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The model problem

The General Field Equations

Volcano Eruption Black Holes Cell Biology
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The model problem

The General Field Equations

Volcano Eruption Black Holes Cell Biology

{
−∆u = f in Ω ⊂ R2

u = 0 on ∂Ω.
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The model problem

The General Field Equations

Volcano Eruption Black Holes Cell Biology

{
−∆u = f in Ω ⊂ R2

u = 0 on ∂Ω.

Joint work with L. Beirão da Veiga, F. Brezzi, D. Marini and G. Vacca
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The model problem

Poisson equation

Let Ω be a reasonable domain in R2, and f ∈ L2(Ω). We define:

V := H1
0 (Ω), a(u, v) :=

∫
Ω
∇u · ∇v dx, F (v) :=

∫
Ω
f v dx

And we consider the following variational problem:{
find u ∈ V such that

a(u, v) = F (v) for all v ∈ V (Ω).
(1)

This is the weak form of Poisson equation with homogeneous Dirichlet
boundary conditions: {

−∆u = f in Ω

u = 0 on ∂Ω.

We will consider conformal Galerkin approximations of (1), with Vh ⊂ V .
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The Virtual Element Method

Key steps of the Virtual Element Method

Decompose the domain into general polygons.

Define local spaces using differential operators. Ensure that
polynomials are inside. Choose carefully the degrees of freedom.

Define projection operators onto polynomials which are computable
from the degrees of freedom.

Use the projection operators to discretize the problem, ensuring
k-consistency (≈ patch test). Add stability.
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The Virtual Element Method

The local VEM space Vk(P )

Let P be a polygon with straight edges. Mimicking the classical Lagrange
Finite Elements for triangles, we define a finite element space Vk(P ) on P
such that:

Vk(P ) contains the space Pk(P ) of polynomials of degree less than or
equal to k (plus - possibly - other non-polynomial functions);

a function in Vk(P ) restricted to an edge e is in Pk(e), so that if two
polygons P and P ′ have an edge in common, the two spaces Vk(P )
and Vk(P

′) can be easily “glued” in C0(P ∪ P ′) (compatibility with
FEM);

given functions uh, vh ∈ Vk(P ), I can “compute” the bilinear form
aP (uh, vh) and the load term FP (vh) (or at least reasonably good
approximations).
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The Virtual Element Method

The local VEM space Vk(P )

We start with a trivial remark:

pk ∈ Pk(P ) =⇒ ∆pk ∈ Pk−2(P ).

Since we want that our space contains the polynomials of degree k, we
define the local VEM space as follows:

Vk(P ) := {vh ∈ C0(P̄ ) such that: vh|e ∈ Pk(e), ∆vh ∈ Pk−2(P )}

If the polygon E has Ne edges (and NV = Ne vertices), it is clear that

dimVk(P ) = NV + (k − 1)Ne + dimPk−2(P ) = kNe +
k(k − 1)

2

Is the space Vk(P ) OK?
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The Virtual Element Method

The local VEM space Vk(P )

Is the space Vk(P ) OK?

YES: it contains polynomials of degree up to k and is conformal, so
(under some regularity assumptions on the polygonal mesh) order k
approximation in H1 is guaranteed. . .

BUT: the functions in Vk(P ) are not known explicitly; they are defined
through the solution of a PDE in the element.

We need computable projectors!
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The Virtual Element Method

Degrees of freedom in Vk(P )

Recall that

dimVk(P ) = NV + (k − 1)Ne + dimPk−2(P ).

As degrees of freedom in Vk(P ), we choose:

the value of vh at the vertices and at k − 1 points on each edge;

the (scaled) moments
1

|P |

∫
P
vhmα dx for 0 ≤ |α| ≤ k − 2

where mα is a scaled monomial of degree |α|.

We easily see that the degrees of freedom above are unisolvent in Vk(P ).
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The Virtual Element Method

The Π∇k projector onto Pk(P )

We can define a projector Π∇k : Vk(P )→ Pk(P ) which is computable.

The projector Π∇k is orthogonal with respect to the energy scalar product
in H1(P ):∫

P
∇
[
Π∇k vh

]
· ∇pk dx =

∫
P
∇vh · ∇pk dx for all pk ∈ Pk(P )

∫
P

Π∇k vh dx =

∫
P
vh dx to fix the constant function

By integration by parts we easily see that Π∇k vh is computable from the
degrees of freedom of vh.
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The Virtual Element Method

The Π∇k projector onto Pk(P )

We basically only need to check that the right hand side∫
P
∇vh · ∇pk dx

is computable from the degrees of freedom of vh. Integrating by parts:∫
P
∇vh · ∇pk dx = −

∫
P
vh ∆pk dx+

∫
∂P
vh (∇pk · n) ds

and the result follows by observing that

∆pk ∈ Pk−2(P ) which implies that

∫
P
vh ∆pk dx is computable,

vh is a known polynomial of degree k on each edge,

∇pk is a known polynomial of degree k − 1 on each edge.
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Polygons with curved edges

Polygons with curved edges

Assume that we have a polygon with a curved edge γ:

In the rest of the talk:

e will denote a straight edge;

γ a possibly curved edge.
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Polygons with curved edges

The local VEM space Vk(P )

We make a crucial remark:

In order to define the local VEM space Vk(P ), we only need to
change the definition of the space on the curved edge γ.

The rest of the construction can be done in the same way as before.

A function vh ∈ Vk(P ) is then defined by the following properties:

for each straight edge e, vh|e ∈ Pk(e)
for each curved edge γ, vh|e ∈ Vk(γ) (to be defined!)

vh|∂P continuous

∆vh ∈ Pk−2(P ) as before.
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Polygons with curved edges

Does Vk(P ) still contain polynomials of degree k?

Does Vk(P ) contain polynomials of degree k?

The answer is:
it depends on whether Vk(γ) contains the restrictions to γ of polynomials
in two variables.

We define

Pk(γ) = {restrictions to γ of polynomials in two variables}

If Pk(γ) is “almost contained” in Vk(γ)
then

Pk(P ) is “almost contained” in Vk(P ).
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Polygons with curved edges

Does Vk(P ) still contain polynomials of degree k?

Let pk(x, y) be a polynomial of degree k in two variables. We want to see
to what extent “pk ∈ Vk(P )”.

Assume that Vk(γ) contains “almost” the restriction of Pk(P ) to γ, i.e.
that there exists a small function ε which lives on γ such that

pk |γ 6∈ Vk(γ) but pk |γ + ε ∈ Vk(γ)

Consider the virtual function wh ∈ Vk(P ) that solves:

wh = pk + ε on γ

wh = pk on the other (straight) edges e;

∆wh = ∆pk ∈ Pk−2(P ) in P .
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Polygons with curved edges

Does Vk(P ) still contain polynomials of degree k?

Then the difference (wh − pk) solves the problem

(wh − pk) = ε on γ

(wh − pk) = 0 on the other (straight) edges;

∆(wh − pk) = 0 in P .

Hence

wh − pk = O(ε) on γ =⇒ wh = pk +O(ε) in P in the right norms.

In other words:

if the space Vk(γ) on the curved edge “approximates well” the
restrictions of polynomials,

then the virtual space Vk(P ) “approximates well” the polynomials
“automatically”.
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Polygons with curved edges

The “rough” and the “phony” way

So far we have explored two quite different ways for the definition of the
space Vk(γ): the unofficial names are “rough” and “phony” (“rozzi” and
“farlocchi” in italian).

The “rough” way. In this case, we assume that the curve γ is
parametrized and we define Vk(γ) as the functions which are
polynomials of degree k in the parameter.

The “phony” way. Here we bite the bullet and define Vk(γ) directly
as the restrictions to γ of all polynomials in two variables:
Vk(γ) = Pk(γ).

It is clear that if the edge γ happens to be straight, in both cases we are
back to the space of polynomials in one variable (unless you are crazy and
do not parametrize the edge with an affine map!).
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The rough way

The rough way

We then assume the the edge γ is given in parametric form:

t 7→ γ(t) = (x(t), y(t)), t ∈ [a, b].
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The rough way

The rough way

For each parametrized curved edge t 7→ γ(t), we define the edge space
Vk(γ) as

Vk(γ) = {w : γ → R :

w(γ(t)) = vh(x(t), y(t)) is a polynomial of degree k}

It is clear that if γ is straight, its parametrization is linear (affine) and we
recover the standard VEM space.
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The rough way

The degrees of freedom are the same as before

pointwise values at the vertices;

pointwise values at k − 1 “equispaced” points on the edge
(equispaced with respect to t ∈ [a, b] for a curved edge);

moments against scaled monomials up to degree k − 2 inside.

Hence the dimension of Vk(P ) is the same as before.
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The rough way

The Π∇k projector onto Pk(P ) can still be computed

We can still define the projector Π∇k : Vk(P )→ Pk(P ).

As before, the projector Π∇k is orthogonal with respect to the energy scalar
product in H1(P ):∫

P
∇
[
Π∇k vh

]
· ∇pk dx =

∫
P
∇vh · ∇pk dx for all pk ∈ Pk(P )

∫
∂P

Π∇k vh dx =

∫
∂P
vh dx to fix the constant function

We show now that Π∇k vh is computable if we know the degrees of freedom
of vh.
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The rough way

The Π∇k projector onto Pk(P ) can still be computed

We only need to check that the right hand side∫
P
∇vh · ∇pk dx

is computable from the degrees of freedom of vh. Integrating by parts:∫
P
∇vh · ∇pk dx = −

∫
P
vh ∆pk dx+

∫
∂P
vh (∇pk · n) ds

and the result follows by observing that

∆pk ∈ Pk−2(P ) which implies that

∫
P
vh ∆pk dx is computable,

vh is a known polynomial of degree k on each straight edge e,

vh is a known function in Vk(γ) on each curved edge γ,

∇pk is a known polynomial of degree k − 1 on each edge.
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The rough way

Issues

The local VEM space Vk(P ) does not contain polynomials, since the
corresponding edge space Vk(γ) does not contain the restriction of
polynomials in two variables. Hence the method will not pass the
patch test.

We need to integrate polynomials on curvilinear polygons and
(known) functions on curves; of course in general we will not be able
to compute the integrals exactly. Hence, the degree of precision of
the quadrature formulas will come into play.
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The rough way

Does it work??????

Roughly speaking, if a local space Vk(P ) contains all polynomials up to
degree k, and we have a “regular” mesh sequence with h going to zero, a
Gakerkin method converges with the right order.

We can miss the polynomials, but not too much. . . otherwise convergence
is lost.

The easiest case is when the curved edges come from the boundary of the
domain or from an internal, fixed interface, which is the case covered by
the isoparametric classical finite elements.
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The rough way

Does it work??????
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The rough way

Does it work??????
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When the elements get smaller, they also get flatter.

Hence for the rough VEM, the gap between polynomials and Vk(P )
diminishes as h −→ 0 and the method works.
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The rough way

Main result

In the paper The Virtual Element Method with Curved Edges, ESAIM:
M2AN 53 (2019), pp. 375–404 (also arXiv:1711.04306v2) together with L.
Beirão da Veiga and G. Vacca we have proved that for the “fixed curved
boundary” or the “fixed curved interface” problem, the Virtual Element
Method described above converges with optimal rates, provided all
integrals are computed without error.

This is the extension to VEM of the results that hold for the classical
isoparametric Finite Elements.

From the numerical experiments it is apparent that it is enough to
compute all integrals with the same precision necessary for the straight
edge case. In other words, the bottom line is:

take into account the curved geometry
but reuse the code for the straight edge case.
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The rough way

General curved edges - not flattening

Jigsaw mesh

In this case we don’t have convergence!
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The rough way

Polynomial edges

Idea: we can raise the degree of the VEM on the edges independently of
the accuracy k. The VEM local space is still well defined.

Assume that the curve describing the curved edge γ is a polynomial of
degree d:

γ(t) = (x(t), y(t)), x, y ∈ Pd(R)
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The rough way

The “enhanced rough” way

Now if pk(x, y) is a polynomial of degree k in two variables, the function

pk ◦ γ : t 7→ pk(x(t), y(t))

is a polynomial of degree kd in t.

Hence, in order to include all polynomials of degree k in the local VEM
space Vk(P ), we change the definition of Vk(γ) as follows:

for each curved edge γ(t) which is a polynomial of degree d,

vh ∈ Vk(γ) means vh ◦ γ ∈ Pkd(R)

In other words, the function t 7→ vh(x(t), y(t)) must a polynomial of

degree kd in the paramatrization parameter t.

for each straight edge e, vh|e ∈ Pk(e) (as before)

∆vh ∈ Pk−2(P ) (as before)
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The rough way

The “enhanced rough” way

Jigsaw mesh, enhanced rough VEM

γ = cubic polynomial, degree 3× 3 = 9 on each edge
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The rough way

The “enhanced rough” way

Jigsaw mesh, enhanced rough VEM
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The phony way

The phony way

If we want to keep polynomials inside our local VEM spaces, we can
simply define the edge space as the restriction to the edge of polynomials
of degree k in two variables, i.e.

Vk(γ) = Pk(γ)

If we proceed in this way, as we observed before we ensure that
polynomials are included in Vk(P ), whatever the shape of γ.

This seems very natural, maybe a little bit expensive, but we don’t need
any parametrization - at least for the definition.

The real problem is the dimension of the space Pk(γ)!
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The phony way

Dimension of Pk(γ)

If γ is a “generic” curve (i.e. not the zeros of some polynomial) then

dimPk(γ) = dimPk(R2) =
(k + 1)(k + 2)

2

However, if γ is straight then

dimPk(γ) = dimPk(R1) = k + 1

and all intermediate case are possible!

The situation is even worse, since the dimension of Pk(γ) is unstable with
respect to small changes in γ, and I think it would be really hard to decide
in the code case by case the “numerical” dimension of Pk(γ).

After long discussions, our point of view is the following: we don’t want to
check the dimension of Pk(γ). We want a method that works in ALL
cases, even when γ is a segment. In other words: we don’t want to care.
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The phony way

Degrees of freedom for Pk(γ)

Since Pk(γ) are the restrictions to γ of polynomials in two variables up to
degree k, we describe Pk(γ) with the polynomials in two variables up to
degree k. Hence we start from a mesh with a curved edge γ:
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The phony way

Degrees of freedom for Pk(γ)

For the curved edge γ we construct the Lagrange nodes for polynomials in
two variables up to degree k:

We identify a function in Vk(γ) by its pointwise values in the Lagrange
nodes: the “phony” dofs.
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The phony way

Degrees of freedom for Pk(γ)

The phony dofs at the vertices are special because they are also “true”
dofs, connecting the two worlds:
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The phony way

Degrees of freedom for Pk(γ)
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dofs, connecting the two worlds:
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The phony way

Degrees of freedom for Vk(P )

We go back now to our polygon P and the local VEM space Vk(P ):

There are 8 phony dofs {∗} and 22 true dofs {•,�}. If the edge γ
becomes straight, then 6 of the phony dofs become useless. All
intermediate cases are possible.
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The phony way

Degrees of freedom for Vk(P )

Hence dimVk(P ) is between 24 and 30 depending on γ.

Since we don’t want to decide what kind of curve γ is, we keep 30
parameters to describe Vk(P ).

Note that we do not assume that they are degrees of freedom.

Given an array Vh in R30, we define the associated function vh ∈ Vk(P ) in
the following way:

Take the 10 values of Vh corresponding to the 8 phony dofs and the
2 true dofs on the vertices of γ;

build the corresponding interpolation polynomial pk in two variables
(recall that in the example k = 3);

define vh on γ as the restriction of pk on γ.

Use the true edge dofs of Vh to determine vh on the other edges.

Use the true internal dofs of Vh to determine vh inside.
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The phony way

Degrees of freedom for Vk(P )

The reverse path would be:

Take a function vh ∈ Vk(P );

restrict vh on the edge γ;

from the restriction of vh to γ identify a polynomial pk in two
variables;

the array Vh ∈ R30 is given by

the true dofs of vh for straight edges and in the interior of P ;
the value of pk at the phony dofs

As we have already seen, this path is unstable.

Vh =⇒ vh is OK;

vh =⇒ Vh is forbidden.
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The phony way

Degrees of freedom for Pk(P )

We have seen that we can go from the parameters in R30 to a function
but not viceversa.

There is a notable exception: we can reverse the path when the function is
a polynomial pk.

In fact, regardless of the shape of γ, we can always define an array Pk
associated with a polynomial pk by simply computing the value of pk at
the phony dofs, simply observing that polynomials are globally defined.

Pk ⇐⇒ pk is OK for polynomials

Pk =⇒ pk =⇒ Pk
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The phony way

The phony method

The simplest VEM for the Laplace operator defines the local approximate
bilinear form on P in the following way:

aPh (uh, vh) =∫
P
∇Π∇k uh · ∇Π∇k vh dx+

∑
`

dof`(uh −Π∇k uh) dof`(vh −Π∇k vh)

where the index ` in the summation runs across all dofs.

This is the so-called “dofi-dofi” stabilization.
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The phony way

The phony method

Since our unknown will be the array Uh, we need to find a related
approximate bilinear form defined on arrays:

aPh (Uh,Vh) =∫
P
∇Π∇k Uh · ∇Π∇k Vh dx+

∑
`

dof`(Uh −Π∇k Uh) dof`(Vh −Π∇k Vh)

Now:

Π∇k Vh is defined through the projection of the associated function vh:
Vh =⇒ vh =⇒ Π∇k vh

dof`(Vh) is simply the `-th component of the array Vh;

Π∇k Vh = Π∇k vh is a polynomial of degree k, and we have seen that
we can associate to it an array of dofs in a consistent way.
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The phony way

Local stiffness matrix in the singular case

When the curve γ “degenerates”, the consistency part becomes singular
but the stability takes care of it:
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The phony way

Local stiffness matrix in the singular case

We see now what happens to the local stiffness matrix in this case.

Suppose that γ is straight and take the array Φi which is 1 only on
the useless phony dof i and 0 on the other dofs (true and phony).

The corresponding basis function ϕi is identically zero, and the same
obviously happens for Π∇k ϕi.

Hence the consistency term is all zero:∫
P
∇Π∇k Φj · ∇Π∇k Φi dx = 0 for all j.

The stability term reduces to∑
`

dof`(Φj −Π∇k Φj) dof`(Φi −Π∇k Φi) =∑
`

dof`(Φj −Π∇k Φj) δ`i = δji − dofi(Π
∇
k Φj)

and if j is also a useless phony dof, then we get the identity matrix.
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The phony way

Local stiffness matrix in the singular case

Local VEM stiffness matrix
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The phony way

Numerical experiments

γ = sin γ straight

The curved edges degenerate to straight edges.
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The phony way

Numerical experiments - patch test k = 3

γ = sin γ straight

The solution doesn’t change when the curved edges degenerate to straight
edges.
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The phony way

Numerical experiments - Poisson equation k = 3

γ = sin γ straight

The solution doesn’t change when the curved edges degenerate to straight
edges.
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The phony way

Numerical experiments - convergence

γ = quadratic

Here the curved edges γ are quadratic polynomials and k = 3. Hence the
dimension of Vk(γ) is not equal to the dimension of polynomials in two
variables, and there are phony dofs that are useless. The methods works in
any case, without need to check!
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The phony way

Numerical experiments - convergence k = 3
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γ = quadratic

In all the experiments I have overkilled the integration over polygons with
curved edges. The minimum degree of precision of the quadrature
formulas to be used in order to preserve optimal convergence is unknown.
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Conclusions and perspectives

Conclusion and perspectives

There is a lot of work to do!

The classical VEM machinery continue to work (enhancing for L2

projectors, variable coefficients,. . . ).

The methods presented could be of interest also for triangular and
quadrilateral FEM meshes with curved edges.

Integration over curved polygons and polyhedra must be investigated.

Extension to three dimensions?

Thanks for your attention!
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