
Algebraic groups acting on varieties and their
applications

Joao Pedro dos Santos

These are transcriptions of the lectures I delivered – via Zoom – for the “In-
ternational School on Algebraic Geometry and Algebraic Groups” organized by the
Institute of Mathematics of the Vietnamese Academy of Sciences in Novembre 2021.
I structured the lecture notes assuming solely that students would be familiar with
basic “Grothendieckean” algebraic geometry (e.g. schemes, fibre products and flat-
ness). But I must say that in order to grasp the contents of these lectures, the
reader should have a certain experience with the aforementioned “basic” algebraic
geometry.

Finally, I must emphasize that these are rough lecture notes; they probably
contain many mistakes and imprecisions.

Programme
1. Introduction: what kind of problems lead us to study groups acting on varieties?

2. Functors and Yoneda’s Lemma.

3. Group schemes and their representations: the affine case.

4. Affine quotients: General remarks on finite generation and the case of a finite
and constant group scheme.
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Lecture 1
(5 Novembre 2021).

Some conventions
1) k = algebraically closed field.

2) All schemes are k-schemes. A morphism of schemes is a morphism of k-schemes.
The category of schemes is denoted by Schk. (I shall make a brief recall of
category theory.)

3) An algebraic k-scheme = k-scheme X which is covered by a finite number of
affine open subsets Ui s.t. O(Ui) is of finite type. That is, a k-scheme of finite
type.

4) A point on an algebraic scheme is always a closed point, unless otherwise men-
tioned. The set of points on an algebraic k-scheme X is denoted by X(k). (See
below as well.)

5) If S is an algebraic scheme and s is a point in it, then we know that the inclusion
k → k(t) = OS,s/ms is bijective (because of the Nullstellensatz). For a morphism
f : X → S, we define the fibre of f above s as being the k-scheme

X ×S Speck(s).

6) More generally. If s : S ′ → S and f : X → S are morphisms of algebraic schemes,
then the fibre of f above s is X ×S S ′.

Exercise 0.1. Let f : A2 → A2 be defined by (a, b)→ ab. Describe the schematic
fibre f−1(0). Is it integral? Is it irreducible?

Let g : A2 → A2 be defined by (a, b) 7→ (a, ab). Describe the schematic fibre
g−1(0) and compare it with the other fibres g−1(a, b).

1 Constructing moduli via an example
Want to study “spaces” of algebro-geometric objects up to “equivalence” or “iso-
morphism”. These are traditionally called “moduli spaces” following Riemann’s first
usage of this name in describing how many parameters the “moduli” of Riemann
surfaces should have.

The path to constructing such objects will be the one provided by invariant
theory, which roughly means:

I. Finding a space U whose points correspond to all possible structures.

II. Taking equivalence classes to identify structures.
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Sometimes it is not possible to attain neither I, nor II.
I shall explain these ideas through a simple example. : Sets of two points in C.

Once we obtain the theory of representable functors, we shall see how these ideas
can be made more precise.

Take
U = C2 r {(a, a) : a ∈ C}.

Let ε : C2 → C2 be (a, b) 7→ (b, a). Then U/ε is the set of two points in C.
In geometry:

U = A2 r ∆

= Spec

(
C[x, y]

[
1

x− y

])
,

where ∆ is the diagonal. Clearly, U (C) is U . Moreover, we have an automorphism
ε : U → U defined by exchanging x and y. Two problems:

P1. What is U /ε in geometry?

P2. Construction is too set-theoretical and does not account for families.

What are families? Suppose that T is a set and that Φ : T → U/ε is a map. Then
Φ(t) gives me a couple of two points in C and we construct a family parametrised
by T :

DΦ = {(t, c) : c ∈ Φ(t)} ⊂ T ×C.

Alternatively, consider the diagram:

D �
� i //

ϕ
''

T ×C

pr

��
T

(?)

where i is inclusion and #ϕ−1(t) = 2. This gives a map ΦD : T → U/ε.
A particular case of interest is when Φ is the identity and we obtain the universal

family:
Did = {(m, a) : a ∈ m} ⊂ U/ε×C.

Now: if everything in (?) is algebraic/analytic/C∞, etc, is it the case that ΦD

also has these properties? Analytic and algebraic geometry are very well suited to
handle these problems since singularities are part of the theory.

To tackle (P1), note : If f : U /ε → A1 is a function ⇒ f ◦ ε = f . It is then
reasonable to look at the ring

A = {f ∈ O(U ) : ε#(f) = f}

and
M = SpecA.
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Exercise 1.1. Let ξ = x + y, η = xy and δ = x − y. Show that A = C[ξ, η][1/δ2]
and that δ2 = ξ2 − 4η.

The universal family is a bit subtler (and I’ll hide the reasoning). Take

D = SpecA[X]/(X2 − ξX + η).

We now have a diagram
D

χ
((

//M ×A1

pr

��
M .

Exercise 1.2. Show that for each closed pointm of M , the fibre χ−1(m) is SpecCt
SpecC. Show that U ' D .

An important fact is that the ring O(D) is a free O(M )–module of rank two.

Exercise 1.3. (1) Let T be affine and algebraic and consider

D �
� i //

ϕ
''

T ×C

pr

��
T

where we suppose that

• O(D) is, as an O(T )–module, free of rank two.

• For each t ∈ T , the fibre ϕ−1(t) is SpecC t SpecC.

Then, there exists a unique morphism ΦD : T →M such that

D ×
χ,M ,Φ

T = D.

Hint: Since O(D) = O(T )v⊕O(T )w, we can write O(D) = O(T )[X]/(X2−αX+
β). This means that D “depends on two parameters”. The fact that ϕ−1(t) has
two points puts a relation between α and β.

Thus we obtain a complete answer to our problem. We can say that the space
of two points in C is, in algebraic geometry, the scheme M and, in addition, that

Mork(T,M ) = {certain families of two points over T}.

This point of view shall lead to category theory, which is, as taught by Grothendieck,
a very important tool for doing mathematics.
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Lecture 2
(5 Novembre 2021).

2 Brief overview of category theory
A fundamental fact of pure mathematics unveiled in the XX century was the use of
category theory. This started to flourish on the hands of the algebraic topologists,
but took a enormous impetus in the hands of A. Grothendieck. It is now a funda-
mental way of communicating. The best reference on the subject is [ML98], but it
may be a bit impressive in a first look (at least that is the impression I had when I
was a student). Students will also appreciate [Le14].

A category C is the data of a set of objects, denoted usually by ObC, a set∗ of
arrows ArrC, two maps

s, t : ArrC −→ ObC

called the source and the target. In addition, we also have composition rules and
an identity. That is, letting

CArr(C) = Arr(C)×s,ObC,t Arr(C)

= {(g, f) ∈ Arr(C)× Arr(C) : t(f) = s(g)}

be the set of all “ composable couples”, we have maps

ObC
id−→ ArrC and ◦ : CArrC −→ ArrC,

c 7−→ idc (g, f) 7−→ g ◦ f,

which are subjected to the axioms of associativity and unity. These axioms are

h ◦ (g ◦ f) = h ◦ (g ◦ f) and f ◦ id = id ◦ f.

An arrow f having source a and target b is represented by f : a→ b. The set of
all arrows from a to b, which is s−1(a) ∩ t−1(b), is denoted by HomC (a, b).

One can say a lot about categories in the abstract [ML98], but here we shall
simply use this idea in order to communicate and to prove the Yoneda lemma.
Hence, it is fait to say that the reader will be well prepared to handle what comes
in meditating on the following examples.

Example 2.1. The category of groups has for objects all the possible groups and
for arrows the group morphisms.

Example 2.2. The category Top of topological spaces and continuous maps be-
tween them.

Example 2.3. The category of k-schemes, Schk, which has for objects all k-schemes
and whose arrows are morphisms of k-schemes.

∗I shall be sloppy in dealing with set theoretical issues here. Details are in [ML98]
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Now, another very important concept is that of a functor.

Definition 2.4. Let C and C′ be categories. A functor is the data of two maps
F : ObC → ObC′ and F : ArrC → ArrC′ (no notational distinction is usually
made!) such that

F (idc) = idF (c) and F (g) ◦ F (f) = F (g ◦ f).

(On the latter equation, one has to assume that g and f are composable.)

There are numerous examples of functors.

Example 2.5. Let Rng be the category of associative rings with identity. Then
define a functor U : Rng → Ab by associating to a ring A the underlying abelian
group and for a ring-morphism f : A→ A′ the morphism of abelian groups f : A→
A′. This is usually called a forgetful functor. (Because we forget that there was an
extra structure.)

Example 2.6. Let U : Schk → Top be the functor associating to the scheme
(X,OX) the topological space X. This is a forgetful functor.

Exercise 2.7. Define Top to be the category of topological spaces and Set the
category of sets. Construct two distinct functors D : Set→ Top.

Many interesting functors invert the direction of arrows. For this reason, one
introduces:

Definition 2.8. If C is a category, we define Cop as the category with the same
set of objects, but such that HomCop (a, b) = HomC (b, a). It is called the opposed
category. It is usually never really used other than to give a name to functors which
invert arrows. Such functors are called contra-variant functors.

Finally, the last pillar of category theory is the notion of natural transformation.

Definition 2.9. Given F,G : C → A two functors. A natural transformation ϕ
from F to G, denoted by ϕ : F ⇒ G, is a family of arrows

ϕc : F (c) −→ G(c)

such that for all arrows f : c→ d in Arr(C), the diagram

Fc

F (f)
��

ϕc // Gc

G(f)
��

Fd ϕd

// Gd.

commutes.

Let me show the utility of these concepts with an example.
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Example 2.10. Let vect be the category of vector spaces. We then have the functor
F : vect → vect given by F (V ) = Homk (k, V ). We all know that a linear map
k → V is “just the choice of a vector”. In categorical terms, this comes with more
precision. We have a natural transformation ε : F ⇒ id given by

εV : F (V ) −→ V

α 7→ α(1).

Obviously, for each f : V → W , the diagram

Homk (k, V )
F (f) //

εV
��

Homk (k,W )

εW
��

V
f

//W

commutes since, the element α ∈ Homk (k, V ) behaves as

α //

��

f ◦ α

��
α(1)

f
// fα(1).

3 Representable functors
We saw that to construct “spaces of structures” in geometry, we needed the notion
of quotient and of families. In addition, we noted that if M is a certain “space of
structures”, then it is reasonable to interpret Mork(T,M ) as a certain set of families
of that structure. For this study, we need more category theory.

Let C be a category. For each M ∈ C, let

hM : Cop −→ Set

stand for the functor defined by

T 7→ HomC (T,M) .

It is called the functor of points of M . Let me explain why this functor has such a
geometric name. (At this point you should also consult [Mu66, ].)

Example 3.1. Let

M = Spec k[T1, . . . , Tm]/(f1, . . . , fn).

For X = SpecA, an element of Mork(X,M) is determined bya morphis of k-algebras

k[T1, . . . , Tm]/(f1, . . . , fn) −→ A,

which amounts to (a1, . . . , am) ∈ Am such that fi(a1, . . . , am) = 0 for all i. That is,
a point of M with values on A.
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Definition 3.2. Functors F : Cop → Set naturally isomorphic to some hM are
called representable. If we have F ' hM , then we say that M is represents F .

Exercise 3.3. Let C = algebraic k-schemes. Define Ga : Cop → Set by T 7→ O(T ).
Then Ga is represented by A1.

Example 3.4. Let C = ASchop
C , the category of algebraic C-schemes. Let

[2](T ) =


closed subscheme D ⊂ T ×A1

such that the OT -module
pr∗(OD) is locally free of rank two
and D ∩ {t}A1 has two points.


This defines a contra-variant functor from ASchop

k to Set : If u : T ′ → T is an
arrow of algebraic C-schemes, then

[2](u) : [2](T ) −→ [2](T ′)

takes the closed subscheme D ⊂ T ×A1 to its base-change:

T ′ ×T D ⊂ T ′ ×T (T ×A1)

= T ′ ×A1.

Exercise 3.5. This is a good exercise on fibre products: Show that for each point
t′ of T ′, the fibre of T ′ ×T D has only two points.

We saw that [2] ' hM . More precisely, we saw that there exists

D

χ
((

//M ×A1

pr

��
M

∈ [2](M )

such that the natural transformation

Mork(T,M ) −→ [2](T )

(T
u→M ) 7−→ T ×M D

is a bijection.
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Lecture 3
(9 Novembre 2021).

Last time we put under the light functors of the form T 7→ HomC (T,M); the
representable functors. With this, we can give a more definite version of what a
moduli problem is. Let ASchk be the category of algebraic schemes and

F : ASchop
k −→ Set

a functor. This can be seen as a “moduli problem” and the “moduli space” is a
scheme representing F . Now there are many such interesting and relevant functors
which are not representable, so this is not a definite goal and many times needs to
be weakened.

In some sense, the “theory of moduli” can now be thought of a “membership”
problem: Structures give rise to functors and we want to know which of these are
what we already know (the representables). It then becomes important to know
that passing from schemes to functors Schop

k → Set will not cause any loss on the
geometric side. This is solved by Yoneda’s Lemma, a fundamental fact of category
theory, deeply explored by Grothendieck.

Let C be a category. Let Fun(Cop,Set) be the category of functors Cop → Set:
Objects are functors and arrows between objects are natural transformations.

Consider now the functor

h• : C −→ Fun(Cop,Set),

which sends X ∈ C to hX , and sends the arrow u : X → Y to the natural transfor-
mation

hu = { u ◦ (−) : hX(T ) −→ hY (T ) }T∈C.

Theorem 3.6 (Yoneda’s Lemma). The arrow

h• : HomC (X, Y ) −→ Nat(hX , hY )

is bijective

Proof. This is a triviality. The inverse to h• is

ε : Nat(hX , hY ) −→ HomC (X, Y ) ,

Φ 7−→ ΦX(idX).

That εhu = u for all u : X → Y is obvious. We show that

Nat(hX , hY )
ε−→ HomC(X, Y )

h•−→ Nat(hX , hY )

is the identity, Let Φ : hX ⇒ hY be given. By definition, for each f : T → U , the
diag.

hX(U)
ΦU //

(−)◦f
��

hY (U)

(−)◦f
��

hX(T )
ΦT

// hY (T )
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commutes. That is: for α ∈ hX(U), we have

ΦU(α) ◦ f = ΦT (α ◦ f).

Apply to U = X and α = idX to get

ΦX(idX)︸ ︷︷ ︸
ε(Φ)

◦f

︸ ︷︷ ︸
hε(Φ)(f)

= ΦT (f).

Hence, the schemes can be known by their functor of points. This makes certain
constructions and definitions very natural. My favourite is:

Exercise 3.7. Let f : X → S and g : Y → S be arrow of sets. Define the fibre
product, denoted X ×S Y , as the subset of X × Y given by the couples (x, y) such
that f(x) = g(y). Recall that Prof. Hai explained that in the exercise session on
November 5th.

Let us now suppose that f and g are morphisms of schemes. Define the functor

T � hX×hS
hY // hX(T ) ×

hS(T )
hY (T ).

Show that hX ×hS hY is represented by X ×S Y .

Exercise 3.8 (Suerjections versus epimorphisms). (1) Let f : X → Y be a map of
sets. Show that f is surjective if and only if for each set T , the map

f ◦ (−) : Map(T,X) −→ Map(T, Y ),

is injective.

(2) A morphism schemes is called surjective if it gives rise to a surjective morphism of
topological spaces. A morphism of schemes f : X → Y is called an epimorphism
if for each T ∈ Schk, the arrow

f ◦ (−) : hX(T ) −→ hY (T )

is injective. Give an example of a surjective morphism which is not an epimor-
phism. (Hint: Work with rings and study nilpotent elements.)

Exercise 3.9 (Properness). Explain the valuative criterion of properness in terms
of functors of points.

Let me end with a word of terminology and notation. Because of Yoneda’s
Lemma, we shall make no more distinction between a scheme and its functor of
points. That is, for a scheme, X(S) = hX(S) = Mork(S,X).
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4 Group functors and group schemes
Definition 4.1. A functor G : Schop

k → Grp shall be called a group functor. A
scheme G such that hG : Schop

k → Set factors as a group-functor Schop
k → Set and

the “inclusion” Grp→ Set is called a group scheme.

Example 4.2 (The additive group). Define Ga(T ) := (O(T ),+). This is repre-
sented by A1, and is hence a group-scheme.

Example 4.3 (The multiplicative group). Define Gm(T ) := (O(T )×, ·). This is
represented by A1

k r {0}, and is hence a group-scheme. (Make sure you understand
why this is represented by A1

k.)

Example 4.4. Let V be a vector space. Define Va(T ) = (O(T ) ⊗k V,+). This is
a group functor. If dimV = n ⇒ Va is representable by An. In fact, let k[V ∗]
be the symmetric algebra on the vector space V ∗, see [La02, XVI, §8], or https:
//en.wikipedia.org/wiki/Symmetric_algebra. Its fundamental property is that
for a k-algbera R, we have

Homk−vect (V ∗, R) = Homk−alg (k[V ∗], R) .

Then Spec k[V ∗] represents Va. Indeed,

Mork(T, Spec k[V ∗]) = Homk (V ∗,O(T )) = O(T )⊗ V.

Example 4.5. Define

GLn(T ) = (GLn(O(T )) , usual multiplication).

This is a group scheme, which is representable by an open subscheme ofAn2 obtained
by inverting the determinant function.

More generally: Let V be a vector space. We define the group functor GL(V )
by

GLV (T ) = ({O(T )-linear isos. of V ⊗ O(T )} , composition).

If V is of finite dimension, then GLV is representable.

Example 4.6. So far, we’ve only encountered group schemes which are available
from “usual group theory”. Here is a different one. Let char. k = p > 0. Define
αp(T ) = {f ∈ O(T ) : fp = 0}. Then αp is represented by Spec k[x]/(xp); the
scheme αp is not reduced and its topological space is simply a point.
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Lecture 4
(9 Novembre 2021).

Let G be group scheme. We have natural transformations defined by

µT : hG(T )× hG(T ) −→ hG(T ), (g, g′) 7−→ gg′,

ι : G(T ) −→ G(T ), g 7−→ g−1

and
e : (Spec k)(T ) −→ G(T ), ∗ 7−→ eG(T ).

Using Yoneda and replacing the notation “hG” by “G”:

Lemma 4.7. A group scheme structure on the scheme G is equivalent to the exis-
tence of arrows of algebraic schemes

µ : G×G −→ G, ι : G −→ G, e : Spec k −→ G

such that the following diagrams commute:

G×G×G
µ×id

��

id×µ // G×G
µ

��
G×G µ

// G

(Assoc)

Spec k ×G

∼
))

e×id // G×G
µ

��
G

(Unit)

and
G×G µ // G

G
structural

//

(id,ι)

OO

Spec k

e

OO (Inverse)

One usually calls µ the multiplication, ι : G→ G the inversion and e : Spec k →
G the unit.

There are group schemes which are affine schemes. There are group schemes
which are projective (elliptic curves), there are groups which are neither (you shall
see them in Prof. Brion’s lecture). The most evident are the affine ones.

5 Affine group schemes [Wa78]
Say G = SpecA is a group schemes.

Multiplication gives rise to co-multiplication

µ# = ∆ : A −→ A⊗k A
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the inversion gives
ι# = σ : A −→ A,

the antipode, and the identity gives

e# = ε : A −→ k.

the co-unity or co-identity. Note that ∆, ε and α are morphisms of k-algebras. In
addition, the following diagrams commute:

A⊗ A⊗ A A⊗ Aid⊗∆oo

A⊗ A
∆⊗id

OO

A
∆

oo

∆

OO (Assoc)

A⊗ A
id·ε
��

A∆oo

A

(Unit)

and
A⊗ A
id·σ
��

A

ε
��

∆oo

A k
inclusion

oo

(Inverse)

Definition 5.1. The triple consisting of a k-algebra and morphisms of k-algebras
∆, σ and ε as above is called a Hopf algebra.

Example 5.2. Let us render explicit the previous arrows for Ga = Spec k[x]. Let
T be affine and let t1, t2 : T → Ga be morphisms. Write t#i (x) = xi; these are in
O(T ). The element t1 + t2 ∈ Ga(T ) = O(T ) is just x1 + x2. On the other hand,
by definition of the multiplication µ : Ga ×Ga → Ga (check that you understand
this!) we have also

t1 + t2 = T
(t1,t2) //Ga ×Ga

µ //Ga.

Hence, x1 + x2 is the image of x under

k[x] ∆ // k[x]⊗ k[x]
t#1 •t

#
2 // O(T )

Hence, the element ∆x =
∑
cijx

i ⊗ xj is such that
∑
cijt

i
1t
j
2 = t1 + t2. It must be

that ∆x = 1⊗ x+ x⊗ 1.

Exercise 5.3. Let Gm = Spec k[x, x−1]. Show that ∆x = x ⊗ x. More generally,
write GLn = Spec k[xij, 1/ det(xij)] and show that ∆xij =

∑
ν xiν ⊗ xνj.
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A word about terminology: Mathematicians usually talk about linear algebraic
groups to mean affine group schemes which are represented by the spectrum of
reduced k-algebras of finite type. Hence, αp from the above example is an affine
algebraic group scheme, but not a linear algebraic group. . .

Exercise 5.4. Let V = k~e0 ⊕ k~e1 ⊕ · · · be a vector space with a countable basis.
Show that Va is not representable by a k-scheme. Here is a possible way to show
this.

(1) Let X be an affine k-scheme. Write Tn = Spec k[t]/(tn+1) and T = Spec kJtK.
We denote by θn the evident closed immersion θn : Tn → T . Show that the
natural map

Mork(T,X) −→ lim←−
n

Mork(Tn, X) (*)

is bijective.

(2) Generalise: take out the assumption that X is affine.

(3) Using the elements fn :=
∑n

i=0 t
i⊗~ei ∈ Va(Tn), show that (*) cannot be satisfied.

6 Representations, actions and comodules [Wa78]

6.1 Definitions

Now that we have introduced the concept of group scheme, we may study actions.
Because of Yoneda’s Lemma, we shall make no distinction between a scheme and
its functor of points.

Definition 6.1. Let G : Schop
k → Grp be a group functor and X : Schop

k → Set a
functor. An action of G on X (on the left) is a morphism

α : G×X −→ X

such that for each T , the map α(T ) defines an action of G(T ) on the left of G(T ).
If V is a k vector space, a linear action of G on V is an action G × Va → Va

such that G(T ) acts on O(T ) ⊗ V O(T )-linearly. Linear actions are also called
representations, or G-modules.

If is not hard to see that a linear action α of G on V is equivalent to a natural
transformation of group functors G → GL(V ). In particular, when V = kn so that
GLV = GLn, the representation si determined by a matrix (ρij) ∈ GLn(O(G)).
Another important characterisation of G-modules (=linear actions) in the case G is
affine follows.
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6.2 Comodules

In dealing with representations of an abstract group Γ, a key role is played by the
fact that a representation is a module over the group algebra k[Γ] [La02, XVIII.1]. In
case of general group schemes, there is no simple replacement for the group algebra,
but the problem can be taken in a different: we work with comodules instead of
modules.

Let A = O(G) and denote by ∆ : A → A ⊗ A be the co-multiplication of G.
Let V be a G-module and denote by α the natural transformation of group functors
G→ GLV . The element idG ∈ G(G) gives a A-linear map

αid : V ⊗ A −→ V ⊗ A.
(I write αid instead of αG(idG). . . ) In addition, for any scheme T and any arrow
t : T → G, we obtain a commutative diagram

V ⊗ A αid //

id⊗t#
��

V ⊗ A
id⊗t#
��

V ⊗ O(T ) αt
// V ⊗ O(T )

(1)

because the element t ∈ G(T ) is just G(t)(id). Let now

ρ(v) := αid(v ⊗ 1) ∈ V ⊗ A. (2)

Let me pick generators {vi} of V (no need to be a basis) and write

ρvj =
∑
i

vi ⊗ ρij.

With this notation, we can say that with the help of diagram (1) that

αt(vj ⊗ r) =
∑
i

vi ⊗ t#(ρij) · r. (3)

Pick now u ∈ G(T ). The fact that αut = αuαt has the following consequence:∑
h

vh ⊗ (ut)#(ρhj) =
∑
h

vh ⊗

(∑
i

u#(ρhi) · t#(ρij)

)
. (4)

We apply this in case u : G × G → G is the first projection and t the second, in
which case ut : G×G→ G is µ. Hence,∑

h

vh ⊗∆ρhj =
∑
h

vh ⊗

(∑
i

ρhi ⊗ ρij

)
. (5)

This is equivalent to the commutativity of

V
ρ //

ρ

��

V ⊗ A
ρ⊗idA

��
V ⊗ A

idV ⊗∆
// V ⊗ A⊗ A.

(Coass)

This is called the co-associativity
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Lecture 5
(11 Novembre 2021).

Last time, we dealt with the following. Given is a G-module V ; the natural
transformation G ⇒ GLV is denoted by α. Using idG ∈ G(G), we then get an
element αid ∈ GLV (A) and write ρ : V → V⊗A for the k-linear arrow v 7→ αid(v⊗1).
We then fixed a set of generating elements {vi} of V and introduced elements ρij ∈ A
by ρvj =

∑
i vi ⊗ ρij. Using the fact that αuαt = αut for each couple u, t ∈ G(T ),

we deduced eq. (4), which in turn led to the commutativity of

V
ρ //

ρ

��

V ⊗ A
ρ⊗idA

��
V ⊗ A

idV ⊗∆
// V ⊗ A⊗ A.

(Coass)

This commutativity was called co-associativity of ρ. Let us go farther.
Because αe = idV , applying equation (3) to T = Spec k and t = e : Spec k → G

we conclude that
vj =

∑
viε(ρij)

which assures commutativity of

V

id ''

ρ // V ⊗ A
idV ⊗ε
��

V ⊗ k.

(Coun)

Definition 6.2. A comodule for the Hopf-algebra A is a k-linear map

ρ : V −→ V ⊗ A

such that (Coass) and (Coun) commute. The map ρ is the coaction.

To summarise the above discussion: Staring with a G-module G → GLV , we
obtained an A-comodule ρ : V → A⊗ V by equation (2).

Example 6.3. Let GLn, which is the spectrum of k[xij, 1/ det], act on (kn)a in the
standard way. Then the coaction is

ρ~ej =
∑
i

~ei ⊗ xij.

Let us now start with a comodule ρ : V → V ⊗A. Using the universal property
of the tensor product, we get an arrow of A-modules:

αid : V ⊗ A −→ V ⊗ A.

v ⊗ a 7−→ ρ(v) · a.

16



For t ∈ G(T ), we define αt by extension of scalars:

(V ⊗ A)⊗
A
O(T )

αid⊗id // (V ⊗ A)⊗
A
O(T )

V ⊗ O(T ) αt
// V ⊗ O(T )

commutes. Explicitly: if ρ(vj) =
∑
vi ⊗ ρij, then

αt(vj ⊗ f) =
∑

vi ⊗ t#(ρij) · f.

This gives us our natural transformation

α : G =⇒ EndV ;

here EndV is simply the functor T 7→ EndO(T )(V ⊗ O(T )).
Commutativity of (Coass) forces∑

h

vh ⊗∆ρhj =
∑
h

vh ⊗

(∑
i

ρhi ⊗ ρij

)
.

For each couple of points u, t ∈ G(T ) we get by applying u# • t# : A ⊗ A → O(T )
to the above equation:∑

h

vh ⊗ u# • t#∆︸ ︷︷ ︸
(ut)#

(ρhj) =
∑
h

vh ⊗

(∑
i

u#(ρhi) · t#(ρij)

)
.

This is (4), which means αuαt = αut.
Finally, the commutativity of (Coun) above shows that the unit of G(T ) is taken

to the unit of EndO(T )(V ⊗O(T )) by α : G⇒ EndV . Hence, α takes values on GLV .
I shall say this imprecisely, but suggestively.

Proposition 6.4. O(G)-comodules and G-modules are the same thing.

6.3 Construction with G-modules

Let G = SpecA affine group scheme. One fundamental property of the category
of G-modules is that we can perform numerous linear algebraic operations on their
objects: tensor products, duals, alternating products, determinants, etc. At this
point, the reader with some background knowledge on representation of abstract
groups may just think that “everything works in the same way”.

Tensor product Let V and W be G-modules. Write ρ : V → V ⊗ A and
σ : W → W ⊗ A for the co-module maps. Then, V ⊗W carries the structure of an
A-comodule:

V ⊗W ρ⊗σ // V ⊗ A⊗W ⊗ A V ⊗W ⊗ A⊗ A id⊗mult // V ⊗W ⊗ A.

The resulting G-module is the tensor product G-module.

17



The contragredient. Let V be a G-module of finite dimension. For each
T ∈ Schk, we have an action of G(T ) on O(T )⊗ V . Hence, a left action of G(T ) on
HomO(T ) (O(T )⊗ V,O(T )) by

g ∗ φ : ~v 7−→ φ(g−1~v).

Now, we note that

V ∗ ⊗ O(T ) −→ HomO(T ) (O(T )⊗ V,O(T ))

a⊗ φ 7−→ (b⊗ ~v 7→ abφ(~v))

establishes an isomorphism

(V ∗)a(T )
∼−→ HomO(T ) (O(T )⊗ V,O(T )) .

This representation is called the “dual” or “contragredient” representation. For the
student who never before met these constructions, I suggest to first have a look at
the “standard one” , say, in [La02, XVIII.1].

18



Lecture 6
(11 Novembre 2021).

Comodules obtained from actions on affine schemes

We never assumed that the G-modules are finite dimensional. This is because we
want always to pay attention to the following kind of G-modules.

Let G = SpecA act on the affine scheme X = SpecR. We then obtain an
action on the right by means of x ? g = g−1x. This gives a morphism of k-algebras
α# : R→ R⊗A. It is a simple matter to see that α# defines on R the structure of
an A-comodule. (Note that we needed a right action.)

Example 6.5. Let ρ : G → GLn be a representation defined by (ρij) ∈ GLn(A).
Let α : G×An → An be the resulting action, where An = Spec k[u1, . . . , un]. Thenρ11 · · · ρ1n

... . . . ...
ρn1 · · · ρnn

 ·
u1

...
un

 7−→
ρ11u1 + · · ·+ ρ1nun

...
ρn1u1 + · · ·+ ρnnun

 .

To define the coaction of A on k[u] we form the action on the right:

An ×G id×ι−→ An ×G ∼−→ G×An α−→ An.

Hence, in the above composition, the image of ui is∑
j

uj ⊗ ρij,

where ρij is the (i, j) entry of the matrix (ρij)
−1. This is because ι(ρij) = ρij.

Note that, in this case, the subspace
∑
k · ui ⊂ k[u] is invariant under G and

corresponds to the contragredient representation of G, which is determined by

G
ρ //GLn

invert and transpose //GLn.

Said differently, if V is a finite G-module, then the G-module structure on O(Va) =
k[V ∗] is simply the one induced by the contragredient structure.

Here is a fundamental result about comodules:

Theorem 6.6 (Local finiteness). Let V be a G-module and let ρ co-action. Then
any element v ∈ V is contained in a G-submodule which is of finite dimension.

Proof. Let {ai}i∈I be basis of A. Write

ρv =
∑
i∈I

vi ⊗ ai,
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with vi = 0 except for finitely many i. Let

V0 =
∑
i∈I

kvi.

Since (ρ⊗ idA)ρ = (idV ⊗∆) ◦ ρ, we have∑
i∈I

ρvi ⊗ ai =
∑
i

vi ⊗∆ai.

If
∆ai =

∑
r,s∈I

cirs ar ⊗ as,

we have ∑
i∈I

ρvi ⊗ ai =
∑
i,r,s∈I

cirs vi ⊗ ar ⊗ as

=
∑
i,r,s∈I

csri vs ⊗ ar ⊗ ai

⇒

ρvi =
∑
r,s

csri vs ⊗ ar

∈ V0 ⊗ A.

Finally,
∑

i ε(ai)vi = v by the axiom. So V0 is a sub-comodule and v ∈ V0.

One usually says that any A-comodule is “locally finite”. This is a remarkable
algebraic property.

Example 6.7. Local finiteness is not always true. For example, the action of Z act
on V = k(x) defined by m ∗ p(x) = xmp(x) is not locally finite.

Corollary 6.8. Let G be a group scheme. Let X be an affine and algebraic k-scheme
with an action of G. Then there exists a G-module W , a closed and G–equivariant
immersion θ : X → Wa.

Proof. Let R = O(X). Let V ⊂ R be a G-invariant subspace containing algebra
generators of R. By the universal property of the symmetric algebra [La02, XVI.8,
] we have a surjection k[V ] → R. In addition, this is a map of A-comodules. This
implies that the induced arrow SpecR→ Spec k[V ] is G-equivariant. Now, we take
W = V ∗ and note that the action of G on k[W ∗] = k[V ] is the one obtained by the
representation W .

Corollary 6.9. Suppose A is finitely generated. Then there is a closed immersion
G → GLn which is also a morphism of groups. Said differently, algebraic implies
“matrix group”.
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Proof. We let G act on G on the right in the obvious way; in this case, the comodule
map A → A ⊗ A is ∆. (We can let G act on the left, but then the comodule map
is different. . . ) Let V ⊂ O(G) be a subcomodule containing algebra generators.
Let {vi} be a basis and write ∆vj =

∑
i aij ⊗ vi; this is possible since V is an A-

subcomodule. Consider now the representation ρ : G → GLn defined by [aij]: on
the level of rings it is given by ρ# : xij 7→ aij, so k[xij, 1/ det] → R is surjective.
This shows that ρ is closed immersion.

7 Lie algebras and smoothness [Wa78], [MAV]
Let G = SpecA be an affine group scheme. In what follows, a is the kernel of the
co-unit ε : A→ k; it is a maximal ideal.

Recall that a vector field on G is simply a k-derivation X : A→ A, i.e. it satisfies
Leibniz’s rule X(a1a2) = a1X(a2)+a2X(a1). I shall write X(G) for the vector fields.

Let g : Spec k → G be a Spec k-point of G; it gives us a map of k-algebras
g : A → k. To g we associate an automorphism of G: left-translation `g. This is
given by

G
(g,id)−→ G×G µ−→ G.

On the algebra level of algebras we have†

`#
g = (g# • idA) ◦∆.

Hence,
Xg := (`#

g )−1X`#
g

becomes a derivation. We say that X is “G(k)-left invariant” if Xg = X for all
possible g. In this case, we must have

`#
g ◦X = X ◦ `#

g , ∀g ∈ G(Spec k).

Using `#
g = (g# • idA) ◦∆, we conclude that X is invariant if and only if

(g# • idA) ◦∆ ◦X = X ◦ (g# • idA) ◦∆

= (g# •X) ◦∆.

Note that, if
∆X = (idA ⊗X) ◦∆,

then G(k)-invariance holds. Hence:

Definition 7.1. X is left invariant if the above equation holds.

It is not difficult to see that the set of all left-invariant vector fields is a vector
space. In addition, it is also not difficult to see that if X and Y are invariant vector
fields, then [X, Y ] = XY − Y X is also an invariant vector field.

†Here, g# • idA : A⊗A→ A is defined by a1 ⊗ a2 7→ g#(a1)a2.
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Definition 7.2. We define:

Lie(G) = left invariant vector fields .

With the above mentioned bracket, it is a Lie algebra.
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Lecture 7
(12 Novembre 2021).

Let Xe(G) stand for the vector space of all ε-derivations, that is, the linear maps
ξ : A→ k s.t.

ξ(ab) = ε(a)ξ(b) + ε(b)ξ(a).

Since A = k1⊕ a, it is not difficult to see that

Xe(G) −→ (a/a2)∗

ξ 7−→ ξ|a
is an isomorphism. As you’ve learned in Prof. Hai’s course, the vector space (a/a2)∗

is called the Zariski tangent space of G at the point e and is denoted by Te(G).
Finally, it is not hard to see that

Xinv(G) −→ Xe(G)

X 7−→ εX

is a bijection, the inverse being

ξ 7−→ (id⊗ ξ) ◦∆.

This allows us to show the following.

Theorem 7.3 (Cartier’s theorem). Suppose that k has characteristic zero and that
G is algebraic. Then, for any closed point g ∈ G, the completion ÔG,g of the local
ring OG,g is isomorphic to the power series ring kJt1, . . . , tnK, where n = dimTeG.

Proof. This result requires a bit more of commutative algebra than before: We shall
need the notion of the completion of a local ring. Let (R,m) be a noetherian local
ring and let (R̂, m̂) be its completion [AM69, Ch.10] . The arrow R→ R̂ is injective
adn mR̂ = m̂

Using the fact that Og ' Oe by means of left translations, we only need to
consider the case g = e. Let now t1, . . . , tn ∈ a be such that their images in a/a2 is
a basis. (Recall that a/a2 ' a⊗A (A/a).) We also note that,

Oet1 + · · ·+ Oetn = a,

by Nakayama. We choose a dual basis in (a/a2)∗ and let {ξi} be the basis of Xe(G)
corresponding to it via Xe ' (a/a2)∗; this means that ξi(tj) = δij. Let now Xi ∈ Xinv

be such that εXi = ξi. It then follows that

Xi(tj) ≡ δij mod a.

Hence, Xi(tj) is invertible in Oe. Let (cij) be its inverse and define the derivations
Di =

∑
j cijXj, so that Di(tj) is now δij.
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Since Di(t
r1
1 · · · trnn ) = rit

r1
1 · · · t

ri−1
i · · · trnn , we see that Di(a

p) ⊂ ap−1. We can
then extend:

Di : Ôe −→ Ôe.

We now consider the natural morphism of k-algebras

α : kJT1, . . . , TnK −→ Ôe,

Ti 7−→ ti.

It is an exercise in the theory of complete local rings that α si in fact surjective
because its image contains generators of the maximal ideal.

Let us now consider the Taylor series:

τ : Ôe −→ kJT1, . . . , TnK

f 7−→
∑
q∈Nn

Dq(f)

q!
(e) · T q.

(Here, for an element ϕ ∈ Ôe, we write ϕ(e) for its image in the residue field..) As
usual in Analysis, for q = (q1, . . . , qn), we’ve put q! =

∏
j qj!, D

q = Dq1
1 · · ·Dqn

n , etc.
Now, it is not difficult to show, by induction on |q| = q1 + · · ·+ qn, that

Dq

q!
(ab) =

∑
0≤r≤q

Dr

r!
(a) · Dq−r

(q − r)!
(b).

It then turns out that τ is a homomorphism of local rings. We show α is injective:
indeed,

τα

(∑
q

aqT
q

)
= τ

(∑
q

aqt
q

)
.

Now τ(ti) = Ti and hence τ(tq) = T q, so that τα
(∑

q aqT
q
)

= τ
(∑

q aqt
q
)

=∑
q aqT

q. If α(F ) = 0, then F = 0.

Exercise 7.4. Let Ga = Spec k[x]. Show that Lie(Ga) ' k d
dx
. Show that the

bracket [−,−] is allover zero on it.

Exercise 7.5. Compute the Lie algebra of GL2 and show that it is isomorphic to
the Lie algebra of 2× 2 matrices having the usual bracket.
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Lecture 8
(12 November 2021).

8 The affine quotients [MAV], [Ne11]
In lecture 1, we saw that a possible way to construct moduli spaces relied on I and
II. Condition I is usually very dependent on the given problem. Condition II is
more generic.

Let G be a group acting on a set X and let F (X,C) be the ring of functions
X → C. Write Y for the set of G-orbits of X and π : X → Y for the obvious
function. Recall that F (X,C) becomes a G-module, and it is a simple matter to
prove that

(−) ◦ π : F (Y,C) −→ F (X,C), f 7−→ f ◦ π

gives an isomorphism between F (Y,C) and F (X,C)G. We then need the notion of
invariants.

Let now G be an affine group scheme with ring of functions A.

Definition 8.1. Let V be a G-module with coaction ρ. We define V G as {v ∈ V :
ρv = v ⊗ 1}.

Exercise 8.2. In case A is a domain of finite type over k, show that V G =
∩g∈G(Spec k){v ∈ V : gv = v}. Give a counterexample to this in case G is not
reduced.

In algebraic geometry, it then becomes natural to put:

Definition 8.3. Let X be an affine scheme having an action of and G. The affine
quotient is SpecO(X)G.

Now, this suggests the fundamental

Question 8.4. Let G act on X = SpecR. Suppose that G and X are algebraic. Is
the affine quotient SpecRG also algebraic?

This is a very important problem, which was solved in several levels of generality
by several influential mathematicians. We shall give a detailed answer to Question
8.4 in case G is finite and constant and comment on the solution in case G is linearly
reductive. The notion of linear reductivitymentioned above is closely connected with
the notion of reductivity, as in Prof. Ngô’s lecture.

The case of finite constant group schemes

Definition 8.5. A group scheme G is finite if it is affine and the vector space O(G)
is has finite dimension. The rank of G is dimk O(G).

Example 8.6. Define µn(T ) = {f ∈ O(T ) : fn = 1}. This is represented by
Spec k[x]/(xn − 1) and has rank n.
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Example 8.7. Let G be a finite group. We associate to it a finite group scheme,
called the constant group scheme.

Define F (G) as the algebra of functions G → k. As a vector space, it has an
obvious basis given by the “Dirac” functions:

δg(h) =

{
0, if h 6= g
1, if h = g.

Note that F (G × G) = F (G) ⊗ F (G) (use the basis). Multiplication on G gives
co-multiplication on F (G) → F (G) ⊗ F (G). Evaluation at e gives thje co-identity
F (G) → k, and inversion gives the antipode F (G) → F (G). Then F (G) is a Hopf
algebra and

G = SpecF (G)

is the associated fintie group scheme; the constant group scheme associated to G.
Note taht: ∆(δg) =

∑
g′g′′=g δg′ ⊗ δg′′ .

Exercise 8.8. Let G be a finite group. Show that G(SpecK) = G for any field K.
Is ti always the case that G(T ) ' G? (The answer is no!)

LetG be a finite group. It is a simple matter to show that an actionG×X → X is
just an action of the abstract groupG, that is, a group homomorphismG→ Aut(X).
Also, if X = SpecR, then

RG = RG.

Theorem 8.9. The k-algebra RG is of finite type and the extension RG ⊂ R is
finite.

Proof. Let R = k[x1, . . . , xn] and let r be the order of G. Let E1(f), . . . , Er(f) be
the elementary symmetric functions on (gf)g∈G; that is, E1(f) =

∑
g g(f), etc. Let

R0 = k[E1(x1), . . . , E1(xn), . . . , Er(xn), . . . , Er(xn)].

Obviously R0 ⊂ RG. Note that

Pj(T ) :=
∏
g∈G

(T − g(xj))

is T r − E1(xj)T
r−1 + · · · + (−1)rEr(xj) so that, since Pj(xj) = 0, xj is integral

over R0. Then R1 = R0[x1] is a finite R0–module, R2 = R[x1, x2] is a finite R1–
module, etc ⇒ R is a finite R0-module. Since RG is an R0–subomdule of R and R0

is Noetherian ⇒ RG a finite R0–module ⇒ R finitely generated over k.

Now, recall something from topology. Let G\X be the quotient topological space
[Ke, 94ff] and ϕ : X → G\X the natural map. By definition, G\X is just the set of
orbits of G and ϕ is x 7→ Gx. Now we give G\X the quotient topology: V ⊂ G\X
is open ⇔ ϕ−1(V ) is open. The next result says that SpecRG is just the quotient
topological space.

The next result is based on [MAV, Section 7] with some extra details worked out
following [BA, Chapter 5, §2, no. 2, Theorem 8].
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Corollary 8.10. Let Y = SpecRG and let π : X → Y be the morphism derived
from the inclusion RG ⊂ R. Then

(1) π is closed and surjective.

(2) Y has the quotient topology.

(3) For each g ∈ G, we have π ◦ g = π.

(4) Any two not-necessarily closed points p and q of X lie on the same orbit of G
if and only if π(p) = π(q).

(5) For each open subset V of Y , we have

OY (V ) = OX(π−1(V ))G.

In other words, OY ' (π∗OX)G.

Conditions (2)–(4) show that Y is the quotient topological space [Ke, 94ff].

Proof. (1) You should know how to prove this using what you’ve learned from com-
mutative algebra and the fact that RG ⊂ R is a finite extension. (Going-down,
going-up, etc.)

(2) This is general topology [Ke, Theorem 8, p.95].
(3) Let p and q primes of A s.t. p = g(q). Let f ∈ q ∩ RG. Then g(f) ∈ p, but

g(f) = f and hence f ∈ p ∩ RG ⇒ π(q) ⊂ π(p). As g−1(p) = q, we conclude that
π(p) ⊂ π(q). Working with the equality q = g−1(p) we get π(q) ⊂ π(p).

(4) Now, suppose that π(p) = π(q). Let b ∈ q. Then
∏

g g(b) ∈ q ∩ RG = π(q).
Now π(q) = π(p) ⊂ p. Hence, g0(b) ∈ p for some g0 ∈ G ⇒ b ∈ g−1

0 (p) ⇒
q ⊂

⋃
g g(p). A well-known result from commutative algebra [AM69, Proposition

1.11] shows that q ⊂ g1(p) for some g1 ∈ G. Since π(q) = π(g1(p)), it must be that
q = g1(p), as a standard property of inclusions between ideals in finite extensions
shows [AM69, Corollary 5.9].

(5) For each g ∈ G, we have automorphism of the sheaf αg : π∗OX
∼−→ π∗OX :

for V ⊂ Y define
αg : OX(π−1(V )) −→ OX(π−1(V ))

by means of g. (I’ll leave to the reader to fill in the details here.) Note that this is
an isomorphism of OY -modules. Let α′g = αg − idOY

. Then

(π∗OX)G =
⋂
g∈G

Ker(α′g).

Hence (π∗OX)G is coherent on the affine scheme Y . The inclusion OY → (π∗OX)G

is isomorphism since is iso. on global sections.

An important consequence of this construction is that we can now glue and take
quotients in more general setting.‡

‡What follows was not explained in the lectures.
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Theorem 8.11. Let X be an algebraic k-scheme with action of G. Suppose that
for each x, the orbit Gx is contained in an affine scheme and that X is separated.
Then there exists finite morphism π : X → Y such that:

(1) As a topological space, Y is the quotient for the action of G.

(2) For each V ⊂ Y open, the set U := π−1(V ) is open and invariant under G and
OY (V ) ' OX(U)G.

Proof. Let π : X → Y be the quotient topological space of X. We now endow Y
with the sheaf of rings B := π∗(OX)G. Recall that this means taht for any open V
of Y , we have

B(V ) = OX(π−1(V ))G.

We need to prove that Y is an algebraic scheme. For that, we need to cover Y by
a finite number of open subsets V such that (V,B|V ) is an affine algebraic scheme.

For each x ∈ X, let U ′ be affine open neighbourhood of Gx. It follows that
U = ∩gg(U ′) is affine open and invariant. Hence V := π(U) is open. Note that
π−1(V ) = U . Note that V is, as a topological space, the quotient of U by the action
of G, and taht the sheaf on V is (π∗OU)G. Hence this is SpecO(U)G.

The case of geometric reductivity

Another case where Question 8.4 has an affirmative answer is when G is a linearly
reductive group. In characteristic zero, all reductive linear algebraic groups are
linearly reductive. If char k > 0, this notion is too restrictive. To explain what
a linearly reductive group means, I digress on semi-simple representations. Let
G = SpecA be an affine group scheme, where A is a k-algebra of finite type.

Definition 8.12 (Semi-simplicity). Let V be a finite dimensional G-module. We
say that V is simple if the only subrepresentations are {0} and V . We say that V is
semi-simple if there exist simple sub-representations {Vi} of V such that V =

∑
Vi.

Definition 8.13. G is linearly reductive if each finite dimensional G-module is
semi-simple.

Example 8.14. The group Ga = Spec k[x] is not linearly reductive. Indeed, con-
sider the representation ρ : Ga → GL2 defined by(

1 x
0 1

)
Note that k~e1 is invariant and hence ρ is not simple. Let then V = k~v ⊕ k ~w with
k~v and k ~w Ga-invariant. This means that ~v and ~w are eigenvalues for all matrices(

1 a
0 1

)
. But this is impossible.
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Exercise 8.15. Let G be a group scheme and V a finite dimensional G-module.
Show that the following are equivalent. (In a different context, this is carefully
explained in [La02, XVII.2].)

(1) V is semi-simple.

(2) There exist simple sub-representations {Vi}mi=1 of V such that V = V1⊕· · ·⊕Vm.

(3) For each G-submodule W ⊂ V , there exists a G-submodule C ⊂ W such that
V = W ⊕ C.

Show that the following conditions are equivalent.

(1) Every finite dimensional G-module is semi-simple.

(2) If V → W is a surjective map of finite dimensional G-modules, then V G → WG

is also surjecitve.

(3) For each finite dimensional G-module V and each v ∈ V G \ {0}, there exists a
linear form F ∈ (V ∗)G such that F (v) 6= 0.

Theorem 8.16. Let G be linearly reductive. Let X = SpecR be an affine algebraic
scheme with an action of G. Then RG is finitely generated.
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