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The original “serendipity phenomenon”

` = 4 ` = 32

Finite element method for ∆u = 0.
Boundary data: sin(x) ey

Domain: [0, 3]2, with `× ` square grid.
Code: MATLAB

Quadratic
tensor product

element:

Q−
2

Quadratic
serendipity
element:

S−
2

` DoFs ||u − uh||2 ratio order ||∇u −∇uh||2 ratio order
2 25 4.2029e-01 1.9410e+00
4 81 5.7476e-02 7.313 2.870 5.0683e-01 3.830 1.937
8 289 7.3802e-03 7.788 2.961 1.2823e-01 3.952 1.983
16 1089 9.2909e-04 7.943 2.990 3.2157e-02 3.988 1.996
32 4225 1.1635e-04 7.986 2.997 8.0455e-03 3.997 1.999

` DoFs ||u − uh||2 ratio order ||∇u −∇uh||2 ratio order
2 21 5.6921e-01 0.000 0.000 2.4006e+00 0.000 0.000
4 65 6.0711e-02 9.376 3.229 5.3156e-01 4.516 2.175
8 225 7.4447e-03 8.155 3.028 1.2947e-01 4.106 2.038

16 833 9.3040e-04 8.002 3.000 3.2221e-02 4.018 2.007
32 3201 1.1637e-04 7.995 2.999 8.0491e-03 4.003 2.001
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The original “serendipity” phenomenon

` = 4 ` = 32

Finite element method for ∆u = 0.
Boundary data: sin(x) ey

Domain: [0, 3]2, with `× ` square grid.
Code: MATLAB
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How much of a savings in DoFs can we get for large r?
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Serendipity per-element DoF savings grow with r
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→ DoFs per Q−r (scalar) element in dim n = (r + 1)n

→ DoFs per Sr (scalar) element in dim n = O(r n/n!)

→ In 2D, for large r , Qr has ≈ 2 times as many DoFs per element as Sr

→ In 3D, for large r , Qr has ≈ 5.8 times as many DoFs per element as Sr ,
including more than 2 times as many DoFs shared between elements!
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Additional potential savings for solvers

Patch-based solvers depend on a stencil of DoFs around
each vertex in a mesh. Stencils for P3 on a triangular
mesh and S3 on a quad mesh are shown.

↪→ from a proposal with Rob Kirby (Baylor U.); currently under review
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Ex: In 3D, a Q5 patch has ≈ 12 times the number of DoFs as a S5 patch
=⇒ a quadratic order complexity solver with Q5 patches would have
≈ 144 times longer run times than one with S5 patches!

Takeaway: robustly implementing serendipity elements should allow significant
reduction in computational cost with no loss in order of accuracy.
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Two key insights from Arnold and Awanou

→ Scalar serendipity elements exist for any order r ≥ 1 in any dimension n ≥ 2.
ARNOLD, AWANOU “The serendipity family of finite elements ”, Foundations of Computational Mathematics, 2011

· · ·

r = 2 r = 3 r = 4 r = 5 r = 6 · · ·

→ Scalar serendipity elements are part of a family of finite element differential forms.
ARNOLD, AWANOU “Finite element differential forms on cubical meshes”, Mathematics of Computation, 2013

Ex: S1Λ2(�3) is an element for

r = 1 → linear order of error decay
k = 2 → conformity in Λ2(R3) H(div)

n = 3 → domains in R3
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The ‘Periodic Table of the Finite Elements’
ARNOLD, LOGG, “Periodic table of the finite elements,” SIAM News, 2014.

Classification of many common conforming finite element types.

n → Domains in R2 (top half) and in R3 (bottom half)
r → Order 1, 2, 3 of error decay (going down columns)
k → Conformity type k = 0, . . . , n (going across a row)

Geometry types: Simplices (left half) and cubes (right half).
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Method selection and cochain complexes

⇒
Provably stable method

converges to
u = x(1− x)y(1− y)

⊂ H(div) ⊂ L2

Stable pairs of elements for mixed Hodge-Laplacian problems are found by choosing
consecutive spaces in compatible discretizations of the L2 deRham Diagram.

H1
grad

∇ // H(curl)
curl

∇× // H(div)
div

∇· // L2

vector Poisson σ µ

Maxwell’s eqn’s h b

Darcy / Poisson u p

Stable pairs are found from consecutive entries in a cochain complex.
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Exact cochain complexes found in the table

P−r Λk Pr Λ
k Q−r Λk Sr Λ

k

Cochain complexes occur either horizontally or diagonally in the table as shown.

Methods can be chosen from P or P− (simplices) and Q− or S (cubes).

Mysteriously, the DoF count for mixed methods from the P− spaces is smaller
than those from the P spaces, while the opposite is true for Q− and S spaces.
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The 5th column: Trimmed serendipity spaces

+0 +0 +0 +1

+0 +0 +3 +4

+0 +0 +9 +10

A new column for the PToFE:
the trimmed serendipity elements.

S−r Λk (�n) denotes
approximation order r ,
subset of k -form space Λk (Ω),
use on meshes of n-dim’l cubes.

Defined for any n ≥ 1, 0 ≤ k ≤ n, r ≥ 1

Identical or analogous properties to all the
other colummns in the table.

Computational advantage:
Fewer DoFs for mixed methods than both
tensor product and serendipity counterparts.

G., KLOEFKORN “Trimmed Serendipity Finite Element Differential
Forms.” Mathematics of Computation, to appear, 2019.
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Correct usage on unstructured quad/hex meshes

Quadratic serendipity elements, mapped non-affinely, are only expected to converge
at the rate of linear elements.

reference physical ||u − uh||L2 ||∇(u − uh)||L2

linear O(h 2) O(h)

quadratic O(h 2) O(h)
serendipity

quadratic O(h 3) O(h 2)
tensor prod.

Similar problems for all elements in the serendipity families!

ARNOLD, BOFFI, FALK, “Approximation by Quadrilateral Finite Elements,” Mathematics of Computation, 2002

ARNOLD, BOFFI, FALK, “Quadrilateral H(div) Finite Elements,” SINUM, 2005.

ARNOLD, BOFFI, BONIZZONI, “Finite element differential forms on curvilinear cubic meshes,” Numer. Math., 2014
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One way out: use VEM serendipity!

S−2 Λ1(�2)

S−3 Λ1(�2)

S−4 Λ1(�2)

→ The VEM serendipity spaces VEMSf
r,r,r−1 on quads have

the same degree of freedom counts as the trimmed serendipity
spaces S−r+1Λ1(�2)

→ Similar equivalences hold between other VEM serendipity
spaces and other (trimmed) serendipity spaces.

→ Going the VEM route means giving up on local basis
functions.

BEIRÃO DA VEIGA, BREZZI, MARINI, RUSSO “Serendipity face and edge VEM spaces”
Rendiconti Lincei-Matematica e Applicazioni, 2017.
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Another way out: basis functions on physical elements

→ Define basis functions ψij on physical elements:

uh = Iqu :=
n∑

i=1

u(vi )ψii + u
(

vi + vi+1

2

)
ψi(i+1)

→ Hard to generalize and compute beyond quadratic order n = 2 n = 4

Non-affine bilinear mapping

||u − uh||L2 ||∇(u − uh)||L2

n error rate error rate
2 5.0e-2 6.2e-1
4 6.7e-3 2.9 1.8e-1 1.8
8 9.7e-4 2.8 5.9e-2 1.6

16 1.6e-4 2.6 2.3e-2 1.4
32 3.3e-5 2.3 1.0e-2 1.2
64 7.4e-6 2.1 4.96e-3 1.1

Physical element basis functions:

||u − uh||L2 ||∇(u − uh)||L2

n error rate error rate
2 2.34e-3 2.22e-2
4 3.03e-4 2.95 6.10e-3 1.87
8 3.87e-5 2.97 1.59e-3 1.94

16 4.88e-6 2.99 4.04e-4 1.97
32 6.13e-7 3.00 1.02e-4 1.99
64 7.67e-8 3.00 2.56e-5 1.99

RAND, G., BAJAJ “Quadratic Serendipity Finite Elements on Polygons Using Generalized Barycentric Coordinates.”
Mathematics of Computation , 83:290, 2014.
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“Half-and-half”: the Arbogast-Correa technique

A finite element space on a general quadrilateral is built in two parts:

Apply Piola mapping to functions associated to boundary of reference element.

Define functions on the physical element corresponding to interior degrees of
freedom in a way that ensures relevant polynomial approximation properties.

ARBOGAST, CORREA “Two families of H(div) mixed finite elements on quadrilaterals of minimal
dimension,” SIAM J. Numerical Analysis, 2016
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Building a computational basis

dx dy dz
−yz xz 0

0 −xz xy
yz xz xy

2xy x2 0
2xz 0 x2

y2 2xy 0
0 2yz y2

z2 0 2xz
0 z2 2yz

2xyz x2z x2y
y2z 2xyz xy2

yz2 xz2 2xyz

Goal: find a computational basis for S1Λ1(�3):

• Must be H(curl)-conforming

• Must have 24 functions, 2 associated to each edge of cube

• Must recover constant and linear approx. on each edge

• The approximation space contains:

(1) Any polynomial coefficient of at most linear order:
{1, x , y , z} × {dx , dy , dz} → 12 forms

(2) Certain forms with quadratic or cubic order coefficients
shown in table at left→ 12 forms

• For constants, use “obvious” functions:

{(y ± 1)(z ± 1)dx , (x ± 1)(z ± 1)dy , (x ± 1)(y ± 1)dz}

e.g. (y + 1)(z + 1)dx evaluates to zero on every edge
except {y = 1, z = 1} where it is ≡ 4→ constant approx.

Also, (y + 1)(z + 1)dx can be written as a linear combo,
by using the first three forms at left to get the yz dx term
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Building a computational basis

dx dy dz
−yz xz 0

0 −xz xy
yz xz xy

2xy x2 0
2xz 0 x2

y2 2xy 0
0 2yz y2

z2 0 2xz
0 z2 2yz

2xyz x2z x2y
y2z 2xyz xy2

yz2 xz2 2xyz

• For constant approx on edges, we used:

{(y ± 1)(z ± 1)dx , (x ± 1)(z ± 1)dy , (x ± 1)(y ± 1)dz}

• Guess for linear approx on edges:

{x(y ± 1)(z ± 1)dx , y(x ± 1)(z ± 1)dy , z(x ± 1)(y ± 1)dz}

e.g. x(y + 1)(z + 1)dx evaluates to 4x on {y = 1, z = 1}.

• Unfortunately: x(y + 1)(z + 1)dx 6∈ S1Λ(�3)!

Why? x(y + 1)(z + 1)dx = (xyz + xy + xz + x)dx

but xyz dx only appears with other cubic order coefficients!

• Remedy: add dy and dz terms that vanish on all edges.
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Building a computational basis

dx dy dz
−yz xz 0

0 −xz xy
yz xz xy

2xy x2 0
2xz 0 x2

y2 2xy 0
0 2yz y2

z2 0 2xz
0 z2 2yz

2xyz x2z x2y
y2z 2xyz xy2

yz2 xz2 2xyz

Computational basis element associated to {y = 1, z = 1}:
2x(y + 1)(z + 1) dx + (z + 1)(x2 − 1) dy + (y + 1)(x2 − 1) dz

X Evaluates to 4x on {y = 1, z = 1} (linear approx.)
X Evaluates to 0 on all other edges
X Belongs to the space S1Λ(�3):

2xyz dx + x2z dy + x2y dz
2xy dx + x2 dy + 0 dz
2xz dx + 0 dy + x2 dz
2x dx + (−z − 1)dy + (−y − 1)dz ← linear order

↪→ summation and factoring yields the desired form)

There are 11 other such functions, one per edge. We have:

S1Λ(�3) = E0Λ1(�3)︸ ︷︷ ︸
“obvious” basis for

constant approx

⊕ Ẽ1Λ1(�3)︸ ︷︷ ︸
modified basis for

linear approx
dim 24 = 12 + 12
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A complete table of computational bases
n = 3 k = 0 k = 1 k = 2 k = 3

V Λ0(�3) ∅ ∅ ∅

Sr Λk
r−2⊕
i=0

Ei Λ
0(�3)

r−1⊕
i=0

Ei Λ
1(�3)⊕ Ẽr Λ1(�3) ∅ ∅

r⊕
i=4

Fi Λ
0(�3)

r−1⊕
i=2

Fi Λ
1(�3)⊕ F̂r Λ1(�3)

r−1⊕
i=0

Fi Λ
2(�3)⊕ F̃r Λ2(�3) ∅

r⊕
i=6

Ii Λ0(�3)
r⊕

i=4

Ii Λ1(�3)
r⊕

i=2

Ii Λ2(�3)
r⊕

i=2

Ii Λ3(�3)

V Λ0(�3) ∅ ∅ ∅

S−r Λk
r−2⊕
i=0

Ei Λ
0(�3)

r−1⊕
i=0

Ei Λ
1(�3) ∅ ∅

r⊕
i=4

Fi Λ
0(�3)

r−1⊕
i=2

Fi Λ
1(�3)⊕ F̃r Λ1(�3)

r−1⊕
i=0

Fi Λ
2(�3) ∅

r⊕
i=6

Ii Λ0(�3)

r−1⊕
i=4

Ii Λ1(�3)⊕ Ĩr Λ1(�3)

r−1⊕
i=2

Ii Λ2(�3)⊕ Ĩr Λ2(�3)

r−1⊕
i=2

Ii Λ3(�3)

G., KLOEFKORN, SANDERS “Computational serendipity and tensor product finite element differential forms.”
SMAI J. Computational Mathematics, to appear, 2019.
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Open source finite element software packages I

→ open source C++ program library for
adaptive FEM, in development since 1998
→ designed to support quad/hex meshes
and h/p adaptivity

→ data structures are well-documented but
not easy to introduce new element types
without in-depth knowledge of the code

→ FEM toolkits that use Unified Form
Language to define a weak form and create
local assembly kernels
→ FEniCS passes kernels to DOLFIN’s C++
libraries and PETSc to do solves
→ Firedrake creates intermediate data
structures that are then passed to parallel
schedulers, including notions like “dofs” and
“interior facet” that more easily
accommodate extensibility

ALNÆS ET AL. “The FEniCS Project Version 1.5” Archive of Numerical Software, 2015

RATHGEBER ET AL. “Firedrake: automating the finite element method by composing abstractions”
ACM Transactions on Mathematical Software, 2016.

BANGERTH ET AL. “The deal.ii Library, Version 8.4,” Journal of Numerical Mathematics, 2016
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First pass at Firedrake implementation
→ Scalar-valued, 2D square elements only (so far!)
→ Replaced “monomial” parts of basis with Legendre polynomials.
→ Laplace problem with boundary data: cos(πx) cos(πy)

→ Domain: [0, 1]2, with `× ` square grid.
→ Code: Firedrake, with Krylov solver options

102 103 104

10−15

10−12
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# Global DoFs

||
u
−

u h
||

2

Q−
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S−
r , r = 2, . . . , 8
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Open source finite element software packages II

MFEM:

Modular
Finite
Element
Methods library

→ “free, lightweight, scalable C++ library for
FE methods,” developed at Lawrence
Livermore National Labs since 2010
→ emphasis placed on high-order methods,
parallelizability, and support for variety of
techniques
→ supports lab missions in studies of
hydrodynamics, magnetostatics, fusion,
turbulence, etc. Pictures from mfem.org/gallery

I will be working with the MFEM team at LLNL this summer to
(begin to) implement serendipity elements in their package!

ANDERSON ET AL. “MFEM: A Modular Finite Element Methods Library,” mfem.org, LLNL, 2010–2019
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