Hybrid High-Order methods for nonlinear problems

Daniele A. Di Pietro

from joint works with M. Botti, D. Castanon Quiroz, J. Droniou, and A. Harnist

Université de Montpellier https://imag.umontpellier.fr/~di-pietro

Padova, 13 May 2021

Two crucial problems for humanity

Hybrid High-Order (HHO) methods

Figure: Examples of supported meshes $\mathcal{M}_h = (\mathcal{T}_h, \mathcal{F}_h)$ in 2d and 3d

- Capability of handling general polyhedral meshes
- Construction valid for arbitrary space dimensions
- Arbitrary approximation order (including k = 0)
- Natural extension to nonlinear problems
- Reduced computational cost after static condensation
- Key idea: replace spaces and operators with discrete counterparts

References for this presentation

HHO for Leray–Lions problems

- Analysis tools and convergence [DP and Droniou, 2017a]
- Basic error estimates [DP and Droniou, 2017b]
- Stabilization-free [DP, Droniou, Manzini, 2018]
- Improved estimates (general meshes) [DP, Droniou, Harnist, 2021]
- Improved estimates (standard meshes) [Carstensen and Tran, 2020]
- Applications
 - Nonlinear elasticity [Botti, DP, Sochala, 2017]
 - Nonlinear poroelasticity [Botti, DP, Sochala, 2018]
 - Non-Newtonian fluids [Botti, Castanon Quiroz, DP, Harnist, 2020]
- General introduction to HHO methods:

Di Pietro, D. A. and Droniou, J. (2020). **The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications**, volume 19 of *Modeling, Simulation and Application*. Springer International Publishing.

Outline

1 Leray–Lions problems

2 Creeping flows of non-Newtonian fluids

Model problem

- \blacksquare Let $\Omega \subset \mathbb{R}^d$ denote a bounded connected polyhedral domain
- Let $r \in (0, +\infty)$ and $r' \coloneqq \frac{r}{r-1}$
- Consider the problem: Given $f \in L^{r'}(\Omega)$, find $u : \Omega \to \mathbb{R}$ s.t.

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{x}, \nabla \boldsymbol{u}) = f \quad \text{in } \Omega,$$
$$\boldsymbol{u} = 0 \quad \text{on } \partial \Omega$$

In weak formulation: Find $u \in W_0^{1,r}(\Omega)$ s.t.

$$\int_{\Omega} \boldsymbol{\sigma}(\cdot, \boldsymbol{\nabla} \boldsymbol{u}) \cdot \boldsymbol{\nabla} \boldsymbol{v} = \int_{\Omega} f \boldsymbol{v} \qquad \forall \boldsymbol{v} \in W_0^{1,r}(\Omega).$$

The key differential operator is the gradient

Flux function

Assumption (Flux function I)

The Carathéodory function¹ $\sigma : \Omega \times \mathbb{R}^d \to \mathbb{R}^d$ is s.t., for a.e. $x \in \Omega$ and all $\eta, \xi \in \mathbb{R}^d$,

• Growth. There exists a real number $\overline{\sigma} > 0$ s.t.

 $|\sigma(x,\eta) - \sigma(x,0)| \le \overline{\sigma}|\eta|^{r-1}.$

• Coercivity. There is a real number $\underline{\sigma} > 0$ s.t.,

 $\sigma(\boldsymbol{x},\boldsymbol{\eta})\cdot\boldsymbol{\eta}\geq\underline{\sigma}|\boldsymbol{\eta}|^r.$

Monotonicity. It holds

$$(\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\eta}) - \boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\xi})) \cdot (\boldsymbol{\eta} - \boldsymbol{\xi}) \ge 0.$$

 ${}^{1}\sigma(x,\cdot)$ continuous, $\sigma(\cdot,\eta)$ measurable

L^2 -orthogonal projectors on local polynomial spaces

- Let a polynomial degree $k \ge 0$ and a mesh element or face X be fixed
- Define the polynomial space

 $\mathbb{P}^k(X) \coloneqq \{$ restriction to X of d-variate polynomials of total degree $\leq k \}$

• The L^2 -orthogonal projector $\pi^k_X : L^2(X) \to \mathbb{P}^k(X)$ is s.t.

$$\int_X (\pi_X^k v - v) w = 0 \text{ for all } w \in \mathbb{P}^k(X)$$

• Optimal approximation properties hold [DP and Droniou, 2020]

A key remark

- Let a polytopal mesh element $T \in \mathcal{T}_h$ be fixed
- Recall the following IBP formula, valid for all $(v, \tau) \in W^{1,1}(T) \times C^{\infty}(\overline{T})^d$:

$$\int_{T} \boldsymbol{\nabla} \boldsymbol{v} \cdot \boldsymbol{\tau} = -\int_{T} \boldsymbol{v} \ (\boldsymbol{\nabla} \cdot \boldsymbol{\tau}) + \sum_{F \in \mathcal{F}_{T}} \int_{F} \boldsymbol{v} \ (\boldsymbol{\tau} \cdot \boldsymbol{n}_{TF})$$

 \blacksquare Given an integer $k \geq 0,$ taking $\pmb{\tau} \in \mathbb{P}^k(T)^d$ we can write

$$\int_{T} \pi_{T}^{k} (\nabla v) \cdot \tau = - \int_{T} \pi_{T}^{k} v (\nabla \cdot \tau) + \sum_{F \in \mathcal{F}_{T}} \int_{F} \pi_{F}^{k} v_{|F|} (\tau \cdot \mathbf{n}_{TF})$$

• Hence, $\pi_T^k(\nabla v)$ can be computed from $\pi_T^k v$ and $(\pi_F^k v|_F)_{F \in \mathcal{F}_T}$!

Local HHO space and interpolator

Figure: \underline{U}_T^k for $k \in \{0, 1, 2\}$ and d = 2

- For $k \ge 0$ and $T \in \mathcal{T}_h$, define the local HHO space
 - $\underline{U}_{T}^{k} \coloneqq \left\{ \underline{v}_{T} = (v_{T}, (v_{F})_{F \in \mathcal{F}_{T}}) : v_{T} \in \mathbb{P}^{k}(T) \text{ and } v_{F} \in \mathbb{P}^{k}(F) \text{ for all } F \in \mathcal{F}_{T} \right\}$
- The local interpolator $\underline{I}_T^k: W^{1,1}(T) \to \underline{U}_T^k$ is s.t., for all $v \in W^{1,1}(T)$,

$$\underline{I}_T^k v \coloneqq \left(\pi_T^k v, (\pi_F^k v)_{F \in \mathcal{F}_T} \right)$$

Gradient reconstruction

• Let $T \in \mathcal{T}_h$. We define the local gradient reconstruction

$$G_T^k : \underline{U}_T^k \to \mathbb{P}^k(T)^d$$

s.t., for all
$$\underline{v}_T \in \underline{U}_T^k$$
,

$$\int_T \mathbf{G}_T^k \underline{v}_T \cdot \boldsymbol{\tau} = -\int_T v_T \ (\boldsymbol{\nabla} \cdot \boldsymbol{\tau}) + \sum_{F \in \mathcal{F}_T} \int_F v_F \ (\boldsymbol{\tau} \cdot \boldsymbol{n}_{TF}) \quad \forall \boldsymbol{\tau} \in \mathbb{P}^k(T)^d$$

By construction, we have,

$$\boldsymbol{G}_T^k(\underline{I}_T^k\boldsymbol{v}) = \boldsymbol{\pi}_T^k(\boldsymbol{\nabla}\boldsymbol{v}) \quad \forall \boldsymbol{v} \in W^{1,1}(T)$$

• $(G_T^k \circ \underline{I}_T^k)$ therefore has optimal approximation properties in $\mathbb{P}^k(T)^d$

Global HHO space and gradient reconstruction

■ The global HHO space is obtained patching interface unknowns:

$$\begin{split} \underline{U}_{h}^{k} \coloneqq \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{T}_{h}}) : \\ v_{T} \in \mathbb{P}^{k}(T) \text{ for all } T \in \mathcal{T}_{h} \text{ and } v_{F} \in \mathbb{P}^{k}(F) \text{ for all } F \in \mathcal{T}_{h} \end{split} \right\}$$

• The global gradient
$$G_h^k : \underline{U}_h^k \to \mathbb{P}^k(\mathcal{T}_h)^d$$
 is s.t.

$$\forall \underline{v}_h \in \underline{U}_h^k, \quad (\boldsymbol{G}_h^k \underline{v}_h)_{|T} \coloneqq \boldsymbol{G}_T^k \underline{v}_T \quad \forall T \in \mathcal{T}_h$$

Accounting for boundary conditions, we set

$$\underline{U}_{h,0}^{k} \coloneqq \left\{ \underline{v}_{h} \in \underline{U}_{h}^{k} : v_{F} = 0 \text{ for all } F \in \mathcal{F}_{h} \text{ s.t. } F \subset \partial \Omega \right\}$$

Discrete Sobolev norms

- We need to endow \underline{U}_h^k with a Sobolev structure
- We define the discrete Sobolev seminorm s.t., for all $\underline{v}_h \in \underline{U}_h^k$,

$$\|\underline{v}_{h}\|_{1,r,h} \coloneqq \left(\sum_{T \in \mathcal{T}_{h}} \|\underline{v}_{T}\|_{1,r,T}^{r}\right)^{\frac{1}{r}}$$

where, for all $T \in \mathcal{T}_h$,

$$\|\underline{\boldsymbol{v}}_{T}\|_{1,r,T} \coloneqq \left(\|\boldsymbol{\nabla}\boldsymbol{v}_{T}\|_{L^{r}(T)^{d}}^{r} + \sum_{F \in \mathcal{F}_{T}} h_{F}^{1-r} \|\boldsymbol{v}_{F} - \boldsymbol{v}_{T}\|_{L^{r}(F)}^{r} \right)^{\frac{1}{r}}$$

• The factor h_F^{1-r} in the boundary term ensures the appropriate scaling

Discrete functional analysis results I

Theorem (Discrete Sobolev–Poincaré inequalities)

Let

$$1 \le q \le \frac{dr}{d-r}$$
 if $1 \le r < d$ and $1 \le q < +\infty$ if $r \ge d$.

Then, for all $\underline{v}_h \in \underline{U}_{h,0}^k$, letting $v_h \in \mathbb{P}^k(\mathcal{T}_h)$ be s.t.

$$(v_h)_{|T} \coloneqq v_T \qquad \forall T \in \mathcal{T}_h,$$

it holds, with C > 0 depending only on Ω , k, r, q, and mesh regularity,

$$\|v_h\|_{L^q(\Omega)} \le C \|\underline{v}_h\|_{1,r,h}.$$

Corollary (Discrete Sobolev norms)

The mapping $\|\cdot\|_{1,r,h}$ is a norm on $\underline{U}_{h,0}^k$.

Discrete functional analysis results II

Theorem (Discrete compactness)

Let $(\mathcal{M}_h)_{h>0}$ be a regular mesh sequence and $(\underline{v}_h)_{h>0} \in (\underline{U}_{h,0}^k)_{h>0}$ s.t.

$$\|\underline{v}_h\|_{1,r,h} \leq C$$
 for all $h > 0$.

Then, there exists $v \in W_0^{1,r}(\Omega)$ s.t., up to a subsequence as $h \to 0$,

• $v_h \rightarrow v$ strongly in $L^q(\Omega)$ for all $1 \le q < \begin{cases} \frac{dr}{d-r} & \text{if } r < d, \\ +\infty & \text{otherwise;} \end{cases}$

•
$$G_{h\underline{\nu}_{h}}^{k} \rightarrow \nabla v$$
 weakly in $L^{r}(\Omega)^{d}$.

Proposition (Strong convergence of the gradient for smooth functions)

With $(\mathcal{M}_h)_{h>0}$ as before it holds, for all $\varphi \in W^{1,r}(\Omega)$,

$$G_h^k(\underline{I}_h^k\varphi) \to \nabla \varphi$$
 strongly in $L^r(\Omega)^d$ as $h \to 0$.

• Define the function $a_h : \underline{U}_h^k \times \underline{U}_h^k \to \mathbb{R}$ s.t.

$$\mathbf{a}_h(\underline{w}_h,\underline{v}_h)\coloneqq \int_{\Omega} \boldsymbol{\sigma}(\cdot,\boldsymbol{G}_h^k\underline{w}_h)\cdot\boldsymbol{G}_h^k\underline{v}_h + \sum_{T\in\mathcal{T}_h}\mathbf{s}_T(\underline{w}_T,\underline{v}_T)$$

• Above, s_T is a stabilization obtained penalizing face residuals s.t.

- $\blacksquare \|G_T^k \underline{v}_T\|_{L^r(T)^d}^r + \mathbf{s}_T(\underline{v}_T, \underline{v}_T) \simeq \|\underline{v}_T\|_{1,r,T}^r \text{ uniformly in } h$
- $s_T(\underline{I}_T^k w, \underline{v}_T) = 0$ for all $(w, \underline{v}_T) \in \mathbb{P}^{k+1}(T) \times \underline{U}_T^k$
- Hölder continuity and strong monotonicity hold

Discrete problem II

The discrete Leray-Lions problem reads:

Find
$$\underline{u}_h \in \underline{U}_{h,0}^k$$
 s.t. $a_h(\underline{u}_h, \underline{v}_h) = \int_{\Omega} f v_h \quad \forall \underline{v}_h \in \underline{U}_{h,0}^k$

Lemma (Existence and a priori bound)

There is at least one solution $\underline{u}_h \in \underline{U}_{h,0}^k$, and any solution satisfies

$$\|\underline{u}_{h}\|_{1,r,h} \leq C \|f\|_{L^{r'}(\Omega)}^{\frac{1}{r-1}},$$

with real number C > 0 independent of h.

Remark (Uniqueness)

Uniqueness holds replacing monotonicity with strict monotonicity.

Theorem (Convergence)

Let $(\mathcal{M}_h)_{h>0}$ be a regular mesh sequence and let $(\underline{u}_h)_{h>0}$ be the corresponding sequence of discrete solutions. Then, as $h \to 0$, up to a subsequence,

•
$$u_h \to u$$
 strongly in $L^q(\Omega)$ with $1 \le q < \begin{cases} \frac{dr}{d-r} & \text{if } r < d, \\ +\infty & \text{otherwise,} \end{cases}$

• $G_{h}^{k}\underline{u}_{h} \rightarrow \nabla u$ weakly in $L^{r}(\Omega)^{d}$,

with $u \in W_0^{1,r}(\Omega)$ solution to the continuous problem. If, additionally, σ is strictly monotone, then u is unique and $G_h^k \underline{u}_h$ converges strongly.

Proof.

- Combining the a priori bound with discrete compactness, we infer the existence of $u \in W_0^{1,r}(\Omega)$ s.t. the above convergences hold
- Taking $\underline{v}_h = \underline{I}_h^k \varphi$ as test function with $\varphi \in C_c^{\infty}(\Omega)$ and using Minty's trick, we infer that u solves the continuous problem
- Using Vitali's theorem, we prove strong convergence of $G_h^k \underline{u}_h$ under strict monotonicity of σ

Error estimates I

Assumption (Flux function II)

In addition to Assumption I, it holds, for a.e. $x \in \Omega$ and all $\eta, \xi \in \mathbb{R}^d$,

Hölder continuity. There exists a real number $\sigma^* > 0$ s.t.

$$|\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\eta}) - \boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\xi})| \leq \sigma^* |\boldsymbol{\eta} - \boldsymbol{\xi}| \left(|\boldsymbol{\eta}|^{r-2} + |\boldsymbol{\xi}|^{r-2} \right).$$

Strong monotonicity. There exists a real number $\sigma_* > 0$ s.t.

$$(\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\eta}) - \boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\xi})) \cdot (\boldsymbol{\eta} - \boldsymbol{\xi}) \geq \sigma_* |\boldsymbol{\eta} - \boldsymbol{\xi}|^2 (|\boldsymbol{\eta}| + |\boldsymbol{\xi}|)^{r-2}.$$

Remark (*r*-Laplacian)

The above assumptions are verified by the r-Laplace flux function

$$\boldsymbol{\sigma}(\boldsymbol{x},\boldsymbol{\eta}) = |\boldsymbol{\eta}|^{r-2}\boldsymbol{\eta}.$$

Error estimates II

Theorem (Basic error estimate)

Assume $u \in W^{k+2,r}(\mathcal{T}_h)$ and $\sigma(\cdot, \nabla u) \in W^{k+1,r'}(\mathcal{T}_h)^d$ and let • if $r \ge 2$,

$$\mathcal{E}_{h}(u) \coloneqq h^{k+1} |u|_{W^{k+2,r}(\mathcal{T}_{h})} + \frac{h^{\frac{k+1}{r-1}}}{h^{\frac{k+1}{r-1}}} \left(|u|_{W^{k+2,r}(\mathcal{T}_{h})}^{\frac{1}{r-1}} + |\sigma(\cdot, \nabla u)|_{W^{k+1,r'}(\mathcal{T}_{h})^{d}}^{\frac{1}{r-1}} \right);$$

■ *if* r < 2,

$$\mathcal{E}_h(u) \coloneqq h^{(k+1)(r-1)} |u|_{W^{k+2,r}(\mathcal{T}_h)}^{r-1} + h^{k+1} |\sigma(\cdot, \nabla u)|_{W^{k+1,r'}(\mathcal{T}_h)^d}.$$

Then, it holds

$$|\underline{I}_{h}^{k}u - \underline{u}_{h}\|_{1,r,h} \leq C\mathcal{E}_{h}(u),$$

with C > 0 depending only on Ω , k, r, σ , $\overline{\sigma}$, σ_* , σ^* , and mesh regularity.

Improved error estimates

The above estimate gives the following asymptotic convergence rates:

$$\begin{cases} h^{\frac{k+1}{r-1}} & \text{if } r \ge 2, \\ h^{(k+1)(r-1)} & \text{if } 1 < r < 2 \end{cases}$$

Successively [DP, Droniou, Harnist, 2021] proved

 h^{k+1} in the non-degenerate case for $1 < r \le 2$,

with intermediate rates depending on a degeneracy parameterVery recently, [Carstensen and Tran, 2020] proved convergence in

$$h^{\frac{k+1}{3-r}}$$
 for $1 < r \le 2$

for a variation of the HHO method on conforming simplicial meshes based on a stable gradient inspired by [DP, Droniou, Manzini, 2018]

Numerical example

Convergence for r = 3

h	$\ \underline{I}_h^k u - \underline{u}_h\ _{1,r,h}$	EOC	h	$\ \underline{I}_h^k u - \underline{u}_h\ _{1,r,h}$	EOC
	k = 1 (1)			k = 1 (1)	
$3.07 \cdot 10^{-2}$	$1.71 \cdot 10^{-2}$	_	$6.5 \cdot 10^{-2}$	$3.06 \cdot 10^{-2}$	_
$1.54 \cdot 10^{-2}$	$4.72 \cdot 10^{-3}$	1.87	$3.15 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$	1.41
$7.68 \cdot 10^{-3}$	$1.16 \cdot 10^{-3}$	2.02	$1.61 \cdot 10^{-2}$	$3.35 \cdot 10^{-3}$	1.77
$3.84 \cdot 10^{-3}$	$2.96 \cdot 10^{-4}$	1.97	$9.09 \cdot 10^{-3}$	$1.25 \cdot 10^{-3}$	1.72
$1.92\cdot 10^{-3}$	$7.77\cdot 10^{-5}$	1.93	$4.26\cdot 10^{-3}$	$3.58\cdot10^{-4}$	1.65
	$k=2 \left(\frac{3}{2}\right)$			$k=2 \left(\frac{3}{2}\right)$	
$3.07\cdot 10^{-2}$	$2.72\cdot 10^{-3}$	_	$6.5 \cdot 10^{-2}$	$1.18\cdot 10^{-2}$	_
$1.54 \cdot 10^{-2}$	$2.32 \cdot 10^{-4}$	3.57	$3.15 \cdot 10^{-2}$	$2.33 \cdot 10^{-3}$	2.24
$7.68 \cdot 10^{-3}$	$3.32 \cdot 10^{-5}$	2.79	$1.61 \cdot 10^{-2}$	$4.4 \cdot 10^{-4}$	2.48
$3.84 \cdot 10^{-3}$	$7.25 \cdot 10^{-6}$	2.2	$9.09 \cdot 10^{-3}$	$1.02 \cdot 10^{-4}$	2.56
$1.92\cdot 10^{-3}$	$1.81\cdot 10^{-6}$	2.00	$4.26\cdot 10^{-3}$	$1.42\cdot 10^{-5}$	2.60
	k = 3 (2)			k = 3 (2)	
$3.07\cdot 10^{-2}$	$3.1\cdot 10^{-4}$	_	$6.5 \cdot 10^{-2}$	$2.75\cdot 10^{-3}$	_
$1.54 \cdot 10^{-2}$	$2.97 \cdot 10^{-5}$	3.4	$3.15 \cdot 10^{-2}$	$2.69 \cdot 10^{-4}$	3.21
$7.68 \cdot 10^{-3}$	$4.4 \cdot 10^{-6}$	2.74	$1.61 \cdot 10^{-2}$	$4.01 \cdot 10^{-5}$	2.84
$3.84 \cdot 10^{-3}$	$9.76 \cdot 10^{-7}$	2.17	$9.09 \cdot 10^{-3}$	$1.31 \cdot 10^{-5}$	1.96
$1.92 \cdot 10^{-3}$	$2.41 \cdot 10^{-7}$	2.02	$4.26 \cdot 10^{-3}$	$2.21 \cdot 10^{-6}$	2.35

Table: Triangular mesh family

Table: Voronoi mesh family

Outline

2 Creeping flows of non-Newtonian fluids

Model problem I

• Let $d \in \{2,3\}$. Given $f : \Omega \to \mathbb{R}^d$, the nonlinear Stokes problem reads: Find $u : \Omega \to \mathbb{R}^d$ and $p : \Omega \to \mathbb{R}$ s.t.

$$\begin{aligned} - \nabla \cdot \boldsymbol{\sigma} (\boldsymbol{\nabla}_{\mathrm{s}} \boldsymbol{u}) + \boldsymbol{\nabla} p &= \boldsymbol{f} & \text{ in } \boldsymbol{\Omega}, \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} &= \boldsymbol{0} & \text{ in } \boldsymbol{\Omega}, \\ \boldsymbol{u} &= \boldsymbol{0} & \text{ on } \partial \boldsymbol{\Omega}, \\ \int_{\boldsymbol{\Omega}} p &= \boldsymbol{0}, \end{aligned}$$

• We focus, for the sake of simplicity, on power-law fluids, for which

$$\boldsymbol{\sigma}(\boldsymbol{\tau}) = |\boldsymbol{\tau}|^{r-2} \boldsymbol{\tau} \quad \forall \boldsymbol{\tau} \in \mathbb{R}^{d \times d}_{\mathrm{sym}}$$

For r ∈ (1,2] the fluid is shear-thinning, for r ≥ 2, shear-thickening
More general strain rate-shear stress laws can be considered

Model problem II

Define the following spaces:

$$\boldsymbol{U} \coloneqq W_0^{1,r}(\Omega)^d, \quad \boldsymbol{P} \coloneqq \left\{ \boldsymbol{q} \in \boldsymbol{L}^{r'}(\Omega) \ : \ \int_{\Omega} \boldsymbol{q} = \boldsymbol{0} \right\}$$

Taking $f \in L^{r'}(\Omega)^d$, the weak formulation is: Find $(u, p) \in U \times P$ s.t.

$$a(\boldsymbol{u}, \boldsymbol{v}) + b(\boldsymbol{v}, p) = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \quad \forall \boldsymbol{v} \in \boldsymbol{U},$$
$$-b(\boldsymbol{u}, q) = 0 \qquad \forall p \in \boldsymbol{P}$$

where $a: U \times U \to \mathbb{R}$ and $b: U \times P \to \mathbb{R}$ are s.t.

$$a(\mathbf{w},\mathbf{v})\coloneqq\int_{\Omega}\boldsymbol{\sigma}(\boldsymbol{\nabla}_{\mathrm{s}}\mathbf{w}):\boldsymbol{\nabla}_{\mathrm{s}}\mathbf{v},\quad b(\mathbf{v},q)\coloneqq-\int_{\Omega}(\boldsymbol{\nabla}\cdot\mathbf{v})\ q$$

The extension of stability results is non-trivial

Given $T \in \mathcal{T}_h$, the vector version of the local HHO space is

$$\underline{U}_{T}^{k} \coloneqq \left\{ \underline{\nu}_{T} = (\nu_{T}, (\nu_{F})_{F \in \mathcal{F}_{T}}) : \nu_{T} \in \mathbb{P}^{k}(T)^{d} \text{ and } \nu_{F} \in \mathbb{P}^{k}(F)^{d} \text{ for all } F \in \mathcal{F}_{T} \right\}$$

• We furnish \underline{U}_T^k with the strain rate $W^{1,r}$ -like seminorm

$$\|\underline{\boldsymbol{\nu}}_T\|_{\varepsilon,r,T} \coloneqq \left(\|\boldsymbol{\nabla}_{\mathbf{s}} \boldsymbol{\nu}_T\|_{L^r(T)^{d \times d}}^r + \sum_{F \in \mathcal{F}_T} h_F^{r-1} \|\boldsymbol{\nu}_F - \boldsymbol{\nu}_T\|_{L^r(F)^d}^r \right)^{\frac{1}{r}}$$

Notice that the symmetric gradient replaces the gradient!

Symmetric gradient and divergence reconstructions

The local symmetric gradient reconstruction is s.t.

$$\boldsymbol{G}_{\mathrm{s},T}^{k}: \underline{\boldsymbol{U}}_{T}^{k} \to \mathbb{P}^{k}(T; \mathbb{R}_{\mathrm{sym}}^{d \times d})$$

s.t., for all $\underline{v}_T \in \underline{U}_T^k$ and all $\tau \in \mathbb{P}^k(T; \mathbb{R}_{\mathrm{sym}}^{d \times d})$,

$$\int_T \boldsymbol{G}_{\mathrm{s},T}^k \underline{\boldsymbol{\nu}_T} : \boldsymbol{\tau} = -\int_T \boldsymbol{\nu_T} \cdot (\boldsymbol{\nabla} \cdot \boldsymbol{\tau}) + \sum_{F \in \mathcal{F}_T} \int_F \boldsymbol{\nu_F} \cdot (\boldsymbol{\tau} \boldsymbol{n}_{TF})$$

• A divergence reconstruction $D_T^k : \underline{U}_T^k \to \mathbb{P}^k(T)$ is obtained setting

$$D_T^k \coloneqq \operatorname{tr}(\boldsymbol{G}_{\mathrm{s},T}^k)$$

• With \underline{I}_T^k interpolator on \underline{U}_T^k we have, for all $v \in W^{1,1}(T)^d$,

$$\boldsymbol{G}_{\mathrm{s},T}^{k}(\boldsymbol{\underline{I}}_{T}^{k}\boldsymbol{\nu}) = \boldsymbol{\pi}_{T}^{k}(\boldsymbol{\nabla}_{\mathrm{s}}\boldsymbol{\nu}), \qquad \boldsymbol{D}_{T}^{k}(\boldsymbol{\underline{I}}_{T}^{k}\boldsymbol{\nu}) = \boldsymbol{\pi}_{T}^{k}(\boldsymbol{\nabla}\boldsymbol{\cdot}\boldsymbol{\nu})$$

Global HHO space and strain reconstruction

At the global level, we define the velocity space

$$\begin{split} \underline{U}_{h}^{k} &\coloneqq \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{T}_{h}}) : \\ v_{T} \in \mathbb{P}^{k}(T)^{d} \text{ for all } T \in \mathcal{T}_{h} \text{ and } v_{F} \in \mathbb{P}^{k}(F)^{d} \text{ for all } F \in \mathcal{F}_{h} \right\} \end{split}$$

along with its subspace with strongly enforced BC

$$\underline{U}_{h,0}^k \coloneqq \left\{ \underline{\nu}_h \in \underline{U}_h^k \, : \, \mathbf{\nu}_F = \mathbf{0} \text{ for all } F \in \mathcal{F}_h \text{ s.t. } F \subset \partial \Omega \right\}$$

- We furnish $\underline{U}_{h,0}^k$ with the global $W^{1,r}$ -seminorm $\|\cdot\|_{\varepsilon,r,h}$
- The global strain reconstruction $G_{s,h}^k : \underline{U}_h^k \to \mathbb{P}^k(\mathcal{T}_h; \mathbb{R}_{sym}^{d \times d})$ is s.t.

$$\forall \underline{\mathbf{v}}_h \in \underline{\mathbf{U}}_h^k, \quad (\mathbf{G}_{\mathrm{s},h}^k \underline{\mathbf{v}}_h)_{|T} \coloneqq \mathbf{G}_{\mathrm{s},T}^k \underline{\mathbf{v}}_T \quad \forall T \in \mathcal{T}_h$$

• The viscous function $a_h : \underline{U}_h^k \times \underline{U}_h^k \to \mathbb{R}$ is s.t.

$$\mathbf{a}_h(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h) \coloneqq \int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{G}_{\mathrm{s},h}^k \underline{\boldsymbol{u}}_h) : \boldsymbol{G}_{\mathrm{s},h}^k \underline{\boldsymbol{v}}_h + \sum_{T \in \mathcal{T}_h} \mathbf{s}_T(\underline{\boldsymbol{u}}_T,\underline{\boldsymbol{v}}_T)$$

• To formulate assumptions on s_T , we introduce the singular exponent

 $\tilde{r} \coloneqq \min(r, 2)$

Viscous function II

Assumption

The stabilization function s_T is linear in its second argument and it satisfies:

- Stability. For all $\underline{\nu}_T \in \underline{U}_T^k$, $\|G_{s,T}^k \underline{\nu}_T\|_{L^r(T)^{d \times d}}^2 + s_T(\underline{\nu}_T, \underline{\nu}_T) \simeq \|\underline{\nu}_T\|_{\varepsilon,r,T}^2$
- Polynomial consistency. For all $(w, \underline{v}_T) \in \mathbb{P}^{k+1}(T)^d \times \underline{U}_T^k$, $s_T(\underline{I}_T^k w, \underline{v}_T) = 0$
- **Hölder continuity.** For all $\underline{u}_T, \underline{v}_T, \underline{w}_T \in \underline{U}_T^k$, setting $\underline{e}_T \coloneqq \underline{u}_T \underline{w}_T$,

$$\begin{split} |\mathbf{s}_{T}(\underline{\boldsymbol{u}}_{T},\underline{\boldsymbol{v}}_{T}) - \mathbf{s}_{T}(\underline{\boldsymbol{w}}_{T},\underline{\boldsymbol{v}}_{T})| \lesssim \\ & \left(\mathbf{s}_{T}(\underline{\boldsymbol{u}}_{T},\underline{\boldsymbol{u}}_{T}) + \mathbf{s}_{T}(\underline{\boldsymbol{w}}_{T},\underline{\boldsymbol{w}}_{T})\right)^{\frac{r-\bar{r}}{r}} \mathbf{s}_{T}(\underline{\boldsymbol{e}}_{T},\underline{\boldsymbol{e}}_{T})^{\frac{\bar{r}-1}{r}} \mathbf{s}_{T}(\underline{\boldsymbol{v}}_{T},\underline{\boldsymbol{v}}_{T})^{\frac{1}{r}} \end{split}$$

Strong monotonicity. For all $\underline{u}_T, \underline{w}_T \in \underline{U}_T^k$, setting $\underline{e}_T \coloneqq \underline{u}_T - \underline{w}_T$,

$$\left(\mathrm{s}_{T}\left(\underline{\boldsymbol{u}}_{T},\underline{\boldsymbol{e}}_{T}\right)-\mathrm{s}_{T}\left(\underline{\boldsymbol{w}}_{T},\underline{\boldsymbol{e}}_{T}\right)\right)\left(\mathrm{s}_{T}\left(\underline{\boldsymbol{u}}_{T},\underline{\boldsymbol{u}}_{T}\right)+\mathrm{s}_{T}\left(\underline{\boldsymbol{w}}_{T},\underline{\boldsymbol{w}}_{T}\right)\right)^{\frac{2-\bar{r}}{r}}\gtrsim \mathrm{s}_{T}\left(\underline{\boldsymbol{e}}_{T},\underline{\boldsymbol{e}}_{T}\right)^{\frac{r+2-\bar{r}}{r}}$$

Stability and polynomial consistency are incompatible for k = 0!

Discrete stability hinges on the following result:

Theorem (Discrete Korn inequality)

Assume $k \ge 1$. Then, for all $\underline{v}_h \in \underline{U}_{h,0}^k$, letting $v_h \in \mathbb{P}^k(\mathcal{T}_h)^d$ be s.t. $(v_h)_{|T} \coloneqq v_T$ for all $T \in \mathcal{T}_h$,

$$\|\boldsymbol{v}_h\|_{L^r(\Omega)^d}+|\boldsymbol{v}_h|_{W^{1,r}(\mathcal{T}_h)^d}\lesssim \|\underline{\boldsymbol{v}}_h\|_{\varepsilon,r,h},$$

with $|\cdot|_{W^{1,r}(\mathcal{T}_h)^d}$ broken $W^{1,r}$ -seminorm.

Pressure-velocity coupling

The pressure-velocity coupling bilinear form $\mathbf{b}_h : \underline{U}_h^k \times \mathbb{P}^k(\mathcal{T}_h)$ is s.t.

$$\mathbf{b}_h(\underline{\boldsymbol{v}}_h,q_h)\coloneqq -\sum_{T\in\mathcal{T}_h}\int_T D_T^k\underline{\boldsymbol{v}}_T \ q_T$$

Lemma (Inf-sup stability)

Define the pressure space

$$P_h^k \coloneqq \left\{ q_h \in \mathbb{P}^k(\mathcal{T}_h) : \int_{\Omega} q_h = 0 \right\}.$$

Then it holds, for all $q_h \in P_h^k$,

$$\|q_h\|_{L^{r'}(\Omega)}\lesssim \sup_{\underline{\nu}_h\in\underline{U}_{h,0}^k,\,\|\underline{\nu}_h\|_{\varepsilon,r,h}=1}\mathrm{b}_h(\underline{\nu}_h,q_h).$$

Discrete problem

The discrete problem reads: Find $(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$ s.t.

$$\begin{aligned} \mathbf{a}_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + \mathbf{b}_{h}(\underline{\boldsymbol{v}}_{h},p_{h}) &= \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}_{h} \quad \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{U}}_{h,0}^{k}, \\ -\mathbf{b}_{h}(\underline{\boldsymbol{u}}_{h},q_{h}) &= 0 \qquad \forall q_{h} \in P_{h}^{k} \end{aligned}$$

Theorem (Well-posedness)

There exists a unique discrete solution $(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$, and the following a priori bounds hold:

$$\begin{split} \|\underline{u}_{h}\|_{\varepsilon,r,h} &\lesssim \|f\|_{L^{r'}(\Omega)^{d}}^{\frac{1}{r-1}} + \|f\|_{L^{r'}(\Omega)^{d}}^{\frac{1}{r+1-\bar{r}}}, \\ \|p_{h}\|_{L^{r'}(\Omega)} &\lesssim \|f\|_{L^{r'}(\Omega)^{d}} + \|f\|_{L^{r'}(\Omega)^{d}}^{\frac{\bar{r}}{r+1-\bar{r}}}, \end{split}$$

with hidden multiplicative constants possibly depending on Ω , d, k, and the mesh regularity parameter.

Error estimate

Theorem (Error estimate)

Assume the regularity

$$\begin{split} \boldsymbol{u} &\in W^{1,r}(\Omega)^d \cap W^{k+2,r}(\mathcal{T}_{h})^d, \quad p \in W^{1,r'}(\Omega) \cap W^{(k+1)(\tilde{r}-1)}(\mathcal{T}_{h}), \\ \boldsymbol{\sigma}(\boldsymbol{\nabla}_{\mathbf{s}}\boldsymbol{u}) &\in W^{1,r'}(\Omega; \mathbb{R}^{d \times d}_{\mathrm{sym}}) \cap W^{(k+1)(\tilde{r}-1),r'}(\mathcal{T}_{h}; \mathbb{R}^{d \times d}_{\mathrm{sym}}). \end{split}$$

Then,

$$\begin{split} \|\underline{\boldsymbol{u}}_{h} - \underline{\boldsymbol{I}}_{h}^{k} \boldsymbol{u}\|_{\varepsilon, r, h} &\leq A h^{\frac{(k+1)(\tilde{r}-1)}{r+1-\tilde{r}}}, \\ \|p_{h} - \pi_{h}^{k} p\|_{L^{r'}(\Omega)} &\leq B h^{(k+1)(\tilde{r}-1)} + C h^{\frac{(k+1)(\tilde{r}-1)^{2}}{r+1-\tilde{r}}} \end{split}$$

with A, B, and C possibly depending on Ω , d, k, the mesh regularity parameter, and on bounded norms of u, p, and f.

Remark (Orders of convergence)

The order for the velocity is the same as for Leray-Lions problems. The asymptotic order for the pressure is $h^{(k+1)(r-1)^2}$ if r < 2, $\frac{k+1}{r-1}$ otherwise.

Numerical examples I

Convergence

- We assess the orders of convergence using a manufactured solution
- We take k = 1 and let r vary in $\{1.5, 1.75, \dots, 2.75\}$
- The regularity assumptions are mostly verified (except for r = 1.5, for which $\sigma(\nabla_{s} u) \notin W^{1,r'}(\Omega, \mathbb{R}^{d \times d}_{sym})$)
- We consider three families of meshes

Cartesian

Distorted triangular

Distorted quadrangular

Numerical examples II

Convergence

Figure: Convergence for shear-thinning fluids. The slopes indicate the expected order of convergence, i.e., $O_{vel}^1 = 2(r-1)$ and $O_{pre}^1 = 2(r-1)^2$ for $r \in \{1.5, 1.75, 2\}$.

Numerical examples III

Convergence

Figure: Convergence for shear-thickening fluids. The slopes indicate the expected order of convergence, i.e. $O_{vel}^1 = O_{pre}^1 = \frac{2}{r-1}$ for $r \in \{2.25, 2.5, 2.75\}$.

Lid-driven cavity I

Lid-driven cavity II

Figure: r = 1.25 (shear-thinning fluid)

Lid-driven cavity III

Figure: r = 2 (Newtonian fluid)

Lid-driven cavity IV

Figure: r = 2.75 (shear-thickening fluid)

References I

Botti, M., Castanon Quiroz, D., Di Pietro, D. A., and Harnist, A. (2020).

A Hybrid High-Order method for creeping flows of non-Newtonian fluids.

Botti, M., Di Pietro, D. A., and Sochala, P. (2017).

A Hybrid High-Order method for nonlinear elasticity. SIAM J. Numer. Anal., 55(6):2687-2717.

A Hybrid High-Order discretization method for nonlinear poroelasticity. Comput. Meth. Appl. Math. Published online

Carstensen, C. and Tran, N. T. (2020).

Unstabilized hybrid high-order method for a class of degenerate convex minimization problems.

Di Pietro, D. A. and Droniou, J. (2017a).

A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math. Comp., 86(307):2159-2191.

Di Pietro, D. A. and Droniou, J. (2017b).

 $W^{S,P}$ -approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Lerav-Lions problems. Math. Models Methods Appl. Sci., 27(5):879-908.

Di Pietro, D. A. and Droniou, J. (2020).

The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications, volume 19 of Modeling, Simulation and Application.

Springer International Publishing

References II

Di Pietro, D. A., Droniou, J., and Harnist, A. (2021).

Improved error estimates for Hybrid High-Order discretizations of Leray–Lions problems. *Calcolo*. Accepted for publication.

Di Pietro, D. A., Droniou, J., and Manzini, G. (2018).

Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes. J. Comput. Phys., 355:397–425.