Feuille d'exercices nº 6

Autour de $P^{2 1}$

Exercice 1. Décrire les complémentaires $\mathbf{P}^2 \setminus (k^2)_1$ et $\mathbf{P}^2 \setminus (k^2)_2$ de façon géométrique.

Exercice 2. Soit $k = \mathbf{R}$ et munissons \mathbf{P}^2 de la topologie quotient suivante. Soit $\psi : S^2 \to \mathbf{P}^2$ la fonction qui à chaque $p \in S^2$ associe la droite $\mathbf{R}p$. On dira que $U \subset \mathbf{P}^2$ est ouvert si $\psi^{-1}(U)$ est ouvert de S^2 .

- 1) Montrer que \mathbf{P}^2 est compact.
- 2) Montrer que la bijection naturelle $u_0: \mathbf{R}^2 \to (\mathbf{R}^2)_0$ est un homéomorphisme. De même, montrer que les autres bijections $u_1: \mathbf{R}^2 \to (\mathbf{R}^2)_1$ et $u_2: \mathbf{R}^2 \to (\mathbf{R}^2)_2$ sont des homéomorphismes.
- 3) Montrer que Ω est homéomorphe au cercle unitaire S^1 .
- 4) Montrer que $(\mathbf{R}^2)_0$ est dense dans \mathbf{P}^2 .

Exercice 3. Soit $C \subset \mathbf{R}^2$ une courbe plane. Montrer que $\overline{C} \subset \mathbf{P}^2$ est la clôture de C pour la topologie de \mathbf{P}^2 définie dans l'exercice 2.

L'homogénéisation

Dans la suite, pour un polynôme homogène $F \in k[T, X, Y]$, on désignera par F_{\sim} la "deshomogénéisation" F(1, X, Y).

- **Exercice 4.** 1) Soit $F \in k[T, X, Y]$ homogène de degré d > 0. Montrer que si $\delta = \deg F_{\sim}$ alors $\delta \leq d$ et $T^{d-\delta}(F_{\sim})^{\sim} = F$. En déduire que $(F_{\sim})^{\sim} \mid F$ et que $(F_{\sim})^{\sim} \neq F$ si et seulement si $T \mid F$.
- 2) Soit $f \in k[X, Y]$. Montrer que $(f^{\sim})_{\sim} = f$.

Exercice 5. (1) Soit $C \subset k^2$ une courbe plane avec clôture projective \overline{C} . Montrer que $\#\overline{C} \cap \Omega < \infty$.

^{1.} Ces exercices "topologiques" sont moins importants pour le cours que les autres.

(2) Soit $\Gamma = \mathcal{Z}(F)$ une courbe plane projective. Montrer que si $\#\Gamma \cap \Omega = \infty$ alors $T \mid F$ et $\Omega \subset \Gamma$.

Exercice 6. Soit $h \in k[X_1, ..., X_n, Y]$ de degré d > 0. Si h_d désigne sa composante homogène de degré d, alors la coefficient de Y^d dans le polynôme

$$h(X_1 + \lambda_1 Y, \dots, X_n + \lambda_n Y, Y)$$

est $h_d(\lambda_1, \ldots, \lambda_n, 1)$. Soit $h = X^4 + 4X^3Y + 8X^2Y^2 + 8XY^3 + 4Y^4 - X^2 - 2XY$. Déterminer un $\lambda \in \mathbf{Q}$ tel que le coefficient de Y^4 dans $h(X + \lambda Y, Y)$ soit non-nul.

Exercice 7. 1) Soit $f \in k[X, Y]$ de degré d. Montrer que $\widetilde{f} = T^d f(X/T, Y/T)$.

- 2) Soient $f, g \in k[X, Y]$ et $F, G \in k[T, X, Y]$ homogènes. Montrer que $(f \cdot g)^{\sim} = \widetilde{f} \cdot \widetilde{g}$ et que $(F \cdot G)_{\sim} = F_{\sim} \cdot G_{\sim}$.
- 3) Soit $F \in k[T, X, Y]$ homogène. Montrer que chaque diviseur de F est également homogène.
- 4) Soit $f \in k[X,Y] \setminus k$. Utiliser les questions précédentes pour montrer que f est irréductible si et seulement si \widetilde{f} l'est. De même, montrer que si $F \in k[T,X,Y]$ est homogène et irréductible, alors F_{\sim} est aussi irréductible, sauf si F = T.
- 5) Soit $f, g \in k[X, Y] \setminus k$. Montrer que f et g sont premiers entre eux si et seulement si \widetilde{f} et \widetilde{g} le sont aussi.
- 6) (Lemme de Study projectif) On suppose k algébriquement clos. Soient $P, F \in k[T, X, Y]$ homogènes et non-constants. On suppose que P est irréductible et $\mathcal{Z}(P) \subset \mathcal{Z}(F)$. Montrer que $P \mid F$. (On fera attention au cas P = T.)
- 7) Montrer que $f \in k[X,Y] \setminus k$ est sans facteur carré si et seulement si \widetilde{f} l'est aussi.
- 8) On suppose k algébriquement clos. Soit $C = \mathcal{Z}(F)$ une courbe projective. On suppose que F est sans carré. Montrer que l'idéal $\{G \in k[T, X, Y] : G(p) = 0, \forall p \in C\}$ est (F).

Exercice 8. 1) Soient $F, G \in k[T, X, Y] \setminus k$ premiers entre eux et homogènes. Montrer que F_{\sim} et $g = G_{\sim}$ sont aussi premiers entre eux.

2) Soient F et G des éléments de k[T,X,Y] non-constants et premiers entre eux. Montrer que $\#\mathcal{Z}(F) \cap \mathcal{Z}(G) < \infty$.