Navier-Stokes [DP and Krell, 2016]

Discrete spaces

Figure: Local velocity space \underline{U}_T^k for $k \in \{0, 1, 2\}$

• We consider the vector version of the HHO discrete space

• Let a polynomial degree $k \ge 0$ be fixed and set

$$\underline{\boldsymbol{U}}_{h}^{k} := \left(\bigotimes_{T \in \mathscr{T}_{h}} \mathbb{P}^{k}(T)^{d} \right) \times \left(\bigotimes_{F \in \mathscr{F}_{h}} \mathbb{P}^{k}(F)^{d} \right)$$

• We account for BCs on \boldsymbol{u} and the zero-average constraint on p in

$$\underline{U}_{h,0}^{k} := \left\{ \underline{v}_{h} \in \underline{U}_{h}^{k} : v_{F} = \mathbf{0} \quad \forall F \in \mathscr{F}_{h}^{b} \right\}, \quad P_{h}^{k} := \mathbb{P}^{k}(\mathscr{T}_{h}) \cap L_{0}^{2}(\Omega)$$

Gradient and divergence reconstructions

- Let a mesh element $T \in \mathscr{T}_h$ be fixed
- For $l \ge 0$, the gradient reconstruction $G_T^l : \underline{U}_T^k \to \mathbb{P}^l(T)^{d \times d}$ is s.t.

$$(\boldsymbol{G}_{T}^{l}\boldsymbol{\nu}_{T},\boldsymbol{\tau})_{T} = -(\boldsymbol{\nu}_{T},\operatorname{div}\boldsymbol{\tau})_{T} + \sum_{F\in\mathscr{F}_{T}}(\boldsymbol{\nu}_{F},\boldsymbol{\tau}\boldsymbol{n}_{TF})_{F} \quad \forall \boldsymbol{\tau}\in\mathbb{P}^{l}(T)^{d\times d}$$

This time, we also allow $l \neq k$ (l = 2k used in the convective term) The divergence reconstruction $D_T^k : \underline{U}_T^k \to \mathbb{P}^k(T)$ is s.t.

$$D_T^k = \operatorname{tr}(\boldsymbol{G}_T^k)$$

Global versions are defined setting

$$(\boldsymbol{G}_{h}^{l}\boldsymbol{\underline{\nu}}_{h})_{|T} \mathrel{\mathop:}= \boldsymbol{G}_{T}^{l}\boldsymbol{\underline{\nu}}_{T}, \quad (\boldsymbol{D}_{h}^{k}\boldsymbol{\underline{\nu}}_{h})_{|T} \mathrel{\mathop:}= \boldsymbol{D}_{T}^{k}\boldsymbol{\underline{\nu}}_{T} \qquad \forall T \in \mathscr{T}_{h}$$

The viscous term is discretized as before by means of

$$a_h(\underline{u}_h,\underline{v}_h) := \int_{\Omega} \boldsymbol{G}_h^k \underline{u}_h : \boldsymbol{G}_h^k \underline{v}_h + s_h(\underline{u}_h,\underline{v}_h),$$

- Variable viscosity can be treated following [DP and Ern, 2015]
- Tools for non-Newtonian fluids are available in [Botti et al., 2016]

The pressure-velocity coupling is realized through the bilinear form

$$b_h(\underline{v}_h,q_h) := -\int_{\Omega} D_h^k \underline{v}_h q_h$$

Crucially, *b_h* satisfies the following (uniform) inf-sup condition

$$orall q_h \in P_h^k, \quad \|q_h\|_{L^2(\Omega)} \lesssim \displaystyle{\sup_{ oldsymbol{y}_h \in oldsymbol{U}_{h,0}^k, \|oldsymbol{y}_h\|_{1,h} = 1}} b_h(oldsymbol{y}_h, q_h)$$

• Valid on general meshes for $d \in \{2,3\}$!

Convective term I

For all $w, u, v \in U$ with div w = 0, we have

$$t(\boldsymbol{w},\boldsymbol{u},\boldsymbol{v}) = \int_{\Omega} \boldsymbol{v}^{\mathrm{T}} \nabla \boldsymbol{u} \, \boldsymbol{w} = \frac{1}{2} \int_{\Omega} \boldsymbol{v}^{\mathrm{T}} \nabla \boldsymbol{u} \, \boldsymbol{w} - \frac{1}{2} \int_{\Omega} \boldsymbol{u}^{\mathrm{T}} \nabla \boldsymbol{v} \, \boldsymbol{w}$$

This skew-symmetric version emphasizes that *t* is non-dissipative:

$$t(\boldsymbol{w},\boldsymbol{v},\boldsymbol{v})=0$$

Inspired by this remark, we set

$$t_h(\underline{w}_h,\underline{u}_h,\underline{v}_h) := \frac{1}{2} \int_{\Omega} v_h^{\mathrm{T}} \boldsymbol{G}_h^{2k} \underline{u}_h w_h - \frac{1}{2} \int_{\Omega} u_h^{\mathrm{T}} \boldsymbol{G}_h^{2k} \underline{v}_h w_h,$$

By design, t_h is also non-dissipative: For all $\underline{w}_h, \underline{v}_h$,

$$t_h(\underline{w}_h,\underline{v}_h,\underline{v}_h)=0$$

Convective term II

Remark (Implementation)

In practice, one does not need to actually compute G_h^{2k} . Simply write

$$t_h(\underline{w}_h,\underline{u}_h,\underline{v}_h) = \sum_{T \in \mathscr{T}_h} t_T(\underline{w}_T,\underline{u}_T,\underline{v}_T),$$

where, for all $T \in \mathscr{T}_h$,

$$t_T(\underline{w}_T, \underline{u}_T, \underline{v}_T) := -\frac{1}{2} \int_T u_T^{\mathrm{T}} \nabla v_T w_T + \frac{1}{2} \sum_{F \in \mathscr{F}_T} \int_F (u_F \cdot v_T) (w_T \cdot n_{TF}) + \frac{1}{2} \int_T v_T^{\mathrm{T}} \nabla u_T w_T - \frac{1}{2} \sum_{F \in \mathscr{F}_T} \int_F (v_F \cdot u_T) (w_T \cdot n_{TF}).$$

• The discrete problem reads: Find $(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$ s.t.

$$\begin{split} \boldsymbol{v} a_h(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h) + t_h(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h) + b_h(\underline{\boldsymbol{v}}_h,p_h) &= \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}_h \quad \forall \underline{\boldsymbol{v}}_h \in \underline{\boldsymbol{U}}_{h,0}^k, \\ -b_h(\underline{\boldsymbol{u}}_h,q_h) &= 0 \qquad \forall q_h \in P_h^k \end{split}$$

When using iterative solvers, static condensation can significantly reduce the number of unknowns at each iteration

Discrete problem II

Theorem (Existence and a priori bounds)

There exists a solution $(\underline{\textit{u}}_h,p_h)\in \underline{\textit{U}}_{h,0}^k imes \textit{P}_h^k$ such that

$$\|\underline{u}_{h}\|_{1,h} \lesssim v^{-1} \|f\|_{L^{2}(\Omega)^{d}}, \quad \|p_{h}\|_{L^{2}(\Omega)} \lesssim \|f\|_{L^{2}(\Omega)^{d}} + v^{-2} \|f\|_{L^{2}(\Omega)^{d}}^{2}.$$

Theorem (Uniqueness of the discrete solution)

Assume that the right-hand side verifies

$$\|\boldsymbol{f}\|_{L^2(\Omega)^d} \le C \boldsymbol{v}^2$$

with C > 0 small enough. Then, the solution is unique.

Key tool: Discrete Sobolev embeddings with p = 2 and p = 4

Theorem (Convergence to minimal regularity solutions)

Denote by $((\underline{u}_h, p_h))_{h \in \mathscr{H}} \in (\underline{U}_{h,0}^k \times P_h^k)_{h \in \mathscr{H}}$ the sequence of discrete solutions on $(\mathscr{T}_h)_{h \in \mathscr{H}}$. It holds, up to a subsequence, as $h \to 0$,

•
$$u_h \rightarrow u$$
 strongly in $L^p(\Omega)^d$ for $p \in \begin{cases} [1, +\infty) & \text{if } d = 2, \\ [1, 6) & \text{if } d = 3; \end{cases}$

•
$$G_h^k \underline{u}_h \to \nabla u$$
 strongly in $L^2(\Omega)^{d \times d}$;

•
$$s_h(\underline{u}_h, \underline{u}_h) \to 0;$$

• $p_h \rightarrow p$ strongly in $L^2(\Omega)$.

Moreover, if the exact solution is unique, the whole sequence converges.

Key tool: Compactness of discrete gradients

Theorem (Convergence rates for small data)

Assume uniqueness for both (\underline{u}_h, p_h) and (u, p). Assume, moreover, the additional regularity $(u, p) \in H^{k+2}(\Omega)^d \times H^{k+1}(\Omega)$, as well as

 $\|\boldsymbol{f}\|_{L^2(\Omega)^d} \leq C v^2$

with C > 0 small enough. Then, we have the following error estimate:

$$\left\| \underline{\boldsymbol{u}}_h - \underline{\boldsymbol{I}}_h^k \boldsymbol{u} \right\|_{1,h} + \boldsymbol{v}^{-1} \| \boldsymbol{p}_h - \boldsymbol{\pi}_h^{0,k} \boldsymbol{p} \|_{L^2(\Omega)} \lesssim \boldsymbol{h}^{k+1} \mathcal{N}(\boldsymbol{u},\boldsymbol{p})$$

with
$$\mathscr{N}(u,p) := \left(1 + v^{-1} \|u\|_{H^2(\Omega)^d}\right) \|u\|_{H^{k+2}(\Omega)^d} + v^{-1} \|p\|_{H^{k+1}(\Omega)^d}$$

Key tools: Non-dissipativity, discrete Sobolev embeddings

Numerical example: Kovasznay flow

Figure: Cartesian mesh family, errors versus $h, k \in \{2,3\}$

Figure: Hexagonal mesh family, errors versus $h, k \in \{2,3\}$

Numerical example: FVCA 8 steady 2d test I

Figure: Triangular mesh family

mesh #	$\ \underline{\boldsymbol{u}}_h - \underline{\boldsymbol{I}}_h^k \boldsymbol{u}\ _{1,h}$	EOC	$\ \boldsymbol{u}_h - \boldsymbol{u}\ $	EOC	$\ p-p_h\ $	EOC
1	15.67	0	0.41	0	1.5	0
2	1.65	2.67	$1.46 \cdot 10^{-2}$	3.96	$2.07\cdot10^{-2}$	4.98
3	$8.8 \cdot 10^{-2}$	4.14	$6.85\cdot10^{-4}$	4.33	$1.45 \cdot 10^{-3}$	3.72
4	$9.69 \cdot 10^{-3}$	2.3	$3.64 \cdot 10^{-5}$	3.06	$9.67 \cdot 10^{-5}$	2.81
5	$2.31 \cdot 10^{-3}$	2.06	$4.5 \cdot 10^{-6}$	3.01	$1.24 \cdot 10^{-5}$	2.94

Table: Triangular mesh family, $v = 10^{-3}$, k = 1

Numerical example: FVCA 8 steady 2d test II

Figure: Deformed quadrangular mesh family

mesh #	$\ \underline{\boldsymbol{u}}_h - \underline{I}_h^k \boldsymbol{u}\ _{1,h}$	EOC	$\ \boldsymbol{u}_h - \boldsymbol{u}\ $	EOC	$\ p-p_h\ $	EOC
1	3.69	0	$9.65 \cdot 10^{-2}$	0	0.18	0
2	3.55	$6 \cdot 10^{-2}$	$4.7 \cdot 10^{-2}$	1.09	0.11	0.72
3	0.23	4.02	$2.53 \cdot 10^{-3}$	4.32	$4.94 \cdot 10^{-3}$	4.44
4	$4.17 \cdot 10^{-2}$	2.52	$2.58 \cdot 10^{-4}$	3.34	$5.46 \cdot 10^{-4}$	3.18
5	$8.33 \cdot 10^{-3}$	2.34	$2.47 \cdot 10^{-5}$	3.41	$5.84 \cdot 10^{-5}$	3.22
6	$1.97 \cdot 10^{-3}$	2.09	$2.85 \cdot 10^{-6}$	3.12	$6.65 \cdot 10^{-6}$	3.14

Table: Deformed quadrangular mesh family, $v = 10^{-3}$, k = 1

1 Analysis tools for polytopal discretisations of nonlinear problems

2 Application: The incompressible Navier–Stokes equations

3 A stable gradient reconstruction

Internal stabilisation

- Let us go back to the *p*-Laplace model problem
- Can stability be embedded into the gradient reconstruction?
- We would like a stable gradient reconstruction \mathscr{G}_h s.t., replacing

$$W_0^{1,p}(\Omega) \leftarrow \underline{U}_{h,0}^k, \quad u \leftarrow \underline{u}_h, \quad v \leftarrow \underline{v}_h, \quad \nabla \leftarrow \mathscr{G}_h$$

in the weak formulation: Find $u\in W^{1,p}_0(\Omega)$ s.t.,

$$\int_{\Omega} \sigma(\nabla u) \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in W_0^{1,p}(\Omega),$$

we obtain the convergent scheme: Find $\underline{u}_h \in \underline{U}_{h,0}^k$ s.t.

$$\int_{\Omega} \boldsymbol{\sigma}(\mathscr{G}_{h}\underline{u}_{h}) \cdot \mathscr{G}_{h}\underline{v}_{h} = \int_{\Omega} f \boldsymbol{v}_{h} \quad \forall \underline{v}_{h} \in \underline{U}_{h,0}^{k}$$

Inspired by Gradient Discretisations [Droniou et al., 2017]

Key properties

We seek \mathscr{G}_h s.t., for all $T \in \mathscr{T}_h$, $\left| \mathscr{G}_T \underline{v}_T = \mathbf{G}_T^k \underline{v}_T + \mathbf{S}_T \underline{v}_T \right|$ and (S1) L^2 -stability and boundedness. For all $\underline{v}_T \in \underline{U}_T^k$ it holds that

$$\|\boldsymbol{S}_{T\underline{\boldsymbol{\nu}}_{T}}\|_{L^{2}(T)^{d}} \simeq |\underline{\boldsymbol{\nu}}_{T}|_{1,2,T} := \left(\sum_{F \in \mathscr{F}_{T}} h_{F}^{-1} \| (\boldsymbol{\delta}_{TF}^{k} - \boldsymbol{\delta}_{T}^{k}) \underline{\boldsymbol{\nu}}_{T} \|_{L^{2}(F)}^{2} \right)^{1/2}$$

(S2) Orthogonality. For all $\underline{v}_T \in \underline{U}_T^k$ and all $\phi \in \mathbb{P}^k(T)^d$,

 $(\mathbf{S}_T \underline{\mathbf{v}}_T, \boldsymbol{\phi})_T = \mathbf{0}$

(S3) Image. If $p \neq 2$, S_T is piecewise polynomial on a partition \mathscr{P}_T of T

Lemma (Properties of \mathscr{G}_h -based schemes)

Under (S1)–(S3), approximability, asymptotic consistency, stability, and compactness are verified. Moreover, the triplet $(\underline{U}_{h,0}^k, \underline{v}_h \mapsto v_h, \mathscr{G}_h)$ is a convergent Gradient Scheme.

Stable gradient reconstructions: An inspiring remark

• Setting
$$\delta^k_{
abla,T} :=
abla r^{k+1}_T - G^k_T$$
, we have for all $\phi \in \mathbb{P}^k(T)^d$

$$0 = -((\boldsymbol{\delta}_{\nabla,T}^{k} - \nabla \boldsymbol{\delta}_{T}^{k}) \underline{\boldsymbol{\nu}}_{T}, \boldsymbol{\phi})_{T} + \sum_{F \in \mathscr{F}_{T}} ((\boldsymbol{\delta}_{TF}^{k} - \boldsymbol{\delta}_{T}^{k}) \underline{\boldsymbol{\nu}}_{T}, \boldsymbol{\phi} \cdot \boldsymbol{n}_{TF})_{F}$$

Stable gradient reconstructions: An inspiring remark

• Setting
$$\delta^k_{
abla,T}:=
abla r^{k+1}_T-G^k_T$$
, we have for all $\phi\in\mathbb{P}^k(T)^d$

$$0 = -((\boldsymbol{\delta}_{\nabla,T}^{k} - \nabla \boldsymbol{\delta}_{T}^{k})\underline{\boldsymbol{\nu}}_{T}, \boldsymbol{\phi})_{T} + \sum_{F \in \mathscr{F}_{T}}((\boldsymbol{\delta}_{TF}^{k} - \boldsymbol{\delta}_{T}^{k})\underline{\boldsymbol{\nu}}_{T}, \boldsymbol{\phi} \cdot \boldsymbol{n}_{TF})_{F}$$

• Let now $\mathbb{S}_T \supset \mathbb{P}^k(T)^d$ and define the residual $\mathscr{R}_T(\underline{v}_T; \cdot) : \mathbb{S}_T \to \mathbb{R}$ s.t

$$\mathscr{R}_{T}(\underline{v}_{T};\boldsymbol{\eta}) := -((\boldsymbol{\delta}_{\nabla,T}^{k} - \nabla \boldsymbol{\delta}_{T}^{k})\underline{v}_{T},\boldsymbol{\eta})_{T} + \sum_{F \in \mathscr{F}_{T}}((\boldsymbol{\delta}_{TF}^{k} - \boldsymbol{\delta}_{T}^{k})\underline{v}_{T},\boldsymbol{\eta} \cdot \boldsymbol{n}_{TF})_{F}$$

■ For S_T large enough, the Riesz representation of $\mathscr{R}_T(\underline{v}_T; \cdot)$ can control $|\underline{v}_T|_{1,2,T}$, and is therefore a good candidate for S_T

Stable gradient reconstructions: An inspiring remark

• Setting
$$\delta^k_{
abla,T}:=
abla r^{k+1}_T-G^k_T$$
, we have for all $\phi\in\mathbb{P}^k(T)^d$

$$0 = -((\boldsymbol{\delta}_{\nabla,T}^{k} - \nabla \boldsymbol{\delta}_{T}^{k})\underline{\boldsymbol{\nu}}_{T}, \boldsymbol{\phi})_{T} + \sum_{F \in \mathscr{F}_{T}}((\boldsymbol{\delta}_{TF}^{k} - \boldsymbol{\delta}_{T}^{k})\underline{\boldsymbol{\nu}}_{T}, \boldsymbol{\phi} \cdot \boldsymbol{n}_{TF})_{F}$$

• Let now $\mathbb{S}_T \supset \mathbb{P}^k(T)^d$ and define the residual $\mathscr{R}_T(\underline{\nu}_T; \cdot) : \mathbb{S}_T \to \mathbb{R}$ s.t

$$\mathscr{R}_{T}(\underline{\nu}_{T};\boldsymbol{\eta}) := -((\boldsymbol{\delta}_{\nabla,T}^{k} - \nabla \boldsymbol{\delta}_{T}^{k})\underline{\nu}_{T},\boldsymbol{\eta})_{T} + \sum_{F \in \mathscr{F}_{T}}((\boldsymbol{\delta}_{TF}^{k} - \boldsymbol{\delta}_{T}^{k})\underline{\nu}_{T},\boldsymbol{\eta} \cdot \boldsymbol{n}_{TF})_{F}$$

- For \mathbb{S}_T large enough, the Riesz representation of $\mathscr{R}_T(\underline{\nu}_T; \cdot)$ can control $|\underline{\nu}_T|_{1,2,T}$, and is therefore a good candidate for S_T
- This can be interpreted as a lifting of the boundary differences on \mathbb{S}_T

Lifting on a Raviart-Thomas-Nédélec subspace I

$$\mathscr{P}_T := \{ P_{TF} : F \in \mathscr{F}_T \}$$

- Assume T star-shaped w.r. to $x_T \in T$ with (d-1)-simplicial faces
- These assumptions can be relaxed at the price of a heavier notation
- We consider the following choice:

$$\mathbb{S}_T = \mathbb{RT}^{\mathbf{d},k+1}(\mathscr{P}_T) := \left\{ \boldsymbol{\eta} \in L^2(T)^d : \boldsymbol{\eta}_{|P_{TF}} \in \mathbb{RT}^{k+1}(P_{TF}) \; \forall F \in \mathscr{F}_T \right\}$$

Lifting on a Raviart-Thomas-Nédélec subspace II

The Riesz representation S_T of $\mathscr{R}(\underline{v}_T; \cdot)$ can be computed face-wise:

$$S_T \underline{\nu}_T = \sum_{F \in \mathscr{F}_T} S_{TF} \underline{\nu}_T$$

where, for all $F \in \mathscr{F}_T$, $S_{TF\underline{\nu}_T}$ is s.t., for all $\eta \in \mathbb{RT}^{k+1}(P_{TF})$,

$$(\boldsymbol{S}_{TF}\underline{\boldsymbol{\nu}}_{T},\boldsymbol{\eta})_{P_{TF}} = -((\boldsymbol{\delta}_{\nabla,T}^{k} - \nabla\boldsymbol{\delta}_{T}^{k})\underline{\boldsymbol{\nu}}_{T},\boldsymbol{\eta})_{T} + ((\boldsymbol{\delta}_{TF}^{k} - \boldsymbol{\delta}_{T}^{k})\underline{\boldsymbol{\nu}}_{T},\boldsymbol{\eta}\cdot\boldsymbol{n}_{TF})_{F}$$

■ The properties (S1)–(S3) are verified by construction

Trigonometric solution, $\|\underline{I}_{h}^{k}u - \underline{u}_{h}\|_{1,p,h}$ v. $h, p \in \{2,3,4\}$

Figure: Trigonometric solution, $\|\underline{I}_{h}^{k}u - \underline{u}_{h}\|_{1,p,h}$ versus h.

Thank you!

18,000 pages of unpublished handnotes now online https://grothendieck.umontpellier.fr

References I

Aghili, J., Boyaval, S., and Di Pietro, D. A. (2015).

Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Meth. Appl. Math., 15(2):111–134.

Andreianov, B., Boyer, F., and Hubert, F. (2007).

Discrete Duality Finite Volume schemes for Leray–Lions-type elliptic problems on general 2D meshes. Num. Meth. PDEs, 23:145–195.

Antonietti, P. F., Bigoni, N., and Verani, M. (2014).

Mimetic finite difference approximation of quasilinear elliptic problems. *Calcolo*, 52:45–67.

Barrett, J. W. and Liu, W. B. (1994).

Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math., 68(4):437–456.

Bassi, F., Botti, L., Colombo, A., and Rebay, S. (2012).

Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations. Comput. & Fluids, 61:77–85.

Bassi, F., Crivellini, A., Di Pietro, D. A., and Rebay, S. (2006).

An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys., 218(2):794–815.

Beirão da Veiga, L., Lovadina, C., and Vacca, G. (2016).

Divergence free Virtual Elements for the Stokes problem on polygonal meshes. ESAIM: Math. Model. Numer. Anal. (M2AN). Published online. DOI 10.051/m2an/2016032.

References II

Beirão da Veiga, L., Lovadina, C., and Vacca, G. (2017).

Virtual Elements for the Navier–Stokes problem on polygonal meshes. Submitted.

Botti, M., Di Pietro, D. A., and Sochala, P. (2016).

A Hybrid High-Order method for nonlinear elasticity. IMAG preprint.

Çeşmelioğlu, A., Cockburn, B., and Qiu, W. (2016).

Analysis of an HDG method for the incompressible Navier–Stokes equations. *Math. Comp.* Published online. DOI: 10.1090/mcom/3195.

Di Pietro, D. A. and Droniou, J. (2017a).

A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Math. Comp., 86(307):2159–2191.

Di Pietro, D. A. and Droniou, J. (2017b).

W^{5,9}2-approximation properties of elliptic projectors on polynomial spaces with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions elliptic problems. Math. Models: Methods Appl. Sci., 27(5):870-908.

Di Pietro, D. A. and Ern, A. (2010).

Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations.

Math. Comp., 79:1303-1330.

Di Pietro, D. A. and Ern, A. (2012).

Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathématiques & Applications. Springer-Verlag, Berlin.

References III

Di Pietro, D. A. and Ern, A. (2015).

A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg., 283:1-21.

Di Pietro, D. A., Ern, A., Linke, A., and Schieweck, F. (2016).

A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Meth. Appl. Mech. Engrg., 306:175–195.

Di Pietro, D. A. and Krell, S. (2016).

A Hybrid High-Order method for the steady incompressible Navier–Stokes problem. Preprint arXiv:1607.08159 [math.NA].

Di Pietro, D. A. and Specogna, R. (2016).

An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics. J. Comput. Phys., 326(1):35–55.

Droniou, J. (2006).

Finite volume schemes for fully non-linear elliptic equations in divergence form. ESAIM: Math. Model Numer. Anal. (M2AN), 40:1069–1100.

Droniou, J., Eymard, R., Gallouët, T., Guichard, C., and Herbin, R. (2017).

The gradient discretisation method: A framework for the discretisation and numerical analysis of linear and nonlinear elliptic and parabolic problems.

Maths & Applications. Springer. To appear. Preprint hal-01382358, version 3.

Glowinski, R. and Rappaz, J. (2003).

Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: Math. Model Numer. Anal. (M2AN), 37(1):175–186.

References IV

Liu, W. and Yan, N. (2001).

Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of *p*-Laplacian. *Numer. Math.*, 89:341–378.

Nguyen, N., Peraire, J., and Cockburn, B. (2011).

An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys., 230:1147–1170.