Faculté de Sciences Algèbre, Géométrie et Calculs Janvier-Mai 2023.

Feuille d'exercices nº 4

Autour de $P^{2 1}$

Conventions. Dans la suite, k est un corps quelconque.

Exercice 1. Soient P = (a : b : c) et P' = (a' : b' : c') deux points distincts de \mathbf{P}^2 .

(1) Montrer que

$$\ell := \begin{vmatrix} T & X & Y \\ a & b & c \\ a' & b' & c' \end{vmatrix} \in k[T, X, Y]$$

définit la droite $\overline{PP'}$.

Correction. Il suffit de voir que ℓ s'annule sur les droites P et P' et donc $\mathcal{Z}(\ell)$ est une droite projective passant par P et P'; la conclusion suit de l'unicité.

(2) Montrer que $\overline{PP'}$ est l'ensemble des droites contenues dans le plan P+P'.

Correction. Par les propriétés du déterminant, on sait que $(t, x, y) \in P + P'$ si et seulement si $\ell(t, x, y) = 0$.

Exercice 2. (1) Soit $\Gamma = \mathcal{Z}(F)$ une courbe plane projective. Montrer que si $\#\Gamma \cap \Omega = \infty$ alors $T \mid F$ et $\Omega \subset \Gamma$.

Correction. On suppose $\#\Omega \cap \Gamma = \infty$. Cela signifie que F(0,X,Y) = 0 possède un nombre infini de solutions dans Ω . Soit d > 0 le degré de F. On écrit

$$F = \underbrace{F_0}_{\in k[X,Y]} T^d + \dots + \underbrace{F_d}_{\in k[X,Y]}.$$

On déduit que $F(0, X, Y) = F_d(X, Y)$; donc $F_d = 0$ possède un nombre infini de solutions dans Ω . Or, si

$$F = \sum_{\alpha+\beta+\gamma=d} a_{\alpha\beta\gamma} T^{\alpha} X^{\beta} Y^{\gamma},$$

alors $F_i = \sum_{\beta+\gamma=i} a_{d-i,\beta,\gamma} X^{\beta} Y^{\gamma} \Rightarrow F_i$ est homogène de degré i. Comme $\Omega = \{(0:0:1)\} \cup \{(0:1:y):y \in k\}$, il suit que $F_d(1,Y)$ possède un nombre infini de zéros. Donc $F_d = 0$ et $T \mid F$.

^{1.} Ces exercices "topologiques" sont moins importants pour le cours que les autres.

(2) Soit $C \subset k^2$ une courbe plane avec clôture projective \overline{C} . Montrer que $\#\overline{C} \cap \Omega < \infty$.

Correction. Dans le cas contraire, $T \nmid \widetilde{f}$.

(3) Soit $C \subset k^2$ une courbe plane. Montrer que $\omega = (0 : a : b)$ est un point à l'infini de C si et seulement si la droite $\mathcal{Z}(aY - bX)$ est asymptotique à C.

Correction. Soit f un polynôme de degré d > 0, sans carré, tel que $C = \mathcal{Z}(f)$. On écrit $f = f_0 + \cdots + f_d$, avec f_i homogène de degré i. On a $\widetilde{f} = f_0 T^d + \cdots + f_d$. On suppose que ω est un point à l'infini. Alors $f_d(a,b) = 0$. Si $a \neq 0$, alors $f_d(1,b/a) = 0$ et b/a est un zéro de $f_d(1,Y) \Rightarrow f_d(1,Y) = g(Y)(Y - b/a)$ avec deg $g = d - 1 \Rightarrow f_d(X,Y) = X^d f_d(1,Y/X) = X^{d-1} g(Y/X)(Y - b/aX) \Rightarrow aY - bX \mid f_d$. Le cas où $b \neq 0$ se traite de façon analogue.

Exercice 3. Soit $k = \mathbf{R}$ et munissons \mathbf{P}^2 de la topologie quotient définie par $\Psi : S^2 \to \mathbf{P}^2$.

(1) Montrer que si $C \subset \mathbf{R}^2$ est une courbe plane, alors sa clôture projective $\overline{C} \subset \mathbf{P}^2$ est la clôture de $\varphi_T(C) \subset (\mathbf{R}^2)_T$.

Correction. Soit $C = \mathcal{Z}(f)$ avec f sans facteur carré. Soit $F = \widetilde{f}$ de sorte que $\overline{C} = \mathcal{Z}(F)$. On observe que \overline{C} est fermé : $\Psi^{-1}(\overline{C})$ est $\{(t, x, y) \in S^2 : F(t, x, y) = 0\}$. Ensuite, on observe que $\varphi_T(C) = \overline{C} \cap (\mathbf{R}^2)_T$. Comme $(\mathbf{R}^2)_T$ est un ouvert dense de \mathbf{P}^2 , on déduit que $\overline{C} \cap (\mathbf{R}^2)_T$ est un ouvert dense de \overline{C} .

(2) Soit $C \subset \mathbb{R}^2$ une courbe algébrique. Montrer que C est compacte si et seulement si C ne possède aucune droite asymptotique.

Correction. On suppose que C est compacte. Alors $\varphi_T(C)$ est compacte. Ici on doit faire attention à la notion de compacité utilisée. en effet, si \mathbf{P}^2 n'était pas un espace topologique de Hausdorff, alors il serait possible que $\varphi_T(C)$ soit compact sans être fermé. Mais \mathbf{P}^2 est un espace de Hausdorff $\Rightarrow \varphi_T(C)$ est fermé. Étant dense dans \overline{C} alors $\varphi_T(C) = \overline{C}$.

Donc C ne possède aucun point à l'infini. Mais on sait que si $\mathcal{Z}_{\mathbf{R}}(aY - bX)$ est asymptotique $\Rightarrow (0:a:b) \in \Omega \cap \overline{C}$. Donc C n'a aucune droite asymptotique.

Si C n'a aucune droite asymptotique, alors $\overline{C} \cap \Omega = \emptyset \Rightarrow \overline{C} = \varphi_T(C) \Rightarrow C$ est compacte car \overline{C} l'est et φ_T est un homéomorphisme.

(3) Qu'en dire sur les courbes compactes C de \mathbb{R}^2 ?

Correction. Elles sont toutes de degré pair. On suppose que C est compacte. On écrit $f = \sum_{i=0}^{d} f_i$ avec f_i homogène de degré i et $f_d \neq 0$. Or, mais si d est impair, alors

 $f_d(1,Y)$, ou $f_d(X,1)$, possède forcément un zéro car un polynôme de degré impair possède forcément un zéro. Donc d est pair.

Ensuite, on ne peut pas affirmer davantage généralement. (Par exemple, on ne peut pas exclure l'existence de facteurs homogènes de degré impair. En effet, soient $F_n := X^n + Y^n - 1$ et $C_n = \mathcal{Z}_{\mathbf{R}}(F_n)$. Si n est pair, alors C_n est compacte : Si $(x, y) \in C_n$ et $x \neq 0$ (ou $y \neq 0$) $\Rightarrow x^n > 0$ (ou $y^n > 0$) $\Rightarrow |y| < 1$ (ou |x| < 1). Donc, $\max(|x|, |y|) \leq 1$. Soient $G_n(X, Y) = F_n(X + 1, Y) = X^n + Y^n + \sum_{i=0}^{n-1} {n \choose i} X^i$. Clairement $\mathcal{Z}_{\mathbf{R}}(G_n)$ est compacte et G_n possède des composantes homogènes de degré impair.)

Dans la suite, pour un polynôme homogène $F \in k[T, X, Y]$, on désignera par F_{\sim} la "deshomogénéisation" F(1, X, Y).

Exercice 4. 1) Soit $F \in k[T, X, Y]$ homogène de degré d > 0. Montrer que si $\delta = \deg F_{\sim}$ alors $\delta \leq d$ et $T^{d-\delta}(F_{\sim})^{\sim} = F$. En déduire que $(F_{\sim})^{\sim} \mid F$ et que $(F_{\sim})^{\sim} \neq F$ si et seulement si $T \mid F$.

Correction. On écrit $F = F_m T^m + \cdots + F_d T^d$ avec $F_i \in k[X,Y]$ homogène de degré d-i et $F_m \neq 0$. Donc $F_m + \cdots + F_d$ est la décomposition de F_{\sim} en composantes homogènes, sauf que deg $F_i = d-i$; en particulier $\delta = \deg F_{\sim} = d-m$. Donc $(F_{\sim})^{\sim} = F_m + F_{m+1}T^1 + \cdots + F_dT^{d-m}$ et $T^{d-\delta}(F_{\sim})^{\sim} = F$.

2) Soit $f \in k[X, Y]$. Montrer que $(f^{\sim})_{\sim} = f$.

Exercice 5. 1) Soit $f \in k[X, Y]$ de degré d. Montrer que $\widetilde{f} = T^d f(X/T, Y/T)$.

2) Soient $f, g \in k[X, Y]$ et $F, G \in k[T, X, Y]$ homogènes. Montrer que $(f \cdot g)^{\sim} = \widetilde{f} \cdot \widetilde{g}$ et que $(F \cdot G)_{\sim} = F_{\sim} \cdot G_{\sim}$.

Correction. La première égalité suit de la question précédente. La deuxième est facile.

3) Soit $F \in k[T, X, Y]$ homogène. Montrer que chaque diviseur de F est également homogène.

Correction. Soit GH = F. On écrit $G = G_m + \cdots + G_d$ et $H = H_n + \cdots + H_e$ avec G_i et H_j homogènes et chacun des polynômes G_m, G_d, H_n, H_e non-nul. Il suit que $G_m H_n$ est homogène de degré m + n et $G_d H_e$ est homogène de degré d + e; ceci montre que d = m et e = n.

4) Soit $f \in k[X,Y] \setminus k$. Utiliser les questions précédentes pour montrer que f est irréductible si et seulement si \tilde{f} l'est. De même, montrer que si $F \in k[T,X,Y]$ est homogène et irréductible, alors F_{\sim} est aussi irréductible, sauf si F = cT avec $c \in k^*$.

Correction. Il est plus simple de montrer que f n'est pas irréductible si et seulement si \tilde{f} n'est pas irréductible.

(⇒). Si f = gh avec $\deg g < \deg f$ et $\deg h < \deg f$, alors $\widetilde{f} = \widetilde{g} \cdot \widetilde{h}$ et \widetilde{f} n'est pas irréductible.

On suppose $\widetilde{f} = GH$ avec $\deg G < \deg f$ et $\deg H < \deg f$. Donc G et H sont homogènes. Soient $g := G_{\sim}$ et $h := H_{\sim}$. On a $f = (f^{\sim})_{\sim} = gh$. Comme $\deg g \leqslant \deg G$ et $\deg h \leqslant \deg H$ mais $\deg G + \deg H = \deg g + \deg h$, l'alternative " $\deg g < \deg G$ ou $\deg h < \deg H$ " est exclue. Donc on obtient une factorisation non-triviale de f.

Finalement : Si $F_{\sim} = gh$ alors $(F_{\sim})^{\sim} = \widetilde{gh}$. Or, mais $T^{d-\delta}(F_{\sim})^{\sim} = F$, où $d = \deg F$ et $\delta = \deg F_{\sim}$. Donc soit F = cT, avec $c \in k^*$, soit $(F_{\sim})^{\sim} = F$. Dans le deuxième cas, on obtient que $\deg \widetilde{g} = 0$, disons.

5) Soit $f, g \in k[X, Y] \setminus k$. Montrer que f et g sont premiers entre eux si et seulement si \widetilde{f} et \widetilde{g} le sont aussi.

Correction. Il est plus simple de montrer que f et g ne sont pas premiers entre eux si et seulement si \widetilde{f} et \widetilde{g} ne sont pas premiers entre eux.

- (⇒) Soit h un diviseur commun de f et g de degré > 0. Il suit que \widetilde{h} est diviseur commun de \widetilde{f} et \widetilde{g} de degré > 0. (⇐) Si $H \mid \widetilde{f}$ et $H \mid \widetilde{G}$ alors $H_{\sim} \mid (f^{\sim})_{\sim}$ et $H_{\sim} \mid (g^{\sim})_{\sim}$. On a vu déjà que $(f^{\sim})_{\sim} = f$ et $(g^{\sim})_{\sim} = g$.
- 6) (Lemme de Study projectif) On suppose k algébriquement clos. Soient $P, F \in k[T, X, Y]$ homogènes et non-constants. On suppose que P est irréductible et $\mathcal{Z}(P) \subset \mathcal{Z}(F)$. Montrer que $P \mid F$. (On fera attention au cas P = T.)

Correction. Soit $P_{\sim} = p$ et soit $f = F_{\sim}$. Comme P est irréductible, on sait que $P = \widetilde{p}$, ou que P = cT pour $c \in k^*$. Si $P \neq cT \Rightarrow \widetilde{p} = P$ et p est irréductible. Donc $p \mid f$. Donc $P = \widetilde{p} \mid \widetilde{f}$. Mais $\widetilde{f} \mid F \Rightarrow P \mid F$. Si P = T, alors $\Omega \subset \mathcal{Z}(F)$ et $T \mid F$ comme a été vu précédemment.

7) Montrer que $f \in k[X,Y] \setminus k$ est sans facteur carré si et seulement si \widetilde{f} l'est aussi.

Correction. Il est plus simple de montrer que f est divisible par un carré si et seulement si \widetilde{f} est divisible par un carré.

- (⇒). On suppose que $p^2 \mid f$. Alors $\widetilde{p}^2 \mid \widetilde{f}$. (⇐) Si $\widetilde{f} = G^2H$, avec deg G > 0. On sait que G et H sont homogènes. On obtient $f = (G_{\sim})^2 \cdot H_{\sim}$. On doit faire attention au cas deg $G_{\sim} = 0$; ceci arrive quand $T \mid G$. Or, mais on sait que $T \nmid \widetilde{f}$.
- 8) On suppose k algébriquement clos. Soit $C = \mathcal{Z}(F)$ une courbe projective. On suppose que F est sans carré. Montrer que l'idéal $\{G \in k[T, X, Y] : G(p) = 0, \forall p \in C\}$ est (F).

Exercice 6. 1) Soient $F, G \in k[T, X, Y] \setminus k$ premiers entre eux et homogènes. Montrer que F_{\sim} et $g = G_{\sim}$ sont aussi premiers entre eux.

Correction. Soit p un premier de degré strictement positif qui divise f et g. Alors \widetilde{p} divise \widetilde{f} et \widetilde{g} . Mais $\widetilde{f} \mid F$ et $\widetilde{g} \mid G$. Donc \widetilde{p} est constant. Par contre, on sait que $(\widetilde{p})_{\sim} = p$.

2) Soient F et G des éléments de k[T, X, Y] non-constants et premiers entre eux. Montrer que $\#\mathcal{Z}(F) \cap \mathcal{Z}(G) < \infty$.

Correction. On a trois cas à considérer. (a) $T \mid F$, (b) $T \mid G$ et (c) $T \nmid F$ et $T \nmid G$. On se place dans le cas (c); Soient $f = F_{\sim}$ et $g = G_{\sim}$. On sait alors que f et g sont premiers entre eux et donc $\#\mathcal{Z}(F) \cap \mathcal{Z}(G) \cap (k^2)_T < \infty$. Comme $T \nmid F$ et $T \nmid G \Rightarrow \mathcal{Z}(F) \cap \Omega$ et $\mathcal{Z}(G) \cap \Omega$ sont finis, comme a été vu avant. Donc l'intersection est finie. On termine la vérification en traitant le cas (a) : $T \mid F$ mais $T \nmid G$. Donc $\mathcal{Z}(G) \cap \Omega$ est fini $\Rightarrow \mathcal{Z}(F) \cap \mathcal{Z}(G) \cap \Omega$ est fini. Comme avant, les parties finies n'ont qu'un nombre fini de points d'intersection.