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Brief overview of Differential Galois Theory:

Given A ∈ Matn(C(x)) or A ∈ Matn(C((x))),

consider:

dy

dx
= A · y . (E)

Picard (Lie already. . . )  construct a “Galois theory” for the
solutions of (E).

Definition
I Put R = C(x)[yij , 1/ det] and extend d

dx to R by

d

dx

y1j
...
ynj

 = A

y1j
...
ynj

 .

I “Splitting field” or the Picard-Vessiot extension:
C(x ,E) := Frac(R/(some ideal)).
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I Galois group: GalE = Aut(C(x ,E)/C(x)) preserving d
dx .

Let Y = [yij ] ∈ GLn(C(x ,E))  dY
dx = AY .

∀σ ∈ Gal,
σ(Y ) = YCσ, Cσ ∈ GLn(C) .

Lemma
By means of σ 7→ Cσ, obtain Gal < GLn(C).
In addition, Gal is Zariski closed.

Two different ways to reinterpret the theory.

M○ Fundamental group and monodromy representations.

T○ Tannakian categories.
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M○ Monodromy

I x0 not a pole of A.

I Y0 ∈ GLn(Ox0) fundamental matrix.

I γ loop about x0.

I Yγ analytic continuation along γ

=⇒
Yγ = Y0 · Cγ︸︷︷︸

∈GLn(C)

.

Definition
Mon = 〈Cγ : γ ∈ π1〉, monodromy group.

Question
What is the relation between Mon and Gal?

Example

Take (E) to be y ′ = y . Then Gal = Gm but Mon = 1.
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Schlesinger’s theorem

Problem comes from the inexistence of meromorphic solutions
(Riemann, Fuchs, . . . ).

Definition (Regular-singularities)

(E) has regular singularities ⇔ ∀ p ∈ Pole(A), exists

T ∈ GLn(Mp) s.t. if y = Tz , then
dz

dx
=

H

x − p
z with H ∈ Op.

Theorem (Schlesinger)

If (E) only has regular-singular points, then

Gal = Zariski closure of Mon
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T○ Tannakian categories

I k field.

I T a k-linear abelian category,
⊗ : T × T → T bilinear,
ω : T ↪→ k-vect embedding.

Leaving some other hypothesis aside we have:

Theorem (Saavedra)

There exists group scheme Π/k and

T
ω
∼

// Repk(Π)

Definition (“Galois-Tannaka” groups)

E ∈ T. Define

〈E 〉⊗ =

{
E ′/E ′′ : E ′′ ⊂ E ′ ⊂

⊕
i

E⊗ai ⊗ Ě⊗bi

}
.
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}
.

João Pedro dos Santos Groups from ODEs over a DVR



T○ Tannakian categories

I k field.
I T a k-linear abelian category,
⊗ : T × T → T bilinear,
ω : T ↪→ k-vect embedding.

Leaving some other hypothesis aside we have:

Theorem (Saavedra)

There exists group scheme Π/k and

T
ω
∼

// Repk(Π)

Definition (“Galois-Tannaka” groups)

E ∈ T. Define

〈E 〉⊗ =

{
E ′/E ′′ : E ′′ ⊂ E ′ ⊂

⊕
i

E⊗ai ⊗ Ě⊗bi
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Apply Theorem:
〈E 〉⊗ ' Repk(ΠE ).

 Galois(-Tannaka) group.

Lemma
If %E : Π(T)→ GL(ωE ) associated to E  ΠE = Im(%E ). In
particular ΠE is linear algebraic group.
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Some examples: Abstract groups

Definition
Γ abstract group.

T = Repk(Γ). The group Π(T) is called the
“algebraic hull” , Γalg, of Γ.

Example

Over C: Zalg = Ga × T , where T is a pro-torus.

Proposition (“Abstract Schlesinger”)

For % : Γ→ GL(E ) ⇒ Π% ' Im(%).
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Some examples: “Geometric” differential equations

Definition
S = {s1, . . . , sr ,∞} ⊂ P1.

X = P \ S , O = C[X ]. Introduce

DE = {O[d/dx ]-mod, O-finite}

= {(E,∇) : E
∇→ E; ∇(fe) = f ′e + f∇e}

Let x0 ∈ X (C) and define

ω : DE −→ C-vect, E 7→ E|x0 = E/mx0E.

Get Π(DE) and Π(E).

Proposition

GalE ' ΠE.

João Pedro dos Santos Groups from ODEs over a DVR



Some examples: “Geometric” differential equations

Definition
S = {s1, . . . , sr ,∞} ⊂ P1. X = P \ S , O = C[X ].

Introduce

DE = {O[d/dx ]-mod, O-finite}

= {(E,∇) : E
∇→ E; ∇(fe) = f ′e + f∇e}

Let x0 ∈ X (C) and define

ω : DE −→ C-vect, E 7→ E|x0 = E/mx0E.

Get Π(DE) and Π(E).

Proposition

GalE ' ΠE.

João Pedro dos Santos Groups from ODEs over a DVR



Some examples: “Geometric” differential equations

Definition
S = {s1, . . . , sr ,∞} ⊂ P1. X = P \ S , O = C[X ]. Introduce

DE = {O[d/dx ]-mod, O-finite}

= {(E,∇) : E
∇→ E; ∇(fe) = f ′e + f∇e}

Let x0 ∈ X (C) and define

ω : DE −→ C-vect, E 7→ E|x0 = E/mx0E.

Get Π(DE) and Π(E).

Proposition

GalE ' ΠE.

João Pedro dos Santos Groups from ODEs over a DVR



Some examples: “Geometric” differential equations

Definition
S = {s1, . . . , sr ,∞} ⊂ P1. X = P \ S , O = C[X ]. Introduce

DE = {O[d/dx ]-mod, O-finite}

= {(E,∇) : E
∇→ E; ∇(fe) = f ′e + f∇e}

Let x0 ∈ X (C) and define

ω : DE −→ C-vect, E 7→ E|x0 = E/mx0E.

Get Π(DE) and Π(E).

Proposition

GalE ' ΠE.

João Pedro dos Santos Groups from ODEs over a DVR



Some examples: “Geometric” differential equations

Definition
S = {s1, . . . , sr ,∞} ⊂ P1. X = P \ S , O = C[X ]. Introduce

DE = {O[d/dx ]-mod, O-finite}

= {(E,∇) : E
∇→ E; ∇(fe) = f ′e + f∇e}

Let x0 ∈ X (C) and define

ω : DE −→ C-vect, E 7→ E|x0 = E/mx0E.

Get Π(DE) and Π(E).

Proposition

GalE ' ΠE.

João Pedro dos Santos Groups from ODEs over a DVR



Some examples: “Geometric” differential equations

Definition
S = {s1, . . . , sr ,∞} ⊂ P1. X = P \ S , O = C[X ]. Introduce

DE = {O[d/dx ]-mod, O-finite}

= {(E,∇) : E
∇→ E; ∇(fe) = f ′e + f∇e}

Let x0 ∈ X (C) and define

ω : DE −→ C-vect, E 7→ E|x0 = E/mx0E.

Get Π(DE) and Π(E).

Proposition

GalE ' ΠE.

João Pedro dos Santos Groups from ODEs over a DVR



Delgine’s theorem: Uniting the examples

Let Ω1
P(log S) “generated by

dx

x − si
” near si .

Definition (Logarithmic and regular-singular connections)

DElog =

{
(E,∇) :

E ∈ coh(P)

E
∇→ E⊗ Ω(log S)

}
.

DErs = {(E ,∇) ∈ DE lies in image of DElog} .

Under this setting: “ T○ ⊃ M○”.

Theorem (Deligne)

Mon : DErs
∼−→ RepC(π1(X an)).

Corollary (Schlesinger)

ΠDE(E)
∼ // ΠDErs(E)

∼ // Im(MonE)
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Example: Formal differential equations

Sometimes difficult to see T inside k-vect.

Definition
char.(k) = 0.

DEformal =

{
(E ,∇) :

E finite k((x))-vs.

E
∇→ E , ∇(fe) = xf ′e + f∇e

}
.

DEformal
rs =

{
(E ,∇) ∈ DEfor :

there is E ⊂ E , ∇-invariant
finite kJxK-module

}
.

k = k  there exists ω : DEformal ↪→ k-vect (Deligne). In case of
DEformal

rs can just “classify”.

Theorem (Manin)

There exists an equivalence of categories

DEformal
rs

∼−→ Repk(Z).

In particular, Π(DEformal
rs ) ' Zalg.
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Theory over DVR: Differential equations

(R, t, k ,K ) complete DVR.

Definition (Categories of interest)

X/R smooth connected fibers.

char = 0. DE =

{
(E,∇) : E

∇→ E⊗ ΩX/R

integrable, E ∈ coh

}
.

char > 0. DE = {E ∈ DX -mod : E ∈ coh}

char = 0. DEformal(R) =

(E,∇) :

E finite over R((x))

E
∇→ E

∇(fe) = xf ′e + f∇e

.
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Affine group schemes over R

Two ways of producing them.

1. GK < GLn,K  GK < GLn,R .

2. Tannaka.

Theorem (Saavedra)

T = R-linear abelian.
⊗ : T × T → T bilinear, etc.
ω : T ↪→ R-mod exact, etc.

for all E ∈ T, exists F with dual and F � E . (S)

⇒ Exists Π(T) flat group scheme such that T
∼→ RepR(Π).
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Differential Galois groups

Definition
x0 ∈ X (R).

E ∈ DE is R-flat.

〈E〉⊗ = {E′/E′′ : E′′ ⊂ E′ ⊂
⊕
i

E⊗ai ⊗ Ě⊗bi}

 
Gal′ = Π(〈E〉⊗) and Gal = Gal(E⊗ K ).

Theorem

I Rep(Gal′)
full
↪→ DE.

I Gal′ → GL(E|x0) usually not closed!

I Rep(Gal)→ DE usually not full!

I Gal
closed
↪→ GL(E|x0).

I Gal′ → Gal generically iso.
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I Rep(Gal′)
full
↪→ DE.

I Gal′ → GL(E|x0) usually not closed!

I Rep(Gal)→ DE usually not full!

I Gal
closed
↪→ GL(E|x0).

I Gal′ → Gal generically iso.
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Example

R = CJtK.

E defined by y ′ = ty . Gal = Gm.
Gal′ ⊗ K = Gm. Gal′ is a Lasso:

Said differently: Gal′ = SpecR tSpecK Gm,K . (Hint: E⊗ (R/tn) is
trivial for each n since etx is a polynomial mod tn.)

Question
Rather odd group. How common are they?

Theorem (Hai-dS 2020)

X projective =⇒ O(Gal′) free R-module. In particular, no Lasso.
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From Gal to Gal′: Neron blowups & Formal blowups

Definition
G = SpecO flat finite type.

I H0 < G ⊗ k cut by I . Neron blowup :
NH0G = SpecO[t−1IH0 ]. (Neron, Waterhouse-Weisfeiler.)

I H < Ĝ . Let In ⊂ O cut H⊗ (R/tn+1) < G . Formal blowup:

N∞H G = Spec lim−→
(
O[t−1I0]→ O[t−2I1]→ · · ·

)
.

(Duong-Hai-dS)

Some facts about Neron blowups (Waterhouse-Weisfeiler).

I (NH0G )⊗ K
∼→ G ⊗ K .

I (NH0G )⊗ k → G ⊗ k falls into H0.

I “Universal” for G ′ → G such that G ′ ⊗ k → H0.

I Ker (NH0G )⊗ k → G ⊗ k is abelian.
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From Gal to Gal′: Neron blowups & Formal blowups

Some facts about Formal blowups (Duong-Hai-dS).

I Usually not of finite type.

I (N∞H G )⊗ K
∼→ G ⊗ K .

I (N∞H G )∧
∼→ H.

I Universal for G ′ → G with Ĝ ′ → H.

Example

R = CJtK. Blow {e} < Ĝm  Lasso = SpecR tSpecK Gm,K .

Example

Let H < (Ga ×Gm)∧ graph of et(−) : Ĝa → Ĝm. H not algebraic!
O(N∞H ) is a free R-module.
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Example
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R = CJtK. Blow {e} < Ĝm  Lasso = SpecR tSpecK Gm,K .

Example

Let H < (Ga ×Gm)∧ graph of et(−) : Ĝa → Ĝm. H not algebraic!
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Pertinence of blowups

Theorem
Given G→ G generic iso, G finite type.

1. Is composition of Neron blowups. (Waterhouse-Weisfeiler)

2. If char k = 0 ⇒
(a) There exists G ′ → G finite number of blups.
(b) G ' N∞

H′(G ′). (Hai-dS 2020)
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Monodromy and calculations

Γ abstract group.

% : Γ→ GLn(R) a rep.

Proposition

Suppose
G (R)� _

��
Γ %

//

%
77

GLn(R)

with Im(%K ) < G (K ) and Im(%k) < G (k) dense ⇒ Π(〈%〉⊗) ' G .
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Monodromy and calculations

Even for simple Γ we get interesting outcomes!

Example

R = kJtK. Take H < (Ga ×Gm)∧ graph of et(−) : Ĝa → Ĝm.
Define

% : Z −→ N∞H (R), 1 7−→ (1, et).

Then Π(〈%〉⊗) ' N∞H .
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Deligne’s theorem over CJtK and calculations

Let R = CJtK. Write (∗)n = (∗)⊗ R/tn+1.
Let X/R smooth proper. Y ⊂ X divisor with relative normal
crossings. X ? = X \ Y .

Introduce ΩX/R(logY ) as “generated by
dx1
x1
, . . . ,

dxr
xr

” whenever

Y = {x1 · · · xr = 0}.

Definition

DElog = {(E,∇) : E
∇→ E⊗ ΩX/R(logY ), E ∈ coh(X )}.

DErs = Image of DElog in DE(X ?).

Given (E,∇) ∈ DE(X ?)  (En,∇n)an ∈ DE(X ?,an
n )

 representation of π1(X ?
0 ) on Rn-module  rep of π1(X ?

0 ) on
R-module. This is MonE.
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Monodromy and calculations

Theorem (Hai-dS 2020)

Mon : DErs(X
?/R)

∼ // RepR(π1(X ?
0 ))

In the formal setting:

Theorem (Hai-dS-Tam 21?)

R = kJtK. There is equivalence

DEformal
rs (R)

∼−→ RepR(Z).

Example

y ′ = 1
2πix

(
t 0
1 t

)
· y  Gal′ = NH(Ga ×Gm).
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Idea of proof (formal case)

In a k-linear category C, let C(Rn) be the Rn-modules.
Manin
=⇒

(DEformal
rs )(Rn)

∼−→ Repk(Z)(Rn)

I Have lim←−Repk(Z)(Rn) = RepR(Z).

I R((x)) not t-adically complete  not immediate to pass to
the limit.

I What can go wrong? E = R~e, ∇~e = (t/x)~e. Let

fn = 1 +
tx−1

1!
+ · · ·+ tnx−n

n!

Then
Rn((x))

∼−→ En, 1 7−→ fn~e.

I To prove our result: Use theory of exponents to bound order
of poles in the logarithmic models.
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