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SUMMARY: 
We formulate a nonconforming method to solve the the Biot poro-elasticity system describing the fluid flow 
in a deformable porous medium. The discretization is performed using the Hybrid High-Order (HHO) method 
for the mechanics and the Symmetric Weighted Interior Penalty (SWIP) dG method for the flow. 

DESCRIPTION :

Michele Botti, Daniele A. Di Pietro 
University of Montpellier

A nonconforming high-order method for the Biot problem on general meshes

Abstract

We propose a novel numerical method for the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed distribution.
We present the variational formulation of the stochastic partial differential system and establish its well-posedness. The approximation is based on sparse spectral projection methods, which
essentially amount to performing an ensemble of deterministic model simulations to estimate the Polynomial Chaos expansion coefficients. The deterministic solver is based on the Hybrid
High-Order discretization of [1] supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the Polynomial Chaos approximations
with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.

1. The Biot problem with random coefficients

Let µ, λ, α, c0, κ : Θ Ñ R be random variables defined on the
probability space pΘ,B,Pq. For a given domain D Ă Rd, fi-
nal time tF ą 0, load f , source g, and initial fluid content φ0;
find the displacement u and pressure p solution of

´∇¨σpθq `∇pαpθqppθqq “ f , in D ˆ Θˆ p0, tF s,
dtφpθq ´∇¨pκpθq∇ppθqq “ g, in D ˆ Θˆ p0, tF s,

φpθ, t “ 0q “ φ0, in D ˆ Θ, p` BCs q.
• Stress tensor: σpθq “ 2µpθq∇supθq ` λpθqp∇¨upθqqId
• Fluid content: φpθq “ c0pθqppθq ` αpθq∇¨upθq

Applications

- Groundwater flow,
- Reservoir modelling,
- Earthquake engineering,
- CO2 capture and storage...

Probabilistic model
We use a set of uniformly iid canonical random vari-
ables, collected into a random vector ξ : Θ Ñ r´1, 1s4,
to describe the uncertainty of the poroelastic coefficients.

µpξq “ 10pξ1`1q kPa,

λpξq “ 2 ¨ 10pξ2`1q kPa,

αpξq “ 1` αmin

2
` ξ3

1´ αmin

2
,

κpξq “ 10pξ4´1q m2kPa´1s´1.
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DESCRIPTION :
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A nonconforming high-order method for the Biot problem on general meshes

Abstract

We propose a novel numerical method for the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed distribution.
We present the variational formulation of the stochastic partial differential system and establish its well-posedness. The approximation is based on sparse spectral projection methods, which
essentially amount to performing an ensemble of deterministic model simulations to estimate the Polynomial Chaos expansion coefficients. The deterministic solver is based on the Hybrid
High-Order discretization of [1] supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the Polynomial Chaos approximations
with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.

1. The Biot problem with random coefficients

Let µ, �, ↵, c0,  : ⇥ Ñ R be random variables defined on the
probability space p⇥, B, Pq. For a given domain D Ä Rd, fi-
nal time tF ° 0, load f , source g, and initial fluid content �0;
find the displacement u and pressure p solution of

´r¨�p✓q ` rp↵p✓qpp✓qq “ f , in D ˆ ⇥ ˆ p0, tF s,
dt�p✓q ´ r¨pp✓qrpp✓qq “ g, in D ˆ ⇥ ˆ p0, tF s,

�p✓, t “ 0q “ �0, in D ˆ ⇥, p` BCs q.
• Stress tensor: �p✓q “ 2µp✓qrsup✓q ` �p✓qpr¨up✓qqId

• Fluid content: �p✓q “ c0p✓qpp✓q ` ↵p✓qr¨up✓q

Applications

- Groundwater flow,
- Reservoir modelling,
- Earthquake engineering,
- CO2 capture and storage...

Probabilistic model

We use a set of uniformly iid canonical random vari-
ables, collected into a random vector ⇠ : ⇥ Ñ r´1, 1s4,
to describe the uncertainty of the poroelastic coefficients.

µp⇠q “ 10p⇠1`1q kPa,

�p⇠q “ 2 ¨ 10p⇠2`1q kPa,

↵p⇠q “ 1 ` ↵min

2
` ⇠3

1 ´ ↵min

2
,
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Distribution of c0pµ, �, ↵q.

2. Stochastic discretization

Polynomial chaos expansions

The discretization of the elasticity operator is realized by the
function ah : Uk

h ˆ Uk
h Ñ R defined s.t.

ahpwh, vhq:“
ÿ

TPTh

ˆª

T
�p¨, Gk

s,TuT q : Gk
s,TvT ` sT pwT , vT q

˙
,

sT pwT , vT q :“
ÿ

FPFT

h´1
F

ª

F
�k

TFuT ¨ �k
TFvT .

In sT we penalize in a least-square sense the face-based
residual �k

TFvT :“ ⇡k
F prk`1

T vT ´ vF q ´ ⇡k
T prk`1

T vT ´ vT q.

3. HHO method for poroelasticity

Let Th be an admissible mesh (cf. [2]), Fh the set collecting
the mesh faces, and k • 1 a polynomial degree.

DOFs: Uk
T ˆPk

dpT q, with Uk
T :“ Pk

dpT qdˆ
$
&
%

°

FPFh

Pk
d´1pF qd

,
.
-

Discrete spaces
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Figure: Displacement and pressure discrete unknowns for k 2 {1, 2}

Let k � 1. We approximate the displacements in the HHO space

Uk
h,0 �

�
vh = ((vT )T 2Th , (vF )F 2Fh

) 2 Uk
h : vF = 0 �F 2 F b

h

 
For the pressure, we consider the broken polynomial space

Pk
h �

(
Pk(Th;R) if c0 > 0

Pk(Th;R) \ L2
0 (�;R) if c0 = 0
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k “ 1 k “ 2

The discretization of the elasticity operator is realized by

ahpwh, vhq:“
ÿ

TPTh

ˆª

T
�p¨, Gk

s,TuT q : Gk
s,TvT ` sT pwT , vT q

˙
,

sT pwT , vT q :“
ÿ

FPFT

h´1
F

ª

F
�k

TFuT ¨ �k
TFvT .

In sT we penalize in a least-square sense the face-based
residual �k

TFvT :“ ⇡k
F prk`1

T vT ´ vF q ´ ⇡k
T prk`1

T vT ´ vT q.
Symmetric gradient reconstruction operator
Gk

s,T : Uk
T Ñ Pk

dpT qdˆd
sym s.t. @⌧ P Pk

dpT qdˆd
symª

T
Gk

s,TvT : ⌧ “ ´
ª

T
vT ¨ pr¨⌧ q `

ÿ

FPFT

ª

F
vF ¨ p⌧nTF q

Lemma 1. The following commuting property holds for Gk
s,T :

Gk
s,TIk

Tv “ ⇡k
T prsvq

Displacement reconstruction operator
rk`1

T : Uk
T Ñ Pk`1

d pT qd s.t. @w P Pk`1
d pT qdª

T
prsr

k`1
T vT ´ Gk

s,TvT q : rsw “ 0 ` rigid-body motions .

The hydro-mechanical coupling is realized by means of

bhpvh, qhq :“ ´
ÿ

TPTh

ª

T
Gk

s,TvT : qhId, @vh P Uk
h, @qh P Pk

dpThq.

Lemma 2 (Inf-sup condition for bh).

D� ° 0 s.t. }qh} § � sup
vhPU k

h,0zt0u
bhpvh, qhq

}vh}a,h
, @qhPPk

dpThqXL2
0p⌦q

The discrete counterpart of the Darcy operator is given by

chprh, qhq :“
ª

⌦
rhrhrhqh `

ÿ

FPFh

&�,F

hF

ª

F
rrrhssF rrqhssF `

´
ÿ

FPFh

ª

F

` rrqhssF ttrhrhuu!,F `rrrhssF ttrhqhuu!,F

˘¨nF ,

where tt¨uu!,F and rr¨ssF are the average and jump operators.

Using an implicit time discretization (e.g. �t'
n :“ 'n´'n´1

⌧ ),
we obtain the discrete coupled problems:

At each step 1 § n § N , find un
h P Uk

h and pn
h P Pk

d s.t.

ahpun
h, vhq ` bhpvh, pn

hq “
ª

⌦
fn ¨vh @vh P Uk

h

pc0�tp
n
h, qhq ´ bhp�tun

h, qhq ` chppn
h, qhq “

ª

⌦
gn qh @qh P Pk

d

4. Point injection and poroelastic footing tests

Validation tests using the PSPmethod with l“5 and Nl“2561

‚ Data: D “ r0, 1s2, f “ 0, �0 “ 0, tF “ 1s.
Point source: g “ 10 ¨ �px ´ x0q, where x0 “ p0.25, 0.25q.
BCs on BD: u¨⌧ “ 0, run ¨ n “ 0, p “ 0.

Mean and variance pressure fields obtained using the HHO
method with k “ 3 on a Cartesian mesh with 1024 elements.

‚ Data: D “ r0, 1s2, f “ 0, g “ 0, �0 “ 0, tF “ 0.2s.
BCs: �n “ p0, ´5q on �N – tx | 0.3 § x1 § 0.7, x2 “ 1u,
�n“0 on tx2 “1uz�N , u“0 on BDztx2 “1u, p“0 on BD.

Mean and variance pressure fields obtained using the HHO
method with k “ 2 on a triangular mesh with 3584 elements.

Convergence analysis

The accuracy of the PCEs is evaluated on a 500 points LHS.
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Errors }MSEpu ´ uKq} and }MSEpp ´ pKq} vs. level l of the
Sparse Grid for the injection (left) and footing (right) tests.

5. Injection-extraction test and sensitivity analysis

Data: D“r0, 4 Kms ˆ r0, 1 Kms, f “0, g“0, �0“0, tF“1d.
Dirichlet conditions on the holes boundaries: p “ ˘100kPa.

Mean pressure field in kPa and vertical displacement in mm
obtained with k “ 1 on a Voronoi mesh with 104 elements.

First and total-order partial variances of the vertical dis-
placement related to µ (top left), � (top right), ↵ (bottom left)
and  (bottom right). PSP method with l “ 3 and Nl “ 209.
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2. Stochastic discretization

Polynomial chaos expansions
Let ρ : r´1, 1sN Ñ R` a pdf and tφkpξq : k P NNu an Hilber-
tian basis of orthogonal multivariate polynomials in ξ:

xφk, φly “
ż

Ξ
φkpξqφlpξqρpξqdξ “ δk,l.

The PC expansion of a second-order random variable X is

Xpξq “
ÿ

kPNN

Xkφkpξq.

The PC approximation XKpξq of Xpξq is obtained by trun-
cating the expansion to a finite set of multi-indices K Ă NN .

Sparse Pseudo-Spectral Projection
In the spectral projection method the modes Xk of the PC
expansion are computed using a numerical quadrature rule

Xk “ xX,φky »
Nqÿ

q“1

wpqqXpξpqqqφkpξpqqq,

where the Nq nodes ξpqq and weights wpqq are constructed
by tensorization of one-dimensional quadrature rules. The
key-idea of PSP (cf. [3]) is to apply the Smolyak’s formula on
the projection operator, yielding, for the same sparse grid, a
larger set K of basis functions φk without internal aliasing:

@k, l P K,
Nqÿ

q“1

wpqqφkpξpqqqφlpξpqqq “ δkl.

3. HHO method for poroelasticity

Let Th be an admissible mesh (cf. [2,4]), Fh the set collect-
ing the mesh faces, and k ě 1 a polynomial degree.

DOFs: Uk
TˆPkdpT q, with Uk

T :“ PkdpT qdˆ
$
&
%

ą

FPFh
Pkd´1pF qd

,
.
-

Discrete spaces

k = 1

÷÷ ÷÷

÷÷ ÷÷

÷÷ ÷
÷

÷÷÷
÷

÷÷÷÷

÷÷÷÷

÷÷
÷÷ ÷÷

÷
÷ ÷

k = 2

÷÷÷÷ ÷÷

÷÷ ÷÷ ÷÷
÷÷÷
÷ ÷÷

÷÷÷
÷÷÷

÷÷÷÷÷÷

÷÷÷÷÷÷

÷÷÷÷÷÷÷÷÷÷ ÷÷÷÷ ÷÷÷÷÷ ÷÷

Figure: Displacement and pressure discrete unknowns for k 2 {1, 2}

Let k � 1. We approximate the displacements in the HHO space

Uk
h,0 B

�
vh = ((vT )T 2Th , (vF )F 2Fh

) 2 Uk
h : vF = 0 8F 2 F b

h

 
For the pressure, we consider the broken polynomial space

Pk
h B

(
Pk(Th;R) if c0 > 0

Pk(Th;R) \ L2
0 (⌦;R) if c0 = 0
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k “ 1 k “ 2

The discretization of the elasticity operator is realized by

ahpwh,vhq:“
ÿ

TPTh

ˆż

T
σp¨,Gk

s,TuT q : Gk
s,TvT ` sT pwT ,vT q

˙
,

sT pwT ,vT q :“
ÿ

FPFT
h´1
F

ż

F
∆kTFuT ¨∆kTFvT .

In sT we penalize in a least-square sense the face-based
residual ∆kTFvT :“ πkF prk`1

T vT ´ vF q ´ πkT prk`1
T vT ´ vT q.

Symmetric gradient reconstruction operator

Gk
s,T : Uk

T Ñ PkdpT qdˆdsym s.t. @τ P PkdpT qdˆdsymż

T
Gk

s,TvT : τ “ ´
ż

T
vT ¨ p∇¨τ q `

ÿ

FPFT

ż

F
vF ¨ pτnTF q

Lemma 1. The following commuting property holds forGk
s,T :

Gk
s,TI

k
Tv “ πkT p∇svq

Displacement reconstruction operator
rk`1
T : Uk

T Ñ Pk`1
d pT qd s.t. @w P Pk`1

d pT qdż

T
p∇sr

k`1
T vT ´Gk

s,TvT q : ∇sw “ 0 ` rigid-body motions .

The hydro-mechanical coupling is realized by means of

bhpvh, qhq :“´
ÿ

TPTh

ż

T
Gk

s,TvT : qhId, @vh P Uk
h, @qh P PkdpThq.

Lemma 2 (Inf-sup condition for bh).

Dβ ą 0 s.t. }qh} ď β sup
vhPU k

h,0zt0u
bhpvh, qhq
}vh}a,h

, @qhPPkdpThqXL2
0pΩq

The discrete counterpart of the Darcy operator is given by

chprh, qhq :“
ż

Ω
κ∇hrh∇hqh `

ÿ

FPFh

ςλκ,F
hF

ż

F
rrrhssF rrqhssF `

´
ÿ

FPFh

ż

F

` rrqhssF ttκ∇hrhuuω,F `rrrhssF ttκ∇hqhuuω,F
˘¨nF ,

where tt¨uuω,F and rr¨ssF are the average and jump operators.

Using an implicit time discretization (e.g. δtϕn :“ ϕn´ϕn´1
τ ),

we obtain the discrete coupled problems:

At each step 1 ď n ď N , find unh P Uk
h and pnh P Pkd s.t.

ahpunh,vhq ` bhpvh, pnhq “
ż

Ω
fn ¨vh @vh P Uk

h

pc0δtp
n
h, qhq ´ bhpδtunh, qhq ` chppnh, qhq “

ż

Ω
gn qh @qh P Pkd

4. Point injection and poroelastic footing tests

Validation tests using the PSPmethod with l“5 andNq“2561

‚ Data: D “ r0, 1s2, f “ 0, φ0 “ 0, tF “ 1s.
Point source: g “ 10 ¨ δpx´ x0q, where x0 “ p0.25, 0.25q.
BCs on BD: u¨τ “ 0, ∇un ¨ n “ 0, p “ 0.

Mean and variance pressure fields obtained using the HHO
method with k “ 3 on a Cartesian mesh with 1024 elements.

‚ Data: D “ r0, 1s2, f “ 0, g “ 0, φ0 “ 0, tF “ 0.2s.
BCs: σn “ p0,´5q on ΓN – tx | 0.3 ď x1 ď 0.7, x2 “ 1u,
σn“0 on tx2“1uzΓN , u“0 on BDztx2“1u, p“0 on BD.

Mean and variance pressure fields obtained using the HHO
method with k “ 2 on a triangular mesh with 3584 elements.

Convergence analysis

The accuracy of the PCEs is evaluated on a 500 points LHS.
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5. Injection-extraction test and sensitivity analysis

Data: D“r0, 4 Kms ˆ r0, 1 Kms, f“0, g“0, φ0“0, tF“1d.
Dirichlet conditions on the holes boundaries: p “ ˘100kPa.

Mean pressure field in kPa and vertical displacement in mm
obtained with k “ 1 on a Voronoi mesh with 104 elements.

First and total-order partial variances of the vertical dis-
placement related to µ (top left), λ (top right), α (bottom left)
and κ (bottom right). PSP method with l “ 3 and Nq “ 209.
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