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Abstract. Given a Henselian and Japanese discrete valuation ring A and a flat and
projective A-scheme X, we follow the approach of [BdS11] to introduce a full subcategory
of coherent modules on X which is then shown to be Tannakian. We then prove that,
under normality of the generic fibre, the associated affine and flat group is pro-finite in a
strong sense (so that its ring of functions is a Mittag-Leffler A-module) and that it classi-
fies finite torsors Q → X. This establishes an analogy to Nori’s theory of the essentially
finite fundamental group. In addition, we compare our theory with the ones recently
developed by Mehta-Subramanian and Antei-Emsalem-Gasbarri. Using the comparison
with the former, we show that any quasi-finite torsor Q → X has a reduction of structure
group to a finite one.

1. Introduction

Let A be a discrete valuation ring and X a projective flat A-scheme carrying an A-point
x0. There has been some interest in constructing an affine and flat group scheme Π(X,x0)
over A with the property that morphisms to finite and flat group schemes Π(X,x0) → G
should canonically correspond to pointed G-torsors over X. See [Ga03], [AEG20] and
[MS13]. This is an analogue Nori’s theory [Nor76] (who deals with a base field) and hence
can be developed through
(SS) a Tannakian category of semi-stable vector bundles [Nor76, p. 37], through
(F) the construction of fibre products of torsors [Nor82, II.1, Definition 2], or through
(T) a Tannakian category of vector bundles trivialized by proper and surjective mor-

phisms [BdS11].
The papers [Ga03] and [AEG20] follow (F), and [MS13] a variant of (SS). That is to say,
[Ga03] and [AEG20] construct Π(X,x0) by producing a universal Π(X,x0)–torsor X̃ → X,
and this is achieved by filtering the category of torsors under finite group schemes [AEG20,
Theorem 4.2]. On the other hand, [MS13] looks at locally free OX -modules on X which
lie in the categories considered by Nori when pulled-back to the fibres of X [MS13, top of
p.346]. In the present work we focus on (T) to construct the affine and flat group scheme
Π(X,x0). It is therefore useful to recall briefly the overall picture behind (T) in its original
context. Given a smooth and projective variety V over a field, we look at those coherent
sheaves which become trivial after being pulled-back along a projective and surjective
morphism W → V . Then, this category ends up coinciding with that of essentially finite
vector bundles (used in (SS)) if V is at least normal, see [BdS11], [AM11], [TZ20].

Once the approach (T) is successfully implemented for X (details are to be reviewed
further below) the category RepA(Π(X,x0)) is realised as a full abelian subcategory of
coh(X) so that, not only we can construct the affine group scheme parametrising torsors,
but we can naturally regard its category of representations in geometric terms. This facet
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is missing in [AEG20] (since it is not understood what coherent modules are obtained by
twisting representations via the fundamental torsor) as well as in [MS13] (since the authors
there focus on representations on free A-modules).

Let us review the remaining sections of the paper in order to give the reader an idea of
our most relevant results. Section 2 serves to gather some facts from algebraic geometry
(Lemmas 2.1, 2.2 and 2.3), to fix notation for a class of morphisms which is used allover
in the paper (see Definition 2.4) and to put forward criteria allowing to decide when a
morphism of group schemes is faithfully flat (Lemma 2.8 and Lemma 2.9).

It is in Section 3 where our theory starts to take form. In it, we introduce the central no-
tion of modules which are relatively trivial (Definition 3.1) and the category Tϕ of modules
which are relatively trivialized by a proper and surjective morphism ϕ. See Definition 3.4.
The first useful properties of the category of such modules are also developed in Section
3: we show how to find more convenient trivializations (see Lemma 3.6, Definition 3.7 and
Lemma 3.9) and how to make the first steps towards controlling kernels and cokernels of
morphisms between relatively trivial modules (Proposition 3.10).

In Section 4, the work initiated in Section 3 is taken further ahead and we show that—
under mild assumptions on the base scheme X—the category of modules which become
relatively trivial after being pulled back along a suitable morphism ϕ : Y → X, call it Tϕ, is
in fact abelian, see Theorem 4.3. In addition, concentrating on the objects in Tϕ which can
be “dominated” by locally free ones and using the fibre at an A-point x0 of X, we construct
a neutral Tannakian category (terminology is that of [DuHa18, Definition 1.2.5]) over A.
This category is called Ttan

ϕ in Definition 4.6-(iii). We consequently obtain an affine and
flat group scheme Π(X,ϕ, x0) (see [DuHa18, Theorem 1.2.6] or [Saa72, II.4.1.1]), whose
category of representations is naturally a full subcategory of coh(X). This is the first main
result.

If K stands for the field of fractions of A and X⊗AK is normal, Section 5 explains how
to obtain information about Π(X,ϕ, x0)⊗AK from the category of essentially finite vector
bundles (as defined in [Nor76, Definition on pp 37-8]) on X ⊗A K. See Theorem 5.3 and
Corollary 5.4.

Section 6 studies Tϕ (Definition 3.4) by means of an idea introduced in [HdS21]. In this
work, we found a property of representations of a flat and affine group scheme G over a
complete A, called prudence, which allows us to verify when the A-module of functions
A[G] is free. This is useful here since prudence is roughly Grothendieck’s algebraization in
geometry. This fact leads to our second main result, which is that the full Galois groups
constructed from Tϕ are in many cases finite group schemes, see Corollary 6.2. The findings
here also serve to substantiate a claim made in Lemma 3.1 and Theorem 4.1 of [MS13].
(See also our summary of Section 11 below.)

Section 7 recalls the reduced fibre theorem and adapts it for future application, see
Theorem 7.1. This theorem comes with the (mild) hypothesis that a certain generic fibre
should be geometrically reduced; since we wish to profit from this result even in the absence
of such an assumption, we benefit from this accessory section to explain how to get rid
of schemes which fail to be geometrically reduced, see Lemma 7.2. It is perhaps worth
pointing out that it is at this point that additional properties of A—that it be Henselian
and Japanese—start being required.

Recall that in Section 3 and Section 4 we associated to a morphism ϕ : Y → X (satisfying
certain technical assumptions) a tensor category Tϕ which, once polished, becomes neutral
Tannakian. The task of putting the Tϕ together for varying ϕ comes to the front. In
Section 8 we address this issue. Our third main result, Theorem 8.1, provides the technical
conditions for putting the Tϕ together, while Corollary 8.2 expresses the consequence that
the “system” of the Tϕ is “filtered”. We are then able to construct a neutral Tannakian
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category TX which is a full subcategory of coh(X), see Definition 8.3. The group scheme
associated to TX via the fibre functor •|x0 : TX → A-mod, call it Π(X,x0), has the
distinctive property that its category of representations RepA(Π(X,x0)) is equivalent, by
construction, to the full subcategory TX of coh(X). Under the assumption of normality of
X, we are then able to show that Π(X,x0) is pro-quasi-finite (in the sense of Definition 8.7),
see Theorem 8.8. If A is in addition complete, the results of Section 6 apply directly and we
obtain that Π(X,x0) is strictly pro-finite, see Definition 8.7 and Theorem 8.8. Finally, an
indirect argument allows us to deduce from this our fourth main result: Π(X,x0) is strictly
pro-finite even if A is simply Henselian and Japanese, see Theorem 8.10. As a consequence,
the ring of functions of Π(X,x0) is a Mittag-Leffler A-module (Corollary 8.11).

In Section 9 we make a brief digression to give examples and applications of the previous
theory to invertible sheaves, see Proposition 9.1. These examples served as inspiration and
may be useful to the reader, although they are not used anywhere else in the paper.

Section 10 gives conditions for a finite group scheme—appearing as the structure group
of a torsor over X—to be a quotient of Π(X,x0), see Proposition 10.3 and Corollary 10.4.

In Section 11 we review parts of [MS13]. Let us explain the reason for this revision before
summarising the contents of Section 11. If X0 stands for the special fibre of X, one of the
main points of [MS13] is to use a technique in [DW05], see pages 574 to 576 there, to show,
speaking colloquially, how to trivialise a vector bundle E ∈ VB(X0) on the special fibre
of a flat A-scheme Y endowed with a finite morphism to X, see the proof of Lemma 3.1
in [MS13]. In our opinion, [MS13] only offers a sketch of how to implement this beautiful
idea: in the proof of [MS13, Lemma 3.1] the necessary “base-change” to an extension of A
is not mentioned, neither is [DW05, Theorem 17]. In addition, as far as we can see, the
proof of Theorem 4.1 in [MS13]—which should extend Lemma 3.1 of op. cit.—offers solely
a construction of a smooth curve inside a projective and smooth A-scheme. Given all these
considerations, we set out to put the method of Deninger and Werner in a more robust
form. In doing so we are able to avoid Liu’s theorem on the existence of semi-stable models
of relative curves (a crucial point in [DW05] and hence in [MS13, Lemma 3.1]) by means of
the reduced fibre theorem (Theorem 7.1). The advantage is that the latter result holds for
more general schemes than just curves. This allows us to show Theorem 11.1 saying that
an F -trivial vector bundle E (see the introduction of Section 11 for the definition) on X0

becomes relatively trivial (Definition 3.1) after pull back by a finite morphism Y → X from
a flat A-scheme. In the same vein, we offer Theorem 11.2 explaining how to trivialize any
vector bundle E ∈ VB(X) with essentially finite fibres by a finite morphism Y → X from
a flat A-scheme. (It should be noted that the proof of this result is technically intricate,
but the main idea comes straight from Theorem 11.1.) The section then ends with a direct
comparison between the category TX and the one studied by [MS13], see Corollary 11.4,
where it is shown that vector bundles on TX agree with those introduced in op. cit. This
is our fifth main finding.

Section 12 gives further applications to the theory of torsors and shows our sixth main
result, Theorem 12.1; it proves that torsors under quasi-finite group schemes actually come
from finite ones. Another noteworthy point developed in this section is the comparison to
the theory of [AEG20] and to the “classification” problem mentioned at the start of this
introduction. By demonstrating that Π(X,x0) “classifies” pointed quasi-finite torsors over
X, which is our seventh most relevant result and Theorem 12.3, we show that Π(X,x0)
agrees with the pro-quasi-finite fundamental group, denoted π1(X,x0)qf , in op.cit., see
Theorem 12.4.

Notations and conventions

On the base ring.
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(1) We let A be a discrete valuation ring with uniformizer π, field of fractions K and
residual field k. The quotient ring A/(πn+1) is denoted by An.

(2) Given an object W over A (a scheme, a module, etc) and an A-algebra B, we find
useful to write WB instead of W ⊗A B. If context prevents any misunderstanding, we
also employ Wn instead of WAn .

(3) The characteristic of a discrete valuation ring is the couple (r, p), where r is the char-
acteristic of the field of fractions and p that of the residue field.

On general algebraic geometry.
(1) A vector bundle over a scheme is a locally free sheaf of finite rank. A vector bundle is

said to be trivial if it is isomorphic to a direct sum of a copies of the structure sheaf
(in particular the rank is constant).

(2) Let R be a noetherian ring and Y a proper R-scheme. We shall say that Y is H0-flat
over R if it is flat and cohomologically flat [BLR90, p.206] in degree zero over SpecR.
In this work we shall employ constantly that if Y is R-flat, then (a)H0-flatness amounts
to exactness of M 7→ H0(OY ⊗RM) [Har77, III.12.5 and III.12.6] and (b) if the fibres
of Y are geometrically reduced [EGA IV2, 4.6.2, p.68], then Y is H0-flat over R [EGA
III2, 7.8.6, p.206].

(3) If R, respectively T , is an Fp-algebra, respectively Fp-scheme, we write FR : R → R,
respectively FT : T → T , to denote the Frobenius morphism. If T is in addition
a scheme over a perfect field, we adopt the notations of [J87, Part I, 9.1] with the
exception that we write Frs : T (t) → T (s+t) while Jantzen uses F s

T (t) : T (t) → T (t+s).
(4) If R is a discrete valuation ring and y : SpecR → Y is an R-point of a scheme Y , we

shall write ygen for the image of the generic point of SpecR in Y .
(5) Let X → S be a morphisms of schemes possessing in addition a section x : S → X.

Given morphisms ϕ : X ′ → X and f : S′ → S, any morphism of S-schemes x′ : S′ →
X ′ such that ϕx′ = xf shall be called an S′-point of X ′ above x. (That is, for the sake
of economy we choose not to make base-changes to S′.)

On group schemes.
(1) To avoid repetitions, “group scheme” is a synonym for “affine group scheme.” If G

is a group scheme over a ring R, and R′ is an R-algebra, we write R′[G] instead of
O(R′ ⊗R G).

(2) The category of flat group schemes over a ring R is denoted by (FGSch/R).
(3) Let G be a flat group scheme over the noetherian ring R. When dealing with repre-

sentations of G we follow the conventions of [J87, Part I, Ch. 2] with the exception
that the word “representation” is reserved for G-modules which are of finite type over
R. The category of representations is denoted by RepR(G). The full subcategory of
representations which underlie locally free R-modules is denoted by Rep◦R(G).

(4) The right-regular, respectively left-regular, G-module [J87, 2.7] shall be denoted by
R[G]right, respectively R[G]left.

(5) If f : G → H is an arrow of (FGSch/R), we let f# : RepR(H) → RepR(G) be the
restriction functor.

On torsors.
(1) Let R be a ring, X an R-scheme, G and H group schemes over R, P → X a G-

torsor and Q → X an H-torsor. A generalized morphism from P to Q is a couple
(f, ρ) consisting of an arrow of X-schemes f : P → Q and a morphism of group
schemes ρ : G → H such that, for points with value on arbitrary R-algebras, we
have f(yg) = f(y)ρ(g). In this case, we say that the generalized morphism covers



FINITE TORSORS 5

the morphism ρ. If G = H, then a morphism of torsors from P to Q is simply a G-
equivariant morphism of X-schemes or a generalized morphism covering the identity.

(2) If R is a ring, ρ : G→ H is an arrow of (FGSch/R) and P → X is a G-torsor, we let
P ×G H or P ×ρ H be the associated H-torsor (see [DG70, III.4.3.2, p.368] or [J87,
Part I, 5.14]).

(3) If G is a flat group scheme over a ring R, P → X is a G-torsor andM is a representation
of G, then we let θP (M) stand for the coherent sheaf constructed by twisting P by M ,
see [J87, Part 1, 5.8–9], where it is denoted by LP/G(M).

Miscellaneous.
(1) All tensor categories and functors are to be taken in the sense of [DM82, §1]. Let

(C,⊗) be a rigid tensor category [DM82, Definition 1.7]. If C is additive, then, for
a = (a1, . . . , am) and b = (b1, . . . , bm) in Nm, and E ∈ C, we write Ta,bE to denote
the object

⊕
iE
⊗ai ⊗ Ě⊗bi . If C is in addition abelian, we let 〈E ; C〉⊗ stand for the

full subcategory of C whose objects are subquotients of some Ta,bE.
(2) If X is a proper and reduced scheme over a field, we let EF(X) denote the category

of essentially finite vector bundles on X. See [Nor76, Definition, p.37-8].
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2. Subsidiary material

We collect here some simple facts which are useful in developing our arguments.

Lemma 2.1. Let Y be a proper, reduced and connected scheme over the field K. If Y has
a K-point then K = H0(OY ).

Proof. We know that H0(OY ) = R1 × · · · × Rm, where each Ri is a local Artin algebra.
Since Y is connected, we must have m = 1. So H0(OY ) is a local Artin algebra. Since Y
is reduced, H0(OY ) is reduced, so H0(OY ) is a finite field extension of K. The existence
of a K-rational point determines a morphism of K-algebras H0(OY )→ K, and this forces
H0(OY ) to be K. �

Lemma 2.2. Let Y be a flat and proper A-scheme. If H0(OY⊗AK) = K, then H0(OY ) =
A. In particular, if Y ⊗AK is reduced and connected, and has a K-point, then H0(OY ) = A.

Proof. We know that H0(OY ) is a finite A-algebra and that H0(OY )⊗K = K by flat base-
change [Har77, III.9.3, p. 255] together with the assumption. Then, A ⊂ H0(OY ) ⊂ K.
Since A is normal, we must have A = H0(OY ). The verification of the last claim follows
immediately from Lemma 2.1. �

Lemma 2.3. Let Y be a proper and H0-flat A-scheme. Let F be a vector bundle on Y
whose base-changes FK and Fk are trivial. Then F is trivial.
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Proof. It is not difficult to see that the function y 7→ rank Fy has to be constant and equal
to n, say. From the equalities

dimkH
0(Yk,Fk) = dimkH

0(Yk,OYk)⊕n

= dimK H
0(YK ,OYK )⊕n

= dimK H
0(YK ,FK),

and Corollary 2 of [Mu70, §5], we conclude that the canonical morphism

H0(Y,F ) −→ H0(Yk,Fk)

is surjective. Pick sections s1, . . . , sn ∈ H0(Y,F ) such that {si|Yk}ni=1 is a basis of Fk.
Then, for each point y of the closed fibre, Nakayama’s Lemma shows that {si,y}ni=1 is a
basis of the free Oy-module Fy so that Supp(F/

∑
OY si) is a closed subset of Y disjoint

from the special fibre. Such a property is only possible if F =
∑

OY si. The proof is then
complete once we note that, for a y ∈ Y , the n generators {si,y}ni=1 of Fy ' O⊕ny do not
admit any non-trivial relation. �

In organising our findings, we shall make repeated use of a certain class of morphisms
of proper schemes. In order to avoid repetitions and to serve as a reference for the reader,
we put forward:

Definition 2.4. Let X be a connected, proper and flat A-scheme carrying an A-point
x0. Let S(X,x0) (or simply S if context prevents any misunderstanding) be the set of all
X-schemes ϕ : Y → X such that:

S1. ϕ is proper and surjective.
S2. Y is H0-flat over A.
S3. The canonical arrow Y → SpecH0(OY ) admits a section y0 such that ϕy0 extends

x0. (There exists an H0(OY )-point in Y above x0.)
We shall denote by S+(X,x0) (or simply S+) the subset of morphisms ϕ : Y → X in S
which, in addition, satisfy

S4. The canonical morphism Y → SpecH0(OY ) is flat.

Remark 2.5. Let ϕ : Y → X belong to S(X,x0) as in Definition 2.4; it turns out that in
this case, connectedness of X is automatic because of S3. Indeed, let y0 be the alluded
H0(OY )-point of Y above x0. Suppose that e ∈ H0(OX) is idempotent and that x#

0 (e) = 0.
Then, ϕ#(e) ∈ H0(OY ) is such that y#

0 (ϕ#(e)) = 0 and this implies that ϕ#(e) = 0. Since
ϕ is surjective, we conclude that e = 0 (since e has to vanish on each local ring of X).
Hence, the only connected component of X must be the one containing the image of x0.

We should now gather material on affine group schemes.

Definition 2.6. Let G ∈ (FGSch/A). We say that G is pseudo-finite if both its fibres
are finite group schemes over the respective residue fields.

Remark 2.7. We have no examples of pseudo-finite group schemes which are not quasi-finite
to offer.

As Lemma 2.8 below recalls, one advantage of finite group schemes over a field is that the
standard criterion for verifying when a morphism is faithfully flat in terms of representation
categories [DM82, Proposition 2.21, p.139] admits a considerable simplification. This is
then transmitted to pseudo-finite group schemes as argued by Lemma 2.9.

Lemma 2.8 ([Nor82, pp. 87-8]). Let u : H → G be a morphism of group schemes over a
field and let

H
q−→ I

i−→ G
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be its factorisation into a faithfully flat morphism q and a closed immersion i. Assuming
that I is finite (which is the case if either G or H is finite) then a necessary and sufficient
condition for u to be faithfully flat is that dim O(G)H = 1.

Proof. We leave the proof of necessity in the statement to the reader and from now on
assume that dim O(G)H = 1. Clearly, the equality I = G is equivalent to faithful flatness
of u. Since O(G)H = O(G)I , the assumptions translate into dim O(G)I = 1. Now, we
know that O(G) is a projective O(G)I -module whose rank equals dim O(I) (see [Mu70,
§11, Theorem 1(B), p.111] or III.2.4 of [DG70]). Then, since dim O(G)I = 1, we conclude
that dim O(I) = dim O(G), which means that I = G. �

Lemma 2.9. Let u : H → G be an arrow in (FGSch/A) and assume that G is pseudo-
finite. Then the following conditions are equivalent.
(1) Both equalities

A · 1 = (A[G]right)
H and k · 1 = (k[G]right)

H ,

are true.
(2) The morphism u is faithfully flat.
(3) Let

s(G) =

{
V ⊂ A[G]right is G-invariant, is finitely generated

as an A-module and contains the constants

}
and

s0(G) =

{
M ⊂ k[G]right is G-invariant, is finitely generated

as a k-space and contains the constants

}
.

Then, for each V ∈ s(G) and M ∈ s0(G) we have

A · 1 = V H and k · 1 = MH .

Proof. (1) ⇒ (2). The assumptions show that

(K[G]right)
HK = K and (k[G]right)

Hk = k.

By Lemma 2.8 we conclude that uK : HK → GK and uk : Hk → Gk are faithfully flat.
Because of [DuHa18, Theorem 4.1.1], u is faithfully flat.

(2)⇒(3). This is trivial.
(3)⇒(1). Any a ∈ A[G]right, respectively b ∈ k[G]right, belongs to a certain V ∈ s(G),

respectively M ∈ s0(G) because of “local finiteness” [Se68, 1.5, Corollary, p.40]. The
conclusion then follows. �

3. Modules trivialized by a proper and H0-flat scheme

In this section we introduce the category of coherent sheaves on which all further devel-
opments hinge: the category of sheaves which became “trivial” after a pull-back by a proper
morphisms. Since we wish to work with schemes over a d.v.r., the notion of triviality of a
coherent module becomes more subtle than the one over a field, and we need to account
for modules coming from the base-ring. This is a source of difficulty specially because the
“base” of the scheme effectuating the trivialisation might grow.

Definition 3.1. Let Y be any A-scheme. We say that F ∈ coh(Y ) is trivial relatively to
A if there exists a coherent sheaf (a finite A-module) F such that F ∼= OY ⊗A F .

Remark 3.2. Note that, if A is a field, then a coherent sheaf on Y is trivial relatively to A
if and only if it is trivial in according to our conventions in Section 1.
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In the above definition, it is to be expected that several different choices concerning the
“descended” module are possible. The next lemma, which we state here for future use,
explains how to be more canonical.

Lemma 3.3. Let Y be proper and H0-flat over A. Write B = H0(OY ) and let F be a
finite A-module. Then the canonical morphism

OY ⊗
B
H0(OY ⊗A F ) −→ OY ⊗A F

is an isomorphism.

Proof. By definition of H0-flatness, the canonical arrow

σ : B ⊗A F −→ H0(OY ⊗A F )

is bijective. We then consider the commutative diagram

OY ⊗
B
H0(OY ⊗A F ) // OY ⊗A F

OY ⊗
B

(B ⊗A F )

∼

55

∼ id⊗σ

OO

where the horizontal arrow is the one of the statement. �

Here is the central definition of this section.

Definition 3.4. If ϕ : Y → X is a morphism of A-schemes, we let Tϕ stand for the
full subcategory of coh(X) consisting of those coherent sheaves E such that the coherent
OY -module ϕ∗(E ) is trivial relatively to A.

Let X be a connected, proper and flat A-scheme, and x0 be an A-point of X. Let
ϕ : Y → X an object of S(X,x0) (see Definition 2.4). If B = H0(OY ), we let y0 stand for
the B-point of Y above x0. We note that the A-module B is finite and torsion-free, hence
free. The following will be useful further ahead.

Lemma 3.5. In the above notation, a coherent module F ∈ coh(X) belongs to Tϕ if and
only if ϕ∗(F ) is trivial relatively to B.

Proof. We only show the “if” clause. In this case, ϕ∗(F ) ' OY ⊗B F and using the point
y0, we conclude that F ' ϕ∗(F )|y0 . Now, since y0 is taken to the A-point x0, we have
that ϕ∗(F )|y0 ' B ⊗A (F |x0) so that ϕ∗(F ) ' OY ⊗A (F |x0). �

We now give ourselves an object E of Tϕ: this means that ϕ∗(E ) is isomorphic to the
pull-back of a certain A-module to Y . We shall notice that E |x0 is a possible choice.

Lemma 3.6. Let E := E |x0. Then there exists an isomorphism α : OY ⊗A E
∼→ ϕ∗(E ).

In addition, if E is an A-module such that ϕ∗(E ) ' OY ⊗A E, then E must in fact be
isomorphic to E.

Proof. Write ϕ∗(E ) ' OY ⊗A E for some other A-module E. Using y0, we conclude that
B⊗AE ' B⊗AE. Now this shows that OY ⊗AE ' OY ⊗AE because OY ⊗B (B⊗A (−)) =
OY ⊗A (−). To handle the final statement, the isomorphism B⊗AE ' B⊗AE is sufficient.
Here are the details. Agreeing to write A(`) = A/(π`), we have

E ' Ar ⊕A(δ1)⊕ · · · ⊕A(δm) and E ' Ar ⊕A(δ1)⊕ · · · ⊕A(δm);
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here m is either a positive integer, in which case δ1 ≥ · · · ≥ δm are also positive integers,
or m = 0 and the factors A(δi) are to be dropped, and analogous considerations are in
force for E. As B is free over A, of rank s ≥ 1 say, we have, as A-modules,

B ⊗A E ' Ars ⊕A(δ1)⊕ · · · ⊕A(δ1)︸ ︷︷ ︸
s

⊕ · · · ⊕A(δm)⊕ · · · ⊕A(δm)︸ ︷︷ ︸
s

and

B ⊗A E ' Ars ⊕A(δ1)⊕ · · · ⊕A(δ1)︸ ︷︷ ︸
s

⊕ · · · ⊕A(δm)⊕ · · · ⊕A(δm)︸ ︷︷ ︸
s

,

so that the isomorphism B ⊗A E ' B ⊗A E implies that r = r, m = m and δi = δi. �

We observe that the latter part of the above Lemma shall not be employed in the rest of
this text. Now, we note that while an A-module such that ϕ∗(E ) ' OY ⊗A E is uniquely
determined, one can find many isomorphisms OY ⊗A E ' ϕ∗(E ) and we now single out a
special class of such so to achieve a proof of Proposition 3.10 below. This Proposition is a
key step in endowing the category Tϕ with kernels and cokernels (see Section 4).

From now on we write

E := E |x0 and F = ϕ∗(E )|y0 .

Using y0 and the fact that it “extends” x0, we arrive at canonical isomorphisms

(1) ι : F
∼−→ B ⊗A E and I : OY ⊗B F

∼−→ OY ⊗A E.

Definition 3.7. An isomorphism β : OY ⊗B F → ϕ∗(E ) is called adapted to y0 if the
composition

F
canonical // (OY ⊗B F )|y0

β // ϕ∗(E )|y0

is the identity.

We shall show that adapted isomorphisms exist. For that and future applications, we
need:

Lemma 3.8. Let E be another object of Tϕ and write F for the B-module ϕ∗(E )|y0. Then
the pull-back morphism

id⊗ (−) : HomB

(
F, F

)
−→ HomOY

(
OY ⊗B F,OY ⊗B F

)
is bijective with inverse

(−)|y0 : HomOY

(
OY ⊗B F,OY ⊗B F

)
−→ HomB

(
F, F

)
.

If β : OY ⊗B F
∼→ ϕ∗(E ) and β : OY ⊗B F

∼→ ϕ∗(E ) are adapted, then the composition

HomOY

(
ϕ∗(E ), ϕ∗(E )

) β
−1

(−)β // HomOY

(
OY ⊗B F,OY ⊗B F

) (−)|y0 // HomB

(
F, F

)
is (−)|y0.
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Proof. Let ι : F
∼→ B ⊗A F and I : OY ⊗B F

∼→ OY ⊗A E be the isomorphisms analogous
to those in (1). It follows easily that

HomOY

(
OY ⊗B F,OY ⊗B F

) ∼ // HomB

(
F,H0(OY ⊗B F )

)
via I

∼ // HomB

(
F,H0(OY ⊗A E)

)

HomB

(
F,B ⊗A E

)∼H0-flatness

OO

Hom
(
F, F

)∼via ι

OOid⊗(−)

kk

commutes; this is enough to justify all claims of the first statement. Those of the second
are very simple. �

Lemma 3.9. Isomorphisms adapted to y0 always exist.

Proof. We choose any isomorphism β : OY ⊗B F
∼→ ϕ∗(E ) and let b be the composition

F
canonical // (OY ⊗B F )|y0

β|y0 // ϕ∗(E )|y0 .

Let γ : OY ⊗B F
∼→ OY ⊗B F induce b−1 via (−)|y0 (which exists due to Lemma 3.8).

Then βγ is adapted to y0. �

Granted these preparations, we can now have a better control on kernels and cokernels
in Tϕ.

Proposition 3.10. Let E be another object of Tϕ and u : E → E a morphism of OX-
modules. Write F for ϕ∗(E )|y0. Let β : OY ⊗B F

∼→ ϕ∗(E ) and β : OY ⊗B F
∼→ ϕ∗(E ) be

adapted to y0. The following claims hold true.

(1) If v0 := ϕ∗(u)|y0 : F → F , then

ϕ∗(u) = β ◦ (id⊗B v0) ◦ β−1.

Put differently, ϕ∗(u) “descends” to B.
(2) Write E for the A-module E |x0. Let ι : F

∼→ B ⊗A E and I : OY ⊗B F
∼→ OY ⊗A E be

the isomorphisms analogous to those in (1). Define α = βI−1 and α = βI
−1. Then,

the morphism of A-modules u0 := u|y0 : E → E renders

ϕ∗E
ϕ∗u // ϕ∗E

OY ⊗A E

α

OO

id⊗
A
u0

// OY ⊗A E

α

OO

commutative. Put differently, ϕ∗(u) “descends” to A.
(3) The coherent sheaves Ker(ϕ∗u) and Coker(ϕ∗u) are trivial relatively to A.

Proof. Claim (1) is a direct consequence of Lemma 3.8. Claim (2) is a simple consequence
of (1). Claim (3) follows from (2) together with the fact that Y is flat over A. �
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4. Further properties of the category of coherent modules trivialized by
a proper morphism

In this section, we let X be a proper and flat A-scheme with reduced fibres, and x0 an
A-point of X. Let ϕ : Y → X an object of S(X,x0). (Recall that in such a situation X is
connected, see Remark 2.5.) If B = H0(OY ), we let y0 stand for the B-point of Y above
x0. Let us gather some simple properties concerning the category Tϕ of Definition 3.4.

Lemma 4.1. Let u : E → F be arrow of Tϕ. Then C = Coker(u) belongs to Tϕ.

Proof. As Coker(ϕ∗u) ' ϕ∗(Coker(u)) this is a straightforward consequence of Proposition
3.10-(3). �

Lemma 4.2. If E ∈ Tϕ is A-flat, then E is a vector bundle.

Proof. By assumption, Xk and XK are reduced schemes. It follows from [BdS11, Remarks
(a), p.226] that Ek and EK are vector bundles. (We note that the context in op.cit. pre-
supposes the ground field to be algebraically closed, but this is not necessary for the proof
to work.) Using the “fibre-by-fibre” flatness criterion [EGA IV3, 11.3.10, p.138], we are
done. �

We are now ready to state the main structure theorem concerning Tϕ.

Theorem 4.3. The category Tϕ is abelian, and the inclusion functor Tϕ → Coh(X) is
exact.

The main point of the proof of Theorem 4.3, given Lemma 4.1, is to show that the kernel
of an arrow of Tϕ is also in Tϕ and, by Proposition 3.10, all we need to do is to relate
ϕ∗(Ker(u)) and Ker(ϕ∗(u)) for an arrow u. The argument takes up the ensuing lines.

First, recall that an OX -module M is sait to be ϕ∗-acyclic if the left derived functors
Liϕ

∗(M ) vanish for i > 0. (These functors are obtained by means of resolutions by flat
O-modules, see [Har66, 99ff] . In addition, note that from [Har66, Proposition 4.4, p.99],
if M is coherent, then Liϕ∗(M ) is also coherent.)

Proposition 4.4. Any E in Tϕ is ϕ∗-acyclic.

Proof. Let us first assume that πE = 0 so that E is by assumption an OXk -module which
becomes trivial after being pulled-back to Yk. Then, we know that E is locally isomorphic to
Or
Xk

[BdS11, Remarks (a), p.226]. Hence, there exists a faithfully flat morphism α : X → X

(given by a disjoint union of open subsets of X) such that α∗(E ) ' Or
Xk

.
Employing the notations introduced in the following cartesian diagram

Y
β //

ϕ
��

�

Y

ϕ

��
X α

// X

we now prove that Or
Xk

is ϕ∗-acyclic. The exact sequence

(2) 0 −→ Or
X

π−→ Or
X
−→ Or

Xk
−→ 0,

gives rise to an exact sequence

0 −→ L1ϕ
∗(Or

Xk
) −→ ϕ∗(Or

X
)

π−→ ϕ∗(Or
X

) −→ ϕ∗(Or
Xk

) −→ 0,

and this proves that L1ϕ
∗(Or

Xk
) = 0 as ϕ∗(Or

X
) ' Or

Y
is A-flat. From sequence (2), we

have, for any i ≥ 1, another exact sequence

0 = Li+1ϕ
∗(Or

X
) −→ Li+1ϕ

∗(Or
Xk

) −→ Liϕ
∗(Or

X
) = 0;
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this allows us to conclude that Or
Xk

is ϕ∗-acyclic. As α∗ and β∗ are exact, we know that
β∗ ◦ Liϕ∗ ' Liϕ∗ ◦ α∗, and therefore we can say that, for each i > 0,

β∗ ◦ Liϕ∗(E ) = Liϕ
∗ ◦ α∗(E )

' Liϕ∗(Or
Xk

)

= 0.

But Liϕ∗(E ) is coherent and β is faithfully flat, so β∗(Liϕ∗(E )) = 0 implies Liϕ∗(E ) = 0
and we have finished the verification that E is ϕ∗-acyclic.

For any M ∈ Coh(X), let us agree to write

Tors(M ) =
⋃
m≥1

Kerπm : M →M

for the sheaf of sections annihilated by some power of π and define

t(M ) := min{m ∈ N : πm · Tors(M ) = 0}.

We shall show by induction on t(E ) that E is ϕ∗-acyclic. If t(M ) = 0, then Tors(M ) = 0,
so that, due to Lemma 4.2, E is a vector bundle and a fortiori ϕ∗-acyclic.

Now, suppose that t(E ) ≥ 1 and that for all F ∈ Tϕ with t(F ) < t(E ), the OX -module
F is ϕ∗-acyclic.

Write E ′ := πE . Then, if e′ ∈ Tors(E ′)(U) over some affine U , it follows that e′ = πe

where e ∈ Tors(E )(U). This being so, we conclude that πt(E )−1e′ = 0 and hence that
t(E ′) < t(E ). Next, we consider the exact sequence

(3) 0 −→ E ′
ρ−→ E

σ−→ E ′′ −→ 0,

where E ′′ = E /πE . Since,
E ′′ = Coker E

π−→ E ,

it follows that E ′′ ∈ Tϕ (there is no need to apply Lemma 4.1 here). Note that, πE ′′ = 0
and hence E ′′ is ϕ∗-acyclic by the first step in the proof. Consequently, we have the exact
sequence

0 −→ ϕ∗(E ′) −→ ϕ∗(E )
ϕ∗(σ)−→ ϕ∗(E ′′) −→ 0,

which says that ϕ∗(E ′) = Ker(ϕ∗(σ)). But both E and E ′′ are in Tϕ so that 3.10-(3)
guarantees that E ′ lies in Tϕ. As t(E ′) < t(E ), we can say that E ′ is ϕ∗-acyclic and hence,
using the exact sequence (3) above, it follows that E is equally ϕ∗-acyclic. �

We can now present our

Proof of Theorem 4.3. Let u : E → F be an arrow of Tϕ. If K = Ker(u), C = Coker(u)
and I = Im(u), then we have exact sequences

0 −→ K −→ E −→ I −→ 0 and 0 −→ I −→ F −→ C −→ 0.

Note that C ∈ Tϕ by Lemma 4.1, so that Proposition 4.4 tells us that C is ϕ∗-acyclic.
This implies that the sequence

0 −→ ϕ∗(I ) −→ ϕ∗(F ) −→ ϕ∗(C ) −→ 0

is exact and Proposition 3.10 assures that ϕ∗(I ) is trivial relatively to A. Otherwise said,
I belongs to Tϕ. Proposition 4.4 then proves that I is ϕ∗-acyclic. Applying the same
reasoning, we conclude that K ∈ Tϕ. �

Corollary 4.5. The functor •|x0 : Tϕ → A-mod is exact and faithful.
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Proof. We know that •|x0 is right exact, so that we only need to show that •|x0 preserves
monomorphisms. Let u : E → E be such a monomorphism in Tϕ and denote E |x0 ,
respectively E |x0 , by E, respectively E. Let α : OY ⊗A E

∼→ ϕ∗(E ) and α : OY ⊗A E →
ϕ∗(E ) be adapted to y0 (see Definition 3.7 and Lemma 3.9). Using Proposition 3.10, we
see that α−1ϕ∗(u)α = idOY ⊗A u0 for some u0 : E → E. Because ϕ∗u is a monomorphism
(due to Lemma 4.1 and Proposition 4.4), we conclude that u0 has to be a monomorphism:
otherwise the pull-back functor A-mod → Coh(Y ) would fail to be exact and faithful.
This implies that ϕ∗(u)|y0 : ϕ∗(E )|y0 → ϕ∗(E )|y0 is a monomorphism, which shows that
B ⊗A u|x0 is a monomorphism. Since B is a faithfully flat A-algebra, we conclude that
u|x0 is also a monomorphism.

We now verify that •|x0 is faithful by showing that if E ∈ Tϕ is such that E |x0 = 0,
then E = 0. Under this assumption, we see that ϕ∗(E )|y0 = 0 which, together with an
isomorphism OY ⊗A E ' ϕ∗(E ), proves the equality ϕ∗(E ) = 0. Now, given any point
ξ ∈ X, one easily sees using the surjectivity of ϕ that E (ξ) = 0. Because of [Har77, II,
Exercise 5.8(c), p.125] and the fact that X is reduced [Mat89, Corollary 23.9, p.184] we
conclude that E = 0. �

In possession of Theorem 4.3 and Corollary 4.5, we can now apply the theory of Tan-
nakian categories over A to define certain fundamental group schemes.

Definition 4.6 (The fundamental and Galois groups). i) We shall let T◦ϕ denote the full
subcategory of Tϕ whose objects are vector bundles.

ii) Given E ∈ T◦ϕ, we denote by 〈E ; Tϕ〉⊗ the full subcategory of Tϕ having as objects
subquotients of Ta,bE for varying multi-indexes a, b.

iii) Following [HdS21], by Ttan
ϕ we mean the full subcategory of Tϕ whose objects are{

V ∈ Tϕ : V is a quotient of some E ∈ T◦ϕ
}

=
⋃

E∈T◦ϕ

Ob 〈E , Tϕ〉⊗.

iv) Given E ∈ T◦ϕ, we let Gal′(E ,Tϕ, x0), or simply Gal′(E ) if context prevents any
misunderstanding, stand for the group scheme obtained from 〈E ; Tϕ〉⊗ via Tan-
nakian duality (see [DuHa18, Theorem 1.2.6] or [Saa72, II.4.1.1]) by the functor
•|x0 : 〈E ; Tϕ〉⊗ → A-mod.

v) We let Π(X,ϕ, x0) be the flat group scheme obtained from Ttan
ϕ via Tannakian duality

by the functor •|x0 : Ttan
ϕ → A-mod

To end, we raise a point which was naturally suggested in the elaboration of the argu-
ments in this section. (It should be compared to Exercise of [Har77, Exercise 5.8, p.125].)

Question 4.7. Let Z be a flat, reduced and noetherian A-scheme. Call a dvr-point of Z
any morphism z : SpecR→ Z of A-schemes where R is a dvr. Now, for F ∈ coh(Z) and
z : SpecR → Z a dvr-point of Z, define its “type” as the invariants of F |z. Assume now
that the type of F is the same for all z. Is it true that F trivial relatively to A?

5. The generic fibre of the group scheme Π

In this section, we let X be a proper and flat A-scheme with reduced fibres, and x0 an
A-point of X. Let ϕ : Y → X an object of S(X,x0).

Let TϕK stand for the full subcategory of coh(XK) whose set of objects is{
E ∈ coh(XK) : ϕ∗KE is trivial

}
.

We note that TϕK is a Tannakian category over K which is neutralized by the functor
•|x0K : TϕK → K-mod. (The reader is right to object that we have not proved this last
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claim since in Section 4 we work with a discrete valuation ring, but the translation is
evident and in fact much simpler.)
Theorem 5.1. Suppose that XK is normal and let E ∈ TϕK . Then, E is essentially
finite and 〈E ; TϕK 〉⊗ = 〈E ; EF(XK)〉⊗. In particular, the K-group scheme associated to
〈E ; TϕK 〉⊗ via the fibre functor •|x0K is finite.

Proof. Let C be the full subcategory of all vector bundles over XK which become trivial
after being pulled back via some proper and surjective morphism. Then [AM11, Theorem
1] or [TZ20, Theorem I] guarantee that C = EF(XK) and in particular TϕK is a full
subcategory of EF(XK). Following [BdS11, Corollary 2.3], let us show that 〈E ; C〉⊗ =
〈E ; TϕK 〉⊗. Clearly, each object in 〈E ; TϕK 〉⊗ is also an object of 〈E ; C〉⊗. Let then T be
some tensor power of E and q : T → Q be a quotient morphism with Q ∈ C. Then, ϕ∗K(q)
is a quotient morphism from ϕ∗K(T ) ' O⊕rYK to ϕ∗KQ. From Lemma 5.2, we see that ϕ∗KQ
is trivial, which means that Q ∈ TϕK . Using duality of vector bundles, we then conclude
that 〈E ; C〉⊗ = 〈E ; TϕK 〉⊗. �

The following result was employed in the proof of Theorem 5.1.
Lemma 5.2. Let V be a proper scheme over a field and O⊕rV → Q a quotient morphism
to a vector bundle Q of rank d. Suppose that for a certain surjective and proper morphism
f : V ′ → V , the pull-back f∗(det Q) is trivial. Then Q is trivial.

Proof. We let Grass(r, d) be the Grassmann scheme as described in [Ni05, 5.1.5(2), 110ff]
and denote by U the universal quotient of O⊕rGrass(r,d). By construction of Grass(r, d), there
exists a morphism γ : V → Grass(r, d) such that Q = γ∗(U ). Consequently, f∗γ∗(det U )
is trivial. Let δ : Grass(r, d)→ Pn (n =

(
r
d

)
− 1) be the determinant (Plücker) immersion

so that det(U ) = δ∗O(1) [Ni05, p. 114]. We then conclude that f∗γ∗δ∗O(1) is trivial.
Using Chow’s lemma [EGA II, 5.6.1, p.106], there is no loss of generality in supposing V ′
to be projective. Now, Exercise 8.1.7(a) on p. 331 of [Liu02] says that the closed schematic
image of δγf in Pn is finite over the ground field. Hence, the image of γ is a closed subset
with finitely many points so that γ∗(U ), which is Q, is trivial. �

For E ∈ TϕK , let us denote the group scheme over K associated to 〈E ; TϕK 〉⊗ via the
functor •|x0K by Gal(E,TϕK , x0,K).
Theorem 5.3. Suppose that XK is normal and let E ∈ T◦ϕ. If E stands for EK , then
Gal′(E ,Tϕ, x0)⊗K ' Gal(E,TϕK , x0K). In particular, Gal′(E ,Tϕ, x0)⊗K is finite.

Proof. Let σ : 〈E ; Tϕ〉⊗ → 〈E ; TϕK 〉⊗ be the base change functor, G be the group scheme
Gal′(E ,Tϕ, x0) and H be Gal(E,TϕK , x0K). Let θ : RepA(G) → 〈E ; Tϕ〉⊗ be an inverse
to •|x0 : 〈E ;Tϕ〉⊗ → RepA(G) and denote by τ : RepA(G)→ RepK(H) the composition

RepA(G)
θ // 〈E ; Tϕ〉⊗

σ // 〈E ; TϕK 〉⊗
•|x0K // RepK(H).

If V ⊂ A[G]right contains the constants, the fact that θ is fully faithful assures that
H0(X, θ(V )) ' A. Hence, H0(XK , σθ(V )) ' K, by flat base-change. Consequently,

τ(V )H ' K.
Let i : RepA(G)→ RepK(GK) be the extension of scalars. It is not difficult to see that

there exists a morphism ξ : H → GK of group schemes such that

RepA(G)

i
��

τ // RepK(H)

RepK(GK),
ξ#

77
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is commutative (up to natural isomorphism of tensor functors).
If V ⊂ K[G]right, there exists V [ ⊂ A[G]right containing the constants and an injection

V → i(V [). Then,

ξ#(V )H ⊂ τ(V [)H

' K.

This implies that K ' K[G]Hright, and we conclude, with the help of Lemma 2.8 and the
fact that H is finite (Theorem 5.1), that ξ is faithfully flat. On the other hand, since E|x0K
is a faithful representation of H, the standard criterion [DM82, 2.21, p.139] immediately
shows that ξ is a closed immersion: it follows that ξ is an isomorphism. �

As a simple consequence we have

Corollary 5.4. Suppose that XK is normal. Then Π(X,ϕ, x0)⊗K is pro-finite. �

Remark 5.5. We are unable to show that Theorem 5.3 holds without the finiteness as-
sumption on Gal(E,TϕK , x0). This is because, once this assumption is removed, Lemma
2.8 cannot be applied so that, in its place, we need the standard criterion guaranteeing
faithful flatness [DM82, 2.21, p.139].

6. Prudence in the category T∗

We shall assume that A is complete. In [HdS21, Section 6] we introduced the notion of
prudence of an affine flat group scheme over A. As shown in op. cit. this concept turns out
to be equivalent to the Mittag-Leffler property (or freeness) of the A-module of functions
of the group. In this section we show that the A-module of functions of a Galois group
(see Definition 4.6) is free by using prudence.

Let us briefly recall the concept of prudent affine group schemes over a complete d.v.r.
Our reference is [HdS21, Section 6.2]. Let G be a flat affine group scheme over A and V
be an object of RepA(G), with the coaction ρ : V −→ V ⊗ A[G]. An element v ∈ V is
said to be semi-invariant if ρ(v) = v ⊗ θ for some θ ∈ A[G]. Assume furthermore that V
is A-free. We say that V is prudent if an element v whose reductions modulo πn+1V are
semi-invariant for all n must necessarily be semi-invariant. We say that G is prudent if
each V ∈ Rep◦A(G) is prudent.

Let us now fix the hypothesis on the ambient space in this section. Let X be a proper
and flat A-scheme having reduced fibres. We give ourselves an A-point x0 and an arrow
ϕ : Y → X in S+(X,x0) (see Definition 2.4). If B = H0(OY ), we let y0 be the B-point of
Y above x0 assured by the definition of S+.

Theorem 6.1. Let E ∈ T◦ϕ. Then Gal′(E ,Tϕ, x0), as introduced in Definition 4.6, is
prudent. In particular, its A-module of functions is free.

Before starting the proof, let us obtain the

Corollary 6.2. Suppose that XK is normal. Then Gal′(E ,Tϕ, x0) is finite.

Proof. We abbreviate G := Gal′(E ,Tϕ, x0). By Theorem 5.3, G⊗K is finite over K. On
the other hand, Theorem 6.1 ensures that the A-module A[G] is free. Consequently it has
to be finite. �

Proof of Theorem 6.1. Recall that by assumption Y is H0-flat over A and flat over B =
H0(OY ). We wish to show that Gal′(E ) is prudent [HdS21, Section 6], and for that we
introduce the following setting.

Let V ∈ 〈E ; Tϕ〉⊗ be a vector bundle and let

vn : Ln −→ Vn
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be a compatible family of monomorphisms of OX -modules (as customary, Vn = An ⊗A V ,
Bn = An ⊗A B, etc.) such that for each n ∈ N, the OX -module Ln belongs to Tϕ. By
Grothendieck’s existence theorem [Il06, Theorem 8.4.2], there exists an arrow of coherent
OX -modules v : L → V such that vn is none other than v ⊗A An.

Write M := ϕ∗(L ); our assumption on Ln tells us that Mn = ϕ∗(Ln) is trivial
relatively to A. Then, since we assume that Y is H0-flat over A, Lemma 3.3 tells us that
the canonical arrow

OY ⊗
B
H0(Mn)

θn //Mn

is an isomorphism. We now require the

Lemma 6.3. Under the above notations and assumption, the canonical morphism of OY -
modules

τ : OY ⊗
B
H0(M ) −→M

is an isomorphism. In particular, M is trivial relatively to B.

Proof. Consider the commutative diagram

Mn+1
πn+1

//Mn+1
qn //Mn

// 0

OY ⊗
B
H0(Mn+1)

θn+1

OO

πn+1
// OY ⊗

B
H0(Mn+1)

id⊗H0(qn)
//

θn+1

OO

OY ⊗
B
H0(Mn)

θn

OO

// 0,

where qn is the canonical arrow. By assumption, the vertical arrows are isomorphisms
while the upper row is tautologically an exact sequence of OY -modules. We conclude that
the bottom row is exact and faithful flatness of Y over B (faithfulness is guaranteed by
[EGA III1, 4.3.1, p.130]) shows that the sequence

H0(Mn+1)
πn+1

// H0(Mn+1)
H0(qn) // H0(Mn) // 0

is equally exact. Hence, if

M := lim←−

(
· · · // H0(Mn+1)

H0(qn) // H0(Mn) // · · ·

)
,

it follows that M is a finitely generated B-module and that the projection

M −→ H0(Mn)

induces an isomorphism
Bn ⊗B M

∼−→ H0(Mn).

(This follows from the the fact that B is π-adically complete and [EGA 0I, 7.2.9].) More
importantly, letting un : M →Mn stand for the natural epimorphism, a direct application
of the theorem of formal functions (see [Il06, 8.2.4, p. 188] or [Har77, III.11.1, p.277])
guarantees that the obvious arrow

H0(M )
lim←−nH

0(un)
//M

is a bijection. Consequently, for any given n ∈ N, the arrow H0(un) : H0(M )→ H0(Mn)
induces an isomorphism

Un : Bn ⊗
B
H0(M )

∼−→ H0(Mn).
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To show that τ : OY ⊗BH0(M )→M is an isomorphism, by Grothendieck’s algebraization
theorem [Il06, Theorem 8.2.9, p.192], we only need to show that for each n,

Bn ⊗
B

(OY ⊗B H0(M ))
id⊗τ // Bn ⊗

B
M

is an isomorphism. Now, we have the commutative diagram

Bn ⊗
B

(OY ⊗B H0(M ))
id⊗τ // Bn ⊗

B
M

un
∼

//Mn

OY ⊗
B

(Bn ⊗B H0(M ))

∼ canonic
OO

id⊗Un
// OY ⊗

B
H0(Mn),

θn ∼

OO

where un is associated to un, and the conclusion follows. �

By virtue of the above Lemma, M is trivial relatively to B; using Lemma 3.5 we conclude
that M is trivial relatively to A. This shows that L ∈ Tϕ. As it is not difficult to show
that v is a monomorphism by looking at the arrow L |x0 → V |x0 , we see that L does
indeed belong to 〈E , Tϕ〉⊗.

We have then showed that the group scheme Gal′(E ,Tϕ) is prudent, and hence that its
ring of functions is free as an A-module [HdS21, Section 6].

�

7. Digression on the reduced fibre theorem

For future applications, we shall state a version of the reduced fibre theorem (see [BLR95,
Theorem 2.1′] and [Tem10]) suitable for us.

Theorem 7.1 (The reduced fibre theorem). Let A be Henselian and Y be a flat A-scheme
of finite type whose fibre YK is geometrically reduced. Then, there exists a finite extension
of discrete valuation rings B ⊃ A and a commutative diagram

Z

ε
��

Y

��

YBoo

�
��

SpecA SpecBoo

where:
RFT1) The B-scheme Z is flat and has geometrically reduced fibres.
RFT2) The morphism ε is finite and surjective.
RFT3) If L = Frac(B), then

ε⊗
B
L : Z ⊗

B
L −→ YB ⊗

B
L

is an isomorphism.
In particular, the composition Z → YB → Y is finite and surjective.

Proof. We show how to arrive at the conclusion starting from [Tem10, Theorem 3.5.5]. By
this theorem (see also the notation on p. 619 of op. cit.), we obtain the existence of an
integral scheme S and a separable alteration (proper, dominant and inducing a finite and
separable extension of function fields)

S −→ SpecA,
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and a commutative diagram with cartesian square

Ỹ

δ
��

Y

��

YS

��

oo

�

SpecA S,oo

such that:
• The S-scheme Ỹ is flat and has geometrically reduced fibres.
• The morphism δ is finite.
• The base-change

Ỹ ×
S
SK

δ×
S
SK

// YS ×
S
SK

is an isomorphism.
As YS → S is an open morphism [EGA IV2, 2.4.6] and SK is dense in S, we can say that
YS ×S SK is dense in YS ; consequently,

• The morphism δ is surjective.
If L is the function field of S and B is the integral closure of A in L (necessarily a d.v.r. and
a finite A-module [Mat80, 31.B, p.232]), properness of S gives the existence of a morphism
of A-schemes SpecB → S extending SpecL → S. We then arrive at a commutative
diagram with cartesian squares

Ỹ

δ
��

Z

ε

��

oo

�

Y

��

YS

�
��

oo

�

YB

��

oo

SpecA Soo SpecBoo

where
• The B-scheme Z is flat and has geometrically reduced fibres (for the last condition,
see [EGA IV2, 4.6.1, p.68]).
• The morphism ε is finite and surjective (for surjectivity, see [EGA I, 3.5.2, p.115]).
• The base-change morphism

ε⊗
B
L : Z ⊗

B
L −→ YB ⊗

B
L

is an isomorphism.
The proof of the last claim is quite simple and we omit it. �

The ensuing result will prove useful in order to apply Theorem 7.1. In it, we employ the
notion of Japanese discrete valuation ring [EGA 0IV, 23.1.1, p.213]. (The reader should
recall that all complete d.v.r.’s are Japanese, as are those whose field of fractions has
characteristic zero. See [EGA 0IV, 23.1.5] and [EGA 0IV, 23.1.2].)

Lemma 7.2. Let A be Japanese and S a flat A-scheme of finite type. There exists a
finite purely inseparable extension K̃ of K such that the following property holds. If Ã is
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the integral closure of A in K̃, then the Ã-scheme S̃ := (S ⊗A Ã)red has a geometrically
reduced generic fibre and is flat .

Proof. Let K̃/K be a finite and purely inseparable extension such that (S ⊗A K̃)red is
geometrically reduced over K̃ [EGA IV2, 4.6.6, p.69]. Now, in the notation of the state-
ment, S̃[1/π] = (S ⊗A K̃)red, and we are done. To prove that S̃ is flat over Ã, let π̃ be a
uniformizer of Ã. Let f̃ be a function on some unspecified affine open subset of S ⊗A Ã
such that π̃f̃ is nilpotent, say π̃mf̃m = 0. Then, the fact that S ⊗A Ã is Ã-flat says that
f̃ is nilpotent, and this shows that (S ⊗A Ã)red is Ã-flat. �

8. The fundamental group scheme

Let X be an irreducible, proper and flat A-scheme with geometrically reduced fibres,
and x0 an A-point of X. We now wish to assemble the categories Tϕ (see Definition 3.4
and Theorem 4.3) for varying ϕ in a single one, and for that we need the following:

Theorem 8.1. We suppose that A is Henselian and Japanese. Let ϕ : Y → X be a proper
and surjective morphism. Then, there exists a commutative diagram of schemes

Z //

ψ   

Y

ϕ

��
X

enjoying the following properties.
(1) The morphism ψ is surjective and proper.
(2) The ring C := H0(OZ) is a discrete valuation ring and is a finite extension of A.
(3) The canonical morphism Z → SpecC is flat and has geometrically reduced fibres.
(4) The C-scheme Z has a C-point above x0.
In particular, ψ : Z → X belongs to the category S+(X,x0) introduced in Definition 2.4.

Proof. The construction requires several steps.

Step 1. Because X is irreducible, there exists an irreducible component Y ′ of Y such that
ϕ : Y ′ → X is surjective.

Step 2. Let j : Y ′′ → Y be reduced closed subscheme underlying Y ′. Note that Y ′′ is
integral and that ϕ′′ := ϕ ◦ j : Y ′′ → X is proper and surjective.

Step 3. Let now ν : Y † → Y ′′ be the normalization [EGA II, p.119]. Since A is universally
Japanese [EGA IV2, 7.7.2, p.212], we conclude that ν is finite, and hence ϕ† := ϕ′′ ◦ ν
is proper and surjective. In addition, H0(OY †) is a normal integral domain (see [Liu02,
2.4.17, p.65] and [Liu02, 4.1.5, p.116]). The morphism Y † → SpecA is surjective and hence
flat [Liu02, 4.3.10,p.137]; it then follows that H0(OY †) is a finite and flat A-module. As
such, it must in addition be a local ring, since A is Henselian. Consequently, H0(OY †)
is a discrete valuation ring. In hindsight, the canonical morphism Y † → SpecH0(OY †) is
surjective and flat [Liu02, 4.3.10,p.137].

Step 4. Let B† := H0(OY †) and write L† for its field of fractions. Let L̃ be a purely
inseparable extension of L† such that, denoting by B̃ the integral closure of B† in L̃, the
generic fibre of

(Y † ⊗B† B̃)red −→ Spec B̃

is geometrically reduced (we employ Lemma 7.2). Writing Ỹ := (Y † ⊗B† B̃)red, we note
that the composition

Ỹ −→ Y † ⊗B† B̃
pr−→ Y †
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induces a homeomorphism between the underlying topological spaces. From this, it follows
that Ỹ is integral and that the obvious morphism ϕ̃ : Ỹ → X is surjective. Since B̃ is a
finite B†-module—recall that A is Japanese—, we conclude that ϕ̃ is proper. Since B̃ is a
Dedekind domain, the fact that Ỹ → Spec B̃ is surjective (note that Y † ⊗B† B̃ → Spec B̃
is surjective by [EGA I, 3.5.2, p.115]) shows that it is in addition flat.

For future usage, we also remark that

H0(OỸ ) = H0
(
OY †⊗

B† B̃

)
red

(see [Liu02, 2.4.2(c),p.60])

=
(
H0(OY †)⊗B† B̃

)
red

(flat base-change [Liu02, 3.1.24. p.85])

=
(
B† ⊗B† B̃

)
red

(definition of B†)

= B̃.

Step 5. By the reduced fibre theorem (Theorem 7.1), there exists a finite extension B\ ⊃ B̃
of discrete valuation rings and a commutative diagram

Y \

ε

��
Ỹ

��

Ỹ ⊗
B̃

B\

��

oo

Spec B̃ SpecB\oo

such that
• The B\-scheme Y \ is flat, proper and has geometrically reduced fibres.
• The morphism ε is finite and surjective.
• If L\ = Frac(B\), then

ε ⊗
B\
L\ : Y \ ⊗

B\
L\ −→ (Ỹ ⊗B̃ B

\) ⊗
B\
L\

is an isomorphism.
Furthermore,

H0

(
OY \⊗

B\
L\

)
' H0(OỸ⊗B̃L\

) (via ε⊗B\ L\)

' H0(OỸ )⊗
B̃

L\ (by flat base-change)

' L\ (by Step 4).

Let ϕ\ : Y \ → X be the composition

Y \ ε−→ Ỹ ⊗
B̃

B\ pr−→ Ỹ
ϕ̃−→ X;

as ϕ̃ is surjective and proper, it is clear that ϕ\ is surjective and proper.

Step 6. Let now C ⊃ B\ be a finite extension of d.v.r.’s such that Y \ has a C-point above
the A-point x0 (here we apply the valuative criterion of properness for the A-scheme Y \|x0
to obtain a finite extension A ⊂ C). We then define Z = Y \ ⊗B\ C and note that the
following claims hold true:
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• The composition Z pr→ Y \ ϕ
\

→ X is surjective and proper.
• The C-scheme Z is flat, proper and has geometrically reduced fibres.
• Let M = Frac(C). Then, H0(OZ⊗CM ) = M (because of H0(OY \⊗

B\
L\) = L\ and

flat base-change).
• The ring of global functions of Z is C (because of the previous claims and Lemma
2.2.)
• There is a C-point in Z above the A-point x0.

This proves all conclusions in the statement. �

Corollary 8.2. We suppose that A is Henselian and Japanese. Let ϕ : Y → X and
ϕ′ : Y ′ → X be surjective and proper morphisms. Then there exists ψ : Z → X in
S+(X,x0) and a commutative diagram

Z

ψ

��

!!~~
Y

ϕ   

Y ′

ϕ′}}
X.

In addition, it is possible to find Z such that the extra conditions hold:
(1) The ring H0(OZ) is a d.v.r. which is a finite extension of A, and
(2) the canonical morphism Z → SpecH0(OZ) is flat with geometrically reduced fibres.

�

Definition 8.3. We let TX , stand for the full subcategory of coh(X) whose objects are⋃
ϕ∈S(X,x0)

ObTtan
ϕ .

In addition, T◦X is the full subcategory of TX having objects which are in addition vector
bundles.

In the terminology of the definition we can say:

Corollary 8.4. If A is Henselian and Japanese, then the category TX is a full abelian sub-
category of coh(X) which is in addition stable under tensor products. With this structure
and with the functor •|x0 : TX → A-mod, TX becomes a neutral Tannakian category over
A in the sense of [DuHa18, Definition 1.2.5, p.1109].

Proof. Let ϕ : Y → X and ϕ′ : Y ′ → X belong to S(X,x0) and ψ : Z → X be as in
Corollary 8.2. Then, Ttan

ϕ and Ttan
ϕ′ are full subcategories of Ttan

ψ and all the claims made
in the statement follow from Theorem 4.3 and Corollary 4.5. �

Definition 8.5. The fundamental group scheme of X at the point x0 is the affine and
flat group scheme obtained from TX and the functor •|x0 : TX → A-mod via Tannakian
duality [Saa72, Theorem II.4.1.1]. It shall be denoted by Π(X,x0).

If E ∈ T◦X , we let Gal′(E ,TX , x0) be the flat group scheme over A defined by the category
〈E 〉⊗ and the functor •|x0 .

The next result clarifies the relation between TX and its constituents Tϕ.

Proposition 8.6. Let ϕ : Y → X be an arrow of S(X,x0) and E ∈ T◦ϕ. Then, the
natural morphism ν : Π(X,x0) → Π(X,ϕ, x0) is faithfully flat, while Gal′(E ,TX , x0) →
Gal′(E ,Tϕ, x0) is an isomorphism.
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Proof. Let us write G := Π(X,x0) and Gϕ := Π(X,ϕ, x0). In addition, given any A-linear
category C, we denote by C(k) the full subcategory of C whose objects are “annihilated by
π”, meaning that multiplication by π coincides with 0. We shall prove that
i) For any V ∈ Rep◦A(Gϕ) and any quotient morphism q : ν#(V ) → Q with Q ∈

Rep◦A(G), there exists Qϕ ∈ Rep◦A(Gϕ) such that ν#(Qϕ) = Q.
ii) For any M ∈ RepA(Gϕ)(k) and any quotient morphism q : ν#(M) → Q with Q ∈

RepA(G)(k), there exists Qϕ ∈ RepA(Gϕ) such that ν#(Qϕ) = Q.
If these two conditions are verified, then the evident morphisms A[Gϕ] → A[G] and
k[Gϕ] → k[G] are injective (as follows from the “dual statements” in [DuHa18, 3.2.1]
and [DM82, 2.21, p.139]) and Theorem 4.1.1 in [DuHa18] proves that ν is faithfully flat.

To verify (i), we give ourselves a morphism ψ : Z → X in S(X,x0), an object Q from
T◦ψ, an object V of T◦ϕ and an epimorphism q : V → Q, and aim at showing that Q lies in
T◦ϕ. By Lemma 2.3, we only need to show that ϕ∗(Q)|Yk and ϕ∗(Q)|YK are both trivial.
But this is a direct consequence of Lemma 5.2.

To verify (ii) we give ourselves an object M of (Ttan
ϕ )(k), a morphism ψ : Z → X in

S(X,x0), an object Q of (Ttan
ψ )(k) and an epimorphism q : M → Q. Since M and Q are

locally free OXk -modules [BdS11, Remarks (a), p.226], the exact same argument as before
proves that Q lies in Tϕ,(k). Being a quotient of M , which belongs to (Ttan

ϕ )(k), Q must
be in (Ttan

ϕ )(k).
The natural arrow Gal′(E ,T, x0) → Gal′(E ,Tϕ, x0) is induced by the obvious fully

faithful functor 〈E ; Tϕ〉⊗ → 〈E ; T〉⊗. Now, any V in 〈E ; T〉⊗ is of the form V ′/V ′′,
where V ′′ ⊂ V ′ ⊂ Ta,bE . Since ν is faithfully flat, Theorem 4.1.2 of [DuHa18] shows that
V ′ and V ′′ belong to T◦ϕ; consequently V is an object of 〈E ; Tϕ〉⊗ and the fully faithful
functor 〈E ; Tϕ〉⊗ → 〈E ; T〉⊗ is an equivalence. �

In order to make some properties of Π(X,x0) conspicuous, let us make the following
definitions.

Definition 8.7. Let G ∈ FGSch/A be given. Let P be one of the adjectives “finite”,
“quasi-finite” or “pseudo-finite”. We say that G is pro-P (respectively strictly pro-P) if
there exists a directed set I and a diagram {νij : Gj → Gi : i ≤ j ∈ I} in FGSch/A
where each Gi is P (respectively each Gi is P and each νij is faithfully flat) such that
G ' lim←−iGi. (For the definition of quasi-finite, the reader is directed to [EGA II, 6.2.3,
p.115].)

Theorem 8.8. We suppose that A is Henselian and Japanese, and moreover assume that
XK is normal.

(1) The group scheme Π(X,x0) is pro-quasi-finite.
(1’) The group scheme Π(X,x0) is strictly pro-pseudo-finite.
(2) If in addition A is complete, then, for each E ∈ T◦X , the group scheme Gal′(E ,TX , x0)

is finite and Π(X,x0) is strictly pro-finite.

We note that this result shall be improved below—see Theorem 8.10—by a careful
application of (2) and Lemma 2.9, but not to make the argument overly involved, we opt
for less generality now.

Proof. We consider the set of isomorphism classes I of objects in T◦X and order it by
decreeing that E ≤ F if and only if E ∈ 〈F 〉⊗. Putting GE := Gal′(E ,TX , x0), we obtain
a system of group schemes {νE F : GF → GE } whose limit is Π(X,x0).

(1) and (1’). We know that for each E ∈ T◦X the group GE ⊗K is finite (by Proposition
8.6 and Theorem 5.3). Hence, the proof follows from the
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Lemma 8.9. Let G ∈ FGSch/A be such that G⊗K is a pro-finite group scheme. Then
G is (a) strictly pro-pseudo-finite, and (b) is pro-quasi-finite.

Proof. Following [DHdS18, Theorem 2.17,p. 989], we write G = lim←−αGα where each Gα
lies in (FGSch/A), the transition morphisms are faithfully flat and each Gα⊗K is of finite
type over K. Since G⊗K is pro-finite, Gα⊗K is in fact finite. But for a flat A-moduleM ,
the inequality dimKM ⊗K < ∞ entails dimkM ⊗ k < ∞, as we see by lifting a linearly
independent set in M ⊗ k to M . We conclude that Gα is pseudo-finite. In addition, by
the same Theorem in [DHdS18], we know that Gα is a projective limit lim←−iGα,i where
Gα,i is flat and of finite type over A, and the transition morphisms Gα,j → Gα,i induce
isomorphisms on the generic fibres. In particular, Gα,i⊗K ' Gα⊗K, and hence Gα,i⊗K
is again finite. By the same argument as before Gα is, being of finite type, quasi-finite.

�

(2) In view of Corollary 6.2 and Proposition 8.6, only the final statement needs proof.
Due to [DuHa18, Theorem 4.1.2] each arrow νE F : GF → GE is faithfully flat, which is
enough argument. �

We now preset the amplification of Theorem 8.8 already mentioned before.

Theorem 8.10. We suppose that A is Henselian and Japanese, and moreover assume
that XK is normal. Then Π(X,x0) is strictly pro-finite. In particular, if E ∈ T◦X , then
Gal′(E ,T, x0) is finite.

Proof. Theorem 8.8 tells us that Π(X,x0) is strictly pro-pseudo-finite. To show that it is
strictly pro-finite, we let

Π(X,x0) −→ G

be a faithfully flat morphism to a pseudo-finite flat group scheme over A, and show that
G is indeed finite over A.

Define
θ : RepA(G) −→ TX

as the composition of the natural functor RepA(G)→ RepA(Π(X,x0)) with a tensor inverse
to •|x0 : TX → RepA(Π(X,x0)). (That such an inverse exists is proved in [Saa72, I.4.4.2,
p.69].) Since Π(X,x0) → G is faithfully flat, we conclude RepA(G) → RepA(Π(X,x0)) is
fully faithful (see [DuHa18, Proposition 3.2.1(ii)], for example) and hence that θ is fully
faithful.

Let Â be the completion of A and write X̂ for the base-change X⊗A Â; note that X̂ is a
flat and proper Â-scheme with geometrically reduced fibres and that x0 induces an Â-point
x̂0 on it. In addition, since A is assumed Japanese, we can say that K̂, the field of fractions
of Â, is a separable extension of K [EGA IV2, 7.6.6, p.211]. Consequently, X̂ ⊗Â K̂ is also
a normal scheme [EGA IV2, 6.7.4, p.146] and it is then a simple matter to deduce that
X̂ is also irreducible so that all properties imposed on the morphism X → SpecA in the
beginning of this section are valid for X̂ → Spec Â.

Using the base-change functor σ : TX → T
X̂

and the equivalence

•|x̂0 : T
X̂
−→ Rep

Â
(Π(X̂, x̂0)),

we derive a tensor functor

τ : RepA(G) −→ Rep
Â

(Π(X̂, x̂0))

preserving forgetful functors (up to tensor natural isomorphism). Now, if i : RepA(G) →
Rep

Â
(G

Â
) stands for the base-extension functor, then τ can be prolonged to a tensor

functor
ξ : Rep

Â
(G

Â
) −→ Rep

Â
(Π(X̂, x̂0))
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rendering

RepA(G)

i

��

τ // Rep
Â

(Π(X̂, x̂0))

Rep
Â

(G
Â

)

ξ

55

commutative up to natural isomorphism of tensor functors. In addition, ξ preserves the for-
getful functors. We contend that the morphism of group schemes induced by ξ is faithfully
flat, and for that we rely on Lemma 2.9, whose notations are from now on in force.

Let V ∈ s(G). Since θ is full, we conclude that H0(X, θ(V )) ' A. Hence, flat base-
change gives H0(X̂, σθ(V )) ' Â. This implies that

τ(V )Π(X̂,x̂0) ' Â.
Likewise, if M ∈ s0(G), we conclude that

τ(M)Π(X̂,x̂0) ' k.
Now, as we learn from 1.4 and Proposition 2 of 1.5 in [Se68], for any V ∈ s(G

Â
), respectively

M ∈ s0(G
Â

), there exists V [ ∈ s(G), respectivelyM [ ∈ s0(G), and an injection V → i(V [),
respectively an injection M → i(M [). Then,

ξ(V )Π(X̂,x̂0) ⊂ τ(V [)Π(X̂,x̂0)

' Â,
and

ξ(M)Π(X̂,x̂0) ⊂ τ(M [)Π(X̂,x̂0)

' k.
Consequently, Lemma 2.9 guarantees that the morphism

Π(X̂, x̂0) −→ G
Â

deduced from ξ is faithfully flat. Now, since Π(X̂, x̂0) is strictly pro-finite (Theorem 8.8)
it is not hard to see that G

Â
is actually finite, so that G must then be finite [BAC, I.3.6,

Proposition 11, p.52]. �

Using [SP, Tag 0AS7], we have:

Corollary 8.11. Let us adopt the hypothesis of Theorem 8.10. Then, the ring of functions
of Π(X,x0) is a Mittag-Leffler A-module. �

9. An application to the theory of torsion points on the Picard scheme

We assume that A is Henselian and Japanese. Let X be an irreducible, proper and flat
A-scheme with geometrically reduced fibres, and x0 an A-point of X. Assume in addition
that XK is normal. The following result connects Theorem 6.1 with the theory of torsion
points on abelian schemes.

Proposition 9.1. Suppose that A has characteristic (0, p) and absolute ramification index
e. We give ourselves a positive integer r and an invertible sheaf L on X.

(1) If L ∈ Pic(X) has order pr and is taken upon reduction to the identity of Pic(Xk),
then pr − pr−1 ≤ e.

(2) If Y is an abelian scheme over A and y ∈ Y (A) is a point of order pr which reduces
to the identity in Y (k), then pr − pr−1 ≤ e.
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The proof requires:

Lemma 9.2. Let A have characteristic (0, p) and absolute ramification index e. Let r be
a positive integer. Then, the Neron blowup [WW80, Section 1] µ̃pr of µpr at the origin in
the special fibre is finite if and only if

pr ≤ er + min
0≤i<r

{pi − ei}.

Proof. Let us write µpr = Spec O, where O = A[t]/(tp
r − 1). Putting t = 1 + s, we have

O = A[s]/(ϕ), where ϕ(s) = sp
r

+
∑pr−1

n=1

(
pr

n

)
sn. According to [Liu02, 8.1.2(e), p. 318] the

ring of the Neron blowup Õ is the quotient of the polynomial ring O[s̃] by the ideal

{P ∈ O[s̃] : πdP ∈ (πs̃− s) for some d ≥ 0}.
Therefore, if we agree to write ϕ̃(s̃) = ϕ(πs̃), then

Õ =
A[s̃]/(ϕ̃)

(elements annihilated by some power of π)

=
A[s̃]

{P : πdP ∈ (ϕ̃) for some d ≥ 0}
.

Let ν : A[s̃] → N ∪ {∞} be the “Gauss valuation”; it extends the normalized valuation of
A and satisfies ν(s̃) = 0. Write ϕ̃ = πν(ϕ̃)ϕ̃0, where ν(ϕ̃0) = 0. We note that the natural
surjection A[s̃]/(ϕ̃0)→ Õ is an isomorphism.

If ordp : Z \ {0} → N denotes the p-adic valuation, then Legendre’s formula shows that

ordp

(
pr

n

)
= r − ordp(n),

so that

ϕ̃ = πp
r
s̃p
r

+

pr−1∑
n=1

πn+er−e·ordp(n)uns̃
n

= πp
r
s̃p
r

+

pr−1∑
n=1

πα(n)uns̃
n,

with un ∈ A× and α(n) := n+er−e ·ordp(n). Now, if ordp(n) = i, then α(n) = n+er−ei,
so that α(pi) ≤ α(n) in this case. It follows that,

min
1≤n<pr

α(n) = min
0≤i<r

α(pi)

= er + min
0≤i<r

{pi − ei}.

Hence, ν(ϕ̃) is the minimum between er + min0≤i<r{pi − ei} and pr. The Lemma is now
proved once we note that Õ is finite if and only if ϕ̃0 above has an invertible leading
coefficient. �

Proof of Proposition 9.1. Let us deal first with the case r = 1. Using the fact that L
becomes trivial on the µp-torsor associated to it and Theorem 8.1, we see that L ∈ TX .
Let G = Gal′(L ) and let λ : G → Gm be the associated representation. Then, λ factors
through µp ⊂ Gm and λ⊗K induces an isomorphism G⊗K → µp⊗K. Since λk is trivial,
the morphism λ factors through an arrow λ̃ : G → µ̃p, where µ̃p is the Neron blowup
of µp at the identity of the special fibre. Now, because G → µ̃p induces an isomorphism
between generic fibres and a fortiori an injection among rings of functions, finiteness of G
(by Theorem 8.10) implies that of µ̃p and Lemma 9.2 finishes the proof.
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Let us now assume that r ≥ 2 and that the claim is true for all i < r. Since L ⊗pr−i has
order pi, we conclude that

(4) pi ≤ e+ pi−1

for i ∈ {1, . . . , r − 1}. Using the fact that L becomes trivial on the µpr -torsor associated
to it and Theorem 8.1, we see that L ∈ TX . Let G = Gal′(L ) and let λ : G→ Gm be the
associated representation. Just as for the particular case, we conclude that the blowup of
µpr at the identity of the special fibre is finite. Hence, by Lemma 9.2,

pr ≤ er + min
0≤i<r

{pi − ei}.

But using (4), we see that

1 ≥ p− e ≥ p2 − 2e ≥ · · · ≥ pr−1 − (r − 1) · e.

Consequently, min
0≤i<r

{pi − ei} = pr−1 − (r − 1) · e, so that

pr ≤ er + pr−1 − (r − 1) · e,

and this is what we wanted.
(2) One takes X to be an abelian scheme such that Y is its dual and applies part (1). �

Remark 9.3. Corollary 9.1(2) can be deduced from “Cassels’ Theorem” on formal groups.
The one dimensional case is classical [Sil86, IV.6.1, p.123], while the higher dimensional
can be found in [Gr13, p.966].

10. Application to the theory of torsors

We suppose that A is Henselian and Japanese. Let X be an irreducible, proper and flat
A-scheme with geometrically reduced fibres, and x0 an A-point of X.

Proposition 10.1. Let G ∈ (FGSch/A) be finite and ϕ : Q → X be a G-torsor. Then,
there exists a ψ : Z → X in S+(X,x0) such that θQ : RepA(G)→ coh(X) takes values in
Ttan
ψ .

Proof. According to Theorem 8.1, there exists ψ : Z → X in S+(X,x0) and a commutative
diagram

Z //

ψ   

Q

ϕ

��
X.

Hence, for each M ∈ RepA(G) we conclude that ψ∗(θQ(M)) is trivial relatively to A since
ϕ∗θQ(M) ' OQ ⊗A M is trivial relatively to A. Finally, since each M ∈ RepA(G) is a
quotient of some object in Rep◦A(G) [Se68, Proposition 3, p.41], it follows that θQ takes
values in Ttan

ψ . �

In [Nor82, 87ff], Nori defines the notion of “reduced torsor” in order to understand
which group schemes do come as quotients of his fundamental group. We follow the same
idea here, but instead of starting off with Nori’s definition, we prefer to use an equivalent
characterization [Nor82, Proposition 3, p.87].

Before reading the definition to come, the reader might profit to recall that, for any G ∈
(FGSch/A) and any G-torsor ϕ : Q→ X above X, the functor θQ : RepA(G)→ coh(X)
is exact and faithful since ϕ∗θQ is naturally isomorphic toM 7→ OQ⊗AM (see for example
the proof of (a) in [J87, Part 1, Proposition 5.9]).
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Definition 10.2. Let G ∈ (FGSch/A) be finite and Q → X be a G-torsor having an
A-point q0 above x0. We say that the data (Q,G, q0) defines a Nori-reduced torsor if
θQ : RepA(G)→ coh(X) is a fully faithful functor.

Proposition 10.3 (compare to [MS13, Theorem 7.1]). Let G ∈ (FGSch/A) be finite and
Q → X be a G-torsor having an A-point q0 above x0. Then, the following conditions are
equivalent:

(i) The triple (Q,G, q0) is Nori-reduced.
(ii) The ring of global functions of Qk is k.
(ii′) The triple (Qk, Gk, q0,k) is reduced in the sense of [Nor82, Definition 3, p.87].
(iii) The A-scheme Q is H0-flat and A = H0(Q,OQ).

Proof. The proof relies on the fact that A[G]left is an algebra in the category RepA(G),
and that the corresponding OX -algebra θQ(A[G]left) is simply OQ.

(i) ⇒ (ii). Because the functor θQ is fully faithful and θQ(k[G]left) ' OQ ⊗ k, we
conclude that k = H0(X,OQ ⊗ k). But H0(X,OQ ⊗ k) = H0(Q,OQ ⊗ k), and hence the
only regular functions on the k-scheme Qk are the constants.

(ii)⇔ (ii′). This is [Nor82, II, Proposition 3].
(ii) ⇒ (iii). Recall that Q is flat over X and a fortiori over A. Now, because k =

H0(Q,OQ ⊗A k), we can employ Proposition 12.10 of Chapter III in [Har77] to conclude
that Q is cohomologically flat of degree zero over A. Since H0(OQ) is a finite and flat
A-module, the isomorphism k ' k ⊗A H0(OQ) proves that A ' H0(OQ).

(iii)⇒ (i). Let ϕ denote the structural morphism Q→ X; by assumption it belongs to
S+(X,x0). If we agree to write H := Π(X,ϕ, x0) (see Definition 4.6), the existence of the
point q0 gives an isomorphism between (•|x0) ◦ θQ and the forgetful functor RepA(G) →
A-mod and hence a morphism of group schemes

ρ : H −→ G

together with a commutative diagram

(5) RepA(G)
θQ //

ρ#

��

Tϕ
∼
•|x0vv

RepA(H).

Now,

k = H0(X,OQk)

' H0(X, θQ(k[G]left))

' (k[G]left)
H

' (k[G]left)
Hk .

According to Lemma 2.8, this is only possible when ρk : Hk → Gk is faithfully flat.
Analogously, we have that (A[G]left)

H ' A. This implies that (K[G]left)
HK ' K, and

hence ρK is faithfully flat according to Lemma 2.8. In conclusion, ρk and ρK are faithfully
flat, and hence ρ must be faithfully flat [DuHa18, 4.1.1, p. 1124]. Together with [DuHa18,
3.2.1(ii), p. 1121], we conclude that ρ# is fully faithful, so that diagram (5) secures fully
faithfulness of θQ. �
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We shall now keep the notation and assumptions of Proposition 10.3 and offer other
properties equivalent to the ones in its statement. This will allow us, in passing, to ren-
der the connection with [MS13, Theorem 7.1] and to [Nor82, Definition 3, p.87] more
transparent. First we develop some preliminaries.

Let us abbreviate Π = Π(X,x0). Similarly to [Nor76] (see §2 and the argument on p.39),
there exists a Π-torsor

X̃ −→ X

with anA-point x̃0 above x0 such that θ
X̃
◦(•|x0) ' id and (•|x0)◦θ

X̃
' id as tensor functors.

The quasi-coherent OX -algebra of X̃ is a direct limits of coherent modules belonging to
TX and corresponds, in Ind RepA(Π), to A[Π]left, see [Nor76, Definition, p. 32]. The torsor
X̃ is called the universal pointed torsor.

Let ρ : G′ → G be an arrow of (FGSch/A). We say that Q has a reduction of structure
group to ρ, or to G′, if there exists a G′-torsor Q′ → X together with an isomorphism
Q′ ×ρ G → Q. In addition, if Q′ can be picked to come with an A-point q′0 such that
(q′0, e) corresponds to q0 under the aforementioned isomorphism, then the reduction is
called pointed. Note that, we do not assume ρ to be a closed embedding.

Corollary 10.4. The equivalent properties appearing in Proposition 10.3 are also equiva-
lent to each one of the following conditions:
(a) If Q has a pointed reduction to ρ : G′ → G, then ρ is faithfully flat.
(b) There exists a faithfully flat morphism ρ : Π → G and an isomorphism of pointed

G-torsors X̃ ×ρ G ∼→ Q. (That is, X̃ defines a pointed reduction of Q.)

Proof. Proposition 10.3-(i) ⇒ (a). Let ρ : G′ → G define a pointed reduction Q′ → X;
it then follows that θQ′ ◦ ρ# is isomorphic to θQ. Since θQ′ is faithful, we conclude that
ρ# : RepA(G)→ RepA(G′) is full and faithful. By Lemma 2.9, ρ is faithfully flat.

(a) ⇒ (b). According to Proposition 10.1, θQ takes values in TX ; the existence of the
point q0 allows us to say that •|x0 ◦ θQ is isomorphic to the forgetful functor RepA(G)→
A-mod which gives us an arrow ρ : Π→ G such that ρ# ' •|x0 ◦ θQ (as tensor functors).
Hence, θ

X̃
◦ ρ# ' θQ, and we conclude, as in [Nor76, Proposition 2.9(c)], that Q has a

pointed reduction to ρ. But (a) forces ρ to be faithfully flat.
(b)⇒ Proposition 10.3-(i). We know that θQ ' θX̃◦ρ

# in this case; but, by construction,
θ
X̃

is fully faithful as is ρ# (by [DuHa18, 3.2.1(ii), p.1121], say). Therefore, θQ is fully
faithful. �

Remark 10.5. Let Q→ X be as in the statement of Proposition 10.3. The condition that
θQ : Rep◦A(G) → T◦X be full is not enough to assure that G is a faithfully flat quotient of
Π (so that this is missing in [MS13, Theorem 7.1]).

11. Essentially finite vector bundles on the fibres: Reviewing a theory
of Mehta and Subramanian

Let X be an irreducible, projective and flat A-scheme with geometrically reduced fibres,
and x0 an A-point of X. (Recall that over a perfect field, an algebraic scheme is geomet-
rically reduced if and only if it is reduced [EGA IV2, 4.6.1, p.68]. Note also that X must
be reduced.)

The following result, which is one of the main points in [MS13], is essentially a conse-
quence of the method employed by Deninger and Werner in proving [DW05, Theorem 17,
p.573] plus Section 8. Before putting forth its statement, let us recall the notion of an
F -trivial vector bundle.
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If M is a proper scheme over an unspecified perfect field of positive characteristic, a
vector bundle E on M is called F -trivial [MS02, Section 2,p. 144] if for a certain s ∈ N,
the pull-back of E by a geometric Frobenius morphism Frs : M (−s) →M is trivial.

Theorem 11.1. Suppose that A is Henselian and Japanese, and that k is perfect of char-
acteristic p > 0. Let E be an F -trivial vector bundle on Xk. Then, there exists a proper
and surjective morphism ψ : Z → X such that:
(1) The ring B := H0(OZ) is a discrete valuation ring and is a finite extension of A.
(2) The canonical morphism Z → SpecB is flat and has geometrically reduced fibres.
(3) The B-scheme Z has a B-point above x0.
(4) Write ` for the residue field of B and denote by

ψ0 : Z ⊗
B
` −→ Xk

the morphism of k-schemes naturally induced by ψ. Then ψ∗0(E) is trivial.

Proof. The case of characteristic (0, p). We assume that E is trivialized by Frs : X
(−s)
k →

Xk. Let X → PnA be a closed immersion. Write Φ : PnA → PnA for the evident A-morphism
lifting the k-linear Frobenius morphisms Frs : Pnk → Pnk , and consider the cartesian diagram

Y
ϕ //� _

��
�

X� _

��
PnA Φ

// PnA.

We note that Φ is a finite, flat and surjective morphism, so that ϕ : Y → X is likewise; in
particular this implies that Y is A-flat.

Base-changing by means of A→ k we get the cartesian diagram

Yk

�

� _

��

ϕk // Xk� _

��
Pnk Frs

// Pnk

so that, since X(−s)
k is reduced, there exists a closed embedding

j : X
(−s)
k −→ Yk

which identifies X(−s)
k with Yk, red and, in addition, produces a factorisation of Frs :

X
(−s)
k → Xk like so

X
(−s)
k � p

j ""

Frs

��
Yk

�

� _

��

ϕk // Xk� _

��
Pnk Frs

// Pnk .

See Lemma 19 in [DW05]. Consequently, if V is any reduced scheme and α : V → Yk is a
Z-morphism, we conclude that α∗ϕ∗kE is trivial since α factors as

V −→ X
(−s)
k

j−→ Yk.
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A direct application of Theorem 8.1 now gives us a commutative diagram

Z //

ψ   

Y

ϕ

��
X

such that
(i) the morphism ψ is surjective and proper.
(ii) The ring B := H0(OZ) is a discrete valuation rings and is a finite extension of A.
(iii) The canonical morphism Z → SpecB is flat and has geometrically reduced fibres.
(iv) The B-scheme Z has a B-point above x0.
In this situation, the proof is concluded by the observation preceding it. Indeed, if ` is

the residue field of B and ψ0 : Z ⊗B `→ Xk is the arrow induced by ψ, we conclude that
ψ∗0(E) is trivial because Z ⊗B ` is reduced so that ψ0 factors through Z ⊗B `→ Yk.

Proof in the case of characteristic (p, p). The idea behind the proof is much simpler, but
notation and technicalities hinder its handling.

Suppose that E ∈ VB(Xk) becomes trivial after being pulled back by F sXk : Xk → Xk.
Employing the commutative diagram of Fp-schemes

X
F sX //

��

X

��
SpecA

F sA

// SpecA,

we see that the morphism (F sX)0 : Xk → Xk induced on special fibres is none other than
F sXk . Hence, if F sA is a finite morphism, the choice Z = X and Ψ = F sX is sufficient to
fulfill all but condition (3) of the statement. But finiteness of FA is not always assured,
and we choose to argue as in [EGA IV3, §8].

Let

Λ =

{
B is a d.v.r. dominated by A and dominating Aps ,
and such that FracB is a finite extension of Kps

}
,

and endow it with the partial order defined by domination of d.v.r.’s. As A is Japanese,
for any B ∈ Λ, the Aps-module B is finite, and any element in A belongs to some B ∈ Λ
(see Theorem 10.2 and Exercise 11.2 in [Mat89]). Consequently, the limit lim←−B∈Λ

SpecB

in the category of A-schemes is simply F sA : SpecA → SpecA. Employing [EGA IV3,
8.8.2-ii, p.28], there exists o ∈ Λ and a o-scheme of finite type Y fitting into a cartesian
commutative diagram

(6) X
u //

��
�

Y

��
SpecA // Spec o.

In addition, if uB : X → Y ⊗o B stands for the canonical morphism, an application of
[EGA IV3, 8.2.5,p.9] shows that

(uB) : X −→ lim←−
B≥o

Y ⊗
o
B

is in fact an isomorphism of o-schemes. Also by loc.cit., the canonical morphism

X ⊗
A,F sA

A −→ lim←−
B≥o

X ⊗
A,F sA

B
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is also an isomorphism. The relative Frobenius morphism

f : X −→ X ⊗
A,F sA

A

now gives rise, via [EGA IV3, 8.8.2-i,p.28], to a B ≥ o and a morphism of B-schemes

f : Y ⊗
o
B −→ X ⊗

A,F sA

B,

such that f ⊗B A corresponds to f. Hence, if ψ stands for the composition of f with the
projection X ⊗A,F sA B → X, we arrive at a commutative diagram

(7) Y ⊗
o
B

ψ //

��

X

��
SpecB // SpecA.

In addition,
ψ ◦ uB = F sX .

Let us agree to write Z = Y ⊗o B. Then, paralleling diagram (6), we have

(8) X
uB //

��
�

Z

��
SpecA // SpecB.

Claim. The following statements are true.

(i) The morphism ψ is finite and surjective.
(ii) As a B-scheme, Z is flat and proper.
(iii) The geometric fibres of Z over B are reduced.
(iv) The ring of global functions of Z is B.
(v) Write ψ0 for the morphism induced from ψ between special fibres. Then ψ∗0(E) is

trivial.

Proof. (i) Surjectivity follows from F sX = ψ ◦ uB. Because f is finite and the inclusion
B → A is faithfully flat, we conclude that f is finite [EGA IV2, 2.7.1, p.29]. Hence, ψ is
finite as F sA : A→ B is finite.

(ii) We note that the morphism SpecA → SpecB in diagram (8) is faithfully flat.
Consequently, the claim is proved by employing [EGA IV3, 2.5.1, p. 22], [EGA IV3, 2.7.1,
p.29] and the fact that X is flat and proper over A.

(iii) This is a direct consequence of diagram (8) and the fact that being geometrically
reduced is independent of the field extension [EGA IV2, 4.6.10, p.70].

(iv) This is a direct consequence of flat base-change applied to diagram (8) and A =
H0(OX) (which follows from Lemma 2.2, say).

(v) Let now ` be the residue field of B; it is clear that B → A in fact induces an
isomorphism `

∼→ k. Since X = Z⊗BA, it follows that (uB)0 : X⊗A k → Z⊗B ` is also an
isomorphism. Hence, ψ∗0(E) is trivial because ψuB = F sX so that (uB)∗0(ψ∗0(E)) is trivial.
The claim is proved.

To finish the proof, we note that ψ : Z → X satisfies all the conditions in the statement
of the Theorem except for the existence of a B-point above x0. Now, the inverse image
ψ−1(x0) comes with a finite and surjective morphism to SpecA (for surjectivity, see [EGA
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I, 3.5.2,p.115]). Hence, it is possible to find a finite extension of d.v.r.’s B′ ⊃ A and a
point SpecB′ → Ψ−1(x0) which then gives a commutative diagram

Z

��
SpecB′ //

z′0

99

SpecB

such that z′0 is a B′-point ofX above x0 and the induced arrow B → B′ is a finite extension.

Consequently, letting Z ′ be Z ⊗B B′ and ψ′ : Z ′ → X the composition Z ′ pr→ Z
ψ→ X, we

see that ψ′ : Z ′ → X now satisfies all properties in the statement of the theorem. �

As a consequence of Theorem 11.1, we can give a simple alternative description of the
vector bundles in T and, in doing so, connect our theory to that of [MS13]. See Corollary
11.4.

Theorem 11.2 (Compare to [MS13, Lemma 3.1]). Suppose that A is Henselian and Japan-
ese, that k is perfect, and that X is in addition normal. Let E ∈ VB(X) be such that EK
and Ek are essentially finite. Then, there exists a proper and surjective morphism

ζ : X ′ −→ X

such that
(1) The ring A′ := H0(OX′) is a discrete valuation ring and a finite extension of A.
(2) The canonical morphism X ′ → SpecA′ is flat and has geometrically reduced fibres.
(3) The A′-scheme X ′ has an A′-point above x0.
(4) The vector bundle ζ∗(E ) is trivial.

Proof. As the vector bundle Ek is essentially finite, it is possible to find a torsor under an
etale group scheme f : Y → Xk, and a fortiori an etale covering, such that f∗(Ek) is F -
trivial see [Nor76, §3]. In addition, Y can be chosen to possess a k-rational point y0 above
x0,k (cf. loc.cit) and to satisfy k = H0(Y,OY ) [Nor82, II, Proposition 3, p. 87]. Now, as
A is Henselian, Theorem 3.1 on p.30 of [A69] (the remarkable equivalence, Grothendieck’s
existence theorem and Artin approximation) allows us to find an etale covering f̃ : Ỹ → X

lifting Y → Xk. Looking at the finite and etale A-scheme f̃−1(x0), applying one of the
main properties of a Henselian local ring [Ray70, VII.3, Proposition 3, p.76], and making
use of the k-point y0 : Spec k → f̃−1(x0), we can find an A-point ỹ0 in Ỹ above x0. Note
that Ỹ inherits the following properties from X: it is flat, proper, and has geometrically
reduced fibres over A, and it is normal. In addition, Ỹ is connected and its normality then
assures irreducibility. (Irreducibility might fail without normality.) Therefore, Ỹ satisfies
all hypothesis imposed on X in the beginning of the section and in the statement of the
theorem. Note that, by construction, the restriction of f̃∗E to Ỹk is F -trivial.

Because of the previous paragraph, we suppose, so to lighten notation, that Ek is F -
trivial already on Xk. Let us apply Theorem 11.1 to the vector bundle E = Ek. Then,
keeping with the notations of this theorem, we conclude that

ψ∗(E )|Z⊗
B
`

is trivial. Let L = Frac(B). Since ψ∗(E )|Z⊗BL is an essentially finite vector bundle, [Nor76,
§3] assures that we can find a torsor with finite structural group

λ◦ : Q◦ −→ Z ⊗
B
L

such that
λ◦∗ (ψ∗(E )|Z⊗BL)
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is trivial. In addition, Q◦ might be chosen to come with two extra properties, which are:
• Letting z0 : SpecB → Z be the point above x0 mentioned in Theorem 11.1, Q◦
has an L-rational point q◦0 above z0,L. (This is not used in what follows.)
• The ring of global functions of Q◦ is L, see Proposition 3 of Chapter II, p.87, in
[Nor82]. In particular Q◦ is connected.

Let Q2 → Q◦ be the associated reduced scheme and write

λ2 : Q2 −→ Z ⊗
B
L

for the induced morphism. Clearly Q2 is connected, λ2 is surjective, finite and

λ2∗ (ψ∗(E )|Z⊗BL)

is trivial.
Let µ : Z ⊗B L→ Z be the natural immersion and write

λ : Q −→ Z

for the integral closure of the quasi-coherent OZ-algebra (µλ2)∗(OQ2), see [EGA II, 6.3,
116ff] or [SP, Tag 035H]. This means, according to [EGA II, 6.3.4, p.117], that for each
affine open subset V ⊂ Z, the ring OQ(λ−1V ) is the integral closure of OZ(V ) inside
OQ2((µλ2)−1(V )). In particular, Q is flat as a B-scheme and

Q⊗
B
L = Q2.

Since A is universally Japanese [EGA IV2, 7.7.2, p. 212], for each affine and open subset
V of Z, the ring OZ(V ) is universally Japanese and noetherian, and hence is a Nagata ring
[SP, Tag 032R]. As a consequence of [SP, Tag 03GH] and the fact thatQ2 is reduced, we see
that λ is a finite morphism. Because λ(Q) contains Z⊗BL (recall that λ2 is surjective), we
conclude that λ is surjective. Finally, both (ψλ)∗(E )|Q⊗B` and (ψλ)∗(E )|Q⊗BL are trivial.

Theorem 8.1 can be applied to ψλ : Q → X, and this allows us to find a commutative
diagram of schemes

R //

θ ��

Q

ψλ

��
X,

such that:
• The morphism θ is proper and surjective.
• The ring C := H0(OR) is a discrete valuation ring and a finite extension of A.
• The canonical morphism R→ SpecC is flat and has geometrically reduced fibres.
• The C-scheme R has a C-point above x0.

As the natural arrow SpecC → SpecB sends the generic, respectively special, point to the
generic, respectively special, point, triviality of (ψλ)∗(E )|Q⊗B` and (ψλ)∗(E )|Q⊗BL allows
us to conclude that the restrictions of θ∗E to the generic and special fibres of R over C
are trivial. Because R is H0-flat over C (it has reduced fibres), we conclude by employing
Lemma 2.3 that θ∗E is trivial. �

For the sake of discussion, let us make the following:

Definition 11.3. The Mehta-Subramanian category of X, denote it MS(X), is the full
subcategory of VB(X) whose objects are

{E ∈ VB(X) : Ek and EK are essentially finite}.

An immediate consequence of [AM11, Theorem 1] (or [TZ20, Theorem I]) and Theorem
11.2 is then:
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Corollary 11.4. Suppose that A is Henselian and Japanese, that k is perfect, and that in
addition to the hypothesis in the beginning of the section, Xk and XK are normal. Then
T◦X = MS(X).

Proof. Let E ∈MS(X). Since X is flat over A, normality of Xk and XK implies normality
of X [EGA IV2, 6.5.4, p.143] and Theorem 11.2 may be applied. Consequently, E belongs
to T◦X as ζ in Theorem 11.2 lies in S+(X,x0). Conversely, let E be a vector bundle in
TX . Since Xk and XK are normal, we know that Ek and EK are essentially finite (due to
[AM11, Theorem 1] or [TZ20, Theorem I]). �

Remark 11.5. Since a point x ∈ X above the generic fibre specializes to a point on the
special fibre, normality of X is equivalent to normality of X on the points of Xk. Of course,
Xk can easily fail to be normal even when X is regular.

12. Further applications to the theory of torsors

We assume that A is Henselian, Japanese and has a perfect residue field. Let X be
an irreducible, projective and flat A-scheme with geometrically reduced fibres, and x0 an
A-point of X.

Theorem 12.1 (compare to [MS13, Corollary 3.2]). Let us add to the assumptions made
at the start of this section that X is normal. Let G ∈ (FGSch/A) be quasi-finite over A,

Q −→ X

be a G-torsor, and q0 an A-point of Q above x0.
(1) There exists ζ : X ′ → X in S+(X,x0) (see Definition 2.4) and E ∈ T◦ζ such that

θQ : RepA(G)→ coh(X) takes values in 〈E ; Tζ〉⊗ (and a fortiori in TX).
(2) There exists a finite H ∈ (FGSch/A), a morphism ρ : H → G, an H-torsor R → X

and an A-point r0 : SpecA→ R together with an isomorphism of torsors

R×H G
∼−→ Q

sending the A-point (r0, e) of R ×H G to q0. In addition, it is possible to choose ρ to
be a closed immersion. Put differently, Q has a reduction of structure group to a finite
group scheme.

(3) If H0(Q,OQ) ' A, then G is in fact finite.

Proof. As is well-known (by adapting the proofs in [Wa79, 3.3]) the facts that G is of finite
type and A is a d.v.r. allow us to find E ∈ Rep◦A(G) such that the resulting morphism
G→ GL(E) is a closed immersion, or, in the terminology of [DHdS18, §3], E is a faithful
representation. We then write E = θQ(E) and note that since Qk → Xk and QK → XK

are finite principal bundles, the vector bundles Ek = θQk(Ek) and EK = θQK (EK) are in
fact essentially finite [Nor76, Proposition 3.8, p.38]. Let ζ : X ′ → X, A′, and x′0 be as in
Theorem 11.2 when applied to E . Note that ζ : X ′ → X is in S+(X,x0) and that E ∈ Tζ .

(1). We write Q′ for the G-torsor X ′ ×X Q. We know that for each M ∈ RepA(G), the
coherent OX′-module ζ∗θQ(M) is isomorphic to θQ′(M). Because each θQ(Ta,bE) belongs
to 〈E ; Tζ〉⊗, we conclude that each θQ′(Ta,bE) is trivial.

Let T ∈ Rep◦A(G) be such that θQ(T ) belongs to 〈E ; Tζ〉⊗. If V ∈ Rep◦A(G) is the
target of an epimorphism T → V , exactness of θQ′ produces an epimorphism

O⊕rX′ ' θQ′(T ) −→ θQ′(V ).

Since θQ′(V )⊗Ak and θQ′(V )⊗AK become trivial when pulled back via Q′⊗Ak → X ′⊗Ak
and Q′ ⊗A K → X ′ ⊗A K, we may apply Lemma 5.2 to conclude that θQ′(V ) ⊗ k and
θQ′(V ) ⊗ K are trivial. Because X ′ is H0-flat over A, Lemma 2.3 says that θQ′(V ) is
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equally trivial and hence that θQ(V ) ∈ 〈E ; Tζ〉⊗. By the same argument, now applied to
Ť , we conclude that θQ(W ) belongs to 〈E ; Tζ〉⊗ once W → T is a special subobject (we
employ [dS09, Definition 10]).

Now we know that for every U ∈ Rep◦A(G), there exists a special monomorphism V →
Ta,bE and an epimorphism V → U [dS09, Proposition 12]. From what was proved above,
θQ(U) belongs to 〈E ; Tζ〉⊗.

To end the proof, let M ∈ RepA(G) be arbitrary. Using [Se68, Corollary 2.2, p.41], we
find an equivariant presentation

0 −→ U1 −→ U0 −→M −→ 0

with U0 and U1 in Rep◦A(G). An application of Lemma 4.1 (and the exactness of the
functor θQ) assures that θQ(M) belongs to Tζ , and hence to 〈E ; Tζ〉⊗.

(2). We pick ζ and E as in item (1) and define H = Gal′(E ;TX , x0) so that •|x0 :
〈E ; TX〉⊗ → RepA(H) is an equivalence of tensor categories. Because of Theorem 8.10,
H is a finite group scheme over A. Using the A-point q0 of Q above x0, the functor
(•|x0)◦ θQ : RepA(G)→ A-mod is naturally isomorphic to the forgetful functor and hence
we derive a morphism of group schemes

ρ : H −→ G

such that (•|x0) ◦ θQ ' ρ#. Now, similarly to [Nor76] (see §2 and the argument on p.39),
there exists a H-torsor R → X with an A-point r0 above x0 such that θR ◦ (•|x0) ' id
and (•|x0) ◦ θR ' id as tensor functors. (The quasi-coherent OX - algebra of the torsor R
corresponds, in the category RepA(H), to A[H]left, see [Nor76, Definition, p. 32].) Now

θQ ' θR ◦ (•|x0) ◦ θQ
' θR ◦ ρ#

which shows, just as in [Nor76, Proposition 2.9(c), p. 34], that Q ' R×H G.
To verify the last statement, we note ρ can be decomposed into H → H ′

σ→ G, where σ
is a closed immersion and H ′ is finite. This being so, we have Q ' (R×H H ′)×H′ G.
(3). Let H ∈ (FGSch/A) be finite, Q→ X be an H-torsor, H → G be a closed immersion,
and R×H G ' Q be an isomorphism as in (2). Now, employing the arrow

R×G −→ G, (r, g) 7−→ g−1

we obtain an injection Mor(G,A1)→ Mor(R×G,A1) and hence an injection{
H-equivariant G→ A1

}
−→

{
H-equivariant R×G→ A1

}
.

Since the right-hand-side above is simply the ring of functions of R ×H G ' Q, the hy-
pothesis then forces A = A[G]H . But A[G] is a finite and locally free A[G]H -module whose
rank equals that of A[H] (see III.2.4 of [DG70]). It is then easy to see that the closed
immersion H → G is an isomorphism. �

We shall now gather some consequences of Theorem 12.1 and in doing so connect it to
[Nor82, Chapter II] and [AEG20]. Notations are as in the statement of Theorem 12.1.

Let us abbreviate Π = Π(X,x0). As already explained in Section 10 (see the discussion
preceding Corollary 10.4), there exists a Π-torsor

X̃ −→ X

with an A-point x̃0 above x0 such that θ
X̃
◦ (•|x0) ' id and (•|x0) ◦ θ

X̃
' id as tensor

functors. Recall that for each homomorphism ρ : Π→ G, the fpqc sheaf of the contracted
product X̃ ×ρ G (see [DG70, III.4.3.2, p.368] or [J87, Part I, 5.14]) has the following
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description: it is the quotient of X̃ × G by the right action of Π defined, on the level of
points, by

(9) (x̃, g) · γ = (x̃γ, ρ(γ)−1g).

Let us write
χρ : X̃ ×G −→ X̃ ×ρ G

for the canonical quotient morphism. Then, the arrow

(pr
X̃
, χρ) : X̃ ×G −→ X̃ ×X (X̃ ×ρ G)

is an isomorphism of G-torsors over X̃ (see [DG70, III.4.3.1] or [J87, Part 1, 5.14(3)]). In
addition, if we let Π act on (the right of) X̃ ×G as implied by (9) and on X̃ ×X (X̃ ×ρG)

by the action solely on X̃, then (pr
X̃
, χρ) is Π-equivariant, as a simple verification shows.

Now we note thatA = H0(O
X̃

) becauseA[Π]left, which corresponds to the quasi-coherent
OX -module O

X̃
, has only constant invariants and because of [Har77, Exercise II.1.11, p.67].

Since G is affine, any morphism of schemes X̃ → G must factor through the structural
morphism X̃ → SpecA [EGA I, 2.2.4,p.99]; we conclude that any arrow β : X̃×G→ X̃×G
between G-torsors must be of the form (x̃, g) 7→ (x̃, cg), where c ∈ G(A). This being so, if
β in addition fixes the A-point (x̃0, e), we see that β = id. This has the following pleasing
consequence (implicit in [Nor76, Proposition 3.11]):

Lemma 12.2. Let G ∈ FGSch/A and let ρ : Π → G and σ : Π → G be arrows of group
schemes over A. Let α : X̃ ×ρ G→ X̃ ×σ G be a morphism of G-torsors sending χρ(x̃0, e)
to χσ(x̃0, e). Then ρ = σ and α = id.

Proof. We consider the following commutative diagram

X̃ ×G

∼(pr,χρ)
��

α̃ // X̃ ×G

∼ (pr,χσ)
��

X̃ ×X (X̃ ×ρ G)
id×α

// X̃ ×X (X̃ ×σ G).

Since α takes χρ(x̃0, e) to χσ(x̃0, e), we conclude that α̃(x̃0, e) = (x̃0, e) and hence, by
the above discussion, α̃ is the identity. Because (pr, χρ) is Π-equivariant (for the actions
explained above), we conclude that α̃ = id is Π-equivariant, and this is only possible when
ρ = σ. Since id× α = id, fpqc descent [EGA IV2, 2.7.1,p.29] assures that α = id.

�

Let G ∈ (FGSch/A) be quasi-finite and consider the category Tors∗(G) whose
objects are couples (Q, q0) consisting of a G-torsor over X and an A-point q0 of Q above

x0, and
arrows are isomorphisms of G-torsors which preserve the A-rational point.

Theorem 12.3. We maintain the above notations.
(1) Write |Tors∗(G)| for the set of isomorphism classes in Tors∗(G) and X̃[ρ] for the

class of the couple (X̃ ×ρ G,χρ(x̃0, e)). Then the map

Hom (Π, G) −→ |Tors∗(G)|, ρ 7−→ X̃[ρ]

is bijective.
(1’) The category Tors∗(G) is discrete [Mac98, p.11].
(2) For each (Q, q0) in Tors∗(G), there exists a unique generalized morphism of torsors

χ : X̃ → Q taking x̃0 to q0.
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Proof. (1) We first establish surjectivity: the argument is identical to the one in [Nor76,
Proposition 3.11]. From Theorem 12.1-(1), the functor θQ takes values in Ttan

X . Using
the A-point q0 of Q above x0, we see that (•|x0) ◦ θQ : RepA(G) → A-mod is naturally
isomorphic to the forgetful functor and, since •|x0 : Ttan

X
∼→ RepA(Π), we derive a morphism

of group schemes
ρ : Π −→ G

such that (•|x0) ◦ θQ ' ρ#. Now

θQ ' θX̃ ◦ (•|x0) ◦ θQ
' θ

X̃
◦ ρ#

which shows, just as in [Nor76, Proposition 2.9(c), p. 34], that Q ' X̃ ×ρG. Injectivity is
a direct consequence of Lemma 12.2.

(1’) This is a direct consequence of (1) and Lemma 12.2.
(2) This is standard, but we run the argument for the convenience of the reader. Let

τ : X̃ → Q and τ ′ : X̃ → Q be morphisms as in the statement covering morphisms
ρ : Π→ G and ρ′ : Π→ G respectively. We therefore deduce arrows τ : X̃ ×ρ G→ Q and
τ ′ : X̃ ×ρ′ G→ Q in Tors∗(G) such that

X̃
(id,e)−→ X̃ ×G χρ−→ X̃ ×ρ G τ−→ Q

and
X̃

(id,e)−→ X̃ ×G
χρ′−→ X̃ ×ρ′ G τ ′−→ Q

are respectively τ and τ ′. This produces an arrow α : X̃ ×ρ G → X̃ ×ρ′ G in Tors∗(G).
According to Lemma 12.2, ρ = ρ′ and α = id so that τ = τ ′. �

This allows us to compare Π to the fundamental group scheme introduced in [AEG20].
Recall that these authors show the existence of a pro-quasi-finite (see Definition 8.7) flat
group scheme Π?, a Π?-torsor X? → X and an A-point x?0 above x0 enjoying the following
universal property. If G is flat and quasi-finite, Q→ X is a G-torsor with a point q0 above
x0, then there exists a unique generalized morphism of torsors X? → Q taking x?0 to q0.
(See the paragraph after the proof of Theorem 5.2 in [AEG20].) From Theorem 12.3 we
have:

Corollary 12.4. Under the assumptions of Theorem 12.1, there exists a unique generalized
isomorphism of torsors X̃ → X? taking x̃0 to x?0. In particular, Π ' Π?. �

In particular, Theorem 8.10 says that Π? is in fact pro-finite.
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