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Abstract. Over a smooth and proper complex scheme, the differential Galois group of an
integrable connection may be obtained as the closure of the transcendental monodromy repre-
sentation. In this paper, we employ a completely algebraic variation of this idea by restricting
attention to connections on trivial vector bundles and replacing the fundamental group by a cer-
tain Lie algebra constructed from the regular forms. In more detail, we show that the differential
Galois group is a certain “closure” of the aforementioned Lie algebra.

1. Introduction

A fundamental result of modern differential Galois theory affirms that, for a proper ambient

variety, the differential Galois group might be obtained as the Zariski closure of the monodromy

group. Our objective here is to make a synthesis of results by other mathematicians and use

this to throw light on a similar finding in the realm of connections on trivial vector bundles. In

this case, the role of the fundamental group is played by a certain Lie algebra (see Definition

2.4) and the role of the Zariski closure by the group-envelope (see Definition 4.8).

Let us be more precise: consider a field K of characteristic zero, a smooth, geometrically

connected and proper K-scheme X, and a K-point of x0 ∈ X. In the special case K = C, it is

known, mainly due to GAGA, that the category of integrable connections on X is equivalent to

the category of complex representations of the transcendental object π1(X(C), x0). In addition,

for any such connection (E , ∇), the differential Galois group at the point x0 (Definition 3.2)

is the Zariski closure of the image Im(ME ), where ME : π1(X(C), x0) −→ GL(E |x0) is the

transcendental monodromy representation.

In this work, we wish to draw attention to the fact that the category of integrable connections

(E , ∇) on trivial vector bundles (that is, E ' O⊕rX ) is equivalent to the category of representa-

tions of a Lie algebra LX . Then, in the same spirit as the previous paragraph, the differential

Galois group of (E , ∇) at the point x0 will be the “closure of the image of LX” in GL(E |x0) (see

Definition 4.8). The advantage here is that, contrary to what happens with the computation of

the monodromy representation in the case K = C, the image of LX is immediately visible. See

Theorem 5.1.

Once the above results have been put up, it is very simple to construct connections on curves

with prescribed differential Galois groups. For this goal, we make use of the fact that semi-simple

Lie algebras can be generated by solely two elements, see Corollary 5.4 and Corollary 5.6.
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Some notation and conventions. In all that follows, K is a field of characteristic zero. Vector

spaces, associative algebras, Lie algebras, Hopf algebras, etc, are always to be considered over

K.

(1) The category of finite dimensional vector spaces (over K) is denoted by vect.

(2) The category of Lie algebras is denoted by LA. The category of Hopf algebras [Sw69, p. 71]

is denoted by Hpf .

(3) All group schemes are to be affine; GS is the category of affine group schemes. Given

G ∈ GS, we let RepG stand for the category of finite dimensional representations of G.

(4) If A stands for an associative algebra, we let A-mod be the category of left A-modules which

are of finite dimension over K. The same notation is invoked for Lie algebras.

(5) An ideal of an associative algebra is, unless otherwise specified, a two-sided ideal. The tensor

algebra on a vector space V is denoted by T(V ). The free algebra on a set {si}i∈I is denoted

by K{si}.
(6) A curve C is a one dimensional, integral and smooth K-scheme.

(7) A vector bundle is a locally free sheaf of finite rank. A trivial vector bundle on X is a direct

sum of a finite number of copies of OX .

2. Construction of a Hopf algebra

Let Φ and Ψ be two finite dimensional vector spaces, and let

β : Φ⊗ Φ −→ Ψ

be a K-linear map with transpose β∗ : Ψ∗ −→ Φ∗ ⊗ Φ∗. Let

Iβ = Ideal in T(Φ∗) generated by Imβ∗,

and define

Aβ = T(Φ∗)/Iβ. (1)

It is useful at this point to note that Iβ is a homogeneous ideal so that Aβ has a natural grading.

In more explicit terms, fix a basis {ϕi}ri=1 of Φ and a basis {ψi}si=1 of Ψ. Write {ϕ∗i }ri=1 and

{ψ∗i }si=1 for the respective dual bases. If

β(ϕk ⊗ ϕ`) =
s∑
i=1

β
(k`)
i · ψi,
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then

β∗(ψ∗i ) =
∑

1≤k,`≤r
β
(k`)
i · ϕ∗k ⊗ ϕ∗` .

Consequently, Aβ in (1) is the quotient of the free algebra K{t1, . . . , tr} (identified with T(Φ∗)

in the obvious way) by the ideal generated by the s elements∑
1≤k,`≤r

β
(k`)
i tkt`, i = 1, . . . , s.

In particular, given V ∈ vect and elements A1, . . . , Ar ∈ End(V ), the association ti 7−→ Ai

defines a representation of Aβ if and only if∑
1≤k,`≤r

β
(k`)
i ·AkA` = 0, ∀ i = 1, . . . , s.

It is worth pointing out that if β is alternating, then∑
1≤k,`≤r

β
(k`)
i tkt` =

∑
1≤k<`≤r

β
(k`)
i [tk, t`]. (2)

This reformulation has useful consequences for the structure of Aβ.

From now on, β is always assumed to be alternating.

Let L(Φ∗) be the free Lie algebra on the vector space Φ∗ so that T(Φ∗) is the universal

enveloping algebra of L(Φ∗) [BLie, II.3.1, p. 32, Theorem 1]. Clearly, abbreviating ϕ∗i to ti,∑
1≤k<`≤r

β
(k`)
i [tk, t`] ∈ L(Φ∗), ∀ i = 1, . . . , s.

Let

Kβ =
Lie ideal of L(Φ∗) generated by the s

elements {
∑

1≤k<`≤r β
(k`)
i [tk, t`]}si=1 in (2).

Proposition 2.1. The algebra Aβ in (1) is the universal enveloping algebra of the Lie algebra

L(Φ∗)/Kβ.

Proof. This is a consequence of the following general observations. Let g be a Lie algebra and

ι : g → U be the morphism into its universal enveloping algebra. Let S ⊂ g be subset and

let SLie ⊂ g, respectively Salg ⊂ U , be the Lie ideal generated by S, respectively the ideal

generated by ι(S). A moment’s thought proves that Salg is the ideal of U generated by ι(SLie).

We conclude that U/Salg is the universal enveloping algebra of the Lie algebra g/SLie [BLie,

I.2.3, Proposition 3]. Applying this to the Lie ideal Kβ, the ideal Iβ and the Lie algebra L(Φ∗),

we arrive at a proof of the proposition. �

Definition 2.2. The Lie algebra L(Φ∗)/Kβ shall be denoted by Lβ.

A simple remark should be recorded here.

Lemma 2.3. The above Lie algebra Lβ is a quotient of the free Lie algebra L(Φ∗). In particular,

Lβ is generated by the image of Φ∗.
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Recall that for a Lie algebra L, the universal enveloping algebra UL has a natural structure

of Hopf algebra [Sw69, 3.2.2, p. 58] and hence from Proposition 2.1 it follows that Aβ has the

structure of a Hopf algebra. Similarly, T(Φ∗) is also a Hopf algebra and the quotient map

T(Φ∗) −→ Aβ (3)

is an arrow of Hopf algebras.

In what follows, we give the category Aβ-mod the tensor product explained in [Mo93, 1.8.1,

p. 14]. To wit, if V and W are Aβ–modules, then V ⊗K W is an Aβ–module by means of the

composition 1○ below:

Aβ ⊗ V ⊗W

1○ 11

comult.⊗id⊗id // Aβ ⊗ Aβ ⊗ V ⊗W (Aβ ⊗ V )⊗ (Aβ ⊗W )

mult.⊗mult.
��

V ⊗W.

It turns out that the canonical equivalence

Lβ-mod
∼−→ Aβ-mod (4)

is actually a tensor equivalence.

The only case in which Aβ will interest us is that of:

Definition 2.4. Let X be a smooth, connected and projective K-scheme. Let

β : H0(X, Ω1
X)⊗H0(X, Ω1

X) −→ H0(X, Ω2
X)

be the wedge product of differential forms. We put

Aβ = AX and Lβ = LX .

3. Connections

We shall begin this section by establishing the notation and pointing out references. We fix

a smooth and connected K-scheme X. Soon, we shall assume X to be projective.

Definition 3.1. We let MC be the category of K–linear connections on coherent OX–modules

and MIC the full subcategory of MC whose objects are integrable connections [Ka70, 1.0]. We

let MCtr be the full subcategory of MC having as objects pairs (E , ∇) in which E is a trivial

vector bundle. The category MICtr is defined analogously: it is the full subcategory of MIC

having as objects pairs (E , ∇) in which E is a trivial vector bundle.

A fundamental result of the theory of connections is that for each (E , ∇), the coherent sheaf

E is actually locally free [Ka70, Proposition 8.8]. Using this and the reconstruction theorem of

Tannakian categories [DM82, Theorem 2.11], it is possible to show that, given x0 ∈ X(K), the

functor “taking the fibre at x0” defines a K-linear tensor equivalence

• |x0 : MIC
∼−→ Rep Π(X, x0), (5)

where Π(X, x0) is a group scheme over K. This group scheme is sometimes called the “differen-

tial fundamental group scheme of X at x0”. It is in rare cases that Π(X, x0) will be an algebraic

group (if, for example, K = C, X is proper and π1(X
an) is finite), and hence it is important to

turn it into a splice of smaller pieces. This motivates the following definition.
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Definition 3.2 (The differential Galois group). Let (E , ∇) ∈ MIC be given, and let ρE :

Π(X, x0) −→ GL(E |x0) be the representation associated to E via the equivalence in (5). The

image of ρE in GL(E |x0) is the differential Galois group of (E , ∇) at the point x0.

Remark 3.3. For (E , ∇) ∈ MIC, the category of representations of the differential Galois

group of (E , ∇) at x0 is naturally a full subcategory of MIC. For each vector bundle, let us

agree to denote by F̌ its dual Hom(F ,OX), and endow it with the canonical connection [Ka70,

1.1]. It is then not difficult to see that

〈(E , ∇)〉⊗ =

{
M ′/M ′′ ∈MIC :

there exist ai, bi ∈ N such that

M ′′ ⊂M ′ ⊂
⊕

i E
⊗ai ⊗ Ě ⊗bi

}
.

See [Wa79, 3.4 and 3.5].

From now on, X is in addition projective. Let us be more explicit about objects in MCtr.

Fix E ∈ vect and let

A ∈ HomK-alg(T(H0(X, Ω1
X)∗), End(E))

= Hom(H0(X, Ω1
X)∗, End(E))

= End(E)⊗H0(X, Ω1
X).

Hence, A gives rise to an End(E)–valued 1–form on X which, in turn, gives rise to a connection

dA : OX ⊗ E −→ (OX ⊗ E) ⊗
OX

Ω1
X (6)

on the trivial vector bundle OX ⊗ E. Explicitly, let {θi}gi=1 be a basis of H0(X, Ω1
X) with dual

basis {ϕi}gi=1 and let Ai := A(ϕi) ∈ End(E); we arrive at

dA(1⊗ e) =

g∑
i=1

(1⊗Ai(e))⊗ θi

for all e ∈ E.

Definition 3.4. The above pair consisting of (OX ⊗ E, dA) shall be denoted by V (E, A).

Let now {σi}hi=1 be a basis of H0(X, Ω2
X) and write

θk ∧ θ` =

h∑
i=1

β
(k`)
i · σi.

Since X is proper, Hodge theory tells us that all global 1-forms are closed [Del68, Theorem 5.5]

and hence the curvature

RdA : OX ⊗ E −→ (OX ⊗ E)⊗OX Ω2
X

of the connection dA in (6) satisfies

RdA(1⊗ e) =

h∑
i=1

∑
1≤k,`≤g

(
1⊗ β(k`)i AkA`(e)

)
⊗ σi.

Hence, RdA = 0 if and only if ∑
1≤k,`≤g

β
(k`)
i AkA` = 0
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for each i ∈ {1, . . . , h}. Also, since β in Definition 2.4 is alternating, we conclude that RdA = 0

if and only if for each i ∈ {1, . . . , h},∑
1≤k,`≤g

β
(k`)
i AkA` =

∑
1≤k<`≤g

β
(k`)
i [Ak, A`] = 0.

These considerations form the main points of the proof of the following result, whose thorough

verification is left to the interested reader. (It is worth recalling that K = H0(X, OX) since X

is proper, integral and has a K-point.)

Proposition 3.5. The functor

V : T(H0(Ω1
X)∗)-mod −→ MCtr

is an equivalence of K-linear categories. Under this equivalence, V (E, A) lies in MICtr if and

only if (E, A) is in fact a representation of AX (see Definition 2.4). �

Let us now discuss tensor products. Given representations

A : T(H0(Ω1
X)∗) −→ End(E) and B : T(H0(Ω1

X)∗) −→ End(F ),

we obtain a new representation A�B : T(H0(Ω1
X)∗) −→ End(E ⊗ F ) by putting

A�B(ϕ) = A(ϕ)⊗ idF + idE ⊗B(ϕ), ∀ ϕ ∈ H0(Ω1
X)∗.

This is of course only the tensor structure on the category T(H0(Ω1
X)∗)-mod defined by the

Hopf algebra structure of T(H0(Ω1
X)∗) [Sw69, p. 58]. With this, it is not hard to see that the

canonical isomorphism of OX -modules

OX ⊗ (E ⊗ F )
∼−→ (OX ⊗ E)⊗OX (OX ⊗ F )

is horizontal with respect to the tensor product connection on the right [Ka70, Section 1.1] and

the connection dA�B on the left (it is the connection induced by the connections dA and dB).

We then arrive at equivalences of tensor categories:

Theorem 3.6.

(i) The functor

V : T(H0(Ω1
X)∗)-mod −→ MCtr

is an equivalence of K-linear tensor categories.

(ii) The restriction

V : AX-mod −→ MICtr

is also an equivalence of K-linear tensor categories. In addition, the composition (•|x0)◦V
is naturally isomorphic to the forgetful functor, where •|x0 is constructed in (5).

(iii) The composition of the equivalence in (4) with V : AX-mod −→ MICtr defines a K-

linear tensor equivalence

LX-mod
∼−→ MICtr

(see Definition 2.4 for LX).

�
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Making use again of the main theorem of (categorical) Tannakian theory, [DM82, p. 130,

Theorem 2.11], we obtain an equivalence of K-linear tensor categories:

• |x0 : MICtr ∼−→ Rep Θ(X, x0), (7)

where Θ(X, x0) is a group scheme. In addition, the inclusion map

MICtr −→ MIC

defines a morphism

qX : Π(X, x0) −→ Θ(X, x0),

where Π(X, x0) and Θ(X, x0) are constructed in (5) and (7) respectively. Along the lines of

Proposition 3.1 of [BDHdS], we have:

Proposition 3.7. The above morphism qX is in fact a quotient morphism.

Proof. Let E −→ Q be an epimorphism of MIC with E ∈ MICtr; write e for the rank of E

and q for that of Q.

Let G stand for the Grassmann variety of q–dimensional quotients of K⊕e, and let O⊕eG −→ U

stand for the universal epimorphism [Ni05, 5.1.6]. We then obtain a morphism f : X −→ G

such that f∗U = Q. For each projective curve γ : C −→ X, the vector bundle γ∗Q =

(f ◦ γ)∗U , which carries a connection, has degree zero [BS06, Remark 3.3]; in particular, (f ◦
γ)∗ det U has also degree zero. As det U is a very ample invertible sheaf on G [Ni05, p. 114],

from degree((f ◦ γ)∗ det U ) = degree((f ◦ γ)∗U ) = 0 we conclude that (f ◦ γ)∗ det U is

trivial, and hence the schematic image of f ◦ γ is a (closed) point of G [Liu02, p. 331, Exercise

8.1.7(a)]. Now, Ramanujam’s Lemma (see Remark 3.8 below) can be applied to show that any

two closed points x1 and x2 of X belong to the image of a morphism γ : C −→ X from a

projective curve. Therefore, the schematic image of X under f is a single point (necessarily

closed) and hence f factors as X −→ SpecK ′ −→ G, with K ′ a finite extension of K. Since

H0(X, OX) = K, it must be the case that K ′ = K, and hence f factors through the structural

morphism X −→ SpecK. Consequently, f∗U = Q is a trivial vector bundle. The standard

criterion for a morphism of group schemes to be a quotient morphism (see [DM82, p. 139,

Proposition 2.21(a)] for the criterion) can be applied to complete the proof. �

Remark 3.8 (Ramanujam’s Lemma). Let Z be a geometrically integral projective K-scheme

and z1, z2 two closed points on it. We contend that there exists a projective curve C together

with a morphism γ : C −→ X such that z1 and z2 belong to the image of γ. The proof is the

same as in [Mu70, p. 56], but the Bertini theorem necessary for our purpose comes from [Jou83,

Cor. 6.11].

If dimZ = 1, it is sufficient to chose C to be the normalisation of Z. Let dimZ := d ≥ 2 and

suppose that the result holds for all geometrically integral and projective schemes of dimension

strictly smaller than d. We only need now to find a geometrically integral closed subscheme

Y ⊂ Z containing z1 and z2 and having dimension strictly smaller than d. Let π : Z ′ −→ Z

be the blow up of the closed subscheme {z1, z2}. Note that Z ′ is geometrically integral [Liu02,

8.1.12(c) and (d), p. 322]. In addition, the fibres of π above z1 and z2 are Cartier subschemes

of Z ′ and hence of dimension at least 1 [Liu02, 2.5.26, p. 74]. Let Z ′ −→ PN be a closed

immersion, and let H ⊂ PN be a hyperplane such that
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• Z ′ ∩H is geometrically integral [Jou83, 6.11 (2)-(3)] of dimension dimZ − 1, and

• Z ′ ∩ π−1(zi) 6= ∅, loc. cit, (1)-(b).

Then, the schematic image of π : Z ′ ∩H −→ Z is the scheme Y that we are seeking.

Remark 3.9. In [Liu02, Ch. 8, p. 331, Exercise 1.5], the reader shall find a useful, but slightly

weaker version of Ramanujam’s Lemma.

Remark 3.10. The idea to consider certain connections as representations of a Lie algebra can

be found at least on [Del87, 12.2–5].

4. The Tannakian envelope of a Lie algebra

All that follows in this section is, in essence, due to Hochschild [Ho59]; since he expressed

himself without using group schemes and his ideas are spread out in several papers, we shall

briefly condense his theory in what follows. The reader should also consult [Na02], where some

results reviewed here also appear.

Our objective in this section is to give a construction of the affine envelope of a Lie algebra.

One can, of course, employ the categorical Tannakian theory [DM82, p. 130, Theorem 2.11] to

the category L-mod to obtain such a construction, but we prefer to draw the reader’s attention

to something which is less widespread than [DM82] and more concrete.

Let L be a Lie algebra with universal enveloping algebra UL. Note that UL is not only an

algebra, but also a cocommutative Hopf algebra; see [Sw69, p. 58, Section 3.2.2] and [Mo93,

p. 72, Example 1.5.4]. Consequently, the Hopf dual

(UL)◦ =

{
ϕ : UL→ K :

ϕ vanishes on a subspace
of finite codimension

}
is a commutative Hopf algebra (see [Sw69, Section 6.2, pp. 122-3] or [Mo93, Theorem 9.1.3]).

This means that

G(L) := Spec (UL)◦

is a group scheme, which we call the affine envelope of L. Let us show that this construction

gives a left adjoint to the functor

Lie : GS −→ LA.

We start by noting that G is indeed a functor; given a morphism of Lie algebras G −→ H,

the associated morphism UG −→ UH gives rise to a map of coalgebras (UH)◦ −→ (UG)◦;

see [Sw69, p. 114, Remark 1]. The fact that the algebra structures are also preserved is a

consequence of the fact that UG −→ UH is also an arrow of coalgebras.

Let G be a group scheme, and let ρ : L −→ LieG be a morphism of Lie algebras; we write ρ

for the map induced between universal enveloping algebras as well. Interpreting elements in LieG

as elements of EndK(O(G)), we obtain a morphism of K-algebras U(LieG) −→ EndK(O(G)).

To continue, we recall that a module over an algebra is locally finite if it is the union of finite

dimensional submodules. In addition, such a notion is easily adapted to include modules over

Lie algebras or comodules over coalgebras. Because of [Wa79, 3.3 Theorem], the O(G)-comodule

O(G) is locally finite and hence is also locally finite as a LieG–module, L–module or UL–module.

Let

ϕρ : O(G) −→ (UL)∗
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be defined by

ϕρ(a) : u 7−→ ε(ρ(u)(a)), (8)

where

ε : O(G) −→ K (9)

is the counit and u ∈ UL.

Lemma 4.1.

(1) For each a ∈ O(G), the element ϕρ(a) in (8) lies in the Hopf dual (UL)◦.

(2) The map ϕρ is a morphism of Hopf algebras.

Proof. (1) Because O(G) is a locally finite UL–module, as explained above, the element a belongs

to a finite dimensional subspace V which is stable under UL. Let I ⊂ UL be the kernel of the

induced map of K-algebras UL
ρ−→ U(LieG) −→ End(V ); it follows that I ⊂ Kerϕρ(a) and

ϕρ(a) ∈ (UL)◦.

(2) This verification is somewhat lengthy, but straightforward once the right path has been

found. We shall only indicate the most important ideas. Let us write ϕ instead of ϕρ and

consider elements of UL as G-invariant linear operators [Wa79, Section 12.1] on O(G). In what

follows, we shall use freely the symbol ∆ to denote comultiplication on different coalgebras.

Compatibility with multiplication. We must show that

[ϕ(a)⊗ ϕ(b)] (∆(u)) = ϕ(ab)(u) (10)

for all a, b ∈ O(G) and u ∈ UL. Obviously, formula (10) holds for u ∈ K ⊂ UL. In case

u ∈ L, the validity of eq. (10) is an easy consequence of the fact that u : O(G) −→ O(G) is

a derivation and ∆u = u⊗ 1 + 1⊗ u. We then prove that if eq. (10) holds for u then, for any

given δ ∈ L, formula (10) holds for uδ. Since UL is generated by L, we are done.

Compatibility with comultiplication. For ζ ∈ (UL)◦, we know that ∆(UL)◦(ζ) is defined by

u⊗ v 7−→ ζ(uv)

for u, v ∈ UL. We need to prove that

ε(uv(a)) = (ϕ⊗ ϕ) ◦∆a

for every triple u, v ∈ UL and a ∈ O(G), where ε is the homomorphism in (9). This follows

from the invariance formulas ∆u = (id⊗ u)∆.

Compatible with unit and co-unit. This is much simpler and we omit its verification.

Compatibility with antipode. Since ϕ respects multiplication and comultiplication, unit and co-

unit, it is a morphism of bialgebras. Now, [Sw69, Lemma 4.0.4] guarantees that ϕ is compatible

with the antipode. �

Proposition 4.2. The above construction establishes a bijection

ϕ : HomLA(L, LieG) −→ HomHpf (O(G), (UL)◦)

= HomGS(G(L), G),

rendering G : LA −→ GS a left adjoint to Lie : GS −→ LA.
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Proof. We construct the inverse of ϕ and leave the reader with all verifications. Let f :

O(G) −→ (UL)◦ be a morphism of Hopf algebras. Let x ∈ L be given, and define

ψf (x) : O(G) −→ K, a 7−→ f(a)(x). (11)

It is a simple matter to show that ψf (x) is an ε-derivation (see [Wa79, 12.2] for the definition),

which is then interpreted as an element of LieG in a standard fashion. In addition, ψf : L −→
LieG gives a morphism of Lie algebras (the reader might use the bracket as explained in [Wa79,

Section 12.1, p. 93]). Then f 7−→ ψf and ρ 7−→ ϕρ are mutually inverses; the verification of

this fact consists of a chain of simple manipulations and we contend ourselves in giving some

elements of the equations to be verified. That ψϕρ = ρ is in fact immediate. On the other hand,

the verification of

ϕψf (a)(u) = f(a)(u), ∀ a ∈ O(G), ∀ u ∈ UL

requires the ensuing observations. (We shall employ Sweedler’s notation for the Hopf algebra

O(G) [Sw69, Section 1.2, 10ff].)

(1) For δ ∈ L, the derivation O(G) −→ O(G) associated to ψf (δ) is determined by a 7−→∑
(a) a(1) · [f(a(2))(δ)].

(2) The axioms for the coproduct and co-unit show that
∑

(a) ε(a(1))a(2) = a.

(3) Suppose that for u ∈ UL and δ ∈ UL we know that, for all a ∈ O(G),

ϕψf (a)(u) = f(a)(u) and ϕψf (a)(δ) = f(a)(δ).

Then ϕψf (a)(uδ) = f(a)(uδ) because of the equations

f(a)(xy) =
∑
(a)

f(a(1))(x) · f(a(2))(y), ∀ x, y ∈ UL,

which is a consequence of the fact that f is a map of Hopf algebras.

This completes the proof. �

In the proof of Proposition 4.2 we defined a bijection

ψ : HomGS(G(L), G) −→ HomLA(L,LieG)

by means of eq. (11). (We are here slightly changing the notation employed previously by using

arrows between schemes and not algebras on the domain; this shall cause no confusion.) In case

G = GL(V ) and in the light of the identification Lie GL(V ) = gl(V ), ψ has a rather useful

description. Let f : G(L) −→ GL(V ) be a representation and let cf : V → V ⊗ (UL)◦ be the

associated comodule morphism. It then follows that

(idV ⊗ evaluate at x) ◦ cf = ψf (x). (12)

Corollary 4.3. Let V be a finite dimensional vector space and f : G(L) −→ GL(V ) a

representation. Write ψf : L −→ gl(V ) for the morphism of Lie algebras mentioned above.

Then, this gives rise to a K-linear equivalence of tensor categories

Rep G(L) −→ L-mod.
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Proof. To define a functor Rep G(L) −→ L-mod it is still necessary to define the maps between

sets of morphisms.

Let f : G(L) −→ GL(V ) and g : G(L) −→ GL(W ) be representations, and let T ∈
HomK(V, W ). We shall show that T ∈ HomG(L)(V, W ) if and only if T ∈ HomL(V, W ).

Consider T̂ =

(
I 0
T I

)
∈ GL(V ⊕W ) and denote by

CT : GL(V ⊕W ) −→ GL(V ⊕W )

the conjugation by T̂ . Then T is G–equivariant if and only if CT ◦
(
f 0
0 g

)
=

(
f 0
0 g

)
. Similarly

let us write cT : gl(V ⊕ W ) −→ gl(V ⊕ W ) to denote conjugation by T̂ . Then, for given

representations ρ : L −→ gl(V ) and σ : L −→ gl(W ), the arrow T is a morphism of L-

modules if and only if cT

(
ρ 0
0 σ

)
=

(
ρ 0
0 σ

)
. Employing equation (12), we verify readily that

Hom(G(L),GL(V ⊕W ))
CT ◦(−) //

ψ

��

Hom(G(L),GL(V ⊕W ))

ψ

��
Hom(L, gl(V ⊕W ))

cT ◦(−)
// Hom(L, gl(V ⊕W )),

commutes. We then see that ψ becomes a functor, which is K-linear, exact and fully-faithful.

Let us now deal with the tensor product. Given representations f : G(L) −→ GL(V ) and

g : G(L) −→ GL(W ), let us write

t : G(L) −→ GL(V ⊗W )

for the tensor product representation. We then obtain on V ⊗W the structure of an L-module

via ψt and it is to be shown that this is precisely the L-module structure coming from the

tensor product of L-modules. In other words, we need to show that for any x ∈ L, the equation

ψf (x)⊗idW+idV ⊗ψg(x) = ψt(x) holds. We make use of eq. (12) again. Let v ∈ V and w ∈ W

be such that cf (v) =
∑

i vi⊗ fi and cg(w) =
∑

j wj ⊗ gj . Then ct(v⊗w) =
∑

i,j vi⊗wj ⊗ figj
and hence

ψt(x)(v ⊗ w) =
∑
i,j

vi ⊗ wj · (fi(x)ε(gj) + ε(fi)gj(x)),

where ε : (UL)◦ −→ K is the co-unit defined by evaluating at 1 ∈ UL, and we have used that

∆x = x ⊗ 1 + 1 ⊗ x (which is true, by definition of the coproduct, for all elements of L inside

UL). Now,
∑

i viε(fi) = v and
∑

j wjε(gj) = w. Hence, ψt(x)(v ⊗ w) =
∑

i fi(x)vi ⊗ w +∑
j v ⊗ gj(x)wj , as we wanted. �

Corollary 4.4. Let G be an algebraic group scheme, and let G(L) −→ G be a quotient mor-

phism. Then G is connected. Said differently, G(L) is pro-connected.

Proof. For the finite etale group scheme π0(G) [Wa79, Section 6.7], the set

HomLA(L, Lie (π0G))

is a singleton and hence HomGS(G(L), π0(G)) is a singleton. It then follows that π0(G) is

trivial and G is connected [Wa79, Theorem of 6.6]. �
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In what follows, we denote by

χ : L −→ Lie G(L) (13)

the morphism of Lie algebras corresponding to the identity of HomGS(G(L), G(L)) under the

bijection in Proposition 4.2. This is, of course, the unit of the adjunction [Mac70, IV.1]. Let us

profit to note that, as explained in [Mac70, IV.1, eq. (5)], for each f ∈ HomGS(G(L), G), the

equation

ψf = (Lie f) ◦ χ. (14)

is valid.

One fundamental property of χ needs to be expressed in terms of “algebraic density” [Ho74,

p. 175].

Definition 4.5. Let G be a group scheme. A morphism ρ : L −→ LieG is algebraically dense

if the only closed subgroup scheme H ⊂ G such that ρ(L) ⊂ LieH is G itself. If ρ happens to

be an injection, we shall simply say that L is algebraically dense.

Proposition 4.6. The morphism χ : L −→ Lie G(L) in (13) is algebraically dense.

To prove Proposition 4.6, we require the following fact. (The proofs of the first claims are in

[Wa79, Corollary in 3.3, p. 24] and [Wa79, Theorem of 14.1, p. 109], while the proof of the final

claim can be found in [DG70, II.5, Proposition 5.3, p.250].)

Lemma 4.7. Let G be a group scheme. Then there exists a projective system of algebraic

group schemes {Gi, uij : Gj −→ Gi} where each uij is faithfully flat and an isomorphism

G ' lim←−iGi. In addition, all arrows Lieuij : LieGj −→ LieGi are surjective. �

Proof of Proposition 4.6. Let u : H −→ G(L) be a closed immersion and let ρ : L −→ LieH

be a morphism of Lie algebras such that

(Lieu) ◦ ρ = χ.

Let f : G(L) −→ H be an arrow from GS such that ρ = ψf . From eq. (14), we have

ρ = (Lie f) ◦ χ.

Hence, χ = (Lie(uf)) ◦ χ, which proves that u ◦ f = idG(L) (see eq. (14)). In particular, Lieu

is surjective.

Let us now write

G(L) = lim←−
i

Gi

as in Lemma 4.7. Define Hi as being the image of H in Gi; a moment’s thought shows that

H = lim←−
i

Hi,

and that the the transition arrows of the projective system {Hi} are also faithfully flat. This

being so, the morphisms between Lie algebras in the projective system {Hi} are all surjective

[DG70, II.5, Proposition 5.3, p.250]. Consequently, the obvious morphisms Lie G(L) −→ LieGi

and LieH −→ LieHi are always surjective. Hence, the natural morphisms LieHi −→ LieGi

are always surjective.
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Using [DG70, Proposition II.6.2.1, p. 259] and the fact that each Gi is connected, we conclude

that Hi = Gi, and H = G(L). This proves Proposition 4.6. �

Let G be an algebraic group scheme with Lie algebra g. Recall that a Lie subalgebra of g is

algebraic if it is the Lie subalgebra of a closed subgroup scheme of G [DG70, Definition II.6.2.4].

As argued in [DG70, II.6.2, p. 262], given an arbitrary Lie subalgebra h ⊂ g, there exists a

smallest algebraic Lie subalgebra of g containing h: it is the (algebraic) envelope of h inside

g. Allied with [DG70, II.6.2.1a, p. 259], it then follows that there exists a smallest closed and

connected subgroup scheme of G whose Lie algebra contains h. This group carries no name in

[DG70], so we shall allow ourselves to put forward:

Definition 4.8. Let G be an algebraic group scheme and h ⊂ LieG a Lie subalgebra. The

group-envelope of h is the smallest closed subgroup scheme of G whose Lie algebra contains h.

We also define the group-envelope of a subspace V ⊂ LieG as being the group-envelope of the

Lie algebra generated by V in LieG.

Theorem 4.9 ([Ho59, Theorem 1, § 3]). Let f : G(L) −→ GL(E) be the representation

associated to the L–module ρ : L −→ gl(E), that is, ψf = ρ. Then the image I = image(f)

of G(L) in GL(E) is the group-envelope of ρ(L) ⊂ gl(E).

Proof. Consider a factorization ρ : L −→ LieH, where H ⊂ GL(E) is closed. Because

ρ = (Lie f) ◦ χ (see eq. (14)), it follows that χ(L) ⊂ (Lie f)−1(LieH). We now observe that

the natural inclusion

Lie f−1(H) ⊂ (Lie f)−1(LieH)

is an equality, see Lemma 4.10 below. (We are unable to find a reference for this simple fact.)

Hence, f−1(H) = G(L) because χ : L −→ Lie G(L) is algebraically dense. This implies

that I ⊂ H. Because ρ(L) = Lie(f) ◦ χ(L), we deduce that Lie I ⊃ ρ(L), so that I is the

group-envelope. �

Lemma 4.10. Let f : G′ −→ G be a morphism of group schemes. Let H ⊂ G be a closed

subgroup. Denote by H ′ its inverse image in G′. Then, LieH ′ = Lie(f)−1(LieH).

Proof. It is only needed to show the inclusion LieH ′ ⊃ (Lie f)−1(LieH). We consider elements

of Lie algebras as ε-derivations, cf. the proof of Theorem 12.2 in [Wa79]. Let ∂ : O(G′) −→ K

be an ε-derivation whose image in LieG is induced by an ε-derivation O(H) −→ K. Now, if

I ⊂ O(G) is the ideal of H, we conclude that

O(G) −→ O(G′)
∂−→ K

annihilates I, and hence that ∂ annihilates IO(G). But this is the ideal of f−1(H) and hence

∂ : O(G′) −→ K comes from an ε-derivation O(H ′) −→ K. �

5. The differential Galois group

In this section, X is assumed to be a projective, connected and smooth K-scheme and x0 a

K-point of X. We recall that Θ(X, x0) is the group scheme constructed in eq. (7).
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Using the tensor equivalences

Rep G(LX)
∼−→ LX -mod

∼−→ AX -mod
V−→MICtr •|x0−→ Rep Θ(X,x0)

obtained by eq. (4), Theorem 3.6 and Corollary 4.3, we derive an isomorphism

γ : Θ(X, x0)
∼−→ G(LX)

such that the corresponding functor γ# : Rep G(LX) −→ Rep Θ(X, x0) is naturally isomor-

phic to the above composition.

Let (E, A) ∈ AX -mod be given. With an abuse of notation, we shall let A denote the

linear map H0(Ω1
X)∗ −→ End(E), the morphism of associative algebras AX −→ End(E) or

the morphism of Lie algebras LX −→ End(E).

Theorem 5.1. The differential Galois group of V (E, A) = (OX⊗E, dA) is the group-envelope

of A(H0(X, Ω1
X)∗).

Said otherwise, given a trivial vector bundle E or rank r with global basis {ei}ri=1, an integrable

connection

∇ : E −→ E ⊗ Ω1
X

and a basis {θj}gj=1 of H0(X, Ω1
X), define matrices Ak = (a

(k)
ij )1≤i,j≤r ∈ Mr(K) by

∇ej =

g∑
k=1

r∑
i=1

a
(k)
ij · ei ⊗ θk.

Then, the differential Galois group of E at the point x0 is isomorphic to the group-envelope in

GLr of the Lie algebra generated by {Ak}gk=1.

Proof. We note that the Lie subalgebra of End(E) generated by A(H0(Ω1
X)∗) is the image of

A(LX); indeed, as a Lie algebra, LX is generated by H0(Ω1
X)∗ (see Lemma 2.3). Now we apply

Theorem 4.9 to conclude that the image of G(LX) in GL(E) is the group-envelope of the Lie

algebra generated by A(H0(Ω1
X)∗). Because of Proposition 3.7, the image of Θ(X, x0) ' G(LX)

is the image of Π(X, x0), which is the differential Galois group. �

Remark 5.2. In “birational” differential Galois theory, one can find a result reminiscent of

Theorem 5.1; see [PS03, p. 25, Remarks 1.33].

Remark 5.3. One could hope for a straightforward way to compute differential Galois groups,

as Theorem 5.1, in the case where X fails to be projective and (E ,∇) is taken to be a regular-

singular connection. But this is certainly false: take X = SpecK[x, x−1] and define (OXe, ∇)

by ∇e = ke⊗ dx
x

for any given k ∈ Zr{0}. In this case, the differential Galois group is trivial

(since ∇(x−ke) = 0), while the Lie algebra generated by k ∈ K is not.

Fixing generators of the Lie algebra of a subgroup scheme of some general linear group allows

us to construct connections with a prescribed differential Galois group. To state our results,

we need the notion of semi-simple and reductive group schemes over a general field. Let K be

an algebraic closure of K. An algebraic group scheme G (over K) is semi-simple, respectively

reductive, if and only if G ⊗ K is a semi-simple, respectively reductive, group scheme over K

[Mi17, 6.44, 6.46]. Since in the case of reductive group schemes our arguments require a bit

more group theory, we treat the semi-simple and reductive cases separately.
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Corollary 5.4. Let X be a projective curve (smooth and integral, by assumption) over K of

genus g and carrying a point x0 ∈ X(K). Let G be a connected algebraic group scheme with

Lie algebra g.

(1) Let

µ = min

{
dimV :

V is a subspace of g which
generates g as a Lie algebra

}
.

Then, there exists a trivial vector bundle with a connection having differential Galois group

G if µ ≤ g.

(2) Suppose that g ≥ 2 and that G is semi-simple. Then there exists a trivial vector bundle with

a connection having differential Galois group G.

(2bis) In the setting of the previous item, if G is, in addition, split, then the connection can be

written down explicitly. (For the definition of “split”, see [Mi17, Definition 19.22, p.402].)

Proof. (1) Let V ⊂ g be a subspace of g of dimension µ which generates g as a Lie algebra. Let

G −→ GL(E) be a closed immersion and regard V as a subspace of End(E). We then construct

any K-linear map A : H0(Ω1
X)∗ −→ End(E) such that Im(A) = V . This map then becomes

a morphism of K-algebras A : TH0(Ω1
X)∗ −→ End(E). Note that G is the group-envelope of

V and by Theorem 5.1, the differential Galois group of V (E,A) is isomorphic to G.

(2) We begin by recalling that a Lie algebra over K is semi-simple if and only its base change

to K is likewise [BLie, I.6.10]. Since G⊗K is semi-simple if and only if Lie(G⊗K) ' (LieG)⊗K
is semi-simple (see either [DG70, Corollary II.6.2.2] or [TY05, Proposition 27.2.2]), we can assure

that g := Lie(G) is semi-simple. According to Kuranishi’s theorem (see [Ku49, Theorem 1] or

[BLie, VIII.2, p. 221, Exercise 8]), there exists a two dimensional vector space V ⊂ g generating

g as a Lie algebra so the previous item can be applied.

(2bis) Let T be a maximal torus of G which is split. Let us write t for LieT . Then, g =

t ⊕
⊕

α∈R gα, where gα is the eigenspace associated to a non-trivial character α : T −→ Gm,K

[Mi17, 21.a]. For convenience, we shall also denote by α the differential t −→ K obtained from

α. From the direct sum decomposition above, we see that t is a Cartan subalgebra of g. Let

ηα ∈ gα \ {0} and let

ξ ∈ t \
⋃
α∈R

Ker(α) ∪
⋃
α6=β

Ker(α− β).

Then

ξ and η :=
∑
α

ηα

are generators of g [BLie, VIII.2, p. 221, Exercise 8]. We can now proceed as in (1): Let

G ⊂ GL(E) and let ξ, η ∈ g be interpreted as endomorphisms of E. Then, if ϕ,ψ ∈ H0(Ω1
X)

are linearly independent, define a connection on O ⊗ E by

∇(1⊗ e) = (1⊗ ξ(e))⊗ ϕ+ (1⊗ η(e))⊗ ψ.

Its differential Galois group isomorphic to G.

�

Corollary 5.4-(2) can be modified to throw light on the case of reductive groups. Some

preparatory material is necessary.
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Let G be a reductive group scheme with Lie algebra g. Then G⊗K is a reductive K-group

scheme and hence g⊗K = Lie(G⊗K) is a reductive K-Lie algebra [TY05, Proposition 27.2.2].

By [BLie, I.6.10] g is reductive. Hence, g = s ⊕ z, where s is semi-simple and z is the center of

g [BLie, I.6.4, Proposition 5]. As is well-known, if Z stands for the neutral component of the

center of G, then LieZ = z [DG70, II.6, Proposition 2.1, p.259]. Moreover, Z is a geometrically

connected group scheme of multiplicative type (see Proposition 1.34 and Corollary 17.62 in

[Mi17]), and hence a torus.

Lemma 5.5. Suppose that [K : Q] = ∞. Then, there exists a subset {ξ, η, ζ} ⊂ g with the

following property. The Lie algebra generated by {ξ, η, ζ} is algebraically dense in g. Said

differently, any closed subgroup scheme H ⊂ G such that {ξ, η, ζ} ⊂ LieH must actually coincide

with G.

Proof. Let ξ, η ∈ s generate s as a Lie algebra. We now show that there exists ζ ∈ z such that

Kζ is algebraically dense in z. Since Z is a torus, the K-group scheme Z ⊗K is isomorphic to

Gr
m,K

. From [TY05, 24.6.3] and the hypothesis that [K : Q] = ∞, there exists ζ ∈ z such that

K · (ζ ⊗ 1) is algebraically dense in Lie(Z ⊗K): it is enough to pick ζ = (ζ1, . . . , ζr) ∈ Kr with

{ζi} linearly independent over Q. It is then a simple matter to see that Kζ ⊂ z is algebraically

dense.

To end, let H ⊂ G be a closed subgroup scheme whose Lie algebra h contains {ξ, η, ζ}. Then

ζ ∈ h∩ z = Lie(H ∩Z) [Mi17, 10.14] and hence z ⊂ h, which shows, using the equality g = s+ z,

that h = g and we conclude by [DG70, II.6, Proposition 2.1]. �

The same method used to establish Corollary 5.4 now gives the following.

Corollary 5.6. Let X, x0 and g be as in Corollary 5.4. Let G be a reductive group scheme.

If [K : Q] = ∞ and g ≥ 3, then G is the differential Galois group of a connection on a trivial

vector bundle. In addition, if G is split, the construction can be made explicit. �

Let us illustrate how explicit the constructions can be made with an example. All depends

on the construction of generating elements in a Lie algebra.

Example 5.7. Let K = Q and X be an arbitrary smooth and projective curve carrying a K-

rational point and having genus at least 2. We give ourselves non-proportional global differential

forms ϕ and ψ. We wish to construct an explicit expression of a connection on a free vector

bundle on X such that, the associated differential Galois group be an “exceptional” group

scheme. To explain what exceptional means requires some preliminary material from [BLie] and

[Mi17].

Recall from the “Isogeny Theorem” that there exists a semi-simple and split group scheme G

whose root system is G2 and, in addition, such group is unique up to isomorphism. This is clearly

proved as [Mi17, Theorem 23.25, pp 492-3], albeit in terms of root data. The (well-known) link

between root data and root systems is explained by the concept of semi-simple root data [Mi17,

Definition C.34, p.615] and “diagrams” [Mi17, Definition C.27, p.613]. See also [Mi17, Theorem

23.58, p.501] for a concise statement.

We set out to construct a connection on X whose differential Galois group is isomorphic to

G. To employ our method, we need to realise LieG explicitly as an algebra of matrices and then
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spot generators; for the first task we follow [He19]. Let V be a eight-dimensional vector space

with basis {bi}7i=0. For 0 ≤ i, j ≤ 7, define eij ∈ End(V ) by

bk 7−→
{

0, if k 6= j,
bi, if k = j.

We then define “upper-triangular maps”

x0 = e01 + e23 − e24 + e35 − e45 − e67, x1 = e12 − e56,
x2 = −e02 + e13 − e14 + e36 − e46 + e57,
x3 = e03 − e04 − e15 + e26 + e37 − e47, x4 = −e05 + e27, x5 = −e06 + e17,

“diagonal maps”

x6 = e00 + e11 − e66 − e77, x7 = e00 + e22 − e55 − e77,

and “lower-triangular maps”

x8 = e60 − e71, x9 = e50 − e72,
x10 = −e30 + e40 + e51 − e62 − e73 + e74,
x11 = e20 − e31 + e41 − e63 + e64 − e75, x12 = −e21 + e65,
x13 = −e10 − e32 + e42 − e53 + e54 + e76.

(See p. 631 and section 3.3 in [He19], but beware that he uses a capital X to denote endomor-

phisms.) By computer-algebra, one can verify that the span of {xi}13i=0 is a Lie algebra G of

dimension 14 and that T := Kx6 + Kx7 is an abelian subalgebra. If {x∗6, x∗7} is the dual basis

of {x6, x7}, then define

α0 = x∗7, α1 = x∗6 − x∗7, α2 = x∗6,
α3 = x∗6 + x∗7, α4 = x∗6 + 2x∗7, α5 = 2x∗6 + x∗7.

By computer-algebra, we verify that for each i ∈ {0, . . . , 5}, we have

adt(xi) = αi(t)xi, ∀ t ∈ T

and

adt(x13−i) = −αi(t)x13−i, ∀ t ∈ T.

Consequently,

G = T⊕
5⊕
i=0

Kxi ⊕Kx13−i

is the root decomposition of (G,T) and defines a root system of type G2 on the vector space

T∗ = Kx∗6 +Kx∗7, see [He19, Figure 2, p.634].

Following the method described in Corollary 5.4-(3), we know that the connection on V ⊗OX

determined by the End(V )-valued form

0 1 −1 1 −1 −1 −1 0
−1 0 1 1 −1 −1 0 1

1 −1 0 1 −1 0 1 1
−1 −1 −1 0 0 1 1 1

1 1 1 0 0 −1 −1 −1
1 1 0 −1 1 0 −1 1
1 0 −1 −1 1 1 0 −1
0 −1 −1 −1 1 −1 1 0


︸ ︷︷ ︸∑5

i=0 xi+x13−i

⊗ϕ+



4 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −3 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −4


︸ ︷︷ ︸

x6+3x7

⊗ψ



18 I. BISWAS, P. H. HAI, AND J. P. DOS SANTOS

has differential Galois group isomorphic to G. Indeed, as G is semi-simple, it must be the

Lie algebra of a closed and connected subgroup scheme of GL(V ) [DG70, Proposition II.6.2.6,

p.262], which must be isomorphic to G.
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