
Connections in Algebraic Geometry

Joao Pedro dos Santos

These are expanded notes of the lectures I delivered as a mini-course in IMPA

in August 2022 and then again, in part, in Hanoi 2024. I structured the lecture

assuming solely that students would be familiar with basic “Grothendieckean”

algebraic geometry (e.g. schemes, fibre products, flatness, étale morphisms and

some cohomology theory) and some commutative algebra here and there. At then

end, in order to make visible a kind of example which is usually overlooked in

the literature, I employed the theory of function fields, but provided substantial

prerequisites.

The main point of the course was to provide four lectures on different and

somewhat complementary points of view of the theory. Each one, with the excep-

tion of Lecture 1, can be greatly amplified.

Programme
Lecture 1. Introductory material: Smoothness, étale coordinates and differentials.

Vector bundles, frames and co-cycles. Connections and their category.

Systems of linear differential equations. Curvature and bracket.

Lecture 2. The Theorem of Atiyah-Weil on the existence of certain connections.

Lecture 3. Principal parts and stratifications (or connections in Grothendieck’s

language). Connections and D-modules.

Lecture 4. The Gauss-Manin connection in the “birational setting”. (I did not

cover this in the lectures in Hanoi.)
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Lecture 1 and 2
(30/10/24).

A word about vector bundles
(X,O) is a ringed space. A vector bundle is a locally free sheaf of finite rank.

Let E be a vector bundle of rank r. Given U ⊂ X open, a set e1, . . . , er ∈ E(U)
is called a local frame if ( f1, . . . , fr) 7→ f1e1 + · · ·+ frer gives an iso. Or

U ' E|U.

Let {Uα} be an open covering of X. Assume that for each α, we have a local

frame eα = (eα
1 , . . . , eα

r ) defining the trivialization τα : O⊕r
Uα

∼−→ E|Uα as before.

The isomorphisms

gαβ := τ−1
α ◦ τβ : O⊕r

Uαβ

∼−→ O⊕r
Uαβ

,

give r× r matrices (gαβ
ij ). Note that

eβ
j =

r

∑
i=1

gαβ
ij · e

α
i , (1)

which means that the jth column 
gαβ

1j
.
.
.

gαβ
rj


is simply the coordinate expression of the vector eβ

j |Uαβ. Also, we clearly have

gαβgβγ = τ−1
α τβτ−1

β τγ

= gαγ.

This is just the analogue of what you may have seen in the case of line bundles

(=invertible sheaves)

Pic(X) ' Ȟ1(X,O∗X).

A word about Differentials and tangent vector fields.
What we’ll use all the time: Let X/k and Y/k be scheme of finite type over a noethe-

rian ring k. If f : Y → X etale of k-schemes, then f ∗Ω1
X/k

∼→ Ω1
Y/k. “Differentials

on X and Y are the same thing.” See for example [Li02, p.223]. (Liu works with

restrictive hypothesis that can be removed, but they are good enough!)

Let X/k scheme. Say that X is smooth if: for each P ∈ X, there exists an open

U and an etale map x = (x1, . . . , xn) : U → An
k . Say that x are “etale” coordinates.

In this case, Ω1
U =

⊕
iOU dxi. The dual basis of {dxi} is {∂/∂xi}, or {∂xi} or {∂i}.

The sheaf TX := Hom(ΩX,O) is the tangent sheaf. In what follows, a coordinate
neighbourhood (U, x) will always mean an affine open together with x : U → An

k
which is etale.
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Connections: definition and basic properties
Those who took a course in Riemannian geometry have already encountered the

theory of connections and understood that “it is a way to differentiate vector

fields”. Let X/k be a smooth scheme, where k is some ring. Let E be a quasi-

coherent module.

Definition 1. Connection is k-map ∇ : E → E ⊗Ω1
X/k such that:

∇(ae) = e⊗ da + a∇(e), ∀ a ∈ OX, e ∈ E .

Example 2. 1) (OX, d) is the trivial connection.

2) Let k = C and X = A1
and E = OXe. Define a connection

∇(ae) = e⊗ da + ae⊗ dx.

Example 3. If ∇ and ∇′ are two connections, then

∇′ −∇ : E −→ E ⊗Ω1
X

is anOX-linear morphism. Fancy way: The set of connections is a principal homo-

geneous space over H0(X, EndOX(E , E ⊗Ω1
X)).

Since OX–modules of the form Or
X always carry connections, we can usually

reduce the work of finding a connection to that of giving a matrix.

The covariant derivative
A connection can also be seen as a way of differentiating sections of E . Indeed, let

v ∈ TX = Hom(ΩX,OX) be a vector-field. Let ∇ : E → E ⊗Ω1
X connection. Let

〈−, v〉 : E ⊗ΩX → E be idE ⊗O v. Define

∇v(e) := 〈∇e, v〉.

Then

∇v(ae) = v(a)e + a∇v(e). (∗)
This produces an OX-linear map D : TX → Endk(E). Conversely, if

D : TX −→ Endk(E)

is O-linear arrow s.t. (∗) holds, then we can define a connection as follows. Let

(U, x) be coordinate open of X and let {dxi} and {∂i} be the dual bases of Ω1
X

and TX. Let Di = D(∂i); this is an element of Γ(U, Endk(E)) = EndOU(E|U). We

define for e ∈ E(V):
∇Ue = ∑

i
Di(e)⊗ dxi

which is a connection on E|U. It is a simple matter to see that these local definitions

glue to a connection ∇.
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Categorical considerations
Let X/k be smooth.

Definition 4. Let (E ,∇) and (E ′,∇′) be connections. An arrow of OX-modules

ϕ : E → E ′ is horizontal if

E
ϕ
��

∇ // E ⊗Ω

ϕ⊗id
��

E ′
∇′
// E ′ ⊗Ω

commutes. The category of connections has as

objects the connections and as

arrows the horizontal arrows.

This category shall be denoted by MC(X/k). (Modules with connections.)

A section s ∈ E(U) is horizontal if ∇s = 0.

It is not difficult to see that the category of connections is an abelian subcategory of
the category of quasi-coherent sheaves. This is best proved by thinking of connections as
means of differentiate sections, as I explained above, and noting that Ω1

X/k is locally

free. Here is an example.

Example 5. Let k = Fp, X = A1
. Let E = OXe and F = OXf. Let us give both

E and F the trivial connection: ∇e = e⊗ 0 and �f = f⊗ 0. Let ϕ : E → F be

e 7→ xpf. Then ϕ is horizontal since

�(ϕ(e)) = �(xpf)
= xp · (f⊗ 0) + f⊗ d(xp)

= 0
= (ϕ⊗ id)∇e.

It then follows that Coker(ϕ), which is the skyscraper sheaf supported at 0 carries

a connection.

Exercise 6. Keep the context of the previous example, but replace k = Fp by k = C.

Show that the horizontal arrows are e 7→ cf, with c ∈ C.

Example 7 (Typical of char. p). X/k smooth over a perfect field of characteristic

p > 0; let F : X → X be the absolute Frobenius morphism and for OX-module H
consider E := F∗H. It is an important fact that F is a finite and flat morphism of

schemes. We now endow E with a canonical connection, ∇can
.

Let U be affine open such that F : O(U)→ O(U) is free; said otherwise

O(U) = ⊕s
j=1O(U)pyj (F)
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for functions {yj}. (For regular schemes, the absolute Frobenius morphism is flat.

This can be verified by the “magical” property assuring flatness [M89, 23.1] or by

passing to algebraic closures and completions.) For each v ∈ T (U), define:

∇can
v (∑ ai ⊗ hi) = ∑ v(ai)⊗ hi.

To eliminate any ambiguity this expression may cause, we use (F) to compute. It

is clear that this local definition extends to give E a connection ∇can
.

Exercise 8. Let k = Fp and X = P1
. Use the above technique to give OP1(p) a

connection.

The category MC is also “tensorial”. This means that for (E ,∇) and (E ′,∇′),
the module E ′′ = E ⊗ E ′ comes with a connection∇′′ if we differentiate in a Lie-like
manner:

∇′′v (e⊗ e′) = ∇v(e)⊗ e′ + e⊗∇′v(e′).

Hence, we have also connections on symmetric products, alternating products,

duals, etc. Most details on the conventions concerning these come in [Ka70],

which is the main reference basic material.

Example 9 (Etale covering). Let π : Y → X be an etale finite covering. Then

A := π∗OY comes with a connection defined by π∗d : A → π∗ΩY. Recall that

π∗ : π∗Ω1
X
∼→ Ω1

Y is iso. so that d : A → π∗ΩY ' A⊗OX Ω1
X is a connection. Let

me be concrete and work over Q. Let Y = (yn − x) ⊂ (A1 \ {0})2
and π : Y →

X = (A1 \ {0}) be the first projection. On

A = Q[y±] = Q[x±]⊕ · · · ⊕Q[x±]yn−1

we have a connection determined by ∇y` = d(y`) =
`

n
y` ⊗ dx

x
. Note: π∗OY

is in this case a direct sum L⊗0 ⊕ L⊗1 ⊕ · · · ⊕ L⊗n−1
, where L is the connection

determined by “y”.

Connections × differential equations
Let X/k smooth n-dimensional. Let E be a locally free OX–module of rank r en-

dowed with a connection ∇. Let (U, x) be an étale chart and e1, . . . , er be a local

frame for E|U. If

∇∂xν
(ej) =

r

∑
i=1

a(ν)ij ei,

then we define

Mate(∇∂xν
) := (a(ν)ij )1≤i,j≤r.

Writing

y =

y1
.
.
.

yr
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and letting e · y = y1e1 + · · ·+ yrer, we conclude that

∇∂xν
(e · y) = e · ∂xν(y) + e · (A(ν) · y).

Definition 10. The (system of linear) differential equations associated to ∇, are

the equations required to define horizontal sections:

∇∂xν ∑
j

yj · ej = 0 (ν = 1, . . . , n).

This translates into

0 = ∑
j

∂xν(yj) · ej + ∑
j

yj ·∑
i

a(ν)ij · ei

= ∑
i

(
∂xν(yi) + ∑

j
a(ν)ij · yj

)
· ei.

Hence

y1e1 + · · ·+ yrer horizontal ⇐⇒ ∂xν yi +
r

∑
j=1

a(ν)ij · yj = 0.

More synthetically,

Horizontal sections ! ∂xν y = −Mate(∂xν) · y.

These are the matrix differential equations associated to the connection ∇, the local

frame e and the coordinate system x.

Example 11. X = A1
C. Consider (Oe,∇) with ∇e = −e⊗ dx. Then, a horizontal

section ye amounts to a solution of y′ = y.

Reciprocally, given matrix differential equations

∂xν y + A(ν) · y = 0 (ν = 1, . . . , n)

with A(ν) ∈ Matr(O(U)), we obtain a connection on the trivial bundle Or
U such

that the associated matrix DEs are simply the ones we started with.

Example 12. Consider a linear differential equation

dy
dx

+ Ay = 0, A ∈ Matr(O(X)),

which we then transform into a connection on ⊕r
iOXei by

∇ej = Aej ⊗ dx.

The determinant bundle ∧rE is OX e1 ∧ · · · ∧ er︸ ︷︷ ︸
t

. Now,

∇∂x t = Ae1 ∧ e2 ∧ · · · ∧ er + e1 ∧ Ae2 ∧ · · · ∧ er + · · · e1 ∧ · · · ∧ Aer

= a11t + a22t + · · ·+ arrt
= Tr(A) · t.

This is, of course, in the theory of differential equations, known as “Liouville’s

formula”, c.f. [Ha46, IV, Theorem 1.2].
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Scalar differential equations
Let X be an open of A1

k. Let

L = y(r) + ar−1 · y(r−1) . . . + a0 · y

be a differential polynomial with coefficients in O(X). We then construct the dif-

ferential system

y′ = y1
.
.
. =

.

.

.

y′r−1 = −ar−1 · yr−1 − · · · − a0 · y.

Hence, the linear differential system associated to L is defined by

dy
dx

=


0 1 0 · · · 0
.
.
. 0 .

.
. · · · 0

.

.

.
.
.
.

.
.
.

.

.

.

0 0 1
−a0 · · · · · · · · · −an−1

 · y,

and the connection attached to L on ⊕n
i=1OXei, ∇L

, is defined by

Mate(∇L) =


0 −1 0 · · · 0
.
.
. 0 .

.
. · · · 0

.

.

.
.
.
.

.
.
.

.

.

.

0 0 −1
a0 · · · · · · · · · an−1


(Here the conventions vary.)

Example 13. If L is as in Ex. 9, then we see that L is just associated to L :=
y′ + (1/nx)y.

Connection matrices and change of local frame
Let X/k smooth. Let E be vb of rank r. Let e = {e1, . . . , er} and e′ = {e′1, . . . , e′r}
be local frames on some open U of X. We write

∇ej = ∑
i

ei ⊗ θij and ∇e′j = ∑
i

e′i ⊗ θ′ij.

The matrices θ and θ′ are the connection matrices; they are 1-forms with values on

gln(k). Let g be the matrix of e′ on the basis e:

e′j = ∑
i

gijei.
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Exercise 14. Show

θ′ = g−1dg + Adg−1θ, (2)

I only worked with locally free sheaves, but in many cases one has G-bundles,

where G is some linear algebraic group. In these cases, one also has a standard
definition of connection. In most treatises of Differential Geometry, this definition

is quite long and has the disadvantage of talking about connections forms on the

total space [KN63].

Here formula (2) can be useful in taking hold of things. The term g−1dg is the

pull-back under g : U → GLn of the Maurer-Cartan form [HN12, p.311]. Hence,

we can say that a connection on a principal G-bundle boils down to a family of

Lie G-valued 1-forms which behave according to (2). See [KN63, Prp. 1.4].

Curvature: definition
We now define a k–linear map

∇` : E ⊗Ω` −→ E ⊗Ω`+1

by

∇`(e⊗ω) = ∇(e) ∧ω + e⊗ dω.

Remark 15. This is not the usual convention, but it is a less complicated version

and follows [Be74, p.125].

Note that the above formula may depend on the way we represent elements

of E ⊗Ω`
. To verify that this unambiguous, I need to show

∇( f e) ∧ω + f e⊗ dω = ∇(e) ∧ f ω + e⊗ d( f ω). (3)

and apply this to neighbourhoods where Ω`
is free: But

∇( f e) ∧ω + f e⊗ dω = f∇(e) ∧ω + e⊗ d f ∧ω + f e⊗ dω

= ∇(e) ∧ω + e⊗ d( f ω),

and we are done.

Proposition 16. The composition ∇`+1 ◦ ∇` is OX–linear.
Proof. Let f ∈ O(U), e ∈ E(U) and ω ∈ Ω`

X(U). Then, if ∇(e) = ∑i ei ⊗ θi, it

follows that

∇`+1∇`( f e⊗ω) = ∇`+1 (∇(e) ∧ f ω + e⊗ d f ∧ω + e⊗ f dω)

= ∇`+1

(
∑

i
ei ⊗ f θi ∧ω + e⊗ d f ∧ω + e⊗ f dω

)
= ∑

i
∇(ei) ∧ f θi ∧ω + ∑

i
ei ⊗ d( f θi ∧ω)+

+ ∑
i

ei ⊗ θi ∧ d f ∧ω + e⊗ d(d f ∧ω)+

+ ∑
i

ei ⊗ θi f ∧ dω + e⊗ d( f dω).
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Now d( f dω) = d f ∧ dω while d(d f ∧ω) = −d f ∧ω. Hence,

∇`+1∇`( f e⊗ω) = ∑
i
∇(ei) ∧ f θi ∧ω + ∑

i
ei ⊗ (d( f θi ∧ω) + θi ∧ d f ∧ω + f θi ∧ dω) .

Now

d( f θi ∧ω) = d( f θi) ∧ω− f θi ∧ dω

= d f ∧ θi ∧ω + f dθi ∧ω− f θi ∧ dω

= −θi ∧ d f ∧ω + f dθi ∧ω− f θi ∧ dω.

Therefore,

∇`+1∇`( f e⊗ω) = ∑
i
∇(ei) ∧ f θi ∧ω + ∑

i
ei ⊗ f dθi ∧ω

= f · (∇`+1∇`(e⊗ω)) .

Definition 17. TheOX–linear map∇1∇0 : E → E ⊗Ω2
X is called the curvature of

∇ and is denoted by R∇. A connection is integrable when R∇ = 0.

Exercise 18 (Cartan’s formula). Let E be locally free, e1, . . . , er be a local frame and

θ = (θij) the connection matrix. Let R∇ej = ∑i ei⊗Θij define the curvature matrix

Θ. Show

dθ + θ ∧ θ.

Corollary 19. Let e1, . . . , er be a local frame of E over U, and assume that we have local
etale coordinates (x, U). Let

θ =
n

∑
µ=1

Aµ dxµ

be the expression of the connection matrix on the basis {e1, . . . , er}. Then, the curvature
matrix is

∑
µ<ν

{
∂µ Aν − ∂ν Aµ + [Aµ, Aν]

}
dxµ ∧ dxν.

Proof. Write θij = ∑
ν

a(ν)ij dxν. Then dθij = ∑
ν

da(ν)ij ∧ dxν. This is ∑
µ,ν

∂µa(ν)ij dxµ ∧

dxν, which can be rewritten as ∑
µ<ν

{∂µa(ν)ij − ∂νa(µ)ij }dxµ ∧ dxν.

On the other hand, θ ∧ θ = ∑µ,ν Aµ Aν dxµ ∧ dxν, which is ∑µ<ν{Aµ Aν −
Aν Aµ}dxµ ∧ dxν. This finishes the proof.
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Vanishing curvature and a result about existence and uniqueness
of differential systems
In order to understand the origin of “integrability”, I shift to the complex analytic

setting, and recall the following result. It is common to find a proof of this result

which employs the Frobenius theorem for distributions, but it is at the end just a

theorem on linear differential equations on the complex plane, that is, Cauchy’s

theorem [Ca85, VII].

Theorem 20. Let D ⊂ Cn be an open polydisk about origin. Let A(1), . . . , A(n) ∈
Matr(O(D)). Consider the system of linear PDEs

∂µy + A(µ) · y = 0, µ ∈ {1, . . . , n}. (I)

1) Consider the matrix θ = ∑µ A(µ) dxµ and let ∇ be the connection on ⊕r
i=1ODei

defined by θ. The integrability condition is∥∥∥∥ ∂µ ∂ν

A(µ) A(ν)

∥∥∥∥+ [A(µ), A(ν)] = 0.

2) Let c ∈ Cr. Then there exists a unique holomorphic

φ : D −→ Cr

satisfying all systems (I) and such that φ(0) = c

Proof. Only (2) deserves attention. We work by induction on n. The case n = 1
is “well-known” and in addition, can be taken to depend upon parameters. By

induction, let

ψ : Dn−1 −→ Cr

be such that for all j = 2, . . . , n we have

∂jψ(x) + A(j)(0, x)ψ(x) = 0, and ψ(0) = c.

Let now

ϕ : D× Dn−1 −→ Cr

holomorphic s.t.

∂1ϕ + A(1) · ϕ = 0 and ϕ(0, x) = ψ(x).

Note that for j > 1 we have ∂j ϕ(0, x) + A(j)(0, x) · ϕ(0, x) = 0. For fixed j > 1,

consider the function v = ∂j ϕ + A(j) · ϕ. Then, using the integrability condition,

we have ∂1v + A(1) · v = 0 so that v ≡ 0.
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Curvature and the bracket
We now relate the above definition of curvature with its more established version

in Differential Geometry, see [KN, III, Theorem 5.1] or [dC92, IV.2.1].

Let now ∇e = ∑j ej ⊗ θj. We also write aij =
〈
∂i, θj

〉
, so that θj = ∑i aij dxi.

Then

∇∂h
∇∂i(e) = ∇∂h ∑

j
ej · aij

= ∑
j
∇∂h

(ej) · aij + ej · ∂h(aij).

And

∇∂i∇∂h
(e) = ∑

j
∇∂i(ej) · ahj + ej · ∂i(ahj).

On the other hand,

R∇e = ∑
j
∇(ej) ∧ θj + ∑

j
ej ⊗ dθj

= ∑
j

(
∑

i
∇∂i(ej)⊗ dxi

)
∧
(

∑
i

aijdxi

)
+ ∑

j
ej ⊗

(
d ∑

i
aijdxi

)

= ∑
j

(
∑
h<i

[∇∂h
(ej) · aij −∇∂i(ej) · ahj]⊗ dxh ∧ dxi

)
+

+ ∑
j

ej ⊗∑
h<i

[∂h(aij)− ∂i(ahj)]dxh ∧ dxi.

Hence

〈R∇e , ∂h ∧ ∂i〉 = ∑
j
∇∂h

(ej) · aij −∇∂i(ej) · ahj + ej · ∂h(aij)− ej · ∂i(ahj)

= ∇∂h
∇∂i(e)−∇∂i∇∂h

(e).

This allows us to derive the usual expression relating the curvature with the Lie

bracket. Recall that for derivations v, w ∈ TX(U), their bracket [v, w] is also a

derivation.

Lemma 21. Let e ∈ E(U), v, w ∈ TX(U). Then

〈R∇(e), v ∧ w〉 = [∇v,∇w](e)−∇[v,w](e).

Proof. If v = ∂h and w = ∂i this formula is proved above. For the general case, we

only need to note that the expressions

K(e, v, w) := 〈R∇(e), v ∧ w〉

and

L(e, v, w) := ∇v∇w(e)−∇w∇v(e)−∇[v,w](e)
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are tri-linear. That K is tri-linear is obvious. As for L we begin by recalling

[v, gw] = g · [v, w] + v(g) · w
[ f v, w] = −[w, f v]

= − f [w, v]− w( f )v
= f [v, w]− w( f )v.

Then,

∇ f v∇w −∇w∇ f v −∇[ f v,w] = f∇v∇w − f∇w∇v − w( f )∇v − f∇[v,w] + w( f )∇v

= f {∇v∇w −∇w∇v −∇[v,w]}.

Since L(e, v, w) = −L(e, w, v), we conclude that L is linear on the second variable.

Finally, we compute

L(re, v, w) = ∇v (w(r)e + r∇w(e))−∇w (v(r)e + r∇v(e))
− r∇[v,w](e)− [v, w](r)e

= vw(r)e + w(r)∇v(e) + v(r)∇w(e) + r∇v∇w(e)−
− wv(r)e− v(r)∇w(e)− w(r)∇v(e)− r∇w∇v(e)−
− r∇[v,w](e)− [v, w](r)e

= [v, w](r)e + r∇v∇w(e)− r∇w∇v(e)− r∇[v,w](e)− [v, w](r)e

= rL(e, v, w).

Corollary 22. The curvature R∇ vanishes if and only if the covariant derivative

TX
v 7→∇v−→ Endk(E)

is compatible with the bracket.
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Lecture 3 and 4
(31/10/2024).

The Atiyah-Weil theorem
Let X/k smooth over algebraically closed field of characteristic p ≥ 0. Let E a

vector bundle of rank r on X.

Recall that a vector bundle E on X is decomposable if it can be written as a direct

sum E ′ ⊕ E ′′, where rk E ′ and rk E ′′ are both < rk E . A vb. is indecomposable if it is

not decomposable. It is clear that any vector bundle can be written as a direct sum

of indecomposable vector bundles. A simple result tells that this decomposition

is essentially unique:

Exercise 23 (see [At56]). Suppose that X is proper. Let E1, . . . , Es, F1, . . . ,Ft be

indecomposable vector bundles. If

s⊕
i=1

Ei '
t⊕

j=1

Fj

then s = t and there exists σ ∈ St such that Eσ(i) ' Fi.

Another ingredient is necessary to state the Atiyah-Weil theorem: the degree of
a vector bundle. Suppose that X is a proper curve. Recall that det E = ∧rE ; this is an

invertible sheaf. Let deg(E) be the degree of a divisor D such that det(E) ' O(D).

Theorem 24 (Atiyah-Weil). Let X/k be a smooth and proper curve. Suppose that
deg(F ) ≡ 0 mod p for each indecomposable factor F of E . Then E admits a con-
nection. Conversely, if E carries a connection, then each indecomposable component of E
has a degree which is divisible by p.

The proof of this result will occupy the following pages; it hinges on the Atiyah
class. Curiously enough, the most difficult part of the explanation is unravelling

Serre duality on X in terms which are sufficiently explicit. Therefore, I’ve made

some choices as to what the student listening to this was supposed to know, and

these are largely based on the sentence from [H77, p.243]: “A weakness of the duality
theorem as we have proved it is that even for a nonsingular projective variety X, we don’t
have much information about the trace map t : Hn(X, ω)→ k.”

Theorem 24 comes in a long lineage of results (Weil’s paper mentions Abel. . . ).

One of its heirs, the Narasimhan–Seshadri comes from the fact that there are ways

to canonically give certain vector bundles preferred connections. At the end I shall

comment on them.

The Atiyah class
At this point, it is not necessary to assume that X is a curve, only a smooth k-
scheme. Any locally free OX-module of finite rank admits locally a connection:
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the trivial one. Therefore, we introduce an obstruction to the existence of a global

connection: the Atiyah class.

Let {Uα} be an open covering. Let∇α be a connection on E|Uα . Then, for each

couple of indices α, β, the element

Aαβ := ∇α −∇β : E|Uαβ
−→ E|Uαβ

⊗Ω1|Uαβ

is OUαβ
–linear. A simple calculation shows that

Aβγ − Aαγ + Aαβ = 0

on triple intersections and hence defines a 1–cocycle with values on Hom(E , E ⊗
Ω1). If there exists a 0–cochain λ = (λα) with values inHom(E , E ⊗Ω1) such that

λβ − λα = δ(λ) = Aαβ,

then

∇α + λα

is a connection on E|Uα which glues to a global connection on E .

If we start with a different family of connections on the open sets Uα, say ∇′α,

then there exists anO–linear map θα : E|Uα → E|Uα ⊗Ω1
such that∇α + θα = ∇′α.

Therefore,

∇′α −∇′β = ∇α −∇β + (θβ − θα),

so that the 1–cocyle {∇′α − ∇′β} differs from the 1–cocyle {∇α − ∇β} by the a

coboundary δ(θα) = (θβ − θα).
This allows us to put forward the following:

Definition 25. The class of {∇α − ∇β} in H1(X,Hom(E , E ⊗ Ω1)) is called the

Atiyah class of E . It will be denoted by A(E).

We have proved above:

Lemma 26. The Atiyah class is A(E) ∈ Ȟ1(X,Hom(E , E ⊗Ω1)) is independent of the
choice of the local connections ∇α.

Theorem 27. The vector bundle E admits a connection if and only if A(E) = 0.

Remark 28. It is usually interesting to call E ⊗ E∗ the adjoint bundle of E and denote

it by Ad(E). Since Hom(E , E ⊗Ω1) ' Ad(E) ⊗Ω1
, the Atiyah class is then an

element of Ȟ1(Ad(E)⊗Ω1).

Remark 29. In [At57], Atiyah introduces two Cech cohomology classes, “a” and

“b” (see pages 188 and 194). In [At57, p. 195] these are proved to be, up to nor-

malisations, the same. What we introduce here is just a simpler variant of “b”.
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In view of this proposition, we can chose the simplest possible connections in

order to compute A(E). If a frame {eα
i } of E over {Uα} is given and if gαβ is the

associated 1–cocycle, that is

eβ
j = ∑

i
gαβ,ij · eα

i ,

then we can take for ∇α the direct sum connection on E|Uα ' On
Uα

. We obtain

(
∇α −∇β

)
(eα

` ) = −∇β

(
n

∑
j=1

gβα,j` · e
β
j

)

= −
n

∑
j=1

eβ
j ⊗ dgβα,j`

= −
n

∑
j=1

n

∑
i=1

gαβ,ij · eα
i ⊗ dgβα,j`

= −
n

∑
i=1

eα
i ⊗

(
∑

j
gαβ,ij · dgβα,j`

)

=
n

∑
i=1

eα
i ⊗

(
∑

j
dgαβ,ij · gβα,i`

)
,

so that the Atiyah class is given by

A(E) =
(

dgαβ · g−1
αβ

)
.

This gives immediately:

Theorem 30. Suppose that E is the direct sum of vector bundles E ′⊕E ′′. Then A(E) =
A(E ′)⊕ A(E ′′) in

H1(Ad(E)⊗Ω1) =

H1(Ad(E ′)⊗Ω1)
⊕ H1(Ad(E ′)⊗Ω1)
⊕ H1(Hom(E ′, E ′′))⊗Ω1)
⊕ H1(Hom(E ′′, E ′)⊗Ω1).

In particular, if A(E) = 0, then A(E ′) = A(E ′′) = 0.

We wish to find conditions for A(E) = 0 and to achieve this goal we shall

study this cohomology class by means of Serre’s duality theorem. Indeed, A(E)
gives rise to an element of H0(Ad(E))∗, by Serre duality.

Exercise 31. Show that the Atiyah class is functorial.
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Digression on Serre duality
In your Algebraic Geometry course, you probably learned about the famous Serre

duality: Hi(F )∗ ' Hm−i(F ∗⊗ωX). There are, of course, many ways to get to this

fundamental result, but I’d like to explain one which is less evident nowadays.

(Grothendieck throws the weight behind a formal definition of ωX, the dualizing

sheaf.)

Let (M,A) be a ringed space. Let F and G be sheaves of A-modules. Let U =
(Uα) be an open covering of M and let C•(U,−) stand for the Cech complexes.

Given cocyles f ∈ Cp(F ) and g ∈ Cq(G), we define

( f ∪ g)α0,...,αp+q := fα0,...,αp ⊗ gαp,··· ,αp+q ∈ Cp+q(F ⊗ G).

This gives us a pairing

Hp(F )× Hq(G) −→ Hp+q(F ⊗ G).

Let us now suppose that M is an irreducible and regular m-dimensional, pro-

jective scheme over k. Let V be a vector bundle over M. Then, the cup-product

produces

Hi(V)× Hm−i(V∗ ⊗Ωm)

Σ

))∪ // Hm(V ⊗ V∗ ⊗Ωm)
Contr.⊗id // Hm(Ωm).

Serre duality now reads:

Theorem 32 (Serre duality). (a) dim Hm(Ωm) = 1.

(b) The pairing Σ is perfect and defines Hi(V∗ ⊗Ωm) ' Hm−i(V)∗.

These are quickly explained by Serre in [Se54, §2, Theorem 4] and proceed

by induction on m; the case m = 1 being a consequence of the proof employing

residues and the proper identifications. See also [Se88, II.10].

The cup product of the Atiyah class and an endomorphism
Suppose X is again a curve. Fix a vector bundle E . We note that Ad(E)∗ ' Ad(E).
Explicitly, we have an arrow of OX-modules

Ad(E)⊗Ad(E) −→ OX, u⊗ v 7−→ Tr(uv), (§)

which gives

τ : Ad(E) ∼−→ Ad(E)∗, u 7−→ (Tru : v 7→ Tr(uv)).

Obviously, τ is an isomorphism. This being so,

Contr. : Ad(E)⊗Ad(E) −→ OX
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is just (§)

In the above setting, we get

H1(Ad(E)⊗Ω1)× H0(Ad(E)) Σ // H1(Ω1),

which we know, given that H1(Ω1) ' k, gives us a perfect pairing. To simplify
notation, in what follows, we shall write A ∪ T instead of Σ(A, T).

We now wish to compute, for each T ∈ H0(X, Ad(E)) the cup product

A(E) ∪ T.

For that purpose, we observe that the endomorphisms of E have a particular de-

composition.

Lemma 33. Any endomorphism T can be decomposed as c · IdE + N, where c ∈ k and
N is a nilpotent endomorphism.

Remark 34. It is here that we use that E is indecomposable. It is also used here that

k is algebraically closed. The Atiyah-Weil theorem is true if k is perfect, but false

otherwise. See [Bi05].

Proof. We let {eα
1 , . . . , eα

n} be trivialising sections of E over some open subset Uα.

Moreover, we write

eβ
j =

n

∑
i=1

gαβ,ij · eα
i ,

where gαβ are elements of GLn(O(Uαβ)). Let Tα = (tα,ij) be a n× n matrix with

entries on O(Uα) defining the restriction of T to Uα. That is,

T(eα
j ) =

n

∑
i=1

tα,ij · eα
i .

Therefore, Tα · gαβ = gαβ · Tβ ⇒ if χα stands for the characteristic polynomial of

Tα – which is a polynomial in O(Uα)[λ] – it follows that χα|Uαβ
= χβ|Uαβ

, so that

χα = χ for some χ ∈ k[λ]. Let

χ(λ) =
m

∏
i=1

(λ− ci)
µi = 0.

Since E is indecomposable, we conclude that m = 1 and χ = (λ − c)N
. Hence,

T − c · Id is a nilpotent endomorphism.

Proposition 35. Let N : E → E be a nilpotent endomorphism. Then A(E) ∪ N = 0.

Proof. This is taken directly from [At57, Prp. 18, p. 202].

Step 1. Assume that E sits in an exact sequence

0 −→ E ′ −→ E −→ E ′′ −→ 0
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of locally free sheaves. This means that we can find a covering of X together with

cocycles for E which have the form

gαβ =

[
g′αβ ∗
0 g′′αβ

]
,

so that

dgαβ · g−1
αβ =

[
dg′αβ ∗

0 dg′′αβ

]
·
[

g′−1
αβ ∗
0 g′′−1

αβ

]
=

[
dg′αβ · g

′−1
αβ ∗

0 dg′′αβ · g
′′−1
αβ

]
.

Assume that N(E) ⊂ E ′, in particular N(E ′) ⊂ E ′. Then, the matrix of N in Uαβ

will have the following shape [
N′ N′′

0 0

]
.

Consequently,

dgαβ · g−1
αβ · N =

[
dg′αβ · g

′−1
αβ · N

′ ∗
0 0

]
,

which implies that

Tr
(

dgαβ · g−1
αβ · N

)
= Tr

(
dg′αβ · g′−1

αβ · N
′
)

.

In other words, we arrive at

A(E) ∪ N = A(E ′) ∪ (N|E ′).

Step 2. Let

0 = E0 ⊂ · · · ⊂ El = E
be a filtration of E by subsheaves such that

1. Ei/Ei−1 is locally free as an OX–module, and

2. N(Ei+1) ⊂ Ei.

Then

A(E) ∪ N = A(El−1) ∪ N|El−1

· · ·
= A(E0) ∪ N|E0

= 0.

Step 3. Define Ei be the saturation of Ker(Ni) in E . That is,

Ei(U) =

{
e ∈ E(U) such that for each x ∈ U, there

exists fx ∈ Ox \ {0} with Ni( fxex) = 0

}
.

Then 0 = E0 ⊂ · · · ⊂ El = E is a filtration as in Step 2.
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We now concentrate on the calculation of A(E) ∪ Id.

Lemma 36. A(E) ∪ id = deg(E).

Proof. Some hints. First, H1(Ω1) is a one dimensional vector space with a canon-

ical generator [Se88, Proposition 3, p.12]. The composition

H1(O∗X)︸ ︷︷ ︸
Pic

dlog
// H1(Ω1) can

∼
// k .

sends, for a closed point P, the class O(P) to 1. Hence, it sends L to degL.

The equality A(E) ∪ id = A(det E) is true. Indeed, for any etale chart (U, x)
and any function g ∈ GLr(O(U)), we have, due to Lemma 37

Trace
(

dg · g−1
)
=

d(det(g))
det(g)

= dlog(det(g)).

Composing with the canonical arrow we obtain A(E) ∪ id = deg E .

Lemma 37. Let G = (gij) ∈ GLn(O(U)); let ∆ = det(gij). Then

Trace
(

G−1 · dG
dx

)
= ∆−1 d∆

dx
.

Proof. If A is a matrix, then we write A[ij] for the matrix obtained from A by delet-

ing the ith row and the jth column. Then, it is known that

Ã := ((−1)i+j det(A[ji]))

satisfies

Ã · A = A · Ã = det(A) · Id.

(See Lang’s “Algebra”.) Hence, G−1 = G̃∆−1
and we are required to prove that

Trace
(

G̃ · G′
)
= ∆′,

where we write (−)′ instead of

d
dx

. Now:(
G̃ · G′

)
ij
= ∑

`

(−1)i+`G[`i] · g′`j

so that

Trace (G̃ · G′) = ∑
i,k
(−1)i+`G[`i] · g′`i.
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Now, we consider det as a regular function on An2
. Expanding according to

some line, for fixed i, we have:

det = (−1)i+1zi1 det(A[i1]) + · · ·+ (−1)i+nzin det(A[in]).

Then

∂ det
∂zij

= (−1)i+j det(A[ij]).

The chain rule gives

∆′ = ∑
i,j
(−1)i+jG[ij] · g′ij.

which gives what we want.
∗

Exercise 38. Let char k = 0. On P1
, show that the only algebraic connections are

the trivial ones using Grothendieck’s classification theorem. It is possible to prove

that if V is a smooth, projective and rationally-connected variety, then there are

also “no” algebraic (not necessarily integrable) connections [BdS13].

The Narasimhan-Seshadri theorem
Let k = C. We now view X as a projective complex manifold (Riemann-Surface)

and identify, by GAGA, complex analytic coherent sheaves with their algebraic

counterparts. Let π be the fundamental group of X at some point and ψ : X̃ → X
the universal covering, which I regard as a principal π-bundle with π acting on

the right. For each representation $ : π → GLn(C), we get a locally free sheaf of

OX-modules V(ρ) by

V($)(U) =

{
f : ψ−1(U)→ Cn : f (ũ · γ) = $(γ)−1 · f (ũ),

∀ũ ∈ ψ−1U, ∀γ ∈ π

}
.

These sheaves come with a natural connection∇can
: For each distinguished neigh-

bourhood U, each v ∈ TX(U) and each f ∈ Γ(U,V($)), we define, by letting

ṽ ∈ TX̃(X̃|U) lift v,

∇can
v ( f1, . . . , fn) = (ṽ( f1), . . . , ṽ( fn)).

This connection can also be interpreted by considering the “local system” (a sheaf

of C-spaces which is, locally, isomorphic to the constant sheaf Cr
)

V($)(U) =

{
f : ψ−1(U)→ Cr :

f is locally constant and

f (ũ · γ) = $(γ)−1 · f (ũ), ∀ũ ∈ ψ−1U

}
.

In addition, each vector bundle E having a connection ∇ must be of the form

V($) for some $ by the monodromy representation.

∗
Recall that Tr(AB) = Tr(BA).
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Remark 39. The construction V($) given above is called the “twisting construc-

tion” and is basic in the theory of principal and vector bundles. Another way to

understand it is as follows. Interpret X̃ → X as a principal π-bundle or π-torsor:

There is an action of π on the right of X̃ (letting π act on the right is traditional).

Let now {Uα} be a cover of X by “distinguished” neighbourhoods, that is, there

exists Vα ⊂ ψ−1Uα such that ψ : Vα
∼→ Uα. In addition, let us suppose that Uαβ is

connected.

Let τα = (ψ|Vα)
−1 : Uα → X̃. Now, for u ∈ Uαβ we have τβ(u) = τα(u) ·γαβ(u),

with γαβ(u) ∈ π. It is not difficult to see that γαβ is constant on the connected space

Uαβ. The cocycle associated to V($) is $(γαβ).

This construction $ 7→ V($) is then upgraded to a functor

V(−) : RepC(π) −→ MIC.

A wonderful fact behind this functor is that it preserves all constructions of linear algebra:
It is an exact, C-linear tensor functor.

Now, if we compose V with the forgetful MIC→ VB, we obtain another func-

torW : RepC(π) → VB and “Atiyah-Weil”⇒ all vector bundles with indecom-

posable factors of degree zero must lie in ImW . But it does not allow us to see

RepC(π) “inside VB” becauseW is not full. For example, it may be the case that

in

(C)π︸ ︷︷ ︸
π-invariant

// V($)∇

Homπ (C, Cn) //// HomMC (OX,V($))

(∗)

the horizontal arrows are not surjective. The Narasimhan-Seshadri theorem comes

to throw light on this situation.

Definition 40 (Mumford). A vector bundle E is stable (of degree zero) if for each

proper subbundle
† F ⊂ E we have degF < 0.

Theorem 41 (Narasimhan-Seshadri). The functorW gives an equivalence between the
irreducible representations π → Un of π and the stable bundles of degree zero.

The original paper [NS65] is difficult. A masterful summary can be found

in [S82]. A work which I found rather useful in comprehending the Theorem is

[NS64], where the authors study locally the “moduli space” of unitary represen-

tations showing that it resembles the “moduli space” of stable bundles.

This theorem was generalised to higher dimensional varieties by means of

fundamental theorems of Donaldson and Kobayashi, Mehta-Ramanathan [MR84,

†
It is usual to employ the term “sub-bundle” for OX-submodules which have a locally free

quotient.
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Thm 5.1] and a very complete, but delicate
‡

picture was reached, after the efforts

of many mathematician, in the Simpson correspondence [Si92].

‡
Not only in the sense that the result itself is difficult to obtain, but also that it reveals a complex

picture. The Simpson correspondence says that the category of integrable connections is equiva-

lent to the category of semi-stable Higgs bundles (of “some Chern classes”). But it is not true that

the underlying vector bundles remain unaltered in the correspondence.
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Lecture 5
(12 August 2022).

Stratifications (Grothendieck’s take on connections)
I shall work on the affine case. The general one is standard and requires maturity

with sheaves and the like, so might be off putting for novices. The main refer-

ences for this part are [Be74] (well organized but demanding) and then [BO78] (a

bit more cursory). Grothendieck’s way of looking at connections is through the

notion of “stratification”.

Here are is Grothendieck’s reinterpretation:

a) To associate to integrable connections a natural structure of D-module. This

can be easily done in complex analysis by simply understanding differential

operators as “compositions of derivations”, but it much less suitable to other

contexts.

b) To associate to integrable connections the idea of an “action of a groupoid” and

hence extend it to broader contexts.

Let k → A be arrow of rings. (Soon we shall introduce more hypothesis on

this couple.) Let PA = A⊗k A and let

I∆ = Ker mult. : PA −→ A

be the ideal of the diagonal in PA.

Define

Pν
A = PA/Iν+1.

The rings PA and Pν
A have two structures of A-algebras: d0 : a 7→ a ⊗ 1 and

d1 : a 7→ 1⊗ a [EGA IV4, 17]. Let us agree to call

d0
• the canonical one

• the one on the left,

and

d1 =: τ
• the Taylor structure

• the one on the right,
(Grothendieck calls it “d” in [EGA IV4, §17].) In what follows, the elements

da := τa− a

shall also play an important role. As the reader probably noticed, I abuse notation,

so that da may belong to Pν
A for some ν or to PA, or even to Ω1

A/k. Moreover, the

reader has to be careful : dx may not mean “the differential of x” in some contexts!

Recall from your algebraic geometry course that Ω1
A/k = I∆/I2

∆ and that the

universal differential d : A → Ω1
A/k is d1 − d0. On each Pν

A we have the image

of the “augmentation ideal” I∆ · Pν
A which will be denoted simply by I∆. In case

ν = 1, I2
∆ = 0, if we consider it as an A-module via the d0 or d1, the result is the

same, and is none other than Ω1
A/k.
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Example 42. Let A = k[x, y], k a field ⇒ P polynomial ring on four variables.

Using the notation introduced above: P = k[x, y, dx, dy]. Note that d0 is just the

inclusion and d1 is x 7→ x + dx, etc. Then I = (dx, dy) and

Pν = k[x, y][dx, dy]/(dx, dy)ν+1.

Hence

τ f = f (x + dx, y + dy) = Taylor series.

Exercise 43. Show that I∆ is generated by {da : a ∈ A}.

If E is an A-module, then we obtain now two Pν
A-modules via the distinct

algebra structures:

Pν ⊗
τ,A

E and Pν ⊗
A

E.

To take advantage of the notation, E⊗A Pν
A is the tensor product using the mor-

phism “on the left” d0 : A → Pν
, and Pν ⊗A E is the tensor product using the

structure “on the right” τ = d1.

From now on we assume that k and A are Noetherian. Example 42 can be general-

ized:

Theorem 44. Suppose that x1, . . . , xn ∈ A define etale coordinates x : Spec A → An.
Then

Pν
A =

⊕
q1+···+qn≤ν

A (dx1)
q1 · · · (dxn)

qn .

Proof. The idea behind the proof relies entirely on the relation between regular

immersions and smooth morphisms.

Recall from your Commutative Algebra course the notions of regular sequence

and quasi-regular sequence [M89, Section 16]. (Where you should have realised

that “quasi-regular” is the correct concept since it “localizes”.) If B is a ring and

J = (b1, . . . , bn) is an ideal, by definition, the sequence b1, . . . , bn is quasi-regular

if the obvious morphism

B/J[Y1, . . . , Yn] −→ B/J ⊕ J/J2 ⊕ J2/J3 ⊕ · · ·

Y 7−→ b mod J2.

is an isomorphism.

If X := Spec A and P = SpecPA, then I∆ corresponds to the diagonal immer-

sion ∆ : X → P. Both schemes are k-smooth. Then ∆ is regular immersion, as is

well-explained in Chapter 6, Proposition 3.31, p. 230, of [Li02]. We do not know

a priori that I∆ = (dx1, . . . , dxn), just that I∆ is “locally” generated by a quasi-

regular sequence. But on Pν
A, the ideal I∆ is nilpotent and Nakayama’s Lemma

tells us that I∆ is generated by dx1, . . . , dxn since I/I2 = Ω1
A is generated by them.

Hence, I j/I j+1
is free on the basis {(dx1)

q1 · · · (dxn)qn : q1 + · · ·+ qn = j}. Count-

ing ranks we arrive at the desired formula.
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It is clear that P1
A = A⊕Ω1

A, and that the ring structure is given by letting Ω1
A

be an ideal of square zero. Now comes the fundamental observation.

Proposition 45. A connection on E is equivalent to an isomorphism of P1
A–modules

ε : P1 ⊗
τ,A

E ∼−→ E⊗
A
P1

which gives the identity modulo I ⊂ P1
A.

Proof. Let ∇ : E → E⊗Ω1
connection. Define θ : E → E⊗ P1

by θe = e⊗ 1 +
∇e︸︷︷︸
∈E⊗Ω

. Then

θ(ae) = ae⊗ 1 +∇(ae)
= e⊗ a + a · (∇(e)) + e⊗ da
= e⊗ τa + a∇(e).

What is a∇(e)? This is just τ(a) · ∇(e) because the elements of Ω1
A ⊂ P1

A are all

of square zero. Hence, θ(ae) = θ(e) · τ(a). By the universal property of the tensor

product, we can therefore construct a linear map:

ε : P1 ⊗
τ,A

E −→ E⊗
A
P1

η ⊗ e 7−→ η · θ(e).
It is not hard to see that ε induces the identity via the augmentation P1 → A.

On the other direction, if ε : P1
A ⊗A E → E⊗A P1

A is P1
A–linear and gives the

identity modulo I∆. Define ∇ : e 7→ ε(1⊗ e)− e⊗ 1; this belongs to E⊗Ω1
A ⊂

E⊗P1
A. A simple computation shows that it is a connection.

Corollary 46 (André). Suppose that Ω1 is free and. Assume that the trivial connection
(A, d) has “no” differential ideals. If M ∈ MC is of finite presentation⇒ it is projective.

Proof. Let Φj be the rth Fitting ideal of M [Ei95, Definition 20.4, p.493].
§

By a

fundamental property of these ideals [Ei95, Corollary 20.5], the isomorphism in

M⊗A P1
A
∼−→ P1

A ⊗A M

says that τ(Φj)P1
A = ΦjP1

A. We conclude that for ϕ ∈ Φj, the element (ϕ, dϕ)

belongs to ΦjP1
A. Hence, for ϕ ∈ Φr, dϕ = ∑i ϕiωi with ωi ∈ Ω1

A and ϕi ∈ Φr ⇒
d(Φr) ⊂ Φj ⊗Ω1

A. So Φj = (0) or (1). Another fundamental result of Fitting is

that in this case M is projective [Ei95, Prp. 20.8].

With this idea, the proof of the following is not very difficult.

§
Let M = Coker(ϕ), where ϕ ∈ Matr×s. The ideal generated by the (r− j)-minors of ϕ depends

only on M and j and is the jth Fitting ideal Φj of M. (By convention Φ<0 = 0 and Φ∞ = A.)

25



Corollary 47 (André). Assume k is a field of char. zero and Spec A smooth. Then any
M ∈ MC is locally free. (No need for integrability here!)¶

This prompts the definition:

Definition 48. An n-connection is a family of isomorphisms

εν : Pν
A ⊗

τ,A
E ∼−→ E⊗

A
Pν

A, ν = 1, . . . , n

which are compatible via Pν
A → P

µ
A and induce the identity when reduced mod-

ulo I ⊂ Pν
A. An ∞-connection or a pseudo-stratification is defined in the obvious

manner and becomes an isomorphism

P̂A ⊗A E −→ E⊗A P̂A.

Remark 49. Conceptual advantage: can define “pseudo-stratifications” for objects

other than modules over A. This was understood from the start [Be74, II.1.2]. Let

me give some interesting examples. In them, I shall in fact talk about stratifica-

tions, which will be defined below.

C. Simpson explored this point of view to define a “non-Abelian” Gauss-Manin.

Suppose k = C. Let Z/A be smooth and projective. Let M\
dR be the functor

which to each A-algebra B associates the isomorphism classes of vector bundles

of rank r on Z ⊗A B having an integrable B-linear connection. Then this functor

is co-represented by a quasi-projective A–scheme MdR. This scheme comes with

a stratification.

Remark 50. ‖
Let X = Spec A be a smooth C-scheme, and Ω1

F a projective quotient

of Ω1
X; we think of Ω1

F as being the sheaf of 1–forms along a smooth distribution

F on X. For a given finite A–module E, we define a partial connection as being a

C-linear arrow ∇ : E → E⊗Ω1
F satisfying Leibniz’s rule: Letting dF : A → Ω1

F
stand for the composition of d : A → Ω1

X and Ω1
X → Ω1

F , then, for each e ∈ E
and a ∈ A we have ∇(ae) = e⊗ dF (a) + a∇(e). Let now P1

F be the A-module

A⊕Ω1
F . Interpreting Ω1

F as an ideal of square zero, we obtain on P1
F two distinct

structures of A–algebra: one via a 7→ (a, 0) and the other via a 7→ (a, dF (a)).
As in Proposition 45, we can then say that if E carries a partial connection, then

P1
F ⊗ E ' E⊗P1

F , as P1
F–modules.

Now, suppose that Ω1
F is the co-tangent sheaf of a smooth foliation F , so that

we can talk about leaves of F . If the foliation F (on the analytic space Xan
associ-

ated to X) “has no F -saturated algebraic subsets”, then the existence of a partial

connection on E implies that E is projective. Indeed, in this case, if I ⊂ A is an

ideal such that dF (I) ⊂ I ·Ω1
F , then the subscheme Y cut-out by I is saturated.

¶
I. Biswas reminds me that this result is already explained, with unnecessary hypothesis, in

[B+87, p.211]. On the other hand, André’s point of view is useful, as seen in the case of partial

connections.

‖
Thanks are due to J. V. Pereira for raising this point.
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Stratifications and differential operators
We now define

D≤ν
A/k := HomA (Pν

A, A) ,

which are the differential operators of order ≤ ν and

DA/k = lim−→

(
· · · // HomA

(
Pµ

A, A
) HomA(pr,A)

// HomA (Pν, A) // · · ·
)

.

Each HomA
(
Pµ

A, A
)

has an obvious A-module structure, so at the moment that

is all we have. But there is a way to multiply (=compose).

Let me note right from the start that if (εµ)µ∈N is a pseudo-stratification of E,

then we can let each ∂ ∈ D≤µ
“act” on E by

E 1⊗id // PA ⊗ E
εµ // E⊗PA

id⊗∂ // E .

In order to have the proper notion of action, it is necessary to be able to com-

pose in D≤µ
.

Let

δ : PA −→ PA ⊗A PA

a0 ⊗ a1 7−→ (a0 ⊗ 1)⊗ (1⊗ a2).

This is hard to understand algebraically. BUT, geometrically, it makes a lot of

sense. Let X = Spec A and P = SpecPA. Then δ corresponds to the morphism

P ×
pr1,X,pr0

P −→ P, (x0, x1, x1, x2) 7−→ (x0, x2).

Then, using that

δ(dxi) = dxi ⊗ 1 + 1⊗ dxi

it is a simple matter to see that δ(Iµ+ν+1) ⊂ Iµ+1⊗PA +PA⊗ Iν+1
and we obtain

δµ,ν : Pµ+ν
A −→ Pµ

A ⊗
τ,A
Pν

A.

Definition 51. Let ϕ ∈ D≤µ
and ϕ ∈ D≤ν

. Define ϕψ as the element of D≤µ+ν
s.t.

Pµ+ν
A

δ // Pµ ⊗A Pν id⊗ψ
// Pµ ϕ

// A.

With this property,

DA := ∪µD≤µ

is an associative A-algebra.
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Example 52. Take A = k[x]. We know that Pµ
A = k[x][dx]/(dx)µ+1

. Let ∂q be the

dual basis of {(dx)q}. Cause

δ((dx)q) = ∑
i+j=q

(
q
i

)
(dx)j ⊗ (dx)i

we get

∂r∂s =

(
r + s

s

)
∂r+s.

Suppose Fp ⊂ k. Then,

q! · ∂q = (∂1)
q.

Then,

(∂1)
p = 0.

In this case, DA is not f.g.

This example can be generalized with the introduction of even more notation

and the help of Thm. 44.

Theorem 53 ([BO78, 2.6]). Let x : Spec A→ An
k be étale coordinates. Let

{∂q : q1 + · · ·+ qn ≤ ν}

be the dual basis of (dx1)
q1 · · · (dxn)qn . Then

D≤ν
A/k =

⊕
q1+···+qn≤ν

A ∂q.

Exercise 54. For each q, r ∈ Nn
, let (q

r) = ∏i (
qi
ri
) and q! = q1! · · · qn!. Prove the

following formula.

1) ∂q∂r =

(
q + r

r

)
∂q+r.

2) Suppose now that Q ⊂ k. Write

∂i := ∂(0, . . . , 1, . . . , 0)︸ ︷︷ ︸
i th place

Show that

∂q =
1
q!

∂q,

where I have adopted the usual notation in PDEs: ∂q = ∂
q1
1 · · · ∂

qn
n . In particular,

DA is generated by the differential operators of order ≤ 1.

OnceD := ∪µD≤µ
gains structure of ring, we can now introduce Grothendieck’s

version of what a connection is.
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Definition 55. A pseudo-stratification {εν} on M is a stratification when it satisfies

the cocycle condition, which is the following. The arrow of Pµ+ν
A -modules

εµ+ν : Pµ+ν ⊗
A

M ∼−→ M⊗
A
Pµ+ν,

when pulled-back via δµ,ν : Pµ+ν → Pµ ⊗Pν
:

(Pµ ⊗Pν)
⊗
Pµ+ν

(
Pµ+ν ⊗M

)
−→

(
M⊗Pµ+ν

) ⊗
Pµ+ν

(Pµ ⊗Pν)

is “what you wanted to be”, namely

Pµ ⊗Pν ⊗M id⊗εν−→ Pµ ⊗ (M⊗Pν)
εµ⊗id
−→ M⊗Pµ ⊗Pν.

Theorem 56 (Grothendieck). If A/k is smooth: Stratifications and actions ofD are one
and the same objects.

Idea behind the proof. Let E be an A-module. If E has a pseudo-stratification, on p.

27 I already explained how to makeD act on E. The cocycle condition assures that

this is indeed an action.

More details are in [BO78, 2.11].

Example 57. Let k = F3. A = k[x]. Let E = Oe. Let ∇e = xe ⊗ dx define a

connection. This gives a 1-stratification. Suppose that this connection extends to

a stratification. Then (∂1)
3(e) = (∂x)3(e) = 0, which it false. Even if k = Z, then

3 | ∂3
1e, which is again false.

On the positive side, let me take k = Z[1/2], A = k[x±]; let B = k[y±] be the

A-algebra defined by x 7→ y2
. That is, B = A ⊕ yA. Using that (1/2

ν ) ∈ k, we

can give B an action ofD which is compatible with the action of

d
dx

introduced in

Example 9.
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Lecture 4
(16 August 2022).

“Gauss-Manin”
Many interesting linear differential equations come from “differentiating under

the integral sign with respect to a parameter”. This is an idea which has a very

long history; in algebraic and analytic geometry by introducing further under-

standing and technology, we arrive at the notion of “Gauss-Manin” connections.

In most of modern algebraic literature this is presented following an idea of

Mumford [KO68] and needs the notion of “algebraic de Rham cohomology”, spec-

tral sequences and filtrations. These are heavy objects. Another way to talk about

these is by means of Analysis. See [MVL21, Ch. 9] for more. I shall present another

way, due to Chevalley [Ch51] and employed by Manin in his original treatment

[Ma]. The reason for this choice is two-fold: I wanted to throw light on a con-

struction which should be better known and I wanted to explain Messing’s com-

putation in [Me72]. All relies on function fields and is very thoroughly explained in

[Ch51]. This will also give me the possibility of talking about differential modules,

which is an important and much practiced method of studying connections.

Differential modules
Let K be a field and δ : K → K be a derivation: δ( f g) = δ( f )g + f δ(g).

Definition 58. A differential module over K is a a couple (E,∇) consisting of a

finite dimensional vector space E and an additive arrow∇ : E→ E which satisfies

Leibniz’s rule ∇( f e) = δ( f )e + f∇(e) for all f ∈ K and e ∈ E.

Following the pattern of Definition 63, the reader will have no difficulty in

defining the category of modules with connections MC(K).

It is possible to work in more generality and instead of fixing one derivation

δ, one deals with a finite set of commuting ones.

Examples of differential modules can easily be obtained from connections on

open subsets of A1
.

Although less geometric in embryo, differential modules are and have always

been actively studied due to their simplicity. I strongly recommend [SvdP].

Basics of function fields
An extension of fields F/K is a function field (in one variable) over K if there exists

x ∈ F which is transcendent over K and such that F/K(x) is finite and separable.

(It is possible to work out a theory where separability is eschewed as [Ch51, p.1]

hints, but this is rather pathologic.) An element functioning as x above is a sepa-
rating variable. We shall assume that K is algebraically closed in F (the algebraic

closure of K in F is called in [Ch51, p.1], the field of constants of F).
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Of course, the reader is required to think about fields of rational functions on

complete curves.

Here are some ingredients which we shall require.

Definition 59. (a) The Zariski-Riemann space SF|K is the set of discrete valua-

tions, or places, v : F∗ → Z which are trivial on K.

(b) For v ∈ SF|K, we letOv = { f ∈ F : v( f ) ≥ 0} stand for its valuation ring and

mv for its maximal ideal, the residue field is denoted by Kv.

(c) For v ∈ SF, we let F̂v be the v-adic completion of F and let Ôv be the closure

of the DVR Ov.

(d) A divisor of F is a finite sum ∑v nv [v], where nv ∈ Z.

(e) The ring of adèles (resp. complete adèles) of F/K is the restricted product

A =

{
α ∈∏

v
F : αv ∈ Ov except for finitely many v

}
.

resp.

Â =

{
α ∈∏

v
F̂v : αv ∈ Ôv except for finitely many v

}
.

In [Ch51], A is called the space of repartitions as is Â. See pages 25 and 46 in

[Ch51]. This is naturally an F-vector space, and also a K vector space.

(f) For D = ∑ nv [v], let A(D) be the space of adèles α s.t. v(α) ≥ −nv. Note:

D ≤ D′ ⇒ A(D) ⊂ A(D′).

W–differentials
Define the space of W–differentials (Weil differentials) as

W = {θ ∈ HomK (A, K) : θ vanishes on F + A(D) for some D} .

See [Ch51, p. 30]. It is standard to write W(D) := {θ ∈ W : θ|F+A(D) = 0}. If

D ≤ D′ ⇒ the natural arrow W(D′)→W(D) is injection.

Since D ≤ D′ implies W(D′) ⊂W(D), the following definition makes sense.

Definition 60. For θ ∈W, there exists a divisor div(θ) such that

θ ∈W(div(θ)) but θ 6∈W(D) if D > div(θ).

The divisor div(θ) is the divisor of the W–differential θ. Given v ∈ SF, we let

v(θ) = v(div(θ)) stand for the order of θ at v. The place v is a pole of θ if v(θ) < 0
and a zero if v(θ) > 0. A W–differential is regular if it has no poles.
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The definition of Weil-differential is by far the worst for those who have never

met this approach before. It is one of the thorns of the theory. Simple examples

of W–differentials are difficult to write down. The link between these and “Käh-

ler” differentials is given by the theory of residues, which is a delicate matter if the

ground fields are not algebraically closed.

Definition 61 (Local components ). Let θ ∈W and v ∈ SF. If ιv : F → A stands for

the inclusion of the vth coordinate, we define θv, the local component of θ, as being

θ ◦ ιv.

Exercise 62. Let θ ∈W and v ∈ SF. Show that θv : F → K is continuous, where F is

given the v-adic topology and K the discrete one. Deduce that θv can be extended

to F̂v.

Given f ∈ F and θ ∈ W: define f θ by α 7→ θ( f α). This endows W with the

structure of an F-vector space.

Theorem 63 ([Ch51, p.31]). The F-space W is one dimensional.

Corollary 64. The divisors of any two W–differentials are equivalent. The class of any
divisor div(θ) is called the canonical class.

We now produce W–differentials.

Example 65 (Key example, [Ch51, p.102]). Let F = K(x). Define dx ∈ W: If ∞ is

the place at infinity, then

[dx]∞ : xi 7−→
{

0, i 6= −1
−1, i = −1.

Let π ∈ K[x] irreducible, monic, of degree m, and v ∈ SF the associated zero.

Decompose f ∈ F in partial fractions:

f =
fr

πr + · · ·+
f1

π
+ g,

where fi ∈ K[x], deg fi < deg f and v(g) ≥ 0. Then

[dx]v( f ) = coefficient of xdeg f−1
in f1.

Let F/K be a function field and x ∈ F a separating variable. Write R := K(x).
Following [Ch51, p. 67], let us define

Tr : ÂF −→ ÂR.

by

(Tr α)v = ∑
w|v

TrF̂w/R̂v
(αw)︸ ︷︷ ︸

∈R̂v

.

This is called the trace of α.
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Now, if η ∈WR/K, we then define its co-trace,

Cotr(η) : Â −→ K, α 7−→ η(Tr(α)).

As [Ch51, pp 105-6] argue, Cotr(η) is a W-differential. For future use, we shall

observe that if we identify F̂w with the adèles supported at w, then

Cotr(η)w : F̂w −→ K f 7−→ η
[
TrF̂w/R̂v

( f )
]

In this way, for each separating variable x ∈ F, we can define

[dx]F := Cotr(dx) ∈WF,

which together with Theorem 63 allows us to write

W = F · [dx]F.

If x ∈ K, we shall put [dx]F = 0, and if x ∈ F rK is not separating, we also decree

that [dx]F = 0.

The relation between W and the usual Ω1
F/K is given by Theorem 9 on p. 116

of [Ch51]. To understand this result, recall that the usual derivation

d
dx

on K(x)
can be uniquely extended to a derivation, denote likewise, of F. This being so, for

any element y ∈ F, we have

dy =
dy
dx

dx. (4)

Hence,

[d−]F : F −→W
identifies W with Ω1

F/K.

Differentiating W-differentials
Let F/K be a function field with separating variable x. Let δ : K → K be a deriva-

tion. We extend δ to

δx : F −→ F
by the rule δx(x) = 0. This is called a “horizontal” extension.

For each f ∈ F, define

δx( f dx) = δx( f )dx.

In this way, we obtain an additive arrow

δx : W −→W.

This is rather silly and arbitrary for the moment and depends on a the many

choices.

Let y ∈ F be another separating element. By eq. (4)

δy(dx) = δy
(

dx
dy

dy
)

= δy
(

dx
dy

)
dy.
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Lemma 66. Let d
dx

: F → F be the K–linear derivation mapping x to 1. Then[
d

dx
, δx
]
= 0.

Proof.
[

d
dx

, δx
]

vanishes on K and on x, hence of F.

Using the Lemma, we continue our calculation of δy(dx):

δy(dx) = δy
(

dx
dy

)
dy

=
d

dy
(δy(x))dy (5)

= d(δy(x)).

Theorem 67 (Chevalley). Let y ∈ F separating. Then

δx − δy : W −→W

has its image in the exact W-differentials; precisely:

[δx − δy]( f dx) = −d( f δy(x))

Proof. Consider the derivation

δx − δy + δy(x)
d

dx
.

It vanishes on K and on x. Hence vanishes on F⇒

δx − δy = −δy(x)
d

dx
. (6)

Then

(δx − δy)( f dx) = (δx( f )− δy( f ))dx− f δy(dx) (δy
is derivation)

= (δx( f )− δy( f ))dx− f d(δy(x)) (see eq. (5))

= −(δy(x)
d

dx
f )dx− f d(δy(x)) because of eq. (6)

= −δy(x)d f − f d(δy(x))
= −d( f δy(x)).

For geometric purposes, the “de Rham” space W/dW is much too big. To get

something reasonable, we require differentials of second kind and the associated de

Rham space.
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Differentials of the second kind and residues
It is here where working with W–differentials comes cheaper, since it allows di-

rectly the use of residues. For the sake of economy, we write δ in place of δx
.

Let v ∈ SF|K. Let Kv,s ⊂ Kv the separable closure of K inside Kv. Hensel’s

Lemma assures the existence of a copy of Kv,s ⊂ Ôv containing K [Ch51, Theorem

1, p.44]. Consequently,

θv( f ) = TrKv,s/K (resv(θ) · f ) , ∀ f ∈ Kv,s

for a unique resv(θ) ∈ Kv,s. This is called the residue of θ at v. See [Ch51, p.48]. It

goes without saying that the actual determination of resv(θ) is not a trivial matter.

On the other hand, in special circumstances, we have a satisfactory picture:

Theorem 68 ([Ch51, Corollary, p.110]). Let K be of characteristic zero and v ∈ SF|K
be of degree one. Let t ∈ F be a uniformizer at v.

Then:

1) We have an isomorphism F̂v ' K((t)).

2) The local component [dt]v is

∑
i�−∞

citi 7−→ c−1.

3) For y ∈ F such that y = ∑i�−∞ citi, we have

resv(y dt) = c−1.

Definition 69. A W–differential θ is of the second kind if resv(θ) = 0 for all v.

Notation: Wsk
.

Theorem 70 (Chevalley). δ(Wreg) ⊂Wreg and δ(Wsk) ⊂Wsk.

The proof is a consequence of:

Theorem 71. i) Let v ∈ SF|K and θ ∈W. Then,

[δθ]v = δ ◦ θv − θv ◦ δ. (7)

ii) For each v ∈ SF and each θ ∈ W, we have resv(δ(θ)) = δ(resv(θ)). (Residues

and δ commute.)

Proof. (i) Let θ = y dx. Let f ∈ F̂v. We evaluate the LHS of eq. (7) on f :

[δθ]v( f ) = [δ(y dx)]v ( f )
= [δ(y)dx]v ( f ) (definition of δ acting on W)

= [dx]v(δ(y) · f ) (definition of F acting on W).
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Now:

δ (θv( f )) = δ ([dx]v( f y))

and

θv(δ( f )) = [dx]v(y · δ( f )),

so that we want

[dx]v(δ(y) · f ) = δ ([dx]v( f · y))− [dx]v(y · δ( f )).

We then only need to prove

δ ([dx]v(g)) = [dx]v (δ(g)) (8)

in case g = f · y ∈ F̂v and use that δ is derivation.

Let R := K(x) and let w ∈ SR/K be the image of v. We know that derivations

commute with traces (Exercise 76), in the present case

TrF̂v/R̂w
◦ δ = δ ◦ TrF̂v/R̂w

.

Now, we know that dx ∈WF/K is the co-trace of dx ∈WR/K. This means:

[dx]v = [dx]w ◦ TrF̂v/R̂w
.

Then, eq. (8) follows from

δ ([dx]w(h)) = [dx]w (δ (h)) (9)

applied to h = TrF̂v/R̂w
(g) ∈ R̂w.

The case “w = ∞.” – Write h = ∑∞
i�−∞ hix−i

with hi ∈ K. In this case, [dx]w(xi)

is −1 if i = −1 and zero otherwise. Because δ(xi) = 0⇒ δ(h) = ∑∞
i�−∞ δ(hi)x−i

and we are done.

The case “w 6= ∞” – We shall rely on the previous case. Pick h1 ∈ R such that

w(h− h1) ≥ 0 and use the fact that div(dx) = −2[∞] to obtain

[dx]w(h) = [dx]w(h1).

By strong approximation applied to the set {∞, w} and the element h1, there exists

h2 ∈ R such that w(h1 − h2) = 0 and w(h2) ≥ 0 for all w 6∈ {w, ∞}. In particular

[dx]w(h) = [dx]w(h1)

= [dx]w(h2).

Exercise 72. For each w ∈ SR, we have δ(Ow) ⊂ Ow.
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We know that h2 and δ(h2) have poles at most on {∞, w} and that [dx]w(Ow) =
0 if w 6= ∞. Then

[dx]w(δ(h)) = [dx]w(δ(h1)) (because w(δ(h)− δ(h1)) ≥ 0)
= [dx]w(δ(h2)) (because w(δ(h1)− δ(h2)) ≥ 0)
= −[dx]∞(δh2) (because of Residue Thm.),
= −δ([dx]∞(h2)) (previous case),
= δ([dx]w(h2)) (Residue Thm.),
= δ([dx]w(h)) (because w(h− h2) ≥ 0).

(ii) Let v ∈ SF and put ρ = resv(θ). Write Tr := TrKv,s/K.

Let f ∈ Kv,s be arbitrary. We shall show that

Tr(δ(ρ) · f ) = [δθ]v( f ),

which proves resv(δ(θ)) = δ(ρ) by the very definition of resv. Given (i), we need

to prove

Tr(δ(ρ) · f ) = δ(θv( f ))− θv(δ( f )).

But

δ(θv( f )) = δ(Tr(ρ f )) (because δ commutes with traces)

= Tr(δ(ρ) · f + ρ · δ( f ))
= Tr(δ(ρ) · f ) + θv(δ( f ))

which gives the equality we want.

Theorem 73 ([Ch51, Cor. 1, p.130]). If char. K = 0, then

dimK Wsk/dW = 2× genus.

This is false in char. p.

The above space is called H1
dR. (It is the first algebraic de Rham cohomology

of the proper smooth modem of F.)

Definition 74. The differential module (H1
dR, δx) is called the Gauss-Manin con-

nection [Ma].

Remark 75. It is in general possible to develop a nice theory of differentials of the

second kind in complex geometry; see [GH78, 454 ff].

Exercise 76. Let E/F be a finite extension of fields and d : E → E a derivation

which preserves F.

1) Assume that E/F is purely inseparable. Show that TrE/F ◦ d = d ◦ TrE/F.

2) Assume that E/F is separable. Passing to the Galois closure, show that TrE/F ◦
d = d ◦ TrE/F.
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A noble series
For each s ∈ C r Z≤0 and n ∈ Z>0, define the Pochammer symbol:

(s)n = s(s + 1) · · · (s + n− 1).

By convention (s)0 = 1. Following Wallis, Euler and Gauss we set out to study

the hypergeometric∗∗
series

F(a, b, c | λ) = 1 + ∑
n≥1

(α)n(β)n

(γ)n(1)n
λn.

This series, Euler had remarked before, was the solution to the hypergeometric

differential equation

λ(1− λ)
d2

dλ2 + {γ− (α + β + 1)λ} d
dλ
− αβ = 0. (HGDE)

The associated differential module over Q(λ) shall be denoted by HG(α, β, γ).

The Gauss-Manin connection of certain hyperelliptic curves and
the hypergeometric differential equation
Let now a, b, c, n ∈ Z>0. Suppose:

gcd(a, n) = gcd(b, n) = gcd(c, n) = gcd(a + b + c, n) = 1.

Let µn be the group of nth roots of unity and set K = Q(µn, λ). Define

F = K(x, y) with yn = xa(x− 1)b(x− λ)c.

Said differently, if

R = K(x),

then F|R is a cyclic extension and Gal(F|R) ' µn by letting ε ∈ µn act as the identity

on R and as usual, ε(y) = εy, on y. This action gives rise to an action on SF|K and

on ÂF|K as follows. For each v ∈ SF|K we set ε(v) = v ◦ ε−1
. Note: we obtain

isomorphisms ε : Ov
∼→ Oεv and ε : Ôv

∼→ Ôεv. For α ∈ ÂF|K, we put

[ε(α)]v = ε(αε−1(v)) = ε(αv◦ε).

∗∗
As explained in [Gou36], the term hyperomgetric has the following meaning. Take a series

∑ anλn
with non-vanishing coefficients and such that the d’Alembert limit lim

n

an+1

an
is 1. Suppose

one can write

an+1

an
=

Pm(n)
(n + 1)Qm−1(n)

, where Pm is a polynomial of degree m and Qm−1 of degree

m − 1. If m = 1, we recover the usual series of the form (1 − λ)α
. The case m = 2 gives us

hypergeometric series. See also §14.1 in [WW15].
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In particular, f ∈ F̂v is considered as an adele, then ε( f ) is the adele which is zero

allover, except at εv, where it is ε( f ).
The action on the adeles, in turn, induces an action on WF|K defined by

ε(θ) : ÂF|K −→ K, α 7−→ θ ◦ ε−1.

In particular, on the level of local components, we have

[ε(θ)]v = θε−1(v) ◦ ε−1.

In addition, it is not difficult to see that each cotrace Weil-differential Cotr(η)
is invariant under the action of µn. In particular, ε( f dx) = ε( f )dx. Hence, using

that F =
⊕n−1

`=0 Ry` and that WF|K = F dx, we conclude that

W =
n−1⊕
`=0

W`,

where µn acts on W` via the character ε 7→ ε`.

Lemma 77. The following statements are true.
1) For each ε ∈ µn and f ∈ F, we have ε(d f ) = dε( f ).

2) For each ε ∈ µn, θ ∈W and v ∈ SF, the formula resεv(εθ) = ε(resv(θ)) holds.

3) The group µn acts by K-linear automorphisms on H1
dR.

Proof. (1) We have

ε(d f ) = ε

(
d f
dx

)
dx

=
d(ε f )

dx
dx,

where for the last equality we used that ε
d

dx
and

d
dx

ε are derivations of F which

agree on R = K(x).
(2) By definition, ε : F → F gives Ov

∼→ Oεv, which induces ε : Ôv
∼→ Ôεv. In

particular, the Cohen field K̃v ⊂ Ôv is sent isomorphically to the Cohen field K̃εv.

For each f ∈ K̃v ⊂ Ôv, we have

(εθ)v( f ) = θε−1(v)(ε
−1( f ))

= Trε−1K̃v|K(ε
−1( f ) · resε−1(v)(θ))

= TrK̃v|K( f · ε(resε−1(v)(θ)))

⇒
resv(εθ) = ε(resε−1(v)(θ))

⇒
resε(v)(εθ) = ε(resv(θ)).

(3) This is clear.
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In order to go further, we let v0, v1, vλ and v∞ be the obvious rational places of

R = K(x).

Lemma 78. Only v0, v1, vλ and v∞ ramify in F and each one has ramification index n
(that is, it is totally ramified). The genus of F|K is n− 1.

Proof. From [St09, 6.3.1, p.227] we know that v0, v1, vλ are all totally ramified in F,

and that if w∞ is above v∞, the ramification index is

n
gcd(n, a + b + c)

.

The hypothesis then shows that v∞ is totally ramified. From this and the formula

of [St09, 6.3.1(b), p.227], the genus of F/K is n− 1

We then have the following situation:

SF|K 3 w0 w1 wλ w∞

SR|K 3 v0 v1 vλ v∞,

all places in question are rational.
We then have

w0 w1 wλ w∞
x n 0 0 −n
y a b c −(a + b + c)

Now, recall that in characteristic zero, w(dx) = v(x)− 1 if w(x) 6= 0 and w(dx) ≥ 0
if w(x) = 0. From this we deduce

w0 w1 wλ w∞
dx n− 1 n− 1 n− 1 −n− 1

y−1dx n− a− 1 n− b− 1 n− c− 1 a + b + c− n− 1
xy−1dx 2n− a− 1 2n− b− 1 2n− c− 1 a + b + c− 2n− 1

If

n− 1 ≥ max(a, b, c),

then differentials

xi dx
y

i = 0, 1, . . .

only have poles at w∞. In particular, each one of these is of the second kind. Also,

we see that a canonical divisor is given by

(n− 1){[w0] + [w1] + [wλ]} − (n + 1)[w∞].
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Lemma 79. Assume that n - `. Then

resw0 xm dx
y`

= resw1 (x− 1)m dx
y`

= reswλ
(x− λ)m dx

y`

= 0

for each m ≥ 0.

Before entering the proof, let us make some preliminary comments on differ-

entials.
††

Let K̃|K be a finite extension. Let F̃ := FK̃ and let w̃ ∈ SF̃|K̃ be above

w ∈ SF|K. According to [Ch51, Thm 11, p.119], for any differential θ ∈ WF|K, we

have

resw̃

(
CotrF̃|F(θ)

)
= reswθ. (10)

(The reader who actually consults loc.cit. will see that this is an intricate proof. At

the end, it is possible to simplify the matter adding assumptions on the extension

K̃|K, but we shall leave details as they are.) This shall allow us to verify easily that

certain differentials are of second type.

Proof. Let π be a local parameter at w0. Let ξ = x/πn +mw0 and η = (−1)b+cλc
,

and consider K̃ = K( n
√

ξ, n
√

η).

Let F̃ = FK̃; there is a unique place w̃0 ∈ SF̃|K̃ above w0. (This follows from

the fact that Kw0 = K.) We shall show that

Cotr
(

xm dx
y`

)
∈WF̃|K̃

have vanishing residues on w̃0. Since x/πn ∈ Ow̃0 is invertible and its class class

is an nth power in Ow̃0/mw̃0 , Hensel’s Lemma tells us that there exists t ∈ Ôw̃0

such that x = tn
.

We then have that

yn = tna(x− 1)b(x− λ)c.

Hence, (
ta

y

)n
=

1
(x− 1)b(x− λ)c .

Now,

(x− 1)b(x− λ)c = (−1)b+cλc +
{
(−1)b+c−1c + (−1)b+c−1λcb

}
· x + · · ·

and we conclude, again by Hensel’s Lemma, that (x− 1)(x− λ)c
is an nth power.

In fact, there exist

r = r0 + r1x1 + · · · ∈ K̃((t))

††
Thanks are due to K.-O. Stöhr for discussing this point with me.
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whose nth power equals (x− 1)b(x− λ)c
. Therefore,

1
y
= t−a (s0 + s1x + . . .) .

Hence,

xm dx
ny`

= tn−1−`a
(

s′0xm + s′1xm+1 + . . .
)

dt

Since x = tn
, we know that the exponents of t in the above power series are always

of the form

n− 1− `a + µn, µ ≥ m.

Such an expression cannot equal −1. Indeed if this is the case, then n | `a, which

is impossible since gcd(n, a) = 1 and n - `.

The proof of the fact that (x − 1)m dx
y`

, resp. (x − λ)m dx
y`

, has no residue on

w1, resp. wλ, is similar, since this differential is really (x − 1)m d(x− 1)
y`

, resp.

(x− 1)m d(x− λ)

y`
.

Let

H1
dR =

n−1⊕
`=0

H−`,

be the isotypic decomposition, where µn acts on H` by ε 7→ ε`.

Corollary 80. Let ` be a positive integer not divisible by n. Then

ϕ` :=
dx
y`

, ψ` =: x
dx
y`

are of the second kind and induce elements of H−`.

Proof. The only poles of ϕ` and ψ` are among w0, w1, wλ or w∞. We show that their

residues on w0, w1 or wλ vanish, so that these differentials are of the second kind.

We already know that ϕ` and ψ` have no residues at w0. By Lemma 79 applied

with m = 1, we conclude

resw1 x
dx
y`

= resw1

dx
y`

= 0.

Analogously,

reswλ
x

dx
y`

= λ · reswλ

dx
y`

= 0.
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Proposition 81. Assume that n - `. The classes of ϕ` and ψ` in H1
dR are linearly inde-

pendent. In particular,

H1
dR =

n−1⊕
`=1

H−`,

and H−` = Kϕ` + Kψ`.

Proof. We decompose W = ⊕n−1
`=0 W` into isotypic components for the µn-action

and note that d(K(x)y`) ⊂ W`. Hence, if our first statement is false, we should

have that there exists f ∈ K(x), α, β ∈ K, such that

d( f y−`) = (αx + β) · dx
y`

.

This gives

d f
y`
− `

f
y`

dy
y

= (αx + β) · dx
y`

,

so that we have the following equality in WK(x)|K:

d f
f
− `

[
a/n

x
+

b/n
x− 1

+
c/n

x− λ

]
dx = (αx + β)

dx
f

. (&)

We now make several claims.

The poles of f are in {v0, v1, vλ, v∞}. Suppose this is false. Let v 6= v0, v1, vλ, v∞ be a

place of K(x) which is a pole of f . Then f−1d f has a pole at v, which contradicts

(&).

The only pole of f is v∞. Assume that v0 is a pole of f . Then, using Theorem 68, the

LHS of (&) has residue

v0( f )− `a
n

.

But the RHS of (&) is regular at v0, so that we should conclude that n | `a, which

is false. The same reasoning applies for v1, vλ.

Each v0, v1, vλ is a zero of f . Assume that f is invertible in Ov0 . Then equation

(&) reads

regular at v0 + pole of order 1 at v0 = regular at v0.

This is absurd. The same reasoning applies to v1, vλ and the proof is finished.

From the last claim, we see that deg( f ) ≥ 3. It then follows that the RHS of

(&) is regular at v∞. We now show that the residue of the LHS of (&) at v∞ is 6= 0
to arrive at a contradiction and therefore show that f does not exist.

If ξ = 1/x and f = ξµ f1, with f1 ∈ O∗v∞
, then the LHS of (&) reads

d f1

f1
+ µ · dξ

ξ
+ `

[
a
n

ξ +
b
n

ξ

1− ξ
+

c
n

ξ

1− λξ

]
dξ

ξ2 .
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It follows that the LHS of (&) has residue

µ +
`(a + b + c)

n

at v∞. This cannot equal zero since n - `. Hence, the LHS of (&) is not regular at

v∞ while the RHS is, as wanted.

We have now concluded that the subspace of H1
dR spanned by the classes ϕ`

and ψ` is of dimension two. Since dimK H1
dR = 2g, and F has genus n− 1 (Lemma

78), the final claim follows without effort.

We shall now determine the differential module structure of H−` given by the

Gauss-Manin connection. Let δ =
d

dλ
; this is a derivation of K which is extended

to a derivation of F, called likewise, such that δx = 0. We shall now require some

results on the calculus which once obtained are easily verified.

Proposition 82 (see p. 6 of [Gou81]). Let α, β and γ be real numbers and let

Vα,β,γ(u, λ) := uβ−1(1− u)γ−β−1(1− λu)−α.

Then{
λ(1− λ)

∂2

∂λ2 + (γ− (α + β + 1)λ)
∂

∂λ
− αβ

}
Vα,β,γ = −α

∂

∂u

[
u(1− u)
1− λu

Vα,β,γ

]
.

Now, let u = 1/x; in this case

Vα,β,γ = x2+α−γ(x− 1)γ−β−1(x− λ)−α.

since

∂

∂u
= −x2 ∂

∂x
, we have{

λ(1− λ)
∂2

∂λ2 + (γ− (α + β + 1)λ)
∂

∂λ
− αβ

}
(Ṽα,β,γ) = α

∂

∂x
(· · · ),

where Ṽα,β,γ = Vα,β+2,γ+2. Now, letting

α` =
`c
n

, β` =
`(a + b + c)

n
− 1 and γ` =

`(a + c)
n

,

we conclude that

y−` = x−
`a
n (x− 1)−

`b
n (x− λ)

−`c
n

= Ṽα`,β`,γ`
,

Hence, {
λ(1− λ)δ2 + (γ− (α + β + 1)λ)δ− αβ

}
ϕ` = 0 (11)

in H1
dR.
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Theorem 83. Let n, a, b, c be positive integers such that each one of a, b, c, and a + b + c
is prime to n. Then H1

dR, with its Gauss-Manin connection, is isomorphic to

n−1⊕
`=1

HG (α`, β`, γ`)

where

α` =
`c
n

β` =
`a + `b + `c

n
− 1

γ` =
`a + `c

n
.

In particular, the differential equation associated to the Legendre family

y2 = x(x− 1)(x− λ)

is HG(1
2 , 1

2 , 1
2).

Proof. From Corollary 80, Proposition 81 and eq. (11), all we need is to show that

ψ` belongs to K · ϕ` + K · δϕ` in H1
dR. This is a consequence of

d
(

x(x− 1)
y`

)
=

(
`(a + c)

n
− 1− `cλ

n

)
ϕ`+

(
2− `(a + b + c)

n

)
ψ`+λ(λ− 1) · δϕ`,

found in [Ka72, 6.8.3.1], and the fact that gcd(a + b + c, n) = 1.

Remark 84. Note that the computations in [Ka72, 6.8.0] are carried out for the affine

curve

X = {yn = xa(x− 1)b(x− λ)c}r {(0, 0)}
over C(λ) and H1

dR(X/C(λ)) is not completely described. In [Me72], one finds a

description of the direct summand H−1.
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