Feuille d'exercices nº 3

Le résultant

Exercice 1 (Nombres algébriques). On dit que $\alpha \in \mathbf{C}$ est algébrique si α est racine d'un certain $f \in \mathbf{Q}[X]$ de degré strictement positif. Dans ce cas, f est dit un polynôme annulateur de α . L'ensemble des nombres algébriques sera désigné par $\overline{\mathbf{Q}}$.

- 1) Soient α et β des nombres algébriques tels que $f(\alpha) = 0$, respectivement $g(\beta) = 0$, avec $f \in \mathbf{Q}[X]$ de degré $d \ge 1$ et $g \in \mathbf{Q}[X]$ de degré $e \ge 1$. Montrer que, si $\varphi(X,Y) = f(X-Y)$ et $\psi(X,Y) = g(Y)$, alors $\operatorname{res}_Y^{d,e}(\varphi,\psi)$ est un polynôme annulateur de $\alpha + \beta$. En déduire un polynôme annulateur pour le nombre réel $\sqrt{2} + \sqrt{3}$.
- 2) Soient α et β des nombres algébriques. Montrer que $\alpha\beta$ est aussi algébrique. Indication : Construire des polynômes $\varphi, \psi \in \mathbf{Q}[X,Y]$, similaires à ceux de la question précédente, tels que $\varphi(\alpha\beta,\beta) = 0$.
- 3) En déduire que $\overline{\mathbf{Q}}$ est un sous-corps de \mathbf{C} .
- 4) Soit α un nombre algébrique avec polynôme annulateur f et soit $g \in \mathbf{Q}[X]$ un polynôme non-nul. Déterminer un polynôme annulateur pour $\beta := g(\alpha)$. Indication : Trouver un polynôme $\varphi(X,Y)$ tel que $\varphi(\beta,\alpha) = 0$. Appliquer ceci pour trouver un polynôme annulateur de $2\sqrt[3]{2} + \sqrt[3]{4} 1$.

Exercice 2. Soit k un corps arbitraire. Soient $a(t), v(t) \in k[t]$ et $b(t), w(t) \in k[t] \setminus \{0\}$. Soient $\varphi = \frac{a}{b}$ et $\psi = \frac{v}{w}$ des éléments de k(t).

- (1) Déterminer $f \in k[t,x] \setminus \{0\}$ et $g \in k[t,y] \setminus \{0\}$ tels que $f(t,\varphi) = 0$ et $g(t,\psi) = 0$.
- (2) À l'aide d'un résultant, déterminer un $R \in k[x,y]$ tel que $R(\varphi,\psi) = 0$.
- (3) Déterminer une courbe algébrique irréductible $C \subset \mathbf{R}^2$ contenant l'image de la fonction α :

$$\alpha: \mathbf{R} \longrightarrow \mathbf{R}^2 \quad t \mapsto \left(\frac{t}{1+t^2}, \frac{1-t^2}{1+t^2}\right)$$

Exercice 3. Soient $f \in k[X,Y]$ et $g \in k[X,Y]$ des polynômes de degré $d \ge 1$ et $e \ge 1$ respectivement.

1) Montrer que $r(X) := \operatorname{res}_Y^{d,e}(f,g)$ est de degré au plus de. $Indication : Si <math>f = \sum_{i=0}^d f_i$ et $g = \sum_{i=0}^e g_i$ sont tels que f_i et g_i sont homogènes de degré i, étudier le resultant des homogénéisations $\tilde{f} = \sum_{i=0}^d T^{d-i} f_i$ et $\tilde{g} = \sum_{i=0}^e T^{e-i} g_i$, où T est une nouvelle variable.

- 2) Montrer que si deg r < de, alors f_d et g_e , définies dans la question précédente, ne sont pas premiers entre eux. En déduire que si k et algébriquement clos, alors f et g possèdent une droite asymptotique commune.
- 3) Donner un exemple où deg r < de.

Exercice 4 (Le résultant et les racines). Soit k un corps quelconque. Soient d et e des entiers strictement positifs. Étant données des variables $U_1, \ldots, U_d, V_1, \ldots, V_e$, on considère l'anneau

$$A = k[U_1, \dots, U_d, V_1, \dots, V_e]$$

ainsi que deux polynômes de A[X]:

$$F = (X - U_1) \cdots (X - U_d)$$
 et $G = (X - V_1) \cdots (X - V_e)$;

Dans la suite, soit

$$R = \operatorname{res}_{X}^{d,e}(F,G)$$

et soit

$$S = \prod_{\substack{1 \le i \le d \\ 1 \le j \le e}} (U_i - V_j).$$

(1) Pour chaque couple $i \in \{1, ..., d\}$ et $j \in \{1, ..., e\}$, soit

$$A_i = k[U_1, \dots, U_{i-1}, U_{i+1}, \dots, U_d, V_1, \dots, V_e]$$

l'anneau de polynômes avec la variable U_i omise et soit

$$\varphi_{ij}:A\longrightarrow A_i$$

le morphisme

$$f \longmapsto f(U_1, \dots, U_{i-1}, V_j, U_{i+1}, \dots, U_d, V_1, \dots, V_e)$$

obtenu en remplaçant U_i par V_j . Si $\varphi_{ij}: A[X] \to A_i[X]$ désigne l'extension naturelle de φ_{ij} , montrer que $\operatorname{res}_X^{d,e}(\varphi_{ij}(F),\varphi_{ij}(G)) = 0$. En déduire que $U_i - V_j$ divise R.

- (2) Montrer que $S \mid R$.
- (3) Utiliser le degré de R pour montrer que R = S.
- (4) Soient K un corps arbitraire, d et e des entiers strictement positifs. On se donne $a, b \in K$ ainsi que $(\alpha_1, \ldots, \alpha_d) \in K^d$ et $(\beta_1, \ldots, \beta_e) \in K^e$. Montrer que si $f = a \prod_{i=1}^d (X \alpha_i)$ et $g = b \prod_{j=1}^e (X \beta_j)$, alors

$$\operatorname{res}^{d,e}(f,g) = a^e b^d \prod_{i=1}^d \prod_{j=1}^e (\alpha_i - \beta_j).$$

En déduire que si $d \ge 1$, alors

$$\operatorname{res}^{d,d-1}(f,f') = a^{2d-1} \prod_{i \neq j} (\alpha_i - \alpha_j).$$