An introduction to Hybrid High-Order methods

Daniele A. Di Pietro

Institut Montpelliérain Alexander Grothendieck, University of Montpellier

Toulouse, 9 February 2018

Outline

2 Application to the incompressible Navier–Stokes problem

Outline

1 Basics of HHO methods

2 Application to the incompressible Navier–Stokes problem

- Capability of handling general polyhedral meshes
- Construction valid for arbitrary space dimensions
- Arbitrary approximation order (including k = 0)
- Robustness with respect to the variations of the physical coefficients
- Reduced computational cost after static condensation

$$N_{\mathrm{dof},h} = \mathrm{card}(\mathcal{F}_h^{\mathrm{i}}) \binom{k+d-1}{d-1}$$

Polyhedral meshes

Figure: Admissible meshes in 2d and 3d, and HHO solution on the agglomerated 3d mesh

• Let $\Omega \subset \mathbb{R}^d$, $d \ge 1$, denote a bounded, connected polyhedral domain • For $f \in L^2(\Omega)$, we consider the Poisson problem

$$-\Delta u = f \qquad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial \Omega$$

• In weak form: Find $u \in H_0^1(\Omega)$ s.t.

$$a(u, v) \coloneqq (\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Projectors on local polynomial spaces

- At the core of HHO are projectors on local polynomial spaces
- With X = T or X = F, the L^2 -projector $\pi_X^{0,l} : L^1(X) \to \mathbb{P}^l(X)$ is s.t.

$$(\pi_X^{0,l}v - v, w)_X = 0$$
 for all $w \in \mathbb{P}^l(X)$

• The elliptic projector $\pi_T^{1,l}: W^{1,1}(T) \to \mathbb{P}^l(T)$ is s.t.

$$(\nabla(\pi_T^{1,l}v-v),\nabla w)_T = 0$$
 for all $w \in \mathbb{P}^l(T)$ and $(\pi_T^{1,l}v-v,1)_T = 0$

Both π_T^{0,l} and π_T^{1,l} have optimal approximation properties in P^l(T)
See [DP and Droniou, 2017a, DP and Droniou, 2017b]

Computing $\pi_T^{1,k+1}$ from L^2 -projections of degree k

• The following integration by parts formula is valid for all $w \in C^{\infty}(\overline{T})$:

$$(\boldsymbol{\nabla} v, \boldsymbol{\nabla} w)_T = -(v, \Delta w)_T + \sum_{F \in \mathcal{F}_T} (v, \boldsymbol{\nabla} w \cdot \boldsymbol{n}_{TF})_F$$

• Specializing it to $w \in \mathbb{P}^{k+1}(T)$, we can write

$$(\boldsymbol{\nabla}\boldsymbol{\pi}_T^{1,k+1}\boldsymbol{v},\boldsymbol{\nabla}\boldsymbol{w})_T = -(\boldsymbol{\pi}_T^{0,k}\boldsymbol{v}, \boldsymbol{\Delta}\boldsymbol{w})_T + \sum_{F\in\mathcal{F}_T} (\boldsymbol{\pi}_F^{0,k}\boldsymbol{v}_{|F},\boldsymbol{\nabla}\boldsymbol{w}\cdot\boldsymbol{n}_{TF})_F$$

Moreover, it can be easily seen that

$$(\pi_T^{1,k+1}v - v, 1)_T = (\pi_T^{1,k+1}v - \pi_T^{0,k}v, 1)_T = 0$$

Hence, $\pi_T^{1,k+1}v$ can be computed from $\pi_T^{0,k}v$ and $(\pi_F^{0,k}v_{|F})_{F\in\mathcal{F}_T}$!

Discrete unknowns

Figure: \underline{U}_T^k for $k \in \{0, 1, 2\}$

- Let a polynomial degree $k \ge 0$ be fixed
- For all $T \in \mathcal{T}_h$, we define the local space of discrete unknowns
 - $\underline{U}_T^k \coloneqq \left\{ \underline{v}_T = (v_T, (v_F)_{F \in \mathcal{F}_T}) \ : \ v_T \in \mathbb{P}^k(T) \text{ and } v_F \in \mathbb{P}^k(F) \quad \forall F \in \mathcal{F}_T \right\}$
- The local interpolator $\underline{I}_T^k: H^1(T) \to \underline{U}_T^k$ is s.t., for all $v \in H^1(T)$,

$$\underline{I}_T^k v \coloneqq (\pi_T^{0,k} v, (\pi_F^{0,k} v_{|F})_{F \in \mathcal{F}_T})$$

Local potential reconstruction

• Let $T \in \mathcal{T}_h$. We define the local potential reconstruction operator

$$r_T^{k+1}: \underline{U}_T^k \to \mathbb{P}^{k+1}(T)$$

s.t. for all $\underline{v}_T\in \underline{U}_T^k$, $(r_T^{k+1}\underline{v}_T-v_T,1)_T=0$ and

$$(\boldsymbol{\nabla} \boldsymbol{r}_T^{k+1} \underline{\boldsymbol{\nu}}_T, \boldsymbol{\nabla} \boldsymbol{w})_T = -(\boldsymbol{\nu}_T, \Delta \boldsymbol{w})_T + \sum_{F \in \mathcal{F}_T} (\boldsymbol{\nu}_F, \boldsymbol{\nabla} \boldsymbol{w} \cdot \boldsymbol{n}_{TF})_F \quad \forall \boldsymbol{w} \in \mathbb{P}^{k+1}(T)$$

By construction, we have

$$r_T^{k+1} \circ \underline{I}_T^k = \pi_T^{1,k+1}$$

■ $r_T^{k+1} \circ \underline{I}_T^k$ has therefore optimal approximation properties in $\mathbb{P}^{k+1}(T)$

We would be tempted to approximate

$$a_{|T}(u,v) \approx (\nabla r_T^{k+1} \underline{u}_T, \nabla r_T^{k+1} \underline{v}_T)_T$$

This choice, however, is not stable in general. We consider instead

$$\mathbf{a}_T(\underline{u}_T,\underline{v}_T) \coloneqq (\boldsymbol{\nabla} r_T^{k+1}\underline{u}_T,\boldsymbol{\nabla} r_T^{k+1}\underline{v}_T)_T + \mathbf{s}_T(\underline{u}_T,\underline{v}_T)$$

• The role of s_T is to ensure $\|\cdot\|_{1,T}$ -coercivity with

$$\|\underline{v}_T\|_{1,T}^2 \coloneqq \|\boldsymbol{\nabla} v_T\|_T^2 + \sum_{F \in \mathcal{F}_T} \frac{1}{h_F} \|v_F - v_T\|_F^2 \quad \forall \underline{v}_T \in \underline{U}_T^k$$

Assumption (Stabilization bilinear form)

The bilinear form $\mathbf{s}_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ satisfies the following properties:

- Symmetry and positivity. s_T is symmetric and positive semidefinite.
- Stability. It holds, with hidden constant independent of h and T,

$$\mathbf{a}_T(\underline{v}_T, \underline{v}_T)^{\frac{1}{2}} \simeq \|\underline{v}_T\|_{1,T} \quad \forall \underline{v}_T \in \underline{U}_T^k.$$

Polynomial consistency. For all $w \in \mathbb{P}^{k+1}(T)$ and all $\underline{v}_T \in \underline{U}_T^k$,

 $\mathbf{s}_T(\underline{I}_T^k w, \underline{v}_T) = 0.$

Stabilization III

• The following stable choice violates polynomial consistency:

$$\mathbf{s}_T^{\mathrm{hdg}}(\underline{u}_T,\underline{v}_T)\coloneqq \sum_{F\in\mathcal{F}_T} h_F^{-1}(u_F-u_T,v_F-v_T)_F$$

To circumvent this problem, we penalize the high-order differences s.t.

$$(\delta^k_T \underline{v}_T, (\delta^k_T F \underline{v}_T)_{F \in \mathcal{F}_T}) \coloneqq \underline{I}^k_T r_T^{k+1} \underline{v}_T - \underline{v}_T$$

The classical HHO stabilization bilinear form reads

$$\mathbf{s}_T(\underline{u}_T,\underline{v}_T)\coloneqq \sum_{F\in\mathcal{F}_T} h_F^{-1}((\delta_T^k-\delta_{TF}^k)\underline{u}_T,(\delta_T^k-\delta_{TF}^k)\underline{v}_T)_F$$

Discrete problem

Define the global space with single-valued interface unknowns

$$\begin{split} \underline{U}_{h}^{k} &\coloneqq \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{F}_{h}}) : \\ v_{T} \in \mathbb{P}^{k}(T) \quad \forall T \in \mathcal{T}_{h} \text{ and } v_{F} \in \mathbb{P}^{k}(F) \quad \forall F \in \mathcal{F}_{h} \right\} \end{split}$$

and its subspace with strongly enforced boundary conditions

$$\underline{U}_{h,0}^k \coloneqq \left\{ \underline{v}_h \in \underline{U}_h^k \ : \ v_F \equiv 0 \quad \forall F \in \mathcal{F}_h^\mathrm{b} \right\}$$

• The discrete problem reads: Find $\underline{u}_h \in \underline{U}_{h,0}^k$ s.t.

$$\mathbf{a}_{h}(\underline{u}_{h},\underline{v}_{h}) \coloneqq \sum_{T \in \mathcal{T}_{h}} \mathbf{a}_{T}(\underline{u}_{T},\underline{v}_{T}) = \sum_{T \in \mathcal{T}_{h}} (f,v_{T})_{T} \quad \forall \underline{v}_{h} \in \underline{U}_{h,0}^{k}$$

Well-posedness follows from coercivity and discrete Poincaré

Convergence

Theorem (Energy-norm error estimate)

Assume $u \in H_0^1(\Omega) \cap H^{k+2}(\mathcal{T}_h)$. We have the following energy error estimate:

$$\|\boldsymbol{\nabla}_h(r_h^{k+1}\underline{u}_h-u)\|+|\underline{u}_h|_{s,h}\lesssim h^{k+1}|u|_{H^{k+2}(\mathcal{T}_h)},$$

with $(r_h^{k+1}\underline{u}_h)_{|T} \coloneqq r_T^{k+1}\underline{u}_T$ for all $T \in \mathcal{T}_h$ and $|\underline{u}_h|_{s,h}^2 \coloneqq \sum_{T \in \mathcal{T}_h} s_T(\underline{u}_T, \underline{u}_T)$.

Theorem (Superclose L^2 -norm error estimate)

Further assuming elliptic regularity and $f \in H^1(\mathcal{T}_h)$ if k = 0,

$$\|r_h^{k+1}\underline{u}_h - u\| \lesssim h^{k+2}\mathcal{N}_k,$$

with $\mathcal{N}_0 \coloneqq \|f\|_{H^1(\mathcal{T}_h)}$ and $\mathcal{N}_k \coloneqq |u|_{H^{k+2}(\mathcal{T}_h)}$ for $k \ge 1$.

Static condensation I

- Fix a basis for $\underline{U}_{h,0}^k$ with functions supported by only one T or F
- Partition the discrete unknowns into element- and interface-based:

$$\mathsf{U}_{h} = \begin{bmatrix} \mathsf{U}_{\mathcal{T}_{h}} \\ \mathsf{U}_{\mathcal{F}_{h}^{\mathrm{i}}} \end{bmatrix}$$

■ U_h solves the following linear system:

$$\begin{bmatrix} \mathsf{A}_{\mathcal{T}_h}\mathcal{T}_h & \mathsf{A}_{\mathcal{T}_h}\mathcal{F}_h^{\mathrm{i}} \\ \mathsf{A}_{\mathcal{T}_h^{\mathrm{i}}}\mathcal{T}_h & \mathsf{A}_{\mathcal{T}_h^{\mathrm{i}}}\mathcal{F}_h^{\mathrm{i}} \end{bmatrix} \begin{bmatrix} \mathsf{U}_{\mathcal{T}_h} \\ \mathsf{U}_{\mathcal{T}_h^{\mathrm{i}}} \end{bmatrix} = \begin{bmatrix} \mathsf{F}_{\mathcal{T}_h} \\ \mathsf{0} \end{bmatrix}$$

• $A_{\mathcal{T}_h\mathcal{T}_h}$ is block-diagonal and SPD, hence inexpensive to invert

Static condensation II

This remark suggests a two-step solution strategy:

Element unknowns are eliminated solving the local balances

$$\mathsf{U}_{\mathcal{T}_{h}} = \mathsf{A}_{\mathcal{T}_{h}}^{-1} \mathcal{T}_{h} \left(\mathsf{F}_{\mathcal{T}_{h}} - \mathsf{A}_{\mathcal{T}_{h}} \mathcal{F}_{h}^{\mathrm{i}} \mathsf{U}_{\mathcal{F}_{h}^{\mathrm{i}}} \right)$$

Face unknowns are obtained solving the global transmission problem

$$\mathsf{A}_{h}^{\mathrm{sc}}\mathsf{U}_{\mathcal{F}_{h}^{\mathrm{i}}} = -\mathsf{A}_{\mathcal{T}_{h}\mathcal{F}_{h}}^{\mathrm{T}}\mathsf{A}_{\mathcal{T}_{h}\mathcal{T}_{h}}^{-1}\mathsf{F}_{\mathcal{T}_{h}}$$

with global system matrix

$$\mathsf{A}^{\mathrm{sc}}_{h} \coloneqq \mathsf{A}_{\mathcal{F}_{h}\mathcal{F}_{h}} - \mathsf{A}_{\mathcal{T}_{h}\mathcal{F}_{h}}^{\mathrm{T}} \mathsf{A}_{\mathcal{T}_{h}\mathcal{T}_{h}}^{-1} \mathsf{A}_{\mathcal{T}_{h}\mathcal{F}_{h}}$$

 $\mathsf{A}^{\mathrm{sc}}_h$ is SPD and its stencil involves neighbours through faces

Numerical examples

2d test case, smooth solution, uniform refinement

Figure: 2d test case, trigonometric solution. Energy (left) and L^2 -norm (right) of the error vs. h for uniformly refined triangular (top) and hexagonal (bottom) mesh families

Numerical examples I 3d industrial test case, adaptive refinement, cost assessment

Figure: Geometry (left), numerical solution (right, top) and final adaptive mesh (right, bottom) for the comb-drive actuator test case [DP and Specogna, 2016]

Numerical examples II 3d industrial test case, adaptive refinement, cost assessment

Figure: Results for the comb drive benchmark.

Numerical examples III 3d industrial test case, adaptive refinement, cost assessment

Figure: Computing wall time (s) vs. number of DOFs for the comb drive benchmark, AGMG solver.

Numerical examples I

3d test case, singular solution, adaptive coarsening

Figure: Fichera corner benchmark, adaptive mesh coarsening [DP and Specogna, 2016]

Numerical examples II

3d test case, singular solution, adaptive coarsening

Figure: Error vs. number of DOFs for the Fichera corner benchmark, adaptively coarsened meshes

Outline

2 Application to the incompressible Navier–Stokes problem

- Capability of handling general polyhedral meshes
- Construction valid for both d = 2 and d = 3
- Arbitrary approximation order (including k = 0)
- Inf-sup stability on general meshes
- Robust handling of dominant advection
- Reduced computational cost after static condensation

$$N_{\text{dof},h} = d \operatorname{card}(\mathcal{F}_{h}^{i}) \binom{k+d-1}{d-1} + \binom{k+d}{d}$$

- MHO for Stokes [Aghili, Boyaval, DP, 2015]
- Pressure-robust HHO for Stokes [DP, Ern, Linke, Schieweck, 2016]
- HHO for Navier-Stokes [DP and Krell, 2017]
- Péclet-robust HHO for Oseen [Aghili and DP, 2017]
- Darcy-robust HHO for Brinkman [Botti, DP, Droniou, 2018]

The incompressible Navier-Stokes equations I

• Let $d \in \{2,3\}$, $v \in \mathbb{R}^*_+$, $f \in L^2(\Omega)^d$, $U := H^1_0(\Omega)^d$, and $P := L^2_0(\Omega)$ • The INS problem reads: Find $(u, p) \in U \times P$ s.t.

$$\begin{aligned} \mathbf{v}a(\mathbf{u},\mathbf{v}) + t(\mathbf{u},\mathbf{u},\mathbf{v}) + b(\mathbf{v},p) &= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \qquad \forall \mathbf{v} \in \mathbf{U}, \\ -b(\mathbf{u},q) &= 0 \qquad \forall q \in P, \end{aligned}$$

where

$$a(\boldsymbol{u},\boldsymbol{v}) \coloneqq \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v}, \quad b(\boldsymbol{v},q) \coloneqq -\int_{\Omega} (\boldsymbol{\nabla} \cdot \boldsymbol{v})q, \quad t(\boldsymbol{w},\boldsymbol{u},\boldsymbol{v}) \coloneqq \int_{\Omega} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{u} \boldsymbol{w}$$

Here, we have used the matrix-product notation, so that

$$\nabla u \ u = \sum_{j=1}^d u_j \partial_j u$$

The incompressible Navier-Stokes equations II

• Integrating by parts and using $\boldsymbol{u} = \boldsymbol{0}$ on $\partial \Omega$ and $\nabla \cdot \boldsymbol{w} = 0$ in Ω , we get

$$t(\boldsymbol{w}, \boldsymbol{u}, \boldsymbol{v}) = \frac{1}{2} \int_{\Omega} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{u} \, \boldsymbol{w} - \frac{1}{2} \int_{\Omega} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{v} \, \boldsymbol{w}$$

This shows that t is non dissipative: For all $w, v \in U$ it holds

$$t(\boldsymbol{w},\boldsymbol{v},\boldsymbol{v})=0$$

Discrete spaces I

Figure: Local velocity space \underline{U}_T^k for $k \in \{0, 1, 2\}$

For $k \ge 0$, we define the global space of discrete unknowns

$$\underline{U}_{h}^{k} \coloneqq \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{F}_{h}}) : \\ v_{T} \in \mathbb{P}^{k}(T)^{d} \quad \forall T \in \mathcal{T}_{h} \text{ and } v_{F} \in \mathbb{P}^{k}(F)^{d} \quad \forall F \in \mathcal{F}_{h} \right\}$$

• The restriction to $T \in \mathcal{T}_h$ is denoted by \underline{U}_T^k , and $\underline{v}_T = (v_T, (v_F)_{F \in \mathcal{F}_T})$

• The global interpolator $\underline{I}_{h}^{k}: H^{1}(\Omega)^{d} \to \underline{U}_{h}^{k}$ is s.t. $\forall v \in H^{1}(\Omega)^{d}$

$$\underline{I}_{h}^{k} \boldsymbol{v} \coloneqq ((\boldsymbol{\pi}_{T}^{0,k} \boldsymbol{v}_{|T})_{T \in \mathcal{T}_{h}}, (\boldsymbol{\pi}_{F}^{0,k} \boldsymbol{v}_{|F})_{F \in \mathcal{F}_{h}})$$

The velocity space strongly accounting for boundary conditions is

$$\underline{U}_{h,0}^k \coloneqq \left\{ \underline{v}_h \in \underline{U}_h^k \ : \ \boldsymbol{v}_F = \boldsymbol{0} \quad \forall F \in \mathcal{F}_h^{\mathrm{b}} \right\}$$

The discrete pressure space is defined setting

$$P_h^k \coloneqq \left\{ q_h \in \mathbb{P}^k(\mathcal{T}_h) \mid \int_{\Omega} q_h = 0 \right\}$$

Reconstructions of differential operators

• For $l \ge 0$, the gradient reconstruction $G_T^l : \underline{U}_T^k \to \mathbb{P}^l(T)^{d \times d}$ is s.t.

$$\int_T G_T^l \underline{v}_T : \tau = -\int_T v_T \cdot (\nabla \cdot \tau) + \sum_{F \in \mathcal{F}_T} \int_F v_F \cdot (\tau \ \boldsymbol{n}_{TF}) \quad \forall \tau \in \mathbb{P}^l(T)^{d \times d}$$

• The velocity reconstruction $\mathbf{r}_T^{k+1} : \underline{U}_T^k \to \mathbb{P}^{k+1}(T)^d$ is s.t.

$$\int_T (\nabla \boldsymbol{r}_T^{k+1} \underline{\boldsymbol{\nu}}_T - \boldsymbol{G}_T^k \underline{\boldsymbol{\nu}}_T) : \nabla \boldsymbol{w} = 0 \quad \forall \boldsymbol{w} \in \mathbb{P}^{k+1}(T)^d, \quad \int_T \boldsymbol{r}_T^{k+1} \underline{\boldsymbol{\nu}}_T - \boldsymbol{\nu}_T = \boldsymbol{0}$$

Global reconstructions are defined setting for all $T \in \mathcal{T}_h$ and $\underline{v}_h \in \underline{U}_h^k$

$$(\boldsymbol{G}_h^l \underline{\boldsymbol{v}}_h)_{|T} \coloneqq \boldsymbol{G}_T^l \underline{\boldsymbol{v}}_T, \quad (\boldsymbol{r}_h^{k+1} \underline{\boldsymbol{v}}_h)_{|T} \coloneqq \boldsymbol{r}_T^{k+1} \underline{\boldsymbol{v}}_T, \quad D_h^k \underline{\boldsymbol{v}}_h \coloneqq \operatorname{tr}(\boldsymbol{G}_h^k \underline{\boldsymbol{v}}_h)$$

• The viscous term is discretized by means of the bilinear form a_h s.t.

$$\mathbf{a}_h(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h) \coloneqq \int_{\Omega} \boldsymbol{G}_h^k \underline{\boldsymbol{u}}_h : \boldsymbol{G}_h^k \underline{\boldsymbol{v}}_h + \mathbf{s}_h(\underline{\boldsymbol{u}}_h,\underline{\boldsymbol{v}}_h)$$

 \blacksquare As in the scalar case, several possible choices for \mathbf{s}_h ensure that

$$C_a^{-1} \|\underline{\mathbf{v}}_h\|_{1,h}^2 \le \mathbf{a}_h(\underline{\mathbf{v}}_h,\underline{\mathbf{v}}_h) \le C_a \|\underline{\mathbf{v}}_h\|_{1,h}^2 \quad \forall \underline{\mathbf{v}}_h \in \underline{U}_h^k$$

with real number C_a independent of h and of the problem data Variable viscosity can be treated following [DP and Ern, 2015] The pressure-velocity coupling is realized by means of the bilinear

$$\mathbf{b}_h(\underline{\mathbf{v}}_h, q_h) \coloneqq -\int_{\Omega} D_h^k \underline{\mathbf{v}}_h q_h$$

• A crucial point is that b_h satisfies the following inf-sup condition

$$\forall q_h \in P_h^k, \quad \beta \|q_h\|_{L^2(\Omega)} \leq \sup_{\underline{\nu}_h \in \underline{U}_{h,0}^k, \|\underline{\nu}_h\|_{1,h} = 1} \mathbf{b}_h(\underline{\nu}_h, q_h)$$

This stability result is valid on general meshes and for any $k \ge 0$

Convective term I

Recall the skew-symmetric expression of t:

$$t(\boldsymbol{w}, \boldsymbol{u}, \boldsymbol{v}) = \frac{1}{2} \int_{\Omega} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{u} \, \boldsymbol{w} - \frac{1}{2} \int_{\Omega} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{v} \, \boldsymbol{w}$$

Inspired by this reformulation, we set

$$t_h(\underline{w}_h, \underline{u}_h, \underline{v}_h) \coloneqq \frac{1}{2} \int_{\Omega} v_h^{\mathrm{T}} \boldsymbol{G}_h^{2k} \underline{u}_h w_h - \frac{1}{2} \int_{\Omega} u_h^{\mathrm{T}} \boldsymbol{G}_h^{2k} \underline{v}_h w_h$$

By design, t_h is non dissipative: For all $\underline{w}_h, \underline{v}_h$,

 $\mathrm{t}_h(\underline{w}_h,\underline{v}_h,\underline{v}_h)=0$

Convective term II

- In practice, one does not need to actually compute G_h^{2k}
- In fact, expanding ${m G}_h^{2k}$ according to its definition, we have

$$t_h(\underline{w}_h, \underline{u}_h, \underline{v}_h) = \sum_{T \in \mathcal{T}_h} t_T(\underline{w}_T, \underline{u}_T, \underline{v}_T),$$

where, for all $T \in \mathcal{T}_h$,

$$\begin{split} t_T(\underline{w}_T, \underline{u}_T, \underline{v}_T) &\coloneqq -\frac{1}{2} \int_T u_T^{\mathrm{T}} \nabla v_T w_T + \frac{1}{2} \sum_{F \in \mathcal{F}_T} \int_F (u_F \cdot v_T) (w_T \cdot n_{TF}) \\ &+ \frac{1}{2} \int_T v_T^{\mathrm{T}} \nabla u_T w_T - \frac{1}{2} \sum_{F \in \mathcal{F}_T} \int_F (v_F \cdot u_T) (w_T \cdot n_{TF}) \end{split}$$

The discrete problem reads: Find $(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$ s.t.

$$\begin{split} \mathbf{v}\mathbf{a}_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + \mathbf{t}_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + \mathbf{b}_{h}(\underline{\boldsymbol{v}}_{h},p_{h}) &= \int_{\Omega} \boldsymbol{f}\cdot\boldsymbol{v}_{h} \quad \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{U}}_{h,0}^{k}, \\ -\mathbf{b}_{h}(\underline{\boldsymbol{u}}_{h},q_{h}) &= 0 \qquad \forall q_{h} \in P_{h}^{k} \end{split}$$

Well-posedness I

Theorem (Existence and a priori bounds)

There exists a solution $(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$ such that

$$\|\underline{u}_{h}\|_{1,h} \leq C_{a}C_{s}\nu^{-1}\|f\|, \|p_{h}\| \leq C\left(\|f\| + \nu^{-2}\|f\|^{2}\right),$$

with C_s discrete Poincaré constant, and C > 0 independent of h and v.

Theorem (Uniqueness of the discrete solution)

Assume that the forcing term verifies

$$\|f\| \le \frac{\nu^2}{2C_a^2 C_t C_s}$$

with C_t continuity constant of t_h . Then, the solution is unique.

Theorem (Convergence to minimal regularity solutions)

It holds up to a subsequence, as $h \rightarrow 0$,

• $u_h \rightarrow u$ strongly in $L^p(\Omega)^d$ for $p \in [1, +\infty)$ if $d = 2, p \in [1, 6)$ if d = 3;

•
$$G_h^k \underline{u}_h \to \nabla u$$
 strongly in $L^2(\Omega)^{d \times d}$;

•
$$\mathbf{s}_h(\underline{\boldsymbol{u}}_h, \underline{\boldsymbol{u}}_h) \to 0;$$

• $p_h \rightarrow p$ strongly in $L^2(\Omega)$.

If the exact solution is unique, the whole sequence converges.

Key tools: discrete Sobolev embeddings and Rellick–Kondrachov compactness results from [DP and Droniou, 2017a]

Theorem (Convergence rates for small data)

Assume uniqueness for both (\underline{u}_h, p_h) and (\underline{u}, p) . Assume, moreover, the additional regularity $(\underline{u}, p) \in H^{k+2}(\Omega)^d \times H^{k+1}(\Omega)$, as well as

$$\|f\| \le \frac{\nu^2}{2C_I C_a C_t (1+C_{\rm P}^2)},$$

with C_a and C_t as above, C_I boundedness constant of \underline{I}_h^k , and C_P continuous Poincaré constant. Then, with hidden constant independent of both h and v,

$$\|\underline{u}_{h} - \underline{I}_{h}^{k} u\|_{1,h} + \nu^{-1} \|p_{h} - \pi_{h}^{0,k} p\|_{L^{2}(\Omega)} \leq h^{k+1} \mathcal{N}_{u,p}.$$

with $N_{\boldsymbol{u},p} \coloneqq (1 + \nu^{-1} \|\boldsymbol{u}\|_{H^2(\Omega)^d}) \|\boldsymbol{u}\|_{H^{k+2}(\Omega)^d} + \nu^{-1} \|p\|_{H^{k+1}(\Omega)}$

Static condensation

- Partition the discrete velocity unknowns as before, and the pressure unknowns into average value + oscillations inside each element
- At each iteration, the linear system has the form

$$\begin{bmatrix} \mathsf{A}_{\mathcal{T}_{h}}\mathcal{T}_{h} & \widetilde{\mathsf{B}}_{\mathcal{T}_{h}} & \mathsf{A}_{\mathcal{T}_{h}}\mathcal{F}_{h}^{i} & \overline{\mathsf{B}}_{\mathcal{T}_{h}} \\ \mathsf{A}_{\mathcal{T}_{h}^{i}}\mathcal{T}_{h} & \widetilde{\mathsf{B}}_{\mathcal{T}_{h}^{i}} & \mathsf{A}_{\mathcal{T}_{h}^{i}}\mathcal{F}_{h}^{i} & \overline{\mathsf{B}}_{\mathcal{T}_{h}} \\ \widetilde{\mathsf{B}}_{\mathcal{T}_{h}}^{\mathrm{T}} & 0 & \widetilde{\mathsf{B}}_{\mathcal{T}_{h}^{i}}^{\mathrm{T}} & 0 \\ \overline{\mathsf{B}}_{\mathcal{T}_{h}}^{\mathrm{T}} & 0 & \overline{\mathsf{B}}_{\mathcal{T}_{h}^{i}}^{\mathrm{T}} & 0 \end{bmatrix} \begin{bmatrix} \mathsf{U}_{\mathcal{T}_{h}} \\ \widetilde{\mathsf{P}}_{\mathcal{T}_{h}} \\ \mathsf{U}_{\mathcal{T}_{h}^{i}} \\ \overline{\mathsf{P}}_{\mathcal{T}_{h}} \end{bmatrix} = \begin{bmatrix} \mathsf{F}_{\mathcal{T}_{h}} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- Static condensation of $U_{\mathcal{T}_h}$ and $\widetilde{P}_{\mathcal{T}_h}$ is possible
- Impact of static condensation on the global matrix?

Numerical example: Kovasznay flow

- We consider the exact solution of [Kovasznay, 1948].
- Let $\Omega \coloneqq (-0.5, 1.5) \times (0, 2)$ and set

$$\operatorname{Re} \coloneqq (2\nu)^{-1}, \qquad \lambda \coloneqq \operatorname{Re} - \left(\operatorname{Re}^2 + 4\pi^2\right)^{\frac{1}{2}}$$

The components of the velocity are given by

$$u_1(\mathbf{x}) \coloneqq 1 - \exp(\lambda x_1) \cos(2\pi x_2), \qquad u_2(\mathbf{x}) \coloneqq \frac{\lambda}{2\pi} \exp(\lambda x_1) \sin(2\pi x_2),$$

and pressure given by

$$p(\mathbf{x}) \coloneqq -\frac{1}{2} \exp(2\lambda x_1) + \frac{\lambda}{2} (\exp(4\lambda) - 1)$$

Numerical example: Kovasznay flow Cartesian mesh family, $\nu = 0.1$

h	$\ \underline{u}_h - \underline{\widehat{u}}_h\ _{1,h}$	OCR	$\ \boldsymbol{u}_h - \widehat{\boldsymbol{u}}_h\ $	OCR	$\ p_h - \hat{p}_h\ $	OCR		
<i>k</i> = 0								
0.13	1.02	_	0.33	_	1.84	_		
$6.25 \cdot 10^{-2}$	0.55	0.89	0.17	0.99	0.21	3.14		
$3.12 \cdot 10^{-2}$	0.34	0.68	$4.31 \cdot 10^{-2}$	1.94	$4.36 \cdot 10^{-2}$	2.26		
$1.56 \cdot 10^{-2}$	0.19	0.86	$1.09 \cdot 10^{-2}$	1.98	$1.37 \cdot 10^{-2}$	1.67		
$7.81 \cdot 10^{-3}$	$9.72 \cdot 10^{-2}$	0.96	$2.7 \cdot 10^{-3}$	2.02	$3.78 \cdot 10^{-3}$	1.86		
k = 1								
0.13	0.45	_	0.15	_	0.44	_		
$6.25 \cdot 10^{-2}$	0.24	0.94	$3.39 \cdot 10^{-2}$	2.11	$3.45 \cdot 10^{-2}$	3.68		
$3.12 \cdot 10^{-2}$	$6.46 \cdot 10^{-2}$	1.86	$4.26 \cdot 10^{-3}$	2.99	$8.58 \cdot 10^{-3}$	2		
$1.56 \cdot 10^{-2}$	$1.78 \cdot 10^{-2}$	1.86	$5.58 \cdot 10^{-4}$	2.93	$1.23 \cdot 10^{-3}$	2.8		
$7.81 \cdot 10^{-3}$	$4.65 \cdot 10^{-3}$	1.94	$7.11 \cdot 10^{-5}$	2.98	$1.87 \cdot 10^{-4}$	2.72		
k = 2								
0.13	0.25	_	$6.41 \cdot 10^{-2}$	_	$9.8 \cdot 10^{-2}$	_		
$6.25 \cdot 10^{-2}$	$4.83 \cdot 10^{-2}$	2.34	$5.81 \cdot 10^{-3}$	3.46	$7.55 \cdot 10^{-3}$	3.7		
$3.12 \cdot 10^{-2}$	$7.11 \cdot 10^{-3}$	2.76	$3.45 \cdot 10^{-4}$	4.06	$7.71 \cdot 10^{-4}$	3.28		
$1.56 \cdot 10^{-2}$	$1.01 \cdot 10^{-3}$	2.82	$2.07 \cdot 10^{-5}$	4.06	$7 \cdot 10^{-5}$	3.46		
$7.81 \cdot 10^{-3}$	$1.34 \cdot 10^{-4}$	2.92	$1.25 \cdot 10^{-6}$	4.06	$6.54 \cdot 10^{-6}$	3.43		
k = 3								
0.13	$7.84 \cdot 10^{-2}$	_	$2.1 \cdot 10^{-2}$	_	$3.46 \cdot 10^{-2}$	_		
$6.25 \cdot 10^{-2}$	$7.5 \cdot 10^{-3}$	3.39	$8.03 \cdot 10^{-4}$	4.71	$1.39 \cdot 10^{-3}$	4.64		
$3.12 \cdot 10^{-2}$	$5.11 \cdot 10^{-4}$	3.87	$2.52 \cdot 10^{-5}$	4.98	$7.31 \cdot 10^{-5}$	4.24		
$1.56 \cdot 10^{-2}$	$3.43 \cdot 10^{-5}$	3.9	$8.15 \cdot 10^{-7}$	4.95	$3.87 \cdot 10^{-6}$	4.24		
$7.81 \cdot 10^{-3}$	$2.22 \cdot 10^{-6}$	3.96	$2.59 \cdot 10^{-8}$	4.98	$2.17\cdot 10^{-7}$	4.16		

Numerical example: Kovasznay flow $Hexagonal mesh family, \nu = 0.1$

h	$\ \underline{u}_h - \underline{\widehat{u}}_h\ _{1,h}$	OCR	$\ \boldsymbol{u}_h - \widehat{\boldsymbol{u}}_h\ $	OCR	$\ p_h - \hat{p}_h\ $	OCR	
<i>k</i> = 0							
0.14	1.64	_	0.62	_	2.1	_	
$7.33 \cdot 10^{-2}$	0.64	1.44	0.19	1.81	0.24	3.31	
$3.69 \cdot 10^{-2}$	0.44	0.56	$7.12 \cdot 10^{-2}$	1.42	$9.99 \cdot 10^{-2}$	1.28	
$1.85 \cdot 10^{-2}$	0.25	0.79	$2.32 \cdot 10^{-2}$	1.62	$3.94 \cdot 10^{-2}$	1.35	
$9.27 \cdot 10^{-3}$	0.13	0.91	$6.7 \cdot 10^{-3}$	1.8	$1.32 \cdot 10^{-2}$	1.58	
k = 1							
0.14	0.53	_	0.22	_	0.28	_	
$7.33 \cdot 10^{-2}$	0.22	1.32	$3.95 \cdot 10^{-2}$	2.64	$5.25 \cdot 10^{-2}$	2.58	
$3.69 \cdot 10^{-2}$	$7.26 \cdot 10^{-2}$	1.63	$4.81 \cdot 10^{-3}$	3.07	$1.26 \cdot 10^{-2}$	2.08	
$1.85 \cdot 10^{-2}$	$1.96 \cdot 10^{-2}$	1.9	$5.81 \cdot 10^{-4}$	3.06	$2.37 \cdot 10^{-3}$	2.42	
$9.27 \cdot 10^{-3}$	$5.07 \cdot 10^{-3}$	1.96	$6.75 \cdot 10^{-5}$	3.12	$4.07\cdot 10^{-4}$	2.55	
k = 2							
0.14	0.28	_	$7.84 \cdot 10^{-2}$	_	0.11	_	
$7.33 \cdot 10^{-2}$	$5.23 \cdot 10^{-2}$	2.56	$6.37 \cdot 10^{-3}$	3.84	$1.19 \cdot 10^{-2}$	3.39	
$3.69 \cdot 10^{-2}$	$8.32 \cdot 10^{-3}$	2.68	$5.32 \cdot 10^{-4}$	3.62	$1.7 \cdot 10^{-3}$	2.84	
$1.85 \cdot 10^{-2}$	$1.16 \cdot 10^{-3}$	2.85	$3.74 \cdot 10^{-5}$	3.85	$2.04 \cdot 10^{-4}$	3.07	
$9.27 \cdot 10^{-3}$	$1.52 \cdot 10^{-4}$	2.94	$2.44 \cdot 10^{-6}$	3.95	$2.61 \cdot 10^{-5}$	2.98	
k = 3							
0.14	$7.1 \cdot 10^{-2}$	_	$1.56 \cdot 10^{-2}$	_	$2.23 \cdot 10^{-2}$	_	
$7.33 \cdot 10^{-2}$	$9.66 \cdot 10^{-3}$	3.05	$1.1 \cdot 10^{-3}$	4.05	$2.31 \cdot 10^{-3}$	3.47	
$3.69 \cdot 10^{-2}$	$8.97 \cdot 10^{-4}$	3.46	$5.36 \cdot 10^{-5}$	4.4	$1.7 \cdot 10^{-4}$	3.8	
$1.85 \cdot 10^{-2}$	$6.8 \cdot 10^{-5}$	3.74	$2.13 \cdot 10^{-6}$	4.67	$1.08 \cdot 10^{-5}$	3.99	
$9.27 \cdot 10^{-3}$	$4.68 \cdot 10^{-6}$	3.87	$7.6 \cdot 10^{-8}$	4.82	$6.69 \cdot 10^{-7}$	4.03	

Numerical example: Kovasznay flow Hexagonal mesh family, HDG trilinear form, $\nu = 0.1$

h	$\ \underline{u}_h - \underline{\widehat{u}}_h\ _{1,h}$	OCR	$\ \boldsymbol{u}_h - \widehat{\boldsymbol{u}}_h\ $	OCR	$\ p_h - \widehat{p}_h\ $	OCR		
<i>k</i> = 1								
0.14 7.33 · 10 ⁻²	0.22		Not converge $3.99 \cdot 10^{-2}$	ed	$4.83 \cdot 10^{-2}$	_		
$1.85 \cdot 10^{-2}$ $9.27 \cdot 10^{-3}$	$1.94 \cdot 10^{-2}$ $5.04 \cdot 10^{-3}$	1.86 1.95	$4.94 \cdot 10^{-4}$ $5.87 \cdot 10^{-4}$ $6.64 \cdot 10^{-5}$	$3.04 \\ 3.09 \\ 3.15$	$9.91 \cdot 10^{-3}$ $1.94 \cdot 10^{-3}$ $3.5 \cdot 10^{-4}$	2.31 2.36 2.48		
k = 2								
$\begin{array}{r} 0.14 \\ 7.33 \cdot 10^{-2} \\ 3.69 \cdot 10^{-2} \\ 1.85 \cdot 10^{-2} \\ 9.27 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 4.96\cdot 10^{-2} \\ 8.38\cdot 10^{-3} \\ 1.18\cdot 10^{-3} \\ 1.55\cdot 10^{-4} \end{array}$	 2.59 2.84 2.94	Not converge $6.36 \cdot 10^{-3}$ $5.52 \cdot 10^{-4}$ $3.92 \cdot 10^{-5}$ $2.58 \cdot 10^{-6}$		$9.52 \cdot 10^{-3}$ $1.38 \cdot 10^{-3}$ $1.73 \cdot 10^{-4}$ $2.25 \cdot 10^{-5}$			
k = 3								
$0.14 \\ 7.33 \cdot 10^{-2} \\ 3.69 \cdot 10^{-2} \\ 1.85 \cdot 10^{-2} \\ 9.27 \cdot 10^{-3} \\ \end{cases}$	$\begin{array}{c} 6.69 \cdot 10^{-2} \\ 9.61 \cdot 10^{-3} \\ 9.14 \cdot 10^{-4} \\ 6.99 \cdot 10^{-5} \\ 4.83 \cdot 10^{-6} \end{array}$	2.97 3.43 3.72 3.87	$\begin{array}{c} 1.52 \cdot 10^{-2} \\ 1.1 \cdot 10^{-3} \\ 5.56 \cdot 10^{-5} \\ 2.24 \cdot 10^{-6} \\ 8.01 \cdot 10^{-8} \end{array}$	4.01 4.35 4.65 4.82	$\begin{array}{c} 1.65 \cdot 10^{-2} \\ 1.91 \cdot 10^{-3} \\ 1.5 \cdot 10^{-4} \\ 9.86 \cdot 10^{-6} \\ 6.17 \cdot 10^{-7} \end{array}$	3.3 3.71 3.94 4.01		

References I

Aghili, J., Boyaval, S., and Di Pietro, D. A. (2015).

Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Meth. Appl. Math., 15(2):111–134.

An advection-robust Hybrid High-Order method for the Oseen problem. Preprint hal-01541389.

Botti, L., Di Pietro, D. A., and Droniou, J. (2018).

A robust Hybrid High-Order discretisation of the Brinkman problem. Submitted.

Di Pietro, D. A. and Droniou, J. (2017a).

A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math. Comp., 86(307):2159-2191.

Di Pietro, D. A. and Droniou, J. (2017b).

W^{S,D}-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems. Math. Models. Methods Appl. Sci., 27(5):879-908.

Di Pietro, D. A. and Ern, A. (2015).

A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Engrg., 283:1-21.

Di Pietro, D. A., Ern, A., and Lemaire, S. (2014).

An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math., 14(4):461–472.

Di Pietro, D. A., Ern, A., Linke, A., and Schieweck, F. (2016).

A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Meth. Appl. Mech. Engrg., 306:175-195.

References II

Di Pietro, D. A. and Krell, S. (2017).

A Hybrid High-Order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput. Published online. DOI 10.1007/s10915-017-0512-x.

Di Pietro, D. A. and Specogna, R. (2016).

An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics. J. Comput. Phys., 326(1):35–55.

Di Pietro, D. A. and Tittarelli, R. (2017).

An introduction to Hybrid High-Order methods. Preprint arXiv:1703.05136.

Kovasznay, L. S. G. (1948).

Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc., 44:58-62.