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Fundamental groups in algebraic geometry

by João Pedro Pinto dos Santos

Abstract

We study analogues of differential equations in algebraic geometry of positive char-
acteristic using the theory of Tannakian reconstruction of Grothendieck and Saavedra.
These analogues consist of sheaves of coherent modules over a k-scheme X which, pro-
vided that X has a k-rational point, form categories equivalent to the categories of
representations of affine group schemes. The case of an abelian variety is closely
analyzed.

If the ground field is complete with respect to a non-Archimedean absolute value,
we relate the fundamental groups obtained with the fundamental group from rigid
geometry.

Motivated by the case of a valued field, we study the problem of existence of local
solutions of these differential equations in dimension one and characterize the possible
monodromy groups.
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0.1 Introduction

The purpose of this work is to study differential equations in positive characteristic
and the philosophy adopted to achieve this goal is that of Riemann and Hilbert:
the equations should be regarded as representations of the fundamental group of the
ambient space. In the two paragraphs below, we try to explain what me mean by
differential equations and fundamental groups.

On the concept of a differential equation — In positive characteristic, the notion of
differential equation is not at all connected to geometry as it is in the characteristic
zero world because the first derivative does not control the Taylor series. Hence,
the definition of differential equation we have adopted here is that of a stratification
(introduced by Grothendieck) which roughly means that we have many equations
which relate the functions and all higher order derivatives (image under differential
operators). We will now be more precise. It is well known and documented that
in the complex analytic case, the right concept of a (linear) differential equation is
that of a connection on a coherent analytic sheaf over the ambient manifold. Given
a complex manifold X and a coherent analytic sheaf E , a connection on E is a
homomorphism of OX-modules ∇ : ΘX E ndC(E ) (ΘX is the tangent sheaf) such
that ∇(D)(f · e) = D(f) · e+ f · ∇(D)(e) for f ∈ OX and D ∈ ΘX . Now the module
ΘX is naturally a left OX-submodule of a (non-commutative) sheaf of OX-algebras,
DX , the sheaf of differential operators, and is well known that the above connection
∇ will extend to a homomorphism of OX-algebras (a stratification) if and only if ∇
preserves the Lie bracket (integrability condition). Until now, all the constructions
are algebraic and so we can make the same definitions over more general schemes,
but the fact that the integrability condition implies the existence of a stratification is
no longer true. Nevertheless, the definition of stratification still survives and in this
work we study the properties of the category of coherent sheaves with a stratification.
That they are a more geometric analogue of differential equations in characteristic
zero is a consequence of the fact that, under some natural hypothesis, this category
is neutral Tannakian (section 1.3). Also, the concept of stratification allows us to
define differential equations over more general schemes (locally noetherian regular)
via the Cartier-Katz theorem and F -divided sheaves (section 1.3). F -divided sheaves
are tractable objects and most of the time they are used in place of stratifications
(see Chapter 3 for example). In summary, the concept of differential equation applied
most successfully here is the one provided by the F -divided sheaves.

On the method — The question of what is a “fundamental group” for an arbitrary
scheme is a very rich and manifold one and, given some latitude, could be traced
back to the discoveries of Galois on solving algebraic equations. Nowadays, the most
powerful technique available to tackle this problem with elegance is that if Tannakian
categories. This theory was developed by Saavedra (a student of Grothendieck) in
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his Catégories Tannakiennes and is employed throughout the present work. In a
simplified form, the main result of the general theory states that a category endowed
with a tensor product and a faithful and exact functor into the categories of finite
dimensional vector-spaces over a field is the category of representations of an affine
group scheme.

Summary of chapters and results —
Chapter 1: Roughly speaking, this chapter and the next one are products of

a through understanding of Tannakian categories [12], Nori’s method of construc-
tion of universal torsors [33] and the Cartier-Katz construction relating F -divided
sheaves and stratified sheaves [16]. Chapter 1 main achievement is to show that the
pathology of non-reduced monodromy groups does not occur when dealing with the
category of stratified sheaves (Theorem 34), contrary to the category of de Rham
sheaves (Chapter 2). This is an important fact which contributes to the perspective
that stratifications are really the right differential equations to be studied in positive
characteristic.

We introduce the notion of F -divided torsors (section 1.4.3) to accompany the
notion of F -divided sheaf. This is a useful definition in the theory (as it helps to
control Nori’s inversion, see Lemma 32 and the remark following it as well as section
1.5). By analyzing closely and expanding Nori’s method, we can use the proof of the
original Cartier-Katz theorem to produce the equivalence between F -divided torsors
and stratified torsors over a smooth k-scheme (section 1.4.3).

In this chapter we also fill some gaps in the literature concerning stratifications on
torsors. Let us make a digression on what we mean by gap in the literature. The only
reference where the concept of stratification on a torsor is tangentially brought up is
[11] (§10), where the characteristic zero case is explored (and even in characteristic
zero, we feel that Deligne’s exposition lacks a more differential geometric character;
there is, for example, no mention to the Atiyah sheaf – probably due to the fact that
this topic is lateral to the entire article). Of course, a careful reading of [11] (§5, §6
and §10) and [10] (section 8) and a preparatory work (the analogues of lemmas 2.6–2.8
of [33]) will bring up the results of sections 1.4.1 and 1.4.2 (and even the important
Lemma 32), but we could not safely cite Deligne and we believe that following Nori’s
method is more economic and natural. Even though Deligne’s view also gives universal
torsors associated to fibre functors over general Tannakian categories (section 8 of [10]
and §5 of [11]), there is no analogue of [33] lemmas 2.6 and 2.8 in Deligne’s writings:
these lemmas are very important as they give a precise characterization of faithful and
exact tensor functors Repk(G) (tensor category). Also, we believe that there is
a meaningful cognitive gain in sections 1.4.1 and 1.4.2 (and section 2.2.2) as these
were elaborated before reading [10], [11].

Of course, the understanding of Deligne’s ideas was afterwards important to this
work (the notion of algebraic hull in chapter 4 and section 6.2 stems from loc.cit.)
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and even though we did not use his methods, we certainly gained a lot from [11]. We
thank him heartily for writing such a careful paper as [11].

Chapter 2: We study two important nilpotent Tannakian categories: the cate-
gory of de Rham sheaves over a smooth k-scheme X , dR(X), and that of nilpotent
stratified (F -divided) sheaves, Nstr(X). We have given a different and enlighten-
ing proof of a result Nori uses en passant to show that the category of nilpotent
sheaves on a proper, reduced and geometrically connected k-scheme (char. > 0) has
a profinite fundamental group scheme. The proof is pure group theory and hence
emphasizes once more the importance of the Tannakian approach. Endowed with
this result we show that, over proper schemes, the fundamental group schemes of the
above mentioned Tannakian categories are profinite (char. > 0).

We chose to make a study of dR(X) because, in positive characteristic, it is a
natural way to obtain a Tannakian category inside the category of modules with
integrable connections. We were under the expectation that dR(X) would preserve
some interesting properties of the analogous category in characteristic zero; but that
is far from the truth as an easy example in section 2.2.3 shows (the appearance of non-
reduced monodromy groups). This is why the study of dR(X) is somewhat shallow:
this category is not as promising in positive characteristic as we expected.

We have also included a discussion – possibly irrelevant to the expert – on the
notions of connections on torsors and the factoring of the associated sheaf func-
tor through the category of sheaves with connections (section 2.2.2). Again, Nori’s
method is used and the same observations made about Deligne’s method ([10],[11])
on the review of Chapter 1 above are valid: in Deligne’s writings the analogues of
[33] lemmas 2.6 and 2.8 is missing, but some preparatory work would bring them up.

Chapter 3: In this chapter we study the category of stratified sheaves str(X)
on an abelian variety X over an algebraically closed field of positive characteristic.
We apply the Fourier-Mukai transform to obtain a decomposition of str(X) into an
unipotent and a diagonal part. This resembles the analogous fact in the complex
analytic case which is an immediate consequence of the abelianess of the topological
fundamental group of a complex torus. Also, using the results of Chapter 2 (Nori’s
Lemma in section 2.4 and Lemma 46) the unipotent part of the Tannakian funda-
mental group of an abelian variety if easily characterized and hence we are able to
find quite a definite expression for Πstr(X). As a corollary, we obtain the relation
between the Abelianization of the stratified fundamental group of a curve and the
stratified fundamental group of its Jacobian variety (Corollary 59).

Chapter 4: Here the flow of the dissertation inclines to the beautiful theory of
rigid analytic geometry; the ground field is now algebraically closed and complete
with respect to a non-trivial non-Archimedean absolute value (and of char. > 0).
This chapter tries to follow Deligne’s version of the Riemann-Hilbert correspondence
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([9])

representations of π1 local systems sheaves with integrable connections,

which means, in the present case, that the (purely motivational) goal was to show
that any F -divided sheaf on a rigid analytic variety X comes from a representation
of the rigid fundamental group.

But then we stumble in the peculiar fact that F -divided sheaves might be trivial
on an admissible neighbourhood of any point, whereas the covering so obtained fails
to be admissible. Thus we are only able to obtain that the representations of the
rigid analytic fundamental group form a Tannakian subcategory of the category of
F -divided sheaves on a smooth rigid analytic variety (Theorem 62).

In section 4.3 we use the richness of rigid analytic geometry in order to extend
the description of the stratified fundamental group of an abelian variety (case of
uniformizable varieties).

This chapter serves as inspiration to the following as it motivates the investigation,
in the rigid analytic category, of one of the main ingredients in Deligne’s theory of
the Riemann-Hilbert correspondence: the Cauchy-Kowalewskaya existence theorem
for local solutions of linear differential equations.

Chapter 5: This chapter explores a particular (and already complicated) question
raised on Chapter 4 concerning the nature of local solutions to stratified differential
equations on small (for the rigid topology) open sets. On Chapter 4 we developed a
relation between the (algebraic hull) of the rigid fundamental group of a smooth rigid
variety X and the F -divided fundamental group — in order to produce a complete
result (equality of these two group schemes) as in Deligne’s theory of the Riemann-
Hilbert correspondence over C, we are missing two ingredients: (1) given an F -divided
{Mi} on X , and a x ∈ X , there is an open neighborhood Ux ⊆ X such that {Mi}|Ux
is trivial and (2) the covering of {Ux}x∈X is admissible. Condition (2) is simply
not true (as one sees from etale coverings [l] : Gan

m Gan
m ) and we are left to

analyze condition (1). We do that in the one dimensional case or, concretely, over the
affinoid disk D(ρ). Right from the start we can find F -divided modules which do not
become trivial even if we let ρ 0 and the question of computing the monodromy
groups of the Tannakian category naturally attached to the problem, T , is posed and
solved (Theorem 82). This conducts to a result which resembles the statement of the
Abhyankar conjecture for the affine line.

As Chapter 5 is almost independent of the previous Chapters, some definitions
are repeated for the convenience of the reader. We have also included an Appendix
where we explore the notion of differential operators over affinoid domains (over an
algebraically closed field of positive characteristic) and show that they have a local
nature for the rigid topology (Theorem 98 and Corollary 100).
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Chapter 6: This chapter is dedicated to some questions which arose in the
course of study and follows Serre’s dictum that very often the questions asked are
more interesting then the results obtained. The origin of these questions is the (quite
bold) imitation of [11] (Chapter 10) and [9] in the non-Archimedean world.

Section 6.1: We raise the question of whether it is possible, over projective rigid an-
alytic curves in positive characteristic, to avoid the (spectacular, according to Chapter
5) failure of non-existence of a complete system of local solutions on any admissible
neighbourhood of a point.

Section 6.2: This section is written to indicate alternatives for future work which
would complete Chapter 4, at least in the one dimensional case. The philosophy is
to look at various “fundamental groups” (and here we really mean group, not group
scheme) for rigid spaces and see if one of them will fit the description we have of Πstr

for a Tate elliptic curve.
Section 6.3: What happens to regular singular points? Is it possible, in the non-

Archimedean world, to extend differential equations to compactifications? From the
hierarchy complex analytic < non-Archimedean of char. 0 < non-Archimedean of
positive char., it seems that any good answer will have to be backed up by a good
understanding of the non-Archimedean characteristic zero case (see Question 2) and
Riemann’s existence theorem.

0.2 Terminology and notation

Unless otherwise stated, the following notations and assumptions are in force through-
out this work.

ground field k is a perfect field.

schemes All schemes will be over k and X × Y := X ×Spec k Y , Hom(X, Y ) :=
Homk−sch(X, Y ).

group schemes Given a k-vector space V , the functor of k-algebras A 7→ GLA(A⊗k
V ) will be denoted by GL(V ). If V = kn, then GL(V ) =: GL(n).

The standard notations for group schemes are also in force. For example, given
a finite group Γ, we denote by Γ̃ the constant group scheme associated to it
([42], 2.3, p. 17). If no confusion is likely, we abandon the˜.
Given an abelian group X, the diagonal group Diag(X) is the affine group
scheme associated to the group functor of k-algebras A 7→ Homgroups(X, A

×).

representations of group schemes If G = SpecR is a group scheme over k, the
category of finite dimensional representations of G will be denoted by Repk(G).
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The category of all representations (finite or infinite dimensional) will be de-
noted by Rep′

k(G). Unless otherwise stated, the term representation means
finite dimensional representation. When considering a representation of finite
or infinite dimension, we will write so, unless it is obvious from the context. For
example, in the sentences

(a) Let V be a representation of G.

(b) The standard left regular representation of Z/pZ in V = O(Ga) . . .

we mean that in (a) V is of finite dimension and in (b) V is of infinite dimension.

We will also identify representations with their corresponding R-comodules
([42], 3.2) and for an object (V, ρ) of Rep′

k(G), ρ will denote the comodule
map V V ⊗k R and the homomorphism GL(V ). (R, ρl) (resp. (R, ρr))
will be the left (resp. right) regular representation which is suggestively de-
scribed by ρl(g)(f) : x 7→ f(g−1x) (resp. ρr(g)(f) : x 7→ f(xg)) for all
f ∈ R = Hom(G,A1

k).

torsors Given an affine group scheme G a torsor over X is an affine and faithfully
flat X-scheme P with a right-action of G such that: (a) If X is given the trivial
action of G, then the structural morphism P X is equivariant. (b) The
natural morphism P ×k G P ×X P, (q, g) 7→ (q, q · g) is an isomorphism.

differential operators If X is a k-scheme and E and F are two OX-modules, the
sheaf of k-linear differential operators of order ≤ m from E to F will be denoted
D

≤m
X (E ,F ). D<m

X (E ,F ) = D
≤m−1
X (E ,F ). The total module of differential

operators
lim
−→
m

D
≤m
X (E ,F )

is denoted DX(E ,F ). (see [3], chap. 1). In the special case E = F = OX :
D

≤m
X (E ,F ) = D

≤m
X . Analogous for the total module of differential operators:

DX . The OX-ideal of DX given by the operators which annihilate the section 1
is denoted by D

+
X and D

+,≤m
X := D

+
X ∩D

≤m
X .

If U is an open subset of X and (x1, . . . , xn) : U An
k is an etale morphism,

we follow the usual convention for a basis of D
≤m
X |U : for each q = (q1, . . . , qn) ∈

Nn with q1+. . . qn ≤ m, there are canonical differential operators Dq ∈ D
≤m
X (U)

such that

Dq ◦Dq′ =

(
q + q′

q

)
Dq+q′ , D

≤m
X =

⊕

q1+...+qn≤m

OXDq.

(loc.cit., prop. 2.6).
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categorical Let ψ : k k be a homomorphism and let V,W be k-vector spaces. A
homomorphism f : V W of the underlying groups is ψ-linear when f(λv) =
ψ(λ)f(v) for all λ ∈ k. Given A and B be k-linear categories, a functor T :
A B is ψ-linear when the natural maps HomA(A,A

′) HomB(TA, TA
′)

is ψ-linear.
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Chapter 1

Tannakian categories of coherent
sheaves

1.1 Introduction

This is a technical chapter. Its existence is justified by the introduction of fundamental
concepts as:

(i) Locally free tensor categories of coherent sheaves (Definition 2) and methods
to show how such categories become neutral Tannakian (existence of a fibre functor).
Universal torsors and characterization of certain exact and faithful tensor functors
Repk(G) tensor category. (section 1.2)

(ii) The category of F -divided and stratified sheaves, which is certainly the main
category studied in this work. (section 1.3)

(iii) Stratifications and F -divisions of torsors and the fundamental application of
these notions which is to show that the Tannakian category of F -divided sheaves only
has reduced monodromy groups. (section 1.4)

(iv) The natural construction of a functor going from the category of representa-
tions of the etale fundamental group scheme to category of F -divided sheaves based on
the fact that the Frobenius morphism on a proetale group scheme is an isomorphism.
(section 1.5)

1.2 Fundamental setting

Our main objects of study will be abelian tensor categories ([12], Def. 1.15, p.118)
related to the tensor category of coherent sheaves on a connected scheme over k.
The following sections (1.2.1–1.2.4) set up the minor technicalities from the theory of
tensor categories such as tensor categories of coherent sheaves on a locally noetherian
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k-scheme, nilpotent categories and universal torsors. Our intention was to (1) give
a simple and direct exposition of the basic facts used to show that a tensor cate-
gory related to coherent sheaves on a k-scheme is Tannakian (1.2.1) (2) recall the
important notion of nilpotent categories (1.2.2) (3) give some fundamental examples
of Tannakian categories (1.2.3) and (4) rework Nori’s method of universal torsors
(1.2.4). Nothing is really new except perhaps the reworking in 1.2.4. These concepts
are basic for the rest of the work and hence we deal with them from an early stage.

This section is to be used as reference for latter applications and should be re-
garded as support for the study of the tensor categories developed from section 1.3
on; we recommend its reading to be done on a need-to-know basis. We assume that
the base scheme X is locally noetherian.

1.2.1 Tensor categories of coherent sheaves

For the sake of brevity and clarity, we will adopt the following definitions.

Definition 1. A k-abtensor category A is an abelian and k-linear category with a
structure of tensor category (A,⊗, ϕ, ψ) such that ⊗ : A× A A k-bilinear. (this
equals Def. 1.15, p.118 of loc.cit.).

For us, the main example of such a category is the category of coherent sheaves,
(coh(X),⊗OX

), over a connected scheme X/k.

Definition 2. A locally free tensor category of coherent sheaves on a scheme X/k is a
k-abtensor category (A,⊗, ϕ, ψ, ι) endowed with an exact and faithful k-linear tensor
functor

ι : (A,⊗) (coh(X),⊗OX
),

such that for any object A of A, ι(A) is locally free.

For brevity, we shall omit the associativity and commutativity constraints from
the notation and say that (A,⊗, ι) is a locally free tensor category of coherent sheaves.

Lemma 3. Let (A, ι) be a locally free tensor category of coherent sheaves on the
connected k-scheme X. Let K be an extension field of k and let x0 be a K-rational
point of X. Then the tensor functor ω := x∗0 ◦ ι : A (K − mod) is exact and
faithful.

The proof, which is very easy if one uses the following standard lemma, will be
omitted.
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Lemma 4. Let T : C D be an additive functor between abelian categories. The
following are equivalent:

i) T is faithful and exact.
ii) T is exact and TC = 0 only if C = 0.
iii) The sequence C ′ C C ′′ in C is exact if and only if TC ′ TC TC ′′

is.

1.2.2 Nilpotent categories

Here we introduce the notion of nilpotent categories. This concept is useful because,
in some cases, it is possible to obtain substantial information from a neutral Tan-
nakian category using its subcategory of nilpotent objects. Even more, nilpotent
categories have some unexpectedly nice properties in positive characteristic (Corol-
lary 35, section 2.4 etc).

Let A be an abelian category and let A be an object of A.

Definition 5 ([40]). i) An object N of A is called A-nilpotent if there exists a de-
creasing filtration

0 = F rN ⊆ F r−1N ⊆ . . . ⊆ F 0N = N,

and isomorphisms griF
∼= A.

ii) The A-nilpotent subcategory of A, NAA, is the the full subcategory of A which
has the A-nilpotents as objects. The category A is A-nilpotent when every object is
A-nilpotent.

iii) (Convention) If A is also a tensor category, the nilpotent subcategory NA will
be N1A. A nilpotent tensor category is a tensor category which is 1-nilpotent.

Taking the nilpotent category of some abelian category of coherent sheaves (on
a locally noetherian scheme) has the advantage to produce flat sheaves as objects.
Of course, one can loose the abelianess property. The first structural result for the
operation “taking the nilpotent category” addresses this detail:

Lemma 6 ([40], 1.2.1, p. 521). Let A be an abelian tensor category. Then NA is
abelian if EndA(1) is a field.

From the definition of affine unipotent group schemes as those groups whose rep-
resentations have always a fixed vector ([42], chap. 8), we obtain from the main
theorem of Tannakian duality ([12], Thm. 2.11, p. 130) the following corollary.

Corollary 7. Let A be a neutral Tannakian category ([12], p. 138) with fibre functor
ω : A (k−mod). If A is nilpotent, then ω induces an equivalence between A and
the category of representations of an affine unipotent group scheme.
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We will now systematize the construction of neutral Tannakian nilpotent tensor
categories of coherent sheaves.

Let A be a k-abtensor category endowed with a faithful and exact k-linear ten-
sor functor ι : A coh(X), X locally noetherian and connected. Because every
nilpotent sheaf is locally free, given A ∈ A nilpotent, the functor

?⊗ ι(A) : coh(X) coh(X)

is exact. By part iii) of Lemma 4, ?⊗ A : A A is also exact. It then follows
(from standard linear algebra) that the tensor product of two nilpotent objects of A
is again nilpotent. Using Lemma 3, we obtain the first part of

Lemma 8. Let A be a k-abtensor category endowed with a k-linear, faithful and exact
tensor functor ι : A coh(X). Assume that NA is abelian.

i) NA is a tensor category and the restriction of ι to NA makes it into a locally
free tensor category of coherent sheaves on X.

ii) If X has a k-rational point, then NA is a neutral Tannakian category.

Proof: Part ii) is proved following Remark 2.18, p. 137 of [12]. Let x0 be a
k-rational point of X and let ω := x∗0 ◦ ι. Then ω is (Lemma 3) faithful and exact
k-linear tensor functor. From the end of the proof of Theorem 2.11, p. 137 in [12],
we conclude that NA is equivalent, via ω, to the category of representations of an
affine monoid scheme over k, G , i.e. the spectrum of a k-Hopf algebra without the
co-inverse. We claim that NA is rigid. Let ρ : G End(V ) be a representation1

of G and let det(ρ) : G End(
∧d V ) be the determinant representation.

Now, for each one dimensional representation L of G there is a one dimensional
representation L−1 such that L ⊗ L−1 ∼= 1 — in the present case, the only one
dimensional representation of G is the trivial one. Hence, ρ factors through GL(V )
and we can form the representation V ∨, which tautologically satisfies the requirements
for a dual in the category of representations of G.

1.2.3 Some examples

Example 9. Let G = SpecR be an affine group scheme and let A be the category
Repk(G). Then NA is neutral Tannakian and the group scheme associated to it via
Tannakian duality ([12], Thm. 2.11. p. 130) is the largest prounipotent quotient of
G. For example, if G is a diagonal group, then NA is just the category of direct sums
1⊕m.

1Notation: End(V ) is the monoid scheme which associates to each k-algebra the monoid, under
composition, of A-linear endomorphisms of A⊗k V
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Example 10 (Monodromy Groups). Let G and H be affine group schemes and let
f : H G be a homomorphism. The image group scheme I := im(f) is the scheme
theoretic image of f : it is a closed subscheme ι : I G such that f = ι ◦ f ′ and
given any other closed subscheme j : Y ⊆ G with f : H G factoring through
Y , there is a unique α : I Y such that j ◦ α = ι. Because we are dealing with
affine schemes, it is easy to see that im(f) is actually the closed scheme given by the
kernel of f ∗ : O(G) O(H); in particular, it is a quotient group scheme of H . We
now give a Tannakian characterization of I, in the case G = GL(V ). That is, we
characterize the full subcategory ([12], 2.21, p. 139) R := Repk(I) ⊆ Repk(H). Since
V is a faithful representation of I, it follows that any object in R is a subquotient of
some

V a1
b1
⊕ · · · ⊕ V as

bs
=: V

(a1,...,as)
(b1,...,bs)

, V a
b := V ⊗a ⊗ (V ∨)⊗b.

But by the same proposition of loc.cit, the category R is stable under subquotients
and hence R is the full subcategory of Repk(H) whose objects are subquotients of

objects of the form V
(a1,...,as)
(b1,...,bs)

. This category is denoted by 〈V 〉⊗.

Example 11 (The algebraic hull, reviewing [11], 10.24). Let Γ be an abstract group.
The category of abstract representations Repk(Γ) is certainly neutral Tannakian and
thus is equivalent to the category of representations of an affine group scheme Γalg

called the algebraic hull of Γ (even though Γalg itself is usually not an algebraic group
scheme!) A more constructive description of Γalg is based on the following. Given a
representation ρ : Γ GL(V ) = GL(V )(k), we obtain a closed, reduced subgroup
scheme G ⊆ GL(V ) by taking the Zariski closure of im(ρ) in GL(V ) with its reduced
scheme structure. These groups form a projective system and we only have to take
the limit.

More precisely: Consider the category R whose objects are pairs (G, f) with G
a reduced affine algebraic group scheme and f : Γ G(k) a homomorphism of
abstract groups such that the Zariski closure of f(Γ) is dense. An arrow between
(G, f) and (G′, f ′) is just a homomorphism ϕ of group schemes which preserves f and
f ′, namely ϕ(k) ◦ f = f ′; note that ϕ is always a quotient homomorphism. We define
Γalg as the projective limit of the objects of R.

There is a natural homomorphism Φ : Γ Γalg(k) = lim←−G(k) and this induces

a functor (which preserves the underlying vector spaces) α : Repk(Γ
alg) Repk(Γ).

On the other hand, any representation ρ : Γ GL(V ) will factor as f : Γ G(k)
⊆ GL(V )(k) for some (G, f) ∈ R; this gives a functor β : Repk(Γ) Repk(Γ

alg).
Clearly α ◦β is naturally equivalent to the identity. To show that β ◦α ∼= id, observe
that any V ∈ Repk(Γ

alg) is the representation induced by a reduced algebraic quotient
G ⊆ GL(V ) of Γalg; such quotients come with a natural homomorphism (obtained via
Φ) f : Γ G(k) and f(Γ) = G. It is then obvious that β ◦α is naturally equivalent
to the identity.
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Our preferred example of this situation is the category of complex local systems
LS(X) on a complex manifold X . It is isomorphic to the category of representations
of the fundamental group π1(X) and hence the Tannakian fundamental group of
LS(X) is π1(X)alg. We note that even if π1(X) is very simple, e.g. Z, then π1(X)alg

is bigger than a first impression might suggest (look at the inclusion Z Ga(C),
for example).

Example 12. Nori considered in chapter IV of [34] the category of nilpotent coherent
sheaves Ncoh(X). Note that if X is locally noetherian, then all nilpotent sheaves,
being flat OX-modules, are locally free. This category is indeed neutral Tannakian
if X is connected, has a k-rational point and H0(X,OX) = k. It will be denoted by
nilp(X).

1.2.4 Torsors

(Compare [33], §2; [10], section 8; [11], §5)

This section is a reworking of §2 of Nori’s beautiful paper [33] to a more abstract
setting. The intent is to show how to construct (quite formally) a torsor in a k-
abtensor category A starting from a functor Repk(G) A. When this category is
related to a geometric problem, e.g. A is the category of modules on some ringed
space (topos), then one can follow Nori to show that the functor (under some extra
hypothesis) will be obtained as the associated sheaf construction for this torsor.

Ind-categories

Let C be a category. We will follow [11], §4 (who follows SGA 4).

Definition 13. The category Ind(C) has objects and arrows as follows:

Objects Functors X : I C where I is a small and filtered category. These
objects are denoted by lim−→i

Xi.

Arrows Hom(lim−→i
Xi, lim−→j

Yj) := lim←−i lim−→j
HomC(Xi, Yj).

Note that C can be seen as a full subcategory of Ind(C). This definition of
Ind(C) satisfies the following universal property: If T : C D is a functor to
a co-complete category D (that is, D has arbitrary direct limits for small and fil-
tered directed systems) there is a unique functor Ind(T ) : Ind(C) D such that
Ind(T ) ◦ inclusion = T . We note that the category Ind(C) will be abelian if C is and
the inclusion C Ind(C) is full, faithful and exact (SGA4, exp. I, 8.9.9c, p.115
and 8.8.2, p.101).
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Let ⊗ : C× C C be a functor and let ⊗′ : Ind(C)× Ind(C) Ind(C) be the
natural extension of ⊗ given by composing

Ind(C)× Ind(C) Ind(C× C)

(lim
−→i

Xi, lim−→j
Yj) lim

−→(i,j)
(X × Y )(i,j)

with Ind(⊗). If ⊗ is the tensor product of a tensor structure for C, then ⊗′ is a tensor
product for Ind(C). If C is k-abtensor then so is Ind(C).

Example: For G and affine group scheme, Ind(Repk(G)) = Rep′
k(G) ([42], Thm.

3.3, p. 24).

Natural construction of universal torsors

Let (A,⊗) be a k-abtensor category and G = SpecR an affine group scheme over k.
Assume that we have an exact and k-linear tensor functor

L : Repk(G) A

and let L ′ denote the natural extension

L
′ : Rep′

k(G) Ind(A).

L ′ is a k-linear exact tensor functor between k-abtensor categories. We remind the
reader that the notions of algebras, co-algebras, Hopf algebras etc. can be easily
translated into the more abstract setting of tensor categories.

Let G be the category of affine G-schemes with a right G-action. The global sec-
tions functor induces a functor Γ : G Rep′

k(G)
op which takes the direct product

S × T to the tensor product Γ(S) ⊗ Γ(T ). Let (R, ρl) = Γ(Gleft) be the left regular
representation — here Gleft is the affine scheme G with the right G-action x·g = g−1x.
Consider the two morphisms in Rep′

k(G):

(R, ρl)⊗ (R, ρl) (R, ρl), (R, ρl) (R, ρl)⊗ (R, idR ⊗ 1), (1.1)

where the first is just multiplication on the ring R and the second is the image
of the group multiplication Gleft×Gtriv Gleft under Γ (Gtriv is G with the trivial
action). The first map makes (R, ρl) into an algebra in the tensor category Rep′

k(G)
and hence the same can be said of

B := L
′((R, ρl)).

19



The second map will give B the co-action of the Hopf algebra RA := L ′((R, idR⊗1)).
Note also that there is an isomorphism

B ⊗B B ⊗RA (1.2)

coming from the isomorphism in G, Gleft×Gtriv Gleft×Gleft, (g, h) 7→ (g, gh). If
on B⊗RA the RA-co-action is the one provided by the co-action on RA and on B⊗B

it is the one provided by the co-action on the second term of the tensor product, then
the isomorphism in (1.2) is also equivariant.

If (A, ι) is a locally free tensor category of coherent sheaves on a scheme X/k,
by applying the functor ι to the above constructions, we obtain an action (in the
category of X-schemes) of the X-group scheme Spec ι(RA) = G× X on the flat X-
scheme P := Spec ι(B). It is not hard to see (from the exactness of ι) that P is
actually faithfully flat. Isomorphism (1.2) shows that P is a G-torsor over X .

Another fundamental construction of Nori [33], Lemma 2.7, p. 33

We shall introduce a very clever construction of Nori which will be used to check that
certain functors are naturally isomorphic. Consider two functors

ν1, ν2 : Repk(G) Rep′
k(G)

given by

ν1 : (V, ρ) 7→ (V, ρ)⊗ (R, ρl), ν2 : (V, ρ) 7→ (V, idV ⊗ 1)⊗ (R, ρl).

These functors are naturally isomorphic via

(idV ⊗mult.) ◦ (idV ⊗ σ ⊗ idR) ◦ (ρ⊗ idR) : ν1(V ) ν2(V ),

where σ : R R represents g 7→ g−1. This natural equivalence is the algebraic
analogue of the much more intuitive map: Identify ν1(V ) and ν2(V ) with the vector
space of morphisms G Va and let G act on ν1(V ) by gf : x 7→ ρ(g)f(g−1x)
and on ν2(V ) by gf : x 7→ f(g−1x). Then, the composition giving the isomorphism
between the R-comodules is f 7→ (g 7→ ρ(g)−1f(g)).

Nori discovered that νi are actually related to a category finer than Rep′
k(G):

Rep′′
k(G). This category has as objects pairs (W, τW ), where W ∈ Rep′

k(G) and τW is
an arrow in Rep′

k(G)
τW :W W ⊗ (R, idR ⊗ 1).

Both νi factor through functors νi : Repk(G) Rep′′
k(G) and the natural isomor-

phism above is in fact a natural isomorphism ν1 ⇒ ν2.
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To define νi, we have to declare what are the arrows (G-equivariant) τi : νi(V )
νi(V )⊗ (R, idR ⊗ 1).

τ1 is the R-comodule map V ⊗R V ⊗R⊗R associated to the representation
(V, idV ⊗ 1)⊗ (R, ρr) (V has the trivial action and R the right regular action!)

τ2 is the R-comodule map V ⊗R V ⊗R⊗R associated to the representation
(V, ρ)⊗ (R, ρr).

It is immediate to verify that the above natural isomorphism ν1 ⇒ ν2 actually
comes from a natural isomorphism ν1 ⇒ ν2.

Example 14. We shall discuss here the main example:

L = LP/G : Repk(G) coh(X)

is the associated sheaf functor obtained from the G-torsor ψ : P X . With this
example we fill a little omission of [33], that is, the quasi-coherent OX-algebra B =
lim−→L (V ) constructed above is canonically isomorphic to ψ∗OP and this isomorphism
induces an isomorphism of the respective torsors. Let U = SpecA be an affine open
of X and let ψ−1U = SpecB. By definition of torsor, there is an isomorphism of
B-algebras f : B ⊗A B B ⊗k R, obtained from the isomorphism of P -schemes
P×G P×XP, (ξ, g) 7→ (ξ, ξg). We note that Spec (f) is G-equivariant if we give
P×G the right G-action (ξ, h)·g = (ξg, g−1h) and P×XP the right G-action (ξ, η)·g =
(ξg, η). In particular, if (V, ρ) ⊂ (R, ρl) is a finite dimensional subrepresentation of the
left regular representation, B⊗k V ⊆ B⊗k R with its induced G-action is none other
that Hom(ψ−1U, Va) with the usual G-action g · ϕ : ξ 7→ g · ϕ(ξg). We obtain from
f−1 an equivariant injection B⊗k V B⊗AB and taking G-invariants, we obtain
an injective homomorphism of A-modules LP/G(V )(U) OP (ψ

−1U). Passing to
the limit and observing that this local construction glues, we obtain an isomorphism
of OX-algebras B ψ∗OP . In order to see that this induces an isomorphism of G-
torsors P SpecB one needs to notice the following. f above makes the diagram
(think of the associated spectra)

B ⊗k R
idB⊗∆

(B ⊗k R)⊗k R

B ⊗A B idB⊗µ

f

(B ⊗A B)⊗k R

f⊗idR

commute (where µ is the co-action and ∆ is the co-multiplication). Also, the co-
action of R on B ⊗k R (resp. on B ⊗A B) given on the upper row (resp. lower
row) commutes with the co-action of R previously defined (resp. idem). From the
definition of the co-action of R on B (induced from the second arrow in (1.1)), we see
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that the isomorphism B ψ∗OP also preserves the co-actions and hence induces
an isomorphism of the associated torsors.

1.3 F -divided and stratified sheaves

We introduce here the two main categories of coherent sheaves we will be studying.
The category of stratified sheaves is the immediate analogue of the category of linear
differential equations on a complex manifold. It was introduced by Grothendieck
to study integrable connections and the De Rham cohomology in a more abstract
setting.

In section 1.3.4 the theorem of Cartier-Katz is recalled. It relates, on a smooth
k-scheme, the categories of F -divided sheaves and stratified sheaves and follows the
well-known principle of Cartier that integrable connections with zero p-curvature
come from Frobenius pull-backs.

Recall that we have fixed a perfect field k of positive characteristic p. The Frobe-
nius automorphism will be denoted by ϕ : k k.

1.3.1 Preliminaries on the Frobenius

On this section we set up standard material on the Frobenius [18] and its relations to
representations. These will be used later on to clarify a basic question we address in
this work, which is to interpret, in an abstract neutral Tannakian category, the effect
of the Frobenius twist of a representation.

Affine setting

Given a vector space V over k, we denote by V (m) the pull back of V via the
automorphism Specϕm of Spec k. As an abelian group, V (m) is just V , but the
map k End(V (m)) giving its k-module structure is the composition of ϕ−m with
k End(V ). Note that V 7→ V (m) is functor and Hom(V,W )

Hom(V (m),W (m)) is ϕm-linear.
Let A be a commutative k-algebra, f : k A the structural ring homomor-

phism. Let A(m) be the k-algebra which, as a ring, is just A but has the k-structure
given by f ◦ ϕ−m. A(m) is, of course, the pull back algebra (Specϕm)∗A.

Let Fm : A A (m ≥ 0) be the ϕm-linear ring homomorphism a 7→ ap
m

. Hence
we have a k-algebra homomorphism Fm : A(m) A, a 7→ ap

m

.
A particular case of interest is that of k-Hopf algebras. If R is such an object,

it is easily verified that R(m) itself is a k-Hopf algebra and that Fm : R(m) R is
a homomorphism of k-Hopf algebras. Further properties of this particular case are
developed below.
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Frobenius twist of representations

Let G = SpecR be an affine group scheme over k and F : G G(1) = SpecR(1)

the Frobenius homomorphism. Let (V, ρ) be a representation of G(1), where ρ :
V V ⊗k R

(1) is the comodule map. We can define a representation (V ′, ρ′) of G
by taking V ′ = V (−1) and ρ′ the composition

V (−1) ρ(−1)

(V ⊗k R
(1))(−1) canonical ∼= V (−1) ⊗k R.

This functor Repk(G
(1)) Repk(G) is ϕ

−1-linear and is an equivalence of cat-
egories (an inverse being the analogous functor with (1) instead of (−1)).

Let (V, ρ) be a representation of G and let V (1) be the associated representation
of G(1).

Definition 15. The Frobenius twist of (V, ρ) is the representation of G given by
Res(F )(V (1)). It is denoted (V (1), ρ(1)).

In more concrete terms, if {vi} is a basis of V in which G GL(V ) = GL(n)
in given by the matrix (aij) ∈ GL(R, n), then (V (1), ρ(1)) is given by the matrix (apij).

Since Res(F ) is k-linear, the functor (V, ρ) 7→ (V (1), ρ(1)) is ϕ-linear. In more pictorial
form we have a commutative diagram

Repk(G)
Frobenius twist

(1)

Repk(G)

Repk(G
(1)).

Res(F )

(1.3)

We say that a representation V is F -divisible if it is isomorphic to the Frobenius
twist of some other representation W .

Geometric setting

Let X be a k-scheme. Let F : X X be the Frobenius morphism, which on the
underlying topological space X is the identity and induces the homomorphism a 7→ ap

on the sheaf of rings OX . Consider the commutative diagram with a cartesian square

X
Fgeom

F

X(1) π X

Spec k
Specϕ

Spec k,

(1.4)
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where the unmarked arrows are the structural morphisms and Fgeom, the geometric
Frobenius, is the morphism obtained from the universal property of the fibred product.
Since Specϕ is an isomorphism of schemes, so is π and hence we can identify the
topological spaces underlying X and X(1); under this identification, the sheaf of k-
algebras OX(1) defining the k-scheme X(1) is U 7→ OX(U)

(1).
We observe that π∗ : qcoh(X

(1)) qcoh(X) is a ϕ−1-linear equivalence of cat-
egories. With the obvious modifications, the same is true for higher powers of the
Frobenius.

1.3.2 F -divided sheaves

Let X be a scheme over k. F -divided sheaves were defined by Gieseker in [16]. They
were then called flat sheaves. The Cartier-Katz Theorem below states that F -divided
sheaves can be seen as “differential equations”, but it turns out that F -divided sheaves
are much easier to handle than stratifications.

Definition 16. The category of F -divided sheaves on X, denoted by Fdiv(X), is the
k-linear category whose:

Objects are families {Ei}i∈N with Ei a coherent sheaf over X(i), plus isomorphisms
σi : F

∗
geomEi

∼= Ei−1.

Arrows are projective systems of arrows {fi ∈ HomO
X(i)

(Ei,Fi); τi ◦ F
∗
geom(fi) =

fi−1 ◦ σi}i∈N.

The termwise tensor product makes Fdiv(X) into k-linear tensor category with
identity object 1 = {OX(i)}i∈N. If X is locally noetherian and regular, F : X X
is faithfully flat ([24], Thm. 23.1, p. 179) and then Fdiv(X) is k-abtensor (Definition
1): (co)kernels are just the termwise (co)kernels. We define duals term by term. Also,
ι : {Ei}i∈N 7→ E0 is a faithful and exact tensor functor into coh(X) and E0 is locally
free, as was communicated to me by N. Shepherd-Barron.

Lemma 17. Assume that all local rings in X are regular noetherian rings. If {Ei}i∈N
is an object of Fdiv(X), then ι({Ei}i∈N) = E0 is locally free. In particular, ι makes
Fdiv(X) into a locally free tensor category of coherent sheaves on X (Definition 2).

Proof:This is a local question, so we can assume X = SpecA local. Let Mi =
Γ(X(i), Ei) and let

An α Am M0 0

be a finite free presentation of M0 with m minimal. The r’th Fitting ideals Φr(α)
are the ideals generated by the r × r minors of α (1 ≤ r ≤ min(m,n)). Also, by
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convention Φr = (1) for r ≤ 0 and Φr = 0 for r > min(m,n). The module M0 is free
of rank m−r if and only if (see [5], Prop. 1.4.10, p. 22) Φr+1(α) = 0 and Φr(α) = (1)
holds. The Fitting ideals Φr(α) depend only on the isomorphism class of M0, that is,
for another finite free presentation of M0

Aν
β

Aµ M0 0

we have Φµ−r(β) = Φm−r(α) for all r ≥ 0.
Also, they base change nicely (loc.cit., p. 21); thus, given a finite free presentation

Aν
β

Aµ Mi 0

Φm−r(α) = Φµ−r((F
i)∗β) = F i(Φµ−r(β))A. If Φm−r(α) 6= (1), then it is contained

in ∩irad(A)
pi = 0 (by Krull’s Intersection Theorem). This shows that M0 is free.

Corollary 18. If X is connected, locally noetherian and regular and has a k-rational
point x0 the functor x∗0 : {Ei}i∈N 7→ x∗0E0 is a fibre functor and Fdiv(X) is a neutral
Tannakian category.

Proof:First note that ι : {Ei} 7→ E0 is faithful since F is faithfully flat. It is also
exact by definition. To show that x∗0 is exact and faithful one uses Lemma 3. Since
all the terms Ei in an F -division are locally free, it follows that the termwise dual
determines a rigid tensor category structure on Fdiv(X).

Definition 19. Assume that X/k is connected, locally noetherian and regular with
a x0 ∈ X(k). The group scheme associated, via Tannakian duality, to the category
Fdiv(X) with the fibre functor x∗0 is denoted ΠFdiv(X, x0).

Since X and x0 will remain fixed, we abuse notation and denote ΠFdiv(X, x0) by
ΠFdiv.

For later reference, we will state and prove a lemma of Gieseker [16], prop. 1.7,
p. 6. To simplify notation, we work with the absolute Frobenius.

Lemma 20. Let X/k be as before. If {Ei}i∈N and {Fi}i∈N are two objects of Fdiv(X)
such each Ei is isomorphic as an OX-module to Fi and HomOX

(Ei, Ei) is finite di-
mensional, then {Ei}i∈N ∼= {Fi}i∈N in Fdiv(X).

Proof: Because of the finite dimensionality assumption, there exists an i0 ∈ N

such that for every i ≥ i0 F
∗ : HomOX

(Ei+1, Ei+1) HomOX
(Ei, Ei) is bijective

since it is always injective (and ϕ-linear). Take i ≥ i0. Let fi ∈ HomOX
(Ei,Fi)

and fi+1 ∈ HomOX
(Ei+1,Fi+1) be isomorphisms. There exists an automorphism

gi+1 ∈ HomOX
(Ei+1, Ei+1) such that F ∗(gi+1) = F ∗(fi+1)

−1 ◦ fi ◦ F
∗(fi+1) and hence

f ′
i+1 := fi+1 ◦ gi+1 ◦ f

−1
i+1 is an isomorphism and is taken by F ∗ to fi. By induction we

can construct an isomorphism between {Ei} and {Fi} in Fdiv(X).
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1.3.3 Stratified sheaves

Here we define stratified sheaves on smooth schemes. They are the correct analogue of
linear differential equations over a complex manifold since over a field of characteristic
zero, the sheaf of differential operators is generated by the vector fields ([3], Theorem
2.15).

Let DX be the sheaf of k-linear differential operators on a smooth scheme X/k.

Definition 21. A stratified sheaf on X, (E ,∇), is the data of a coherent sheaf E on
X and a OX-linear ring homomorphism ∇ : DX E ndk(E ), called a stratification
of E . The category of stratified sheaves on X, str(X), has stratified sheaves as objects
and DX-modules homomorphisms as arrows. The arrows are also called horizontal
maps.

We observe that a homomorphism ∇ as above takes D
≤m
X into D

≤m
X (E ). The

reason for this is the following criterion for differential operators given in EGA IV4,
16.8.8, p. 42. A k-linear endomorphism of E is a differential operator of order
≤ m if and only if for every open set U ⊆ X and every a ∈ OX , the operator
ada(D) ∈ E ndk(E |U) defined by

ada(D)(s) = aD(s)−D(as), s ∈ E (V ), V ⊆ U

is a differential operator of order ≤ m− 1 on U .
The category str(X) is k-linear and abelian and has a tensor product, which

makes the functor “forget the stratification” a tensor functor. In order to elaborate
on the stratification of a tensor product, we have to use Grothendieck’s notion of
stratification. Let P denote the sheaf OX ⊗k OX on X and let I denote the ideal
sheaf of P given as the kernel of the natural multiplication map P OX . Write
Pn for the sheaf of k-algebras P/I n+1; note that Pn is also a sheaf of OX-algebras
in two distinct ways: via d0 : a 7→ a ⊗ 1 and d1 : a 7→ 1 ⊗ a. Given a sheaf E

of OX-modules on X , Proposition 2.11 of [3] states that the above definition of a
stratification on E is the same as the data of Pn-linear maps

εn : E ⊗OX ,d1 P
n

E ⊗O,d0 P
n

satisfying a set of conditions which we leave to Definition 2.10 of [3]. It is also
instructive to observe that if we let X be the formal completion of X ×X along the
diagonal and denote by p1, p2 : X X the natural projections, then the εn above
are the data of an isomorphism

ε : p∗2E p∗1E ,
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which satisfies the cocycle condition p∗13(ε) = p∗12(ε) ◦ p
∗
23(ε).

Hence, given two sheaves E and F with stratifications {εn} and {δn} respectively,
we obtain the stratification on the tensor product E ⊗F by defining the Pn-linear
maps

ϕn : (E ⊗F )⊗OX ,d1 P
n (E ⊗F )⊗OX ,d0 P

n

as being the obvious ones.
Recall that the action of a differential operator D ∈ H omOX

(Pn,OX) of order
≤ n on a stratified sheaf {E , εi} is given by the composition

E E ⊗OX ,d1 Pn εn
E ⊗OX ,d0 Pn idE⊗D

E

(see [3], Prop. 2.11 on page 2.14). In fact, the coherence assumption on E and F

can be dropped, since the result of loc.cit. holds for arbitrary OX-modules. In this
way, we obtain a stratification on the tensor product of any two OX-modules with
stratifications.

Using the definition of tensor product stratification given in terms of the transition
homomorphisms εn, we have the convenient result:

Lemma 22. Given stratified sheaves (not assumed to be coherent, only OX-modules)
(E ,∇) and (E ,∇) and an open set U ⊆ X with etale coordinates (x1, . . . , xn) :
U An

k , the action of Dq is

∇
E⊗E

(Dq)(e⊗ e) =
∑

q′+q′′=q

∇(Dq′)(e)⊗∇(Dq′′)(e), e ∈ E (U), e ∈ E (U). (1.5)

Returning to the case E coherent, the same formalism allows us to define a stratifi-
cation on the dual E ∨: since Pn is a flat OX-algebra ([3], Prop. 2.2), we get from the
Pn-linear maps εn other Pn-linear maps ε∗n : E ∨⊗d1 Pn E ∨⊗d0 Pn satisfying
the cocycle condition.

From [3], Prop. 2.16, follows that every stratified sheaf is locally free. Hence,
given a k-rational point x0 ∈ X(k), the functor x∗0 : str(X) (k − mod) turns
str(X) into a neutral Tannakian category (Lemma 3).

Definition 23. The group scheme associated to the Tannakian category str(X) via
the fibre functor x∗0 is denoted Πstr(X, x0).

1.3.4 The Cartier-Katz Theorem

This theorem was proved by Katz and appeared in Gieseker, [16], Theorem 1.3, p.
4. It says that, over a smooth X, the categories of F -divided sheaves and stratified
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sheaves are equivalent and gives an explicit construction of the equivalence. We
describe here this construction. See loc.cit for the proofs. The same construction will
be used another time in (1.4.3).

Let (E ,∇) be a stratified sheaf and let Ei be the sheaf

U 7→ {e ∈ E (U); ∇(D)(ex) = 0, ∀D ∈ D
+,<pi

X,x , ∀x ∈ U}.

Let O(i) denote the sheaf U 7→ OX(U)
(i) (see section 1.3.1) on the topological space

of X — this sheaf defines X(i). The geometric Frobenius F i : O(i) OX makes
Ei into a sheaf of O(i)-modules and we have a natural O(i)-linear map Ei+1 ⊗O(i+1)

O(i) Ei. This is an isomorphism and thus we have constructed one side of the
equivalence str(X) Fdiv(X). The main point in the proof is, of course, showing
that Ei+1⊗O(i+1)

O(i) Ei is really an isomorphism. This is an ingenious application
of Cartier’s original result (as exposed in [19]): working locally, we give Ei a connection
by letting ∂

∂xj
act as ∇(Dej), where ej ∈ Nn has pi on the jth coordinate and zero on

the remaining.
The inverse equivalence is given as follows. Let {Ei}i∈N be an F -divided sheaf. We

can define the stratification ∇ on E0 by letting Ei be the sheaf of operators annihilated

by D
+,<pi

X . Precisely, let e ∈ E0(U) be of the form
∑

ν fν ⊗ eν where fν ∈ O(i)(U) and

eν ∈ Ei(U). Then, for a D ∈ D
+,<pi

X (U),

∇(D)e =
∑

ν

D(fν)⊗ eν .

Because the Ei are locally free, this is well defined and gives the equivalence
between str(X) and Fdiv(X) (we remark that Gieseker [16] forgot to mention that
F -divided sheaves are locally free, so there is a little ambiguity – corrected by local
freeness – in loc.cit., compare i) of Proposition 31). It is immediate to check that
these functors preserve the tensor products (using formula (1.5)). That the identity
object is taken to an identity object by the functor Fdiv str follows easily from
Lemma 24 below.

Scholium: When is an element killed by all the derivations a p-power? We do
not know the answer to this question in general, but provided we know that the
completions in question are nice enough, then we can shed some more light on this
question. Let A be a noetherian regular local k-algebra and let S ⊆ Derk(A). We
want to look at rings A which are of a geometric nature in the following sense. The
completion Â is isomorphic toK[[x1, . . . , xn]] whereK/k is a finite separable extension
of k (as all field extensions of k are). Assume that all σ ∈ S map the maximal ideal
into itself and hence induce continuous derivations on Â. Assume that the canonical
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∂
∂xi

are among these induced derivations. Then an element f ∈ A which is killed by

all ∂ ∈ S will be a p-power in Â. So the question is: what is Âp ∩A?

Lemma 24. Assume furthermore that A is a G-ring. Then Âp ∩A = Ap.

Proof: This Lemma is an exercise once the notion of G-ring is brought up. We
learned this from a paper of Z. Robinson on p-powers and of rigid analytic functions
(to appear in J. Number Theory 116 (2006), no. 2, 474–482). We reproduce the proof
given there. Assume the existence of g ∈ Âp∩A−Ap and let R be the finite A-algebra
A[t]/(tp − g) which naturally embeds in Â (A is an UFD by Auslander-Buchsbaum,
[24], Thm. 20.3, p. 163). Note that R is also a G-ring (it is a hard theorem of
Grothendieck that every algebra of finite type over a G-ring is a G-ring). As all the
localizations Rp are reduced so are all the completions R̂p ([24], Cor. to Thm 23.9, p.
184). The completion of R with respect to the the rad(A)-adic topology is

Â[t]/(t− γ)pÂ[t] =
∏

m∈Max(R)

R̂m

and hence some R̂m is not reduced, which is a contradiction. It follows that Ap =
Âp ∩A

From now on, if X is smooth, we shall use the terms stratified and F -divided
interchangeably, as well as the notations str(X) and Fdiv(X). We also abandon
the distinction between geometric and absolute Frobenius when dealing with F -divided
sheaves

1.4 Stratifications and F -divisions on torsors

We will introduce the concepts of a stratification and an F -division on a torsor and
derive the analogous Cartier-Katz Theorem on stratifications and Frobenius pull-
backs. The differential side of this formalism is well known from differential geometry
(connections on principal bundles); unfortunately, none of the available references is
suitable for our purposes. In fact, this extra care pays off, since a minor subtlety
appears: the data of a section of the canonical map from the Atiyah sheaf to the
tangent sheaf does not seem to be enough information to give the right definition
of a stratification. Also, we are interested in the interplay (see the next paragraph)
between the differential and the F -divided manifestations and hence the presentation
below seems reasonable. The discussion of the aforementioned topics will occupy
sections 1.4.1—1.4.3.

Given an F -divided sheaf {Ei}i∈N we can consider the shifted F -divided sheaf
{F ∗Ei} — the functor obtained from this association is an equivalence and we are
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interested in the group-theoretic counterpart of this equivalence. One is immediately
led to believe that this shift is just the Frobenius twist of representations (section
1.3.1) and one of the goals of the study to follow is to establish this claim. The idea
behind is quite simple: the Frobenius twist is taken under the associate sheaf functor
(for some torsor) to the Frobenius pull-back of the sheaf. This is discussed in section
1.4.4, where the first structure result for ΠFdiv is given (Theorem 34).

1.4.1 Stratifications

From section 1.4.1 to 1.4.3, X/k is smooth and connected, G = SpecR is an affine
group scheme and ψ : P X is a G-torsor.

The action ofG on P induces (and in fact is given by) an OX-linear homomorphism

µ : ψ∗OP ψ∗OP ⊗k R = (ψ∗OP )⊗OX
(OX ⊗k R),

which is a co-action of the OX-Hopf algebra OX ⊗k R on ψ∗OP . Consider the OX-
linear homomorphism θ : E ndk(ψ∗OP ) E ndk(ψ∗OP , ψ∗OP ⊗k R) which over an
open U ⊆ X is given by

E ndk(ψ∗OP |U) E ndk(ψ∗OP |U, ψ∗OP |U ⊗k R)

T (T ⊗k idR) ◦ µ(U)− µ(U) ◦ T.

The kernel of θ is an OX-algebra called the sheaf of invariant operators of P .
Let DX(ψ∗OP ) be the sheaf of k-linear differential operators on ψ∗OP (as a mod-

ule over OX) and let the sheaf of invariant differential operators, I DX(P ), be the
intersection of DX(ψ∗OP ) with the sheaf of invariant operators on P . Note that in-
variant operators send OX ⊆ ψ∗OP into itself and hence there is a natural OX-linear
homomorphism

I DX(P ) DX . (1.6)

Definition 25. A stratification on P is an OX-algebra homomorphism

∇ : DX I DX(P )

such that:

1. Composing ∇ with the canonical homomorphism (1.6) gives the identity of DX .

2. If we give ψ∗(OP ) ⊗OX
ψ∗(OP ) the tensor product stratification, then multipli-

cation is horizontal.
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Remark: Condition 2 of the above definition is technical. We were not able to
find an adequate substitute for the Atiyah sheaf of P in the case of stratifications (that
is, an OX-module such that the existence of a section already gives a stratification on
the torsor; see section 2.2.2).

1.4.2 Factorizations of LP/G and stratifications

We wish to prove the analogous of Prop. 2.9, p. 34 of [33] for the case of stratifications
(see Proposition 26 below).

Assume that:

(FCT) LP/G is the composition of a (exact) tensor functor L : Repk(G) str(X)
with the natural inclusion.

From section 1.2.4, we obtain an algebra B on the tensor category Ind(str(X))
which has a co-action of the Hopf algebra Rstr(X) (see section 1.2.4 for notation):

µ : B B ⊗Rstr(X).

Let ∇ denote the stratification of the OX-module B. Since µ is horizontal (recall that
R = OX ⊗k R has the trivial stratification) follows that ∇ takes values in I DX(P ).
Here we are identifying the torsors SpecB and P using Example 14.

Moreover, because B is an algebra in Ind(str(X)), condition 2. of Definition 25
is verified. Condition 1. is also verified because L takes the trivial representation
to the trivial module with the canonical stratification. So ∇ is a stratification of the
torsor P .

Let V ∈ Repk(G). The sheaf LP/G(V ) has two stratifications: The one coming

from (FCT), denoted ∇
V
, and the one associated to the stratification ∇, denoted ∇V .

Let us describe this last one more closely. Take U = SpecA and affine open subset
of X and let ψ−1U = SpecB = B(U). Let {vi} be a basis of V , s =

∑
i bi ⊗ vi ∈

(B⊗kV )G a section of LP/G(V ) over U and D ∈ DX(U) a differential operator. Then

∇V (D)s :=
∑

i

∇(D)bi ⊗ vi. (1.7)

This is obviously independent of the basis {vi} chosen and gives a factorization (FCT)
starting from a stratification on the torsor.

Proposition 26. i) The functors L and V 7→ (LP/G(V ),∇
V ) are naturally isomor-

phic tensor functors.
ii) There is a bijection between isomorphism classes of stratifications on P and

isomorphism classes of factorizations of LP/G as (FCT) above.
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Proof: It is obvious that ii) follows from i), on whose proof we now concentrate.
This follows from Nori’s fundamental construction (see section 1.2.4), but we will
repeat the important steps in the proof for the convenience of the reader. Consider
the R-comodules W1 := (V, ρ) ⊗ (R, ρl) and W2 := (V, idV ⊗ 1) ⊗ (R, ρl). They are
canonically isomorphic via the composition

(idV ⊗mult.) ◦ (idV ⊗ σ ⊗ idR) ◦ (ρ⊗ idR) : W1 W2.

If L ′ denotes the natural extension of L to Rep′
k(G), then the quasi-coherent

OX-modules with stratifications

L
′(W1) = L (V )⊗OX

B (tensor product stratification)

and
L

′(W2) = V ⊗k B ∼= (B⊕ dimV ,∇⊕dimV )

are horizontally isomorphic. This isomorphism is natural because it is none other
than the composition of L ′ with the natural transformation between the functors

ν1 : Repk(G) Rep′
k(G) ν2 : Repk(G) Rep′

k(G)

V V ⊗ (R, ρl) V (V, idV ⊗ 1)⊗ (R, ρl).

(1.8)
Note that L ′(W1) and L ′(W2) are G-sheaves; the action of G on L ′(W1) is via

B and the action on L ′(W2) is the tensor product of the action on each factor (note
that this description immediately shows the functoriality of the G-sheaf structure).
In [33], Lemma 2.8, p. 34, it is also proved that the isomorphism above preserves
the structure of G-sheaves on them. Hence, if

∑
i bi ⊗ vi ∈ (B ⊗k V )G corresponds

to s ⊗ 1 ∈ (L (V ) ⊗OX
B)G(U) = L (V )(U), then ∇

V
(D)(s) ⊗ 1 corresponds to∑

i∇(D)bi ⊗ vi and we obtain the required natural isomorphism in the stratified
category.

Let X be a smooth and connected scheme with a k-rational point x0. Let ω :=
x∗0 be a fibre functor for str(X) giving an equivalence of str(X) with Repk(Π

str)
(1.3.3). The set Hom(Πstr, ?) is the solution to a classification problem. Let L :
Repk(Π

str) str(X) be an inverse equivalence to ω preserving the fibre functors
and let Xstr be the Πstr-torsor over X with a stratification ∇str obtained from the
factorization (FCT). This particular choice of L gives a k-rational point xstr above
x0.
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A pointed stratified torsor P over X is a stratified torsor with a k-rational point
above x0. Let StrTors∗(G/X) denote the set of all pointed stratified G-torsors over
X (modulo isomorphisms). Proceeding as in [33], Prop. 3.1, p. 40, we obtain

Theorem 27. The map from Hom(Πstr, G) to StrTors∗(G/X) which associates to
θ : Πstr G the pointed torsor with stratification Xstr ×Πstr

G is a bijection.

1.4.3 The Cartier-Katz Theorem for torsors

The goal of this section is to establish

an equivalence between the category of torsors with a stratification and
the category of F -divided torsors (definition below) – or the Cartier-Katz
Theorem for torsors.

The functors allowing the equivalence are constructed below (Proposition 29 and i) of
Proposition 31) — they are just the obvious analogues of Katz’s original construction.
That the composition of these functors is naturally the identity, follows from part ii)
of Proposition 29 and part iv) of Proposition 31.

Definition 28. An F -division of a G-torsor P is a family of G-torsors ψi : Pi X(i),
with P0 = P , and isomorphisms of G-torsors between Pi and the geometric Frobenius
pull-back of Pi+1. If an F -division {Pi} of P is fixed, we call it F -divided.

A morphism between F -divided torsors {Pi} and {Qi} is a sequence of morphisms
of G-torsors fi : Pi Qi such that F ∗

geom(fi+1) = fi.

Stratifications to F -divisions

We will use the notation of section 1.3.1. Let O(i) denote the sheaf of k-algebras on
the topological space X giving it the k-scheme structure ofX(i). Because X is smooth
over k and hence the Frobenius is faithfully flat, we can also identify O(i) with the
sheaf of k-subalgebras of OX given by the local pi-powers. On what follows we will
make no notational distinction between the geometric and absolute Frobenius.

Consider a stratification ∇ : DX I DX(P ) of P and let Bi be the sheaf

U 7→ {f ∈ OP (ψ
−1U); ∇(D)fx = 0 ∀D ∈ D

+,<pi

X,x , ∀x ∈ U}.

We remind the reader that D
+,<m
X is the sheaf of differential operators of order

< m which annihilate 1. Clearly Bi is a sheaf of O(i)-modules: For a ∈ O(i)(U) and
b ∈ Bi(U), a · b := b · F ia. Moreover, from formula (1.5) it actually follows that
multiplication of sections of Bi is still a section of Bi, i.e. Bi is an O(i)-algebra.

Because D
≤m
X is coherent and F i is finite, follows that Bi is quasi-coherent.
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Proposition 29. i) The natural homomorphism of O(i)-algebras Bi+1⊗O(i+1),FO(i) Bi

obtained from the inclusion Bi+1 ⊆ Bi+1 is an isomorphism.
ii) Let U be an open subset of X and ϕ ∈ B0(U) correspond, under item i), to

f ⊗ a ∈ (Bi ⊗O(i)
OX)(U). Then, for any D ∈ D

+,<pi

X (U), ∇(D)(ϕ) corresponds to
f ⊗ D(a).

iii) Let ∇ be a stratification of P and let Bi be the O(i)-algebras of sections of

ψ∗OP annihilated by D
+,<pi

X . Then {SpecBi}i∈N is an F -division of P .

Proof: The proof of i) is very much the same as that of theorem 1.3, p. 4 of [16].
The idea is to use Cartier’s Theorem ([19], 5.1, p. 190 — which is valid without the
coherence assumption in [16]) to obtain from ∇ an integrable connection ∇i on Bi

of p-curvature zero which will have Bi+1 as its sheaf of horizontal sections and the
result follows from that of Cartier. The construction of ∇i is very natural if we work
locally (this is a local problem, of course). Just let ∇i(∂/∂xj) act as ∇(D(0,...,pi,...,0)).
The details are checked in loc.cit.

ii) Standard.
iii) Because∇(D) is an invariant operator, follows that the co-action µ : B0 B0⊗k

R induces co-actions on each Bi. Hence, SpecBi is an X
(i)-scheme with a right G-

action which makes the structural morphism to X(i) equivariant (X(i) with the trivial
action). From i), follows that the pull-back of SpecBi through Frobenius is isomor-
phic to SpecBi−1 and it is immediate to verify that this isomorphism preserves the
actions of G. Using Lemma 30 below, it follows that SpecBi is a G-torsor.

Lemma 30. Let f : V W be a faithfully flat and quasi-compact morphism of
schemes. Let α : Q W be an affine W -scheme with a G-action such that, giving
W the trivial action, α becomes equivariant. If f ∗Q is a G-torsor, then so is Q.

Proof: α is faithfully flat because f and the projection f ∗Q V are so. The
morphism f ∗Q×G f ∗Q×V f

∗Q, (q, g) 7→ (q, qg) is the f -pull-back of the anal-
ogous morphism for Q. Hence it is an isomorphism by fpqc descent.

F -divisions to stratifications

Let {Pi}i∈N be an F -division of P and let Bi denote the quasi-coherent O(i)-algebras
ψi∗OPi

. We shall define a stratification of P using the Bi. Let U ⊆ X be an open

set, D ∈ D
<pi

X (U) and
∑

ν fν ⊗ aν ∈ (Bi ⊗O(i)
OX)(U). Regarding

∑
ν fν ⊗ aν as an

element of B0(U), we define

∇(D)
∑

ν

fν ⊗ aν :=
∑

ν

fν ⊗D(aν). (1.9)
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Proposition 31. i) The definition (1.9) is independent of the choices made and gives
a stratification of the quasi-coherent OX-module B0.

ii) Let m : B0 ⊗OX
B0 B0 be the multiplication of B0. If we let B0 ⊗OX

B0

have the tensor product stratification, then m is horizontal.
iii) ∇ : DX E ndk(B0) has image in the sheaf of G-invariant operators.
iv) Let σi : Bi B0 be the injection of sheaves of rings provided by the iso-

morphism Bi ⊗O(i)
OX
∼= B0. Then the image of σi is the sheaf

U {f ∈ B0(U); ∇(D)fx = 0 , ∀x ∈ U, ∀D ∈ D
+,<pi

X,x (U)}.

Proof: i). We have to show that if
∑

ν fν⊗aν =
∑
f ′
ν⊗a

′
ν , then

∑
ν fν⊗D(aν) =∑

ν f
′
ν⊗D(a′ν). Because Bi is the algebra associated to a G-torsor, it is the direct limit

of locally free coherent O(i)-modules and the homomorphisms in the direct system are
all injective. Consider x ∈ U and to keep notation simple, denote the germs of fν , aν ,
etc on the corresponding stalks by the same characters. It follows that there exist
O(i),x-linearly independent elements {βj} in Bi,x (because Bi,x is the increasing union
of free modules) such that fν =

∑
j gνjβj and f ′

ν =
∑

j g
′
νjβj . Hence, by flatness of

F , ∑

ν

(gνj)
piaν =

∑

ν

(g′νj)
pia′ν .

In particular,
∑

ν(gνj)
piD(aν) =

∑
ν(g

′
νj)

piD(a′ν), and thus

∑
ν fν ⊗D(aν) =

∑
ν,j βj ⊗ (gνj)

piD(aν)

=
∑

j βj ⊗
(∑

ν(g
′
νj)

piD(a′ν)
)

=
∑

ν f
′
ν ⊗D(a′ν).

This proves that ∇ is well defined. It is immediate to check the second assertion
of i).

ii). Let x ∈ X and D ∈ DX,x be the restriction of Dq with |q| < pi. Let
∑

ν fν⊗aν
and

∑
µ f

′
µ ⊗ a

′
µ be elements of Bi,x ⊗O(i),x

OX,x. Then

∇(D)
∑

µ,ν fνf
′
µ ⊗ aνa

′
µ =

∑
ν,µ fνf

′
µ ⊗D(aνa

′
µ)

=
∑

µ,ν fνf
′
µ ⊗

∑
q′+q′′=qDq′(aν)Dq′′(a

′
µ)

=
∑

q′+q′′=q∇(Dq′) (
∑

ν fν ⊗ aν) · ∇(Dq′′)
(∑

µ f
′
µ ⊗ a

′
µ

)
.

This proves ii) in view of formula (1.5) above.
iii). Because the isomorphism Bi ⊗O(i)

OX B0 respects the co-actions of R,
follows that we only need to verify that the diagram
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OX(U)⊗O(i)(U) Bi(U)
id⊗µ

∇(D)

(OX(U)⊗O(i)(U) Bi(U))⊗k R

∇(D)⊗idR

OX(U)⊗O(i)(U) Bi(U) id⊗µ
(OX(U)⊗O(i)(U) Bi(U))⊗k R

(µ is the co-action) is commutative for any affine open U ⊆ X and any differential

operator D ∈ D
<pi

X (U). This is obvious from equation (1.9).
iv). Let x be a closed point of X and let f =

∑
ν fν ⊗ aν ∈ Bi,x ⊗O(i),x

OX,x be

annihilated by D
+,<pi

X,x . Let {βj} and gνj be as in the proof of i). Then
∑

ν(gνj)
piaν is

annihilated by D
+,<pi

X,x and hence there exist a′j ∈ OX,x such that (a′j)
pi =

∑
ν(gνj)

piaν
(this is a consequence, for instance, of Lemma 24). It then follows that f =

∑
j a

′
jβj⊗

1.

Remark: There are many compatibilities to be checked, all of them trivial. We
will call the reader’s attention to the following, which will enable us to understand
better ΠFdiv. Let ∇ be a stratification on P and let {Pi}i∈N be the associated F -
division. Given a representation V of G, E = LP/G(V ) has a stratification via formula
(1.7). Also, E has an F -division provided by Ei = LPi

(V ) (use the description of L

as the sheaf of sections of a geometric vector bundle in [18], p. 89); the isomorphisms
F ∗Ei+1

∼= Ei are those coming from F ∗Pi+1
∼= Pi. It is immediate to see that the

Cartier-Katz construction of the F -division of E is none other than {Ei}i∈N. To
repeat, if CK is the Cartier-Katz functor that takes a stratification to an F -division,
then CK ◦LP/G(?) = {LPi

(?)}.

1.4.4 The Frobenius on ΠFdiv

As was remarked above, for a given smooth and connected k-scheme X , we can obtain
a tensor equivalence L : Repk(Π

str) str(X) which, when identifying str(X)
with Fdiv(X), is given by {LPi

} for an F -divided torsor {Pi}i. It is convenient to
remove the smoothness assumption and work with F -divided sheaves over regular,
locally noetherian and connected k-schemes. The process is parallel with the one
adopted above and follows Nori’s construction of a fundamental torsor.

We use this to prove that the group scheme ΠFdiv is reduced (in fact, that the
Frobenius is an isomorphism).

Let X/k be connected, locally noetherian and regular. Let

L : Repk(Π
Fdiv) Fdiv(X)
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be a k-linear tensor equivalence. This gives rise to a family of faithful exact k-linear
tensor functors Li : Repk(Π

Fdiv) coh(X(i)). Since L is a tensor functor, there is
a natural isomorphism of tensor functors (see [12], Def. 1.12, p. 116 for terminology)
σi : F

∗Li+1 ⇒ Li.
From section 1.2.4, we obtain ΠFdiv-torsors ψi : Pi X(i) given by Bi :=

ψi∗OPi
= L ′

i ((R, ρl)); in particular, there are isomorphisms of torsors σi : F
∗Pi+1

∼=
Pi. This gives another k-linear tensor functor V 7→ {LPi

(V )}i, where the structural
isomorphisms F ∗LPi+1

(V ) LPi
(V ) are the ones induced by the σi – to see that

these are really isomorphisms one can use the characterization of LP as sections of a
geometric vector-bundle, [18], p. 89 or [33], Prop. 2.9, (a), p. 34.

Lemma 32. The tensor functor {LPi
}i is naturally isomorphic to L .

Proof: This is just an analogue of Proposition 26 and we borrow notation from
there. Let V be a representation of Π = ΠFdiv = SpecR and consider W1 :=
(V, ρ)⊗(R, ρl), W2 = (R, ρl)

⊕dimV . There is a canonical isomorphism of R-comodules
W1 W2 which will induce an isomorphism L ′(W1) ∼= L ′(W2); this isomorphism
gives a sequence of isomorphisms of quasi-coherent OX(i)-modules

λi : Li(V )⊗Bi V ⊗k Bi (1.10)

which satisfy F ∗(λi+1) = λi. Also, each sheaf on eq. (1.10) has an action of Π
and λi preserves it (since this action is induced by a Π-sheaf structure on each of Wi,
see the proof of Proposition 26 above for more details). We note that the sheaf of Π
invariants of Li(V ) ⊗Bi (resp. V ⊗k Bi) is Li(V ) (resp. LPi

(V )). Since F ∗ is an
exact functor, it commutes with the functor “taking Π invariants” and consequently
{λΠi }i gives a natural isomorphism Li ⇒ {LPi

}i.

Remark: Obviously, Lemma 32 holds for any k-linear, faithful and exact tensor
functor L : Repk(G) Fdiv(X) (analogous to section 1.4.2).

Consider
Fdiv(X) Φ Fdiv(X)

{Ei; σi}i∈N {F ∗(Ei);F
∗(σi)}i∈N.

the shifting functor. It is obviously an equivalence.

Lemma 33. The diagram
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Fdiv(X) Φ Fdiv(X)

Repk(Π
Fdiv)

L

Frobenius twist
Repk(Π

Fdiv)

L

is commutative up to natural isomorphism.

Proof:We recall that given any group scheme G and any G-torsor P over X ,
there is a natural isomorphisms of OX-modules λ : F ∗LP/G(V ) LP/G(V

(1)). If
U = SpecA is an affine open of X and SpecB is the inverse image of U in P , then
λ(U) is

A⊗F,A (B ⊗ V )G (B ⊗ V (1))G

a⊗
∑

j bj ⊗ vj
∑

j ab
p
j ⊗ vj.

Thus, for any representation V of ΠFdiv, there are natural isomorphisms

λi : F
∗
LPi

(V ) LPi
(V (1)).

All we have to do is check that {λi} : {F
∗LPi

(V )} {LPi
(V (1))} is an arrow in

Fdiv(X), i.e., the diagrams

F ∗
geom(F

∗LPi+1
(V ))

F ∗

geom(λi+1)

F ∗(σi+1)

F ∗
geom(LPi+1

(V (1)))

σi+1

F ∗LPi
(V )

λi
LPi

(V (1)).

(1.11)

are commutative. The question is then local on X(i) and we can use the local
expression of λi above. It is now a tedious but straightforward algebraic manipulation
to check the commutativity of the above diagram.

Theorem 34. Let X be connected regular noetherian scheme over k with a k-rational
point. Then the Frobenius homomorphism F : ΠFdiv (ΠFdiv)(1) is an isomor-
phism.

Proof:From Lemma 33 above, follows that taking the Frobenius twist of a repre-
sentation induces an equivalence Repk(Π

Fdiv) Repk(Π
Fdiv). Now we use diagram

(1.3) to conclude that Res(F ) is an equivalence of categories. By general Tannakian
duality ([12], 2.21, p.139) we are done.
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Corollary 35. i) Lie(ΠFdiv) = 0.
ii) If ΠFdiv is finite or smooth it is etale.
iii) Any profinite quotient of ΠFdiv is proetale.

Proof: i). Because the relative Frobenius is a closed embedding, the differential
at the identity dFe = 0 is injective ([42], 12.2, p. 94, Corollary).

ii). An affine algebraic group scheme is smooth if and only if its dimension coin-
cides with the dimension of its Lie algebra ([42], 12.2, p. 94, Corollary). If ΠFdiv is
finite, part i) shows that it is smooth, hence etale. Again, part i) shows that if it is
smooth then it has dimension zero.

iii). By definition, if G is a quotient of ΠFdiv then O(G) is a sub-Hopf-algebra
of the Hopf-algebra of ΠFdiv. It follows that O(G) is reduced and if it is finite
dimensional it is etale over k ([42], Thm. 6.2, p. 46).

1.5 The relation between ΠFdiv and the etale fun-

damental group

The goal of this section is to prove and discuss the hypothesis (see the remark after the
proof) of the very natural proposition below which relates the F -divided fundamental
group with the (geometric) etale fundamental group. It generalizes and brings to the
right context Prop. 1.9 on p. 7 of [16].

We take X/k connected, locally noetherian and regular with a k-rational point
x0 defining ΠFdiv(X, x0). Perhaps the best way to encapsulate this discussion is the
slogan: “etale coverings are differential equations with finite monodromy”.

Proposition 36. Let k be algebraically closed. There is a natural quotient homomor-
phism of group schemes ν : ΠFdiv(X, x0) Πet(X, x0) which identifies π0(Π

Fdiv)
with Πet.

Proof: We will abuse notation and write π to denote Πet(X, x0) as well as its
group of k-points (such abuse is justified by Theorem 6.4, p. 49 of [42]). For any
proetale group scheme G, the Frobenius twist of representations is an equivalence and
hence, to every representation V of G, there exist unique representations Vi such that
V

(1)
i+1 = Vi and V0 = V . Also, if P X is a G-torsor, we obtain a tensor functor

ϕP : Repk(G) Fdiv(X), ϕP (V ) := {LP/G(Vi)}. (1.12)

If P has a k-rational point above x0 (as it does, since k is algebraically closed),
then x∗0LP/G is canonically isomorphic to the forgetful functor. By Tannakian duality,
we obtain a homomorphism ΠFdiv G. If π = lim←−i πi with πi a quotient, there are
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connected pointed πi-torsors Ei X , such that Ei ×
πi πi−1 = Ei−1 as pointed tor-

sors. It follows easily that these torsors give rise to a homomorphism ν : ΠFdiv π;
such a homomorphism factors through ν : π0(Π

Fdiv) π. We will prove that ν is
an isomorphism by showing that Res(ν) is an equivalence of categories.

Res(ν) is full and faithful This amounts to show that, given a connected G-torsor
P , G-etale, ϕP is full and faithful (as the subcategory of Fdiv(X) corresponding
to π0(Π

Fdiv) is full). Faithfulness is obvious and we concentrate on the fullness.
By linear algebra, it is enough to show that any arrow θ : 1 ϕP (V ) in
Fdiv(X) comes from a v ∈ V G. But such a θ is given by a sequence of mor-
phisms si : P Vi such that the natural composition

LP/G(Vi)(X) LP/G(Vi−1)(X)

takes si to si−1. The above composition is just (after giving V a basis)

(f1, . . . , fd) 7→ (f p1 , . . . , f
p
d )

and hence s0 ∈ k⊕d, as the scheme P is regular (locally noetherian), has a
k-rational point and is connected.

Res(ν) is essentially surjective Let {Ei} be an object of Fdiv(X) which is in the
subcategory corresponding to π0(Π

Fdiv). There exists an etale group scheme
G and an F -divided pointed G-torsor {P = P0, P1, . . .} such that {Ei} =
{LPi/G(V )} as objects of Fdiv(X).

From the claim below, it will follow that {LPi/G(?)}i and ϕP (?) are naturally
isomorphic tensor functors. Now, P = Ej ×

πj G for some j and hence {Ei} ∼=
ϕEj

(ResGπj(V )) thereby proving that Res(ν) is essentially surjective.

Claim: Let G be an etale group scheme and let Tors(G/X) be the category of
G-torsors over X . Then the functor F ∗ : Tors(G/X(1)) Tors(G/X) (pull-back
by Frobenius) is an equivalence.

Proof: Recall that the group scheme G is, as a functor on the category of k-
schemes, given by G(S) = Map(π0(S), G(k)). Hence, G(f) will be an isomorphism
for any f : S ′ S which induces a bijection on the underlying topological spaces.
By EGA I, 3.5.2 (ii) (p. 115), 3.5.7 (ii) (p. 116), 3.5.5 (p. 115) and 3.5.11 (p.
117), it follows that given a morphism U X(1), G(pr) : G(U) G(F ∗U) is an
isomorphism (where pr : F ∗U U is the natural projection). Now the category
of G-torsors over X is isomorphic to the groupoid [Z1(X,G)/B1(X,G)]: Objects are
cocycles {gij} ∈ G(Ui×X Uj) = G(Uij), for some etale covering (Ui X)i∈I (in the
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sense of [31], that is, Ui is finite over X and #I <∞)2, and an arrow {gij} {g′ij}
is an element {hi} ∈

∏
G(Ui) such that g′ij = (hi|Uij) · gij · (hj|Uij)

−1. The pull-back

functor F ∗ : Tors(G/X(1)) Tors(G/X) takes the cocycle {gij} ∈
∏
G(Uij) (resp.

the coboundary {hi} ∈
∏
G(Ui)) to the cocycle {G(pr)(gij)} ∈

∏
G(F ∗Uij) (resp.

the coboundary {G(pr)(hi)} ∈
∏
G(F ∗Ui)) and hence is full and faithful. That F ∗

is essentially surjective follows from the fact that faithfully flat, universally injective
and quasi-compact morphisms give equivalences on the categories of etale coverings
([31], Prop. 7.2.2, p. 146). This finishes the proof of the claim.

Now we show how to obtain that {LPi/G(?)}i
∼= ϕP (?). Clearly ϕP is the functor

associated to some F -divided G-torsor {Qi} such that Q0 = P = P0 (compare Lemma
32). From the Claim, the F -division {Pi} is isomorphic to the F -division {Qi} and we
conclude that the two functors ϕP = {LQi/G} and {LPi/G} are naturally isomorphic.

Remark: The above proposition cannot hold true if k is not algebraically closed.
The reason is quite obvious, as the category Fdiv(Spec k) is certainly trivial; that is,
ΠFdiv is insensitive to the arithmetic etale fundamental group.

2In fact, objects are equivalence classes of cocycles under the usual process of taking a finer
covering. We will overlook this technicality. Also, it is always possible to take #I = 1
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Chapter 2

The categories dR(X) and Nstr(X)

2.1 Introduction

We will consider nilpotent tensor categories of sheaves on a smooth scheme X : the
category of de Rham sheaves dR(X) and the category of nilpotent stratified sheaves
Nstr(X). By the fundamental theorem of Tannakian duality ([12], Theorem 2.11, p.
130), the categories here considered will be equivalent, once fixed a k-rational point
of X , to categories of representations of unipotent affine group schemes ([42], Ch. 8).

With the aid of Nori’s Lemma (Lemma 50), we will be able to prove, in all the
considered cases (see theorems 40 and 46), that these groups are profinite if X is
proper. By using Corollary 35, the category Nstr(X) will be controlled by the etale
fundamental group (Corollary 47). All of this is an application of the insight provided
by Tannakian duality theory, which allows the cooperation of (elementary) group
theory and algebraic geometry.

One important topic is the study of the de Rham fundamental group in positive
characteristic. We run through the usual argument relating connections on torsors and
tensor functors from the category of representations of a group scheme to the category
of coherent sheaves with connections (section 2.2.2). Because of the similarity with
section 1.4.2 we will be brief in section 2.2.2 (also, after a careful reading, the results
of that section can be extracted from [11] (specially 10.26-10.30, pp. 194-96), but
we feel that Nori’s method is more natural and allow us to use a more differential
geometric language).

It can be said that the study of the de Rham fundamental group presented here is
intended to disqualify this category as a category of differential equations in positive
characteristic (of course, the characteristic zero case is much more promising, [40]);
this is what the example in section 2.2.3 does.

In section 2.4, we give a straightforward and enlightening proof of Nori’s Lemma

42



based entirely on easy group theoretical methods.

2.2 The de Rham category

We have fixed X/k smooth and connected in all that follows.
In this section we will discuss coherent modules with connections. For details

on the theory of connections see [19]. Let DE(X/k) be the category of k-linear
differential equations on X : Objects are (E ,∇), where E is a coherent OX-module
and ∇ : ΘX E ndk(E ) is a k-linear integrable connection on E ([19], 1.0, pp.
178-79). Morphisms are the horizontal maps (loc.cit., 1.1, p. 180).

The category DE(X/k) is a k-linear abelian tensor category (loc.cit. 1.1, p. 180)
and in characteristic 0, the inclusion functor into coh(X) is a structure of locally
free tensor category of coherent sheaves on X (Definition 1), as a theorem of Cartier
shows (loc.cit. Prop. 8.8, p. 206). In positive characteristic this is not true.

Definition 37. The de Rham category of X, dR(X), is the the nilpotent category
NDE(X/k). Objects of dR(X) will be called de Rham sheaves.

Lemma 38. Assume that X is connected, has a k-rational point x0 and H0
dR(X/k) =

k. Then x∗0 : dR(X) (k−mod) makes dR(X) into a neutral tannakian category.

Proof:Use Lemma 6 to show that dR(X) is abelian and then apply Lemma 8
with A = DE(X/k) and ι =the forgetful functor.

Definition 39. Let x0 ∈ X(k). The de Rham fundamental group ΠdR(X, x0) is the
group scheme associated, via Tannakian duality ([12], Thm. 2.11, p. 130), to the
fibre functor x∗0 : dR(X) (k −mod).

As we shall keep X and x0 ∈ X(k) fixed, we will abuse notation and denote
ΠdR(X, x0) by ΠdR. The above definitions and Lemma are due to [11] and [40].

2.2.1 Profiniteness

Take X connected and H0
dR(X/k) = k. Let x0 ∈ X(k) define the group ΠdR.

Theorem 40. If H1
dR(X/k) is finite dimensional (for example X/k proper) and k is

of positive characteristic, then ΠdR is profinite.

Proof: Note that for any group scheme G over k, the k-vector space Hom(G,Ga)
is isomorphic to Ext1G(1,1), since Ga can be seen as the subgroup of upper triangular
matrices in GL(2). If G = ΠdR, then this last vector space is Ext1DE(1,1). But the
functors (E ,∇) 7→ H∗

dR((E ,∇)) from DE(X/k) to (k − mod) are the right derived
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functors of Γ(E )∇; by general theory of abelian categories (with enough injectives),
Ext1DE(1,1) = R1(HomDE(1, ?))(1) = H1

dR(X/k). The theorem follows from Lemma
50.

2.2.2 Connections on torsors and dR(X)

We will use the setting of section 1.2.4. This section is entirely analogous to section
1.4.2.

Let G = SpecR be an affine group scheme and ψ : P X be a G-torsor. The
associated sheaf construction gives us an exact tensor functor

LP/G : Repk(G) coh(X),

and we will be interested in the case where LP/G factors through DE(X/k). More
precisely, assume that

(FCT) LP/G is the composition of a (exact) tensor functor L : Repk(G) DE(X/k)
with the natural inclusion.

For a representation V of G, we will denote the connection on LP/G(V ) by ∇
V .

Recall (Example 14) that the quasi-coherent OX-algebra ψ∗OP is canonically isomor-
phic to L ′((R, ρl)) (notations from section 1.2.4), which is an object in the category
of quasi-coherent modules with integrable connections. Let ∇ : ΘX E ndk(B)
denote the connection on B. The fact that B is an algebra in the category of OX-
modules with an integrable connection means that given an open U ⊆ X , the diagram

B|U ⊗B|U m

∇(D)⊗id+id⊗∇(D)

B|U

∇(D)

B|U ⊗B|U m B|U

is commutative for any D ∈ ΘX(U). In particular, for any a, b ∈ B(U) and
D ∈ ΘX(U), we have

∇(D)(ab) = a∇(D)(b) + b∇(D)(a). (2.1)

Also, if a ∈ OX(U), then
∇(D)(a) = D(a) (2.2)

because L takes the trivial representation to OX with the canonical connection.

Definition 41. The sub-OX-module of ψ∗ΘP consisting of invariant operators (1.4.1)
is called the Atiyah sheaf of P (notation: A t(P )).
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Since the map µ : B B⊗kR giving the action of G on P is horizontal, follows
that ∇ takes values in the sheaf of invariant operators. Together with equations
(2.1) and (2.2) this implies that ∇ : ΘX A t(P ) is an OX-module section of the
natural restriction A t(P ) ΘX . Such a section is usually called a connection on
the principal bundle P . Note that a connection automatically makes multiplication
ψ∗OP ⊗O ψ∗OP ψ∗OP horizontal.

A connection is said to be integrable whenever it is a morphism of sheaves of OX-
Lie algebras. Hence, the factorization (FCT) above gives an integrable connection on
the G-torsor P .

Using equation (1.7) above, we also see how to obtain connections on each LP/G(V )
starting from a connection ∇ on P — call it ∇V . Of course, the analogue of Propo-
sition 26 holds.

Proposition 42. i) The functors L and V 7→ (LP/G(V ),∇
V ) are naturally isomor-

phic tensor functors.
ii) There is a bijection between isomorphism classes of connections on P and

isomorphism classes of factorizations of LP/G as (FCT) above.

Applying the construction of a connection from a factorization (FCT) to a suitable
equivalence inverse for the fibre functor ω := x∗0 : dR(X) Repk(Π

dR), we obtain
a ΠdR-torsor XdR over X with an integrable connection ∇dR and a canonical xdR ∈
XdR(k) above x0.

Finally, we are able to give a description of Hom(ΠdR, ?) as a solution to a classi-
fication problem. A pointed G-torsor with connection is a G-torsor with a connection
plus a k-rational point above x0. Let ICTors

∗(G/X) be the set of all pointed G-torsors
with an integrable connection (modulo isomorphisms). The analogue of Theorem 27
is:

Theorem 43. The map from Hom(ΠdR, G) to ICTors∗(G/X) which associates to θ :
ΠdR G the pointed torsor with integrable connection XdR×ΠdR

G is a bijection.

Remark: Ends meet: We know that Hom(ΠdR,Ga) = Ext1dR(X)
∼= H1

dR(X/k) and
from the Hodge to de Rham spectral sequence follows that ker(H1

dR(X/k) H1(OX))
is the space of closed regular 1-forms on X . Let nilp(X) be the category of nilpo-
tent sheaves on X . Consider the canonical homomorphism of vector spaces α :
Hom(ΠdR,Ga) Hom(Πnilp,Ga) obtained from the inclusion ι : dR(X) nilp(X).
Any θ in ker(f) will correspond to an integrable connection on the trivial bundle
X ×Ga and vice-versa. For G smooth and algebraic,

A t(P ) ΘX
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has kernel LP/G(Lie(G)) (action is by the adjoint representation), which in the case
P = X×Ga is OX ; in fact A t(X×Ga) = OX⊕ΘX . Thus, the space of connections on
X × Ga is HomOX

(ΘX ,OX) = H0(X,Ω1
X/k) and the integrability condition is simply

the condition that the corresponding 1-form is closed.

2.2.3 Connections and Frobenius pull-back

Take k of positive characteristic p.
Assume that the torsor P has a connection ∇. We want to describe the connection

on L (V (1)) in terms of data in DE(X/k) (Lemma 44) and then relate this to the p-
curvature (see [19], 5, pp. 189-94 for the basic properties of the p-curvature). This
will give us examples of de Rham sheaves whose monodromy group is not etale (see
the example below) and hence exclude the category dR(X) of the study of “true”
differential equations.

Recall that for any quasi-coherent sheaf E on X , the Frobenius pull-back F ∗E has
a canonical integrable connection ∇can and that this connection has p-curvature zero
[19]; it is characterized by making all the sections 1⊗e ∈ OX⊗F,OX

E ∇can-horizontal.
Also recall that given any quasi-coherent OX-module (E ,∇) on X with ∇ an in-

tegrable connection of p-curvature zero, the OX(1)-module F := E ∇ is quasi-coherent
and (F ∗F ,∇can) is horizontally isomorphic to (E ,∇) (loc.cit., Thm 5.1, p. 190).

Lemma 44. Let V be a representation of G and let V (1) be its Frobenius twist. Then
the canonical isomorphism of OX-modules

θ : F ∗
LP/G(V ) LP/G(V

(1))

is horizontal.

Proof:Let U = SpecA be an affine open subset of X and let ψ−1U = SpecB.
Over U , θ is given by

A⊗F,A (B ⊗k V )
G (B ⊗k V

(1))G

1⊗
∑

i bi ⊗ vi
∑

i b
p
i ⊗ vi.

The sections 1⊗
∑

i bi⊗vi ∈ F
∗LP/G(U) are∇can-horizontal. Since the connection

on LP/G(V
(1)) is the one induced by the connection on P , the sections

∑
i b
p
i ⊗ vi ∈

LP/G(V
(1))(U) are horizontal. If we shrink U so that LP/G(U) becomes a free A-

module, we can assume that the A-module A⊗F,A (B ⊗k V )
G is free with a basis of

the form {1⊗ sj}. Hence θ is horizontal.
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From Lemma 44, follows that if every representation V of ΠdR is F -divisible
(see subsection 1.3.1 for terminology), then every (E ,∇) ∈ dR(X) has p-curvature
zero. This is very far from the truth (see below) and hence dR(X) will not have
enough properties to make it an interesting (and by interesting we mean similar to
the complex analytic case) category of differential equations.

Example:Let X be an elliptic curve over k algebraically closed and let ω be a
generator of the vector space H0(X,Ω1

X/k). Consider the de Rham sheaf (E ,∇), with

E = O
⊕2
X as an OX-module and

∇(D)(α, β) = (Dα+ βω(D), Dβ), α, β ∈ OX(U), D ∈ ΘX(U).

By Cartier’s Theorem ([19], Thm. 5.1, p. 190) if E had zero p-curvature, it would
be locally generated, as an OX-module, by the horizontal sections. Then, we would
be able to obtain an open cover {Ui} and invertible functions αi, βi ∈ O

×
X(Ui) such

that
dαi + βiω = dβi = 0.

Let K denote the function field of X . The expression above will show that

ω = −
dαi
γpi

, γi ∈ K

in Ω1
K/k. Computing the Hasse invariant as originally defined by Hasse (see S. Lang’s

Elliptic Functions), we conclude that X is supersingular. In particular, when X is
ordinary, the monodromy group ΠdR

mono(E ) = im(ΠdR GL(x∗0E )) is not etale.

2.3 The category Nstr(X)

Take k of positive characteristic p. Let x0 be a k-rational point of X noetherian,
regular, separated and connected.

Definition 45. The nilpotent stratified fundamental group of X, Πnstr, is the group
scheme associated to the neutral Tannakian category Nstr(X) via the fibre functor
x∗0.

2.3.1 Profiniteness

Theorem 46. Assume that H1(X,OX) and H0(X,OX) are finite dimensional. Then
Πnstr is profinite.
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Proof: As in Theorem 40, we need to show that Ext1str(1,1) = Homstr(Π
nstr,Ga)

is a finite dimensional vector space. An extension of 1 by 1 in str(X) is given by an
F -divided sheaf {Ei}i∈N such that each Ei is an extension of OX(i) by itself and the
diagram

0 F ∗OX(i+1) F ∗Ei+1

∼=

F ∗OX(i+1) 0

0 OX(i) Ei OX(i) 0

commutes. Hence we obtain a homomorphism from Ext1str(1,1) to

lim
←−

Ext1O(O ,O) = lim
←−

H1(X(i),OX(i)),

with F ∗ being used to form the projective limit. We claim that this homomorphism
is actually bijective. Surjectivity is obvious and we prove injectivity. Let {Ei}i∈N
be an extension such that Ei

∼= O
⊕2
X(i) for each i. Since HomOX

(O⊕2
X ,O⊕2

X ) is finite
dimensional, we can apply Gieseker’s result (Lemma 20) to prove that {Ei}i∈N ∼= 1⊕1
in str(X). It is easy to verify (thinking of representations of groups) that, in this
case, the extension {Ei} is equivalent to the trivial extension.

Let V := H1(X,OX). By flat base change, the vector spaces H1(X(i),OX(i)) is
canonically isomorphic to the vector space V (i) (see section 1.3.1 for notation). So,
Ext1str(1,1) is the vector space {(vi)i∈N ∈ V ; F ∗(vi+1) = vi} with calibrated multi-
plication by k: λ · (vn) = (λp

−n

vn).
Assuming for the moment that k is algebraically closed, we can use the corollary

on page 143, §14 of [30] to decompose V as Vs ⊕ Vn; each summand is stable under
F ∗ and F ∗r|Vn = 0, for some r sufficiently large, while F ∗|Vs is bijective. It follows
immediately that the first projection induces an isomorphism between Ext1str(1,1)
and Vs.

In general, we note that, for an extension field K/k, lim
←−i

V (i) ⊆ lim
←−

(V (i) ⊗k K)
and that the later K-vector space is of finite dimension for some finite extension K/k.
It follows that lim←−i V

(i) is also of finite dimension over k.

Corollary 47. If X is as above and k is algebraically closed, then Πnstr is proetale.
In fact, it is the largest unipotent quotient of the etale fundamental group (scheme).

Proof:Use Corollary 35, Proposition 36 and the theorem above.

Ext1str(1,1), another perspective

Using the Cartier-Katz Theorem for torsors, and the equivalence of the categories of
stratified and F -divided sheaves, one can translate Theorem 27 in terms of F -divided
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torsors. Define a pointed F -divided G-torsor as the data of an F -divided torsor
{Pi}i∈N with k-rational points pi ∈ Pi(k) above the points F i(x0) ∈ X

(i)(k) plus the
requirement that the isomorphisms F ∗Pi+1

∼= Pi take pi+1 to pi.
Let X be smooth and connected with x0 ∈ X(k). We can reobtain, in the case

H0(X,OX) = k, the description of Hom(Πstr,Ga) = Ext1str(1,1) as the projective
limit lim←−H1(X,OX) (Frobenius pull-back giving the transition maps in the projective
system) from the universal property of Πstr. Recall that H1(X,Ga) is the same for
the Zariski, etale or flat topologies on X . For every pointed F -divided Ga-torsor
{Pi, pi}i∈N we can naturally associate an element of lim←−H1(X(i),OX(i)) given by the
class of Pi in each H1. We claim that this map is bijective. Surjectivity follows from
the fact that every Ga-torsor over X has a k-rational point above x0 (since it is locally
trivial for the Zariski topology). To prove injectivity, assume that for two pointed
F -divided torsors {Pi, pi} and {Qi, qi}, Pi and Qi are isomorphic as torsors. Since
Ga is abelian, follows that we can arrange for the isomorphisms of torsors between
Pi and Qi to take pi to qi. Call this isomorphism αi. The lemma below proves that
there is only one such isomorphism and hence F ∗(αi+1) = αi. So {Pi, pi} and {Qi, qi}
are isomorphic pointed F -divided torsors.

Lemma 48. Let G be an abelian affine group scheme and let P be a G-torsor over
X. Suppose that all morphisms of X to G are constant.1 Let α, β : P P be
morphisms of torsors which coincide on some k-rational point of P . Then α = β.

Proof: The proof is an exercise in the theory of torsors. Let Ui X be an
fpqc covering of X which trivializes P and let ψi : Ui×G P |Ui be isomorphisms
of torsors (P |Ui is the base change of P to Ui). Let ψij ∈ G(Uij) be the transition
functions given by ψ−1

j ◦ ψi = id × ψij . On this covering, let α(u, g) = (u, αi(u) · g).

Then αj|Uij = ψij · αi|Uij · ψ
−1
ij = αi|Uij. Follows (by fpqc descent) that αi = f |Ui

for some f : X G; the analogous being true for β. By the assumption made on
the morphisms X G, αi(u) = cα and βi(u) = cβ for cα, cβ k-rational points of G.
Because α, β coincide on some k-rational point of P , follows that cα = cβ and, again
by fpqc descent, α = β.

2.4 A lemma of Nori

Lemma 50 below can be extracted from chapter IV of Nori’s thesis, [34]. Nori uses
this result to obtain the profiniteness of the nilpotent fundamental group in positive
characteristic. We will give a different and more direct proof.

1That means: For every f : X G, there exists a k-rational point g0 ∈ G(k) such that for
all k-algebras fA : X(A) G(A) is just the image of g0 in G(A)
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For the sake of elegance, we shall use a well known elementary result from the
theory of additive polynomials.

Recall that an additive polynomial2 P ∈ k[x]−{0} is a polynomial which satisfies
the following identity in k[x1, x2]:

P (x1 + x2) = P (x1) + P (x2).

Obviously, addition and composition of additive polynomials results in an additive
polynomial. The ring of additive polynomials (multiplication = composition) together
with the zero polynomial is none other than Homk−group(Ga,Ga) which, in positive
characteristic p, is the twisted polynomial ring k{F} with λpF = Fλ, where F is the
Frobenius endomorphism of Ga ([42], 8.4, Theorem, p. 65).

Lemma 49 (existence of lcm). Given additive polynomials P and Q, there exists an
additive polynomial L which is right divisible by P and Q.

Lemma 50. Let G = SpecR be an unipotent affine group scheme over k. If Hom(G,Ga)
is finite dimensional, then G is profinite.

Proof: Because G is a projective limit of unipotent algebraic quotients ([42], 3.3,
Corollary, p. 24 and exercise 3. of Chapter 8, p. 66), we can assume that G itself is
algebraic and we shall prove, under this assumption, that G is finite.

By the Lie-Kolchin Theorem ([42], 8.3, Theorem, p. 64) we can assume that G
is a closed subgroup of Un. Let xij denote the restriction to G of the coordinate
functions on An2

. If ∆ : R R⊗ R is the co-multiplication we have, for i < j,

∆(xij) =

{
xij ⊗ 1 + 1⊗ xij , if j = i+ 1,
xij ⊗ 1 + 1⊗ xij +

∑
i<l<j xil ⊗ xlj , ij j > i+ 1.

(2.3)

Thus, k[x] R, x 7→ xi,i+1 determines a homomorphism G Ga. By as-
sumption, the vector space Vi,i+1 := span{xp

m

i,i+1; m ∈ N} is finite dimensional. In

consequence, there exist additive polynomials P̃i such that P̃i(xi,i+1) = 0. By the
existence of lcm, there exists an additive polynomial P1 with P1(xi,i+1) = 0 for all
i = 1, . . . , n− 1.

Assume that we have proved, for r > 1, that

There are additive polynomials P1, . . . , Pr−1 such that Pj(xi,i+j) = 0. (†)

2We have removed the 0 polynomial from the definition of additive polynomial for convenience.
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We want to prove that (†) holds for r and this will be sufficient to prove the
lemma. Let Vij := span{xp

m

ij ; m ∈ N}. From the expressions in (2.3),

∆(xp
m

i,i+r)− x
pm

i,i+r ⊗ 1− 1⊗ xp
m

i,i+r ∈
i+r−1∑

l=i+1

Vil ⊗ Vl,i+r, (m ∈ N).

Since
i+r−1∑

l=i+1

Vil ⊗ Vl,i+r

is finite dimensional, there is a non-trivial relation

∑

m

λim∆(xp
m

i,i+r)− λim(x
pm

i,i+r ⊗ 1)− λim(1⊗ x
pm

i,i+r) = 0, i = 1, . . . , n− r.

Hence there exist additive polynomials Q̃i such that Q̃i(xi,i+r) : G Ga defines
a homomorphism and from the hypothesis of the lemma there exist additive poly-
nomials Qi such that Qi(xi,i+r) = 0. The existence of the lcm now completes the
induction in (†).
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Chapter 3

The stratified fundamental group
of an abelian variety

3.1 Introduction

Let X be an abelian variety of dimension g and take k algebraically closed of positive
characteristic p. The base point x0, giving the fibre functors, will be the identity
element of X(k).

We shall be interested in computing the stratified fundamental group scheme of X
(Theorem 58). This will be achieved using the previous description of the unipotent
part, a description of the character group and a decomposition result.

The insight provided by Tannakian duality is crucial for the study of these objects.
Indeed, even though there exist decomposition theorems for homogeneous sheaves (see
remark at the end of chapter), none of them will give a satisfactory decomposition
result for Πstr(X, x0) if we do not let group theory guide us in the formulation of the
theorems. But once we set out in this direction the results follow smoothly.

3.2 Stratified sheaves of rank one

Notation: Let G be an abelian abstract group and let [p] : G G be multiplica-
tion by p. We shall denote by G〈p〉 the group

lim←−

(
· · ·

[p]
G

[p]
G

[p]
· · ·

)
.

Lemma 51. Let Y be a proper and smooth scheme over k such that NS(Y ) is free.
Then the character group X(Πstr

Y ) is isomorphic to Pic0(Y )〈p〉. In particular, this
holds for curves and abelian varieties.
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Proof:Let L = {Li}i∈N be an F -divided invertible sheaf, which corresponds
to a character of Πstr. Taking the isomorphism classes of Li in Pic(Y ), we clearly
obtain a surjective homomorphism X(Πstr) Pic(Y )〈p〉. If Li

∼= OY for each i,
then Lemma 20 shows that {Li}i is isomorphic in str(Y ) to the identity element.
Now Pic(Y )〈p〉 = Pic0(Y )〈p〉 because the Néron-Severi group is free (of finite rank).
That the Néron-Severi group of an abelian variety is free follows from Cor. 2, p. 178
of [30].

Of course, the description of the character group does not, in general, give much
information about the group. In the present case though, it will be useful since we
shall obtain a decomposition of Πstr as a direct product of a diagonal group and an
unipotent group (Theorem 58).

Example 52. Computation of the monodromy. Let L = {Li}i∈N be an invertible
stratified sheaf and let G be the monodromy group im((Πstr) GL(e∗L ) = Gm).
This group is either µm or Gm. µm will occur whenever L has order m in X(Πstr).
In this case m, is prime to p and each Li has order m in X∨(k). If G ∼= Gm, then
either L0 has infinite order in X∨(k) or Li has finite order divisible by p for some
i ≥ 0. If every ξ ∈ X∨(k) is of finite order, then

X ∼= Vp(X
∨)⊕

(⊕

l 6=p

(Ql/Zl)
⊕2g

)
.

For another computation of this group of characters, the reader is directed to
section 4.3.2.

3.3 Main theorem 58

We are interested in Theorem 58. We start by recalling the following result of
Gieseker.

Theorem 53 ([16], thm. 2.6, p. 10). Every simple representation V of Πstr is one
dimensional.

This result says that Πstr is a projective limit of triangularizable groups and that
every E ∈ Ob str(X) has a filtration in str(X)

0 ⊆ E0 ⊆ · · · ⊆ Er = E , Ei+1/Ei = {L0,L1, . . .} (3.1)

with Li ∈ Pic0(X/k). In particular (see ii) of corollary 57) we have:

Corollary 54. The terms Ei of an object {Ei} in str(X) are homogeneous.
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Theorem 55. Every stratified sheaf E is isomorphic in str(X) to a direct sum
⊕

i

Li ⊗Ni,

where Li is invertible and stratified and Ni ∈ Nstr(X).

The proof will make use of the Fourier-Mukai transform ([28]). We digress to
make a brief introduction to this marvelous object.

Digression: Let Y and Z be k-schemes and let P be an invertible OY×Z-
module. Denote by pY and pZ the projections from Y × Z. Consider the functor
Mod(Y ) Mod(Z) given by M 7→ pZ∗(p

∗
Y M ⊗P) and let

ΦP : D−(Y ) D−(Z)

be its right derived functor. Because P is OX-flat, for any OX-module E , ΦP(E ) =
RpZ,∗(P ⊗ p

∗
Y E ).

The theory works beautifully for the abelian variety X . Let ΦX be ΦP where P

is a normalized1 Poincaré sheaf of X × X∨. Analogous notation for X∨ is in force.
Here is the main theorem followed by two the very useful working properties. Let
x, y, etc denote points of X(k) and α, β, etc points of X∨(k). Let Pα denote P|X×α
and Px denote P|x×X∨.

Theorem 56. i) The functors ΦX and ΦX∨ can be extended to D(X) and D(X∨)
respectively and there are natural isomorphisms

ΦX ◦ ΦX∨ = (−1)∗ ◦ [−g], ΦX∨ ◦ ΦX = (−1)∗ ◦ [−g],

where [−g] denotes the shift of the complex g places to the left. (See [28], thm. 2.2,
p. 156. or [35], Thm 11.6, p. 140).

ii) Let x ∈ X(k) and α ∈ X∨(k). There are natural isomorphisms of functors

ΦX ◦ (?⊗ Pα) ∼= t∗α ◦ ΦX(?), ΦX∨ ◦ t∗α(?)
∼= ΦX∨(?)⊗ P−α.

(See [28], 3.1, p. 158 or or [35], 11.3.1-2, p. 140)
iii) If f : X Y is an isogeny, then the diagrams

D(X)
ΦX

D(X∨)

D(Y )

f∗

ΦY
D(Y ∨).

(f∨)∗

commute up to natural isomorphism ([28], 3.4, p. 159, or [35], 11.3.5, p. 142).

1Normalized means that P|X × e ∼= OX and P|e×X∨ ∼= OX∨
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Let k(α) denote the skyscraper sheaf α∗(k) of X
∨.

Corollary 57. i) ΦX(Pα) ∼= k(−α)[−g].
ii) If E ∈ coh(X) has a filtration

E = Er ⊇ · · · ⊇ E0 = 0, Ei+1/Ei ∼= Pαi+1
,

then ΦX(E ) ∼= RgpX∨,∗(P ⊗ p
∗
XE )[−g] and has a filtration

RgpX∨,∗(P ⊗ p
∗
XE ) = Vr ⊇ · · · ⊇ V0 = 0, Vi+1/Vi ∼= k(−αi+1).

In particular, RgpX∨,∗(P ⊗ p
∗
XE ) is skyscraper and E is homogeneous.

iii) The functor T = RgpX∨,∗(P ⊗ p
∗
X?) induces an equivalence between homoge-

neous sheaves on X and skyscraper coherent sheaves on X∨.

Proof: i) follows from ii) of Theorem 56 and the general properties of the coho-
mology of the Poincaré sheaf.

ii) follows from i) (the homogeneity of E is a consequence of the fact that ΦX(E )⊗
Px ∼= ΦX(E ) for all x ∈ X(k) plus part ii) of Theorem 56).

iii) is in [28], Ex. 3.2, p. 158.
End of digression.

Proof of Theorem 55: We have to show that if E ∈ Ob str(X) is indecompos-
able, then the invertible stratified sheaves L i = {L i

ν}ν∈N in the filtration provided
by (3.1) are all isomorphic (in str(X) of course). Suppose, by absurd, that for some
i 6= j we have L i ≇ L j and hence, there is a ν0 ∈ N such that L i

ν0
≇ L j

ν0
(as OX-

modules). Because E = {E0, E1, . . .} is indecomposable, so is E ′ = {Eν0, Eν0+1, . . .}
and hence we can assume ν0 = 0. Let {TEi} := {Ei}. By iii) of Theorem 56 (and
the usual manipulation of Frobenius), (F∨)∗(Ei+1) ∼= Ei.

From ii) of Corollary 57, Supp(E0) = S ′
0 ⊔ S

′′
0 (disjoint union); thus

Supp(Ei+1) = S ′
i+1 ⊔ S

′′
i+1

with F∨(S ′
i+1) = S ′

i and F∨(S ′′
i+1) = S ′′

i . It results that there are decompositions
Ei = E ′

i ⊕ E ′′
i with (F∨)∗(E

′
i+1)

∼= E ′
i and (F∨)∗(E

′′
i+1)

∼= E ′′
i . Hence there exist

stratified sheaves {E ′
i } and {E ′′

i } with Ei
∼= E ′

i ⊕ E ′′
i (as OX-modules). Another

application of Lemma 20 gives a contradiction with the indecomposability of {Ei}
and consequently the theorem is proved.

We now translate Theorem 55 into the terminology of tensor product of Tannakian
categories. Recall that given two k-linear abelian categories A1 and A2, the tensor
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product is a k-linear abelian category A with a k-bilinear right-exact-in-each-variable
functor

⊗ : A1 × A2 A (3.2)

which is universal for all k-bilinear and right-exact-in-each-variable T : A1×A2 C,
that is, given such T , there is a k-linear and right exact T ′ : A1⊗A2 C such that
T ′ ◦ ⊗ = T . Moreover, this T ′ is unique up to natural isomorphism.

The tensor product A of A1 and A2 exists if each Ai is artinian and HomAi
(X, Y )

is a finite dimensional k-space. Also, there is a natural isomorphism obtained from
(3.2)

HomA1(X1, Y1)⊗k HomA2(X2, Y2)
∼= HomA(X1 ⊗X2, Y1 ⊗ Y2). (3.3)

Theorem 58. There is a natural isomorphism

Πstr(X, x0)
∼= Tp(X)×Diag(Pic0〈p〉),

where Tp(X) is the p-adic Tate module (of k-rational points).

Proof:Let lstr(X) be the full neutral Tannakian subcategory of str(X) whose
objects are direct sums of invertible and stratified {Li}. Restriction of the tensor
product

⊗ : Nstr(X)× lstr(X) str(X)

will give, according to Theorem 55, an essentially surjective k-linear tensor functor

⊗ : Nstr(X)⊗ lstr(X) str(X).

Write A1 = Nstr(X) and A2 = lstr(X). Then formula (3.3) is easily verified for
Y1 = 1 and X2 = 1. By rigidity we obtain the general case; this proves that ⊗ is full
and faithful and consequently an equivalence.

Let Πlstr and Πnstr denote the fundamental groups associated to lstr(X) and to
Nstr(X) via the fibre functor x∗0. In [10], 6.21, p. 164 (or 5.18, p. 151) its is proved
that, for affine group schemes G1, G2, the tensor product

Repk(G1)×Repk(G2) Repk(G1×G2), (V1, V2) 7→ Res(pr1)(V1)⊗Res(pr2)(V2)

makes Repk(G1×G2) into the tensor product category Repk(G1)⊗Repk(G2). So the
tensor equivalence ⊗ corresponds to an isomorphism Πstr Πnstr × Πlstr.

All representations of Πlstr are direct sums of one dimensional representations
and hence this group is diagonalizable ([42], 2.2, p. 15 for the terminology): Πlstr =
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Diag(Pic0(X)〈p〉), by Lemma 51 above. By Corollary 47, the group Πnstr is the
largest unipotent quotient of the etale fundamental group Πet of X

Πet ∼=
∏

l prime

Tl(X), canonically by [30], §18, p. 171.

For l 6= p, the group schemes Tl(X) are non-canonically isomorphic to Z
2g
l — which is

diagonalizable, and Tp(X) is non-canonically isomorphic to Zr
p — which is unipotent

([42], Theorem 8.5, p. 66).

Let C be a smooth and projective curve over k with a k-rational point P . Let J
be its Jacobian and let f : C J be the natural morphism given by the universal
property of J ; in particular it sends P to 0.

Given any affine algebraic group scheme G, we can form the largest abelian quo-
tient Gab := G/[G,G] which has the expected universal property: any homomorphism
G A with A abelian group scheme factors through Gab ([42], ex. 1, p. 125). For
a general group scheme G = lim←−αGα with O(Gα) ⊆ O(G) of finite type, we can form

Gab as the limit lim←−αG
ab
α ; obviously we have the same universal property as before.

The next corollary gives the expected version in positive characteristic of the known
complex analytic analogue.

Corollary 59. The natural homomorphism Πstr(C, P ) Πstr(J, 0) induces an iso-
morphism Πstr(C, P )ab Πstr(J, 0).

Proof: Because Πstr(C, P )ab is abelian it can be decomposed into a diagonal and
an unipotent part. The diagonal part is controlled by the character group Pic0(C)〈p〉
while the unipotent part is controlled by the largest etale quotient of Πnstr(C, P )ab.
Now the corollary follows from the fact that f ∗ : Pic0(J) Pic0(C) and f ∗ :
Πet(C, P )ab Πet(J, 0) are isomorphisms ([27], 9.3, p. 196 and 9.1, p. 195).

Remark: Πstr will not base change correctly (at least in a functorial way). That
can be seen as follows. First note that given a diagonal group G over k, the natural
map X(G) X(GK) is bijective for any extension field K ⊇ k. Let K be an alge-
braically closed field containing the function field ofX∨. ThenX∨(k) (XK)

∨(K) =
X∨(K) will not be bijective (the point corresponding to the inclusion in K of the
function field will not be in the image of X∨(k)). This is a different picture from the
etale case because characters of Πet lie in X∨(k)tors ∼= X∨(K)tors.

Remark: A. Scholl and N. Shepherd-Barron pointed out that the proof of The-
orem 55 is a simple transposition of known results.
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Let E = {Ei} ∈ str(X) be indecomposable. By the Krull-Schimdt property of
vector-bundles, we can assume that Ei is indecomposable for i ≫ 0. The existence
of Gieseker’s filtration E = E (r) ⊃ E (r−1) · · · ⊃ E (0) = 0 (Theorem 53) implies that
Ei is indecomposable only if it is a successive extension of the same invertible sheaf
Li (see Thm 2.3 of M. Miyanishi’s paper in Number theory, algebraic geometry and
commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973).

Our contribution to the study of Πstr relies on finding the correct definition (Πnstr)
for the complementary summand of Πlstr in terms of group theoretical data, which
in turn allowed to describe precisely Πstr from our previous results. Only by paying
attention to group theory we were led to a satisfactory result.
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Chapter 4

A link with rigid geometry

4.1 Introduction

In the complex analytic world, the topological fundamental group controls the cat-
egory of stratified (complex analytic coherent) sheaves [9]. The GAGA theorems
of Serre show that in the projective case, this control is extended even to coherent
sheaves on algebraic varieties. Motivated by this beautiful fact, we investigate in
this chapter the part played by the rigid fundamental group in classifying stratified
(F -divided) sheaves on a smooth rigid analytic variety. The relation between the
rigid and stratified fundamental groups (section 4.2) is presented by a natural tensor
functor between the representations categories and was used in [17] for the first (and
only, as far as we know) time. It turns out that the rigid fundamental group is far
from giving complete information about the stratified sheaves (see Theorem 62). In
remark (a) after the proof of Theorem 62, the reader will find one reason behind
this deficiency: admissible covers are rather limited set-theoretical covers. This phe-
nomenon is already well known from the theory of p-adic differential equations. A
more disturbing reason is the topic of Chapter 5.

In section 4.3 we examine the case of abelian varieties whose analytification is
a torus. It turns out that the structural results obtained in the previous chapters
(proetaleness of the unipotent stratified fundamental group and decomposition into
diagonal and unipotent parts) can be successfully used to understand the discrepancy
between the topological fundamental group and the stratified fundamental group
(Proposition 66 and Corollary 68). See also section 6.2.

It is important to point out that the results here are far from definitive and
present only a tentative of understanding, in positive characteristic non-Archimedean
geometry, what are “differential equations” and what part is played by the rigid
topology in solving them.
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4.2 A natural relation between the rigid analytic

and stratified fundamental groups

We will be dealing with rigid analytic varieties. Let k be algebraically closed of
characteristic p > 0, endowed with a non-Archimedean metric | · | : k R≥0

with respect to which it is complete. We will follow [4] and work with rigid analytic
varieties with the strong topology – the reader should always bear in mind that affinoid
domains form a basis for this G-topology. A rigid analytic variety is a triple of a set
X , a Grothendieck topology1 on the category of subsets of X (a G-topological space)
and a sheaf of k-algebras OX for this Grothendieck topology such that (a) all the
fibres OX,x are local rings and (b) for some admissible cover X = ∪Xα, (Xα,OX |Xα)
is isomorphic, as a locally ringed G-space, to the maximal spectrum of an affinoid
algebra endowed with its strong topology and structural sheaf.

Given such an object X , the Frobenius morphism F : X X is a morphism
of locally ringed G-topological spaces which is the identity on the categories giving
the G-topology and has the absolute Frobenius a 7→ ap as defining homomorphism
OX OX = F∗OX . If the local rings in X are all regular, then the F−1OX-algebra
OX is coherent and faithfully flat.

We now state and prove a lemma which will be used throughout what follows.
Recall ([4], p. 337) that a rigid analytic variety Y is connected if there is no admissible
covering {Ui; i ∈ I} of Y such that

I = I1 ⊔ I2,
⋃

i∈I1

Ui ∩
⋃

i∈I2

Ui = ∅ and
⋃

i∈I1

Ui 6= ∅ 6=
⋃

i∈I2

Ui.

Lemma 60 (Analytic continuation). Let Y be a connected rigid analytic variety
whose local rings are domains.

i) If for some y ∈ Y we have fy = 0 (the element of Oy induced by f), then f = 0.
ii) If f ∈ O(Y ) is such that, for some y ∈ Y , fy ∈ O

pr

Y,y for every r ∈ N, then f
is constant.

iii) Let O(n) ⊆ OY be the sheaf im(F n : OY OY ). Then ∩nO(n) is the constant

sheaf k̃.

Proof: i). This is folklore. Let U = {Uα; α ∈ I} be an admissible covering of Y
by affinoids. Refine the covering U by an admissible covering V = {Vβ, β ∈ J} where
each Vβ is an affinoid and O(Vβ) is a domain. The reason for the existence of such a
refinement is as follows. Let A be the ring of analytic functions on some Uα. Given
z ∈ Uα = Max(A), the natural map Az Oz is injective ([15], Prop. 4.6.1, p. 92)

1This topology should satisfy certain basic axioms omitted here but described in [4].
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and it follows that all local rings of A are domains. Hence (by standard commutative
algebra),

Max(A) =

r⊔

i=1

Max(Ai),

where the Ai are integral domains; note that there exists a function gj ∈ A which
is zero on all Max(Ai) with i 6= j and 1 on Max(Aj). This implies, in particular,
that the above covering is an (admissible) affinoid covering. Using once more the
injectivity of O(Vβ)z OY,z we obtain that f |Vβ = 0 whenever fz = 0 for some
z ∈ Vβ. In particular, defining J0 := {β ∈ J ; f |Vβ = 0}, it follows that ∪β∈J0Vβ will
not intersect ∪β 6∈J0Vβ. The connectedness of Y now shows that Y = ∪β∈J0Vβ and we
are done.

ii). There is a c ∈ k such that fy − c ∈ ∩rrad(Oy)
pr = 0. By item i), f − c is

globally zero.
iii). We have a natural inclusion k̃ ⊆ ∩nO(n) and we will show that it is an

isomorphism on each U ⊆ X open admissible affinoid which is connected. Since
taking the “sheaf associated to the presheaf” preserves fibres, O(n),y = Opn

y ⊆ Oy. Let
U be admissible connected of Y and let f ∈ ∩nO(n)(U). Given y ∈ U it follows that
fy is a pr-power for every r. Using ii), f ∈ k and we are done.

We recall the notion of analytic covering and refer to loc.cit. for the basic prop-
erties; also, we note that B. Conrad has elaborated on the notion of connected com-
ponents (more generally, irreducible components) in rigid geometry [7], an important
aspect of the theory which was overlooked by both [4] and [15].

Definition 61 ([7], p. 492). Let Y be a rigid analytic variety and let y ∈ Y . Consider
the set C(y) ⊆ Y of all y′ ∈ Y such that there exists Y1, . . . , Yn affinoid opens of Y
with Yi ∩ Yi+1 6= ∅ and y ∈ Y1, y

′ ∈ Yn. Then

1. The set C(y) is admissible.

2. If C(y) ∩ C(z) 6= ∅, then C(y) = C(z).

3. Given a set S ⊆ Y , the subset C = ∪s∈SC(s) is admissible and {C(s)}s∈S is an
admissible covering of C.

C(y) is called the connected component of the point y in the rigid analytic variety
Y .

We say that a morphisms of rigid analytic varieties f : Z Y is a trivial
covering if every connected component of Z is taken isomorphically to Y . In general,
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f is said to be a (rigid analytic, or rigid) covering if there is an admissible covering
{Yi} of Y with each Yi connected and such that f−1(Yi) Yi is a trivial covering.
As remarked below, the constraint of admissibility of {Yi} is what makes the theory
more interesting.

For convenience, any open U ⊆ Y such that f−1(U) U is a trivial covering is
called a distinguished set (open, admissible). A universal analytic covering Ω Y
is a simply connected analytic covering. The group of automorphisms AutY (Ω) is
called the rigid fundamental group. See section 5.7 of [15] for the basic properties of
Ω and AutY (Ω) (which are identical to the well known properties of the topological
case).

Let X0 be a smooth connected variety over k. Let X denote the analytification of
X0 (X is automatically connected, see 5.1.3, p. 531 of [7]) and assume that X has a
universal analytic covering π : Ω X with fundamental group Λ = AutX(Ω) (here
we are choosing a point x0 ∈ X0(k)). We will construct (following Gieseker) a tensor
functor from Repk(Λ) to str(X0) and then show that it identifies (non-canonically)
the algebraic hull Λalg with a quotient of Πstr(X0) in the case where X0 is projective.
In fact, we will only work with the category of F -divided sheaves on a smooth rigid
variety (definition is analogous to the classical case; this category will be denoted by
the usual str(?)) and then pass to str(X0) using rigid GAGA. The method is the
obvious analogue of the usual construction in complex analytic geometry, where the
Tannakian group scheme obtained from the category of local systems is the algebraic
hull of the topological fundamental group (the complex case is in [11]). The reader
should observe that the proof of Lemma 17 above shows that for {Mi} ∈ str(X), the
Mi are all locally free ([15], Def. 4.5.1, p. 87) and hence we have a neutral Tannakian
category with fibre functor x∗0.

Construction of a functor Let ρ : Λ GL(V, k) be a finite dimensional rep-
resentation of Λ and consider the associated sheaf on X , L(V ). Recall the definition
of L. For an open U ⊆ X , the open π−1(U) is Λ-invariant. Let λ ∈ Λ act on
V ⊗k OΩ(π

−1(U)) by

λ · (
∑

i

vi ⊗ fi) =
∑

i

ρ(λ)vi ⊗ f ◦ λ
−1.

Then L(V )(U) is the OΩ(π
−1(U))Λ = OX(U)-module of all invariant elements of

V ⊗ OΩ(π
−1(U)). It is easy to see that L(V ) is always a coherent analytic sheaf on

X . We also note that the natural map π∗L(V ) V ⊗k OΩ is an isomorphism.
Because k is perfect, every representation V0 of Λ can be F -divided: there exists

a representation V1 of Λ such that the Frobenius twist of V1 is isomorphic to V0.
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Moreover, such a representation is unique because fixing a basis of V0 with respect
to which ρ : Λ GL(V ) is given by the matrices (aij(λ)), the representation V1
will be the one given by the matrices (aij(λ)

p−1
). More precisely, the Frobenius

twist is an equivalence of the category of representations of Λ. For a representation
ρ : Λ GL(V0) of Λ, we let ρ1 : Λ GL(V1) be the representation of Λ which

as a vector-space is V
(−1)
0 and we let Λ act on it just as it acts on V1 (since as additive

groups V1 and V0 are the same). Inductively, we let Vi be the representation obtained
in the same way from Vi−1. Note that there is a natural p-linear homomorphism

L(Vi+1)(U) L(Vi)(U), (f1, . . . , fd) 7→ (f p1 , . . . , f
p
d ),

which induces an isomorphism F ∗L(Vi+1) ∼= L(Vi). Hence, L (abusing notation) is
naturally an exact tensor functor from the category of representations of Λ to the
category of F -divided coherent sheaves on X .

Theorem 62. The functor L identifies Repk(Λ) with a tensor subcategory of str(X).
That is, (a) L is full and faithful and (b) any sub-object M ⊆ L(V ) is the image of a
subobject W ⊆ V .

Proof:We start by proving (a). It is sufficient to show that a horizontal arrow
1 L(V ) is induced by an element of V Λ. Such an arrow is given as a compatible
system of global sections si ∈ L(Vi)(X); compatible, of course, means that under the
natural isomorphism L(Vn)⊗O,Fn OX L(V0) the global section sn ∈ L(Vn)(X) is
taken to s0 via

L(Vn)(X) L(Vn)(X)⊗O(X),Fn O(X) (L(Vn)⊗O,Fn O)(X) ∼= L(V0)(X).

But a global section sn of L(Vn)(X) is just a Λ-invariant d-uple (d = dim Vn) of
analytic functions (f1, . . . , fd) on Ω. Because the composition map above is just
(f1, . . . , fd) 7→ (f p

n

1 , . . . , f p
n

d ), it follows from iii) of Lemma 60 that (f1, . . . , fd) are
in V Λ

n . This proves that the functor L is full; faithfulness is immediate and we have
proved (a).

The proof of (b) runs through the usual argument. That is, if M ⊆ L(V ) is a
subobject in str(X), then there is an admissible cover of X = ∪αUα such that the
restriction M |Uα is trivial (as F -divided sheaf on Uα). Hence there is a subrepresen-
tation of W ⊆ V such that the inclusion M ∼= L(W ). In order to elaborate on this,
we will need the technical results below.

Define the category LCstr(X) as the full subcategory of str(X) with the following
class of objects: {Mi} is an F -divided sheaf such that for some admissible cover by
affinoids {Uα} of X , the restriction of {Mi} to Uα is trivial.

Since the local rings are all regular, we can assume that the Uα are in fact con-
nected and OX(Uα) are regular domains (see the proof of i) in Lemma 60).
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Lemma 63. i) LCstr(X) is stable under tensor products, duals, direct sums, kernels
and cokernels.

ii) The functor L : Repk(Λ) str(X) factors through LCstr(X).

Proof: The only non-obvious claim in i) is the one about kernels and cokernels
and it follows from the fact that choosing a point in each Uα makes the category
str(Uα) neutral Tannakian; hence subquotients of trivial objects are trivial. To prove
ii) we note that L(V )|U is trivial if π−1(U) U is a trivial covering.

Let V ∈ Repk(Λ) and let L(V ) be the locally constant sheaf2 of k-vector spaces
associated to V ;

L(V ) : U 7→ {
∑

j

fj ⊗ vj ∈ OΩ(π
−1U)Λ; fj is locally constant}.

We observe that, if we give L(V )⊗k OX the F -division provided by the submodules
{L(V )⊗k O(i)}i, then L(V )⊗k OX = L(V ) as elements of str(X).

Abuse notation and denote by Mi the image sheaf of Mi in M0 — it is a sheaf of
O(i)-modules which generates M0 (as OX-module).

The idea to prove part (b) of Theorem 62 is to consider the locally constant (by
part i) of Lemma 63 and iii) of Lemma 60) sheaf of finite dimensional k-spaces
W := ∩nMn ⊆ ∩nL(Vn) = L(V ) and show that this comes from a subrepresentation
of V , i.e. W = L(W ). Note that W is constant on each connected distinguished
admissible.

Let V := L(V ). Denote by ι : π−1V Ṽ the canonical inclusion into the

constant sheaf Ṽ . It is obviously an isomorphism. Let Y ⊂ Ω be a connected
admissible such that Y ′ := π−1(π(Y )) = ⊔λ∈ΛλY and π|Y : Y π(Y ) is an
isomorphism. Over Y , we have

π−1(V)(Y ) =

(∏

λ

Ṽ (λY )

)Λ

(4.1)

and ι(Y ) is just the projection onto the coordinate Y : ι({vλ}) = ve. In particular,

the inverse of ι(Y ) is the map that takes v ∈ Ṽ (Y ) = V to the unique element in the
right-hand-side of (4.1) which, on the coordinate associated to Y , is v. That is,

ι(Y )−1(v) = (ρ(λ) · v)λY . (4.2)

2A sheaf F on X is locally constant when there exists an admissible covering {Uα} of X with
F |Uα constant.
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In particular, the composition

V = Ṽ (Ω) res
Ṽ (Y )

ι(Y )−1

V(πY )
ι(λY )

Ṽ (λY ) res−1

Ṽ (Ω) = V (4.3)

is just v 7→ ρ(λ) · v.
Now we have a subspace W ⊆ V and a commutative diagram (since Ω is simply

connected and thus any locally constant sheaf is constant)

π−1W
∼=

W̃

π−1V ι Ṽ .

(4.4)

Using the composition in (4.3), we define an action of Λ on W = W̃ (Ω) which
makes the inclusion W ⊆ V Λ-equivariant. Hence, we have a natural inclusion
L(W ) ⊆ V = L(V ). It is obvious that this inclusion factors through W and thus we
have an isomorphism L(W ) W, since on connected distinguished affinoids the
dimension of the vector space of sections are the same.

Completion of the proof of Theorem 62: We keep identifying Mi with its
image inM0 and each L(Vi) with its image in L(V ) so that the inclusionM0 L(V )
preserves these subsheaves. It is easy to see that the natural map L(W ) = W⊗kOX =
(∩nMn)⊗k OX M0 defines an isomorphism which takes the subsheaves W⊗O(i)

to the subsheaves Mi and hence is an isomorphism in str(X).

Translating in terms of fundamental groups for the corresponding Tannakian cat-
egories and using rigid GAGA, we have

Corollary 64. assume further that X0 is projective. Then the algebraic hull of Λ is
a quotient of Πstr(X0).

That the identification of Λalg with a quotient of Πstr(X0) is non-canonical follows
from the fact that we are choosing an inverse tensor functor to the analytification
tensor equivalence an : coh(X0) coh(X) ([12], 1.11, p. 116) and a point of the
universal covering above the base point of X .

Remarks: a) Of course, Πstr(X0) and Λalg cannot be isomorphic because, for
example, there are finite etale coverings of X0 which do not arise from rigid coverings
of X ; Ω = (Gan

m )g has no rigid analytic coverings but has plenty of etale coverings.
This pathology is caused by the requirement that all admissible coverings must have,
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in some sense, finite sub-coverings and thus etale coverings like [l] : (Gan
m )g (Gan

m )g

are disregarded as rigid analytic coverings. One wonders if, given any E in str(X0), it
is possible to find a covering {Ui} (not admissible!) of X by affinoids such that E an|Ui
is trivial (this is true in characteristic zero). The understanding of this question is
the motivating reason for the work to follow (see chapter 5 and also section 6.2).

b) The construction of the functor L above is due to Gieseker [17]. The goal
in that paper was to show the existence of sheaves arising from representations of
the rigid fundamental group Λ of a Mumford curve X which are not semistable.
Later on, Faltings, in [14], showed how to construct, from a semistable sheaf E (of
degree zero) on X , a Φ-bounded representation VE of Λ (see §4 of [14] for the notion
of Φ-boundedness) such that L(VE) ∼= E , see [37], Thm 5.1, p. 594 where Falting’s
hypothesis of a discretely valued ground field was removed. Also, the functor E 7→ VE

is full and faithful (same theorem of loc.cit.) and establishes an equivalence from the
category of semistable sheaves to the category of Φ-bounded representations. Of
course, the drawback is that the constructions of linear algebra do not preserve the
category of Φ-bounded representations. Analogous results were obtained in [38] for
uniformized abelian varieties (rigid analytic tori) defined over certain complete fields.

Theorem 65 (Faltings, Reversat–van der Put). Let k be an algebraically closed field
of positive characteristic and complete with respect to a non-Archimedean absolute
value. Any semistable vector bundle E on a Mumford curve X over k admits an F -
division. If the field k is (isometrically) contained in the completion of the algebraic
closure of Fp((t)), then the same result holds for rigid analytic tori (uniformizable
abelian varieties in our terminology).

We finish this remark by noting that if an abelian variety X/k is such that Xan can
be uniformized, then X is ordinary. Using rigid GAGA and the above result, it follows
that any semistable (of degree zero) sheaf on X can be F -divided. Shepherd-Barron
points out that this last result can be derived using Fourier-Mukai and Remark 2.5
of [26].

4.3 Scholia in the case of uniformizable abelian va-

rieties (conditions for the existence of a true

fundamental group)

Our hope that the rigid fundamental group will describe all the stratified sheaves on
a smooth projective variety is certainly unfounded. But that is only the beginning
of a more subtle investigation. So, in order to coin a group whose algebraic hull (or
at least, continuous algebraic hull, see section 6.2 below for the definition) would be
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isomorphic to the stratified fundamental group, we need to describe this last object
more precisely. This is very pleasant in the case of uniformizable abelian varieties.
The ground field k is as before.

Let X0 be an abelian variety over k such that X = Xan
0 can be uniformized3,

X = (Gan
m )g/Λ (as group objects also) and Λ = Zg. Let L be the composition of L

with an inverse equivalence for (·)an which preserves the tensor structures.

4.3.1 The nilpotent part

Any unipotent representation of Λ, ρ : Λ Un(k), will factor through (Z/ptZ)g

(for some t) as every element of Un(k) has order a power of p. Hence it is just natural
to expect that the unipotent part of the algebraic hull of Λ and the unipotent part
of Πstr(X0) (which is just lim

←−i
(Z/piZ)g, see Theorem 58) will be isomorphic. This is

the content of the next Proposition.

Proposition 66. L induces an equivalence between NRepk(Λ) and Nstr(X0).

Proof: First note that these categories have proetale Tannakian fundamental
groups isomorphic to lim←−i(Z/p

iZ)g (X0 has maximal p-rank g). Hence, any object of
E ∈ Nstr(X0) is the sheaf associated to a representation of (Z/pnZ)g (for some n)
via the obvious (Z/pnZ)g-torsor π : X0/(ker[p

n])◦ X0; that is, E = ϕ(V ) with
V ∈ Repk((Z/p

nZ)g) (the notation is as in Proposition 36, see eq. (1.12)).
So, in order to show that L is essentially surjective, we have to prove that π is

the analytification of some analytic covering Y X . By rigid GAGA, the analyti-
fication functor induces an equivalence between the categories of finite schemes over
X0, FSCH/X0, and the category of finite rigid analytic varieties over X , FRA/X .
We claim πan is the natural analytic covering ν : T/pnΛ T/Λ, where T = (Gan

m )g.
This will finish the proof.

Proof of πan = ν: This is a consequence of the uniqueness of the factorization of
an isogeny into separable and purely inseparable isogenies. We have a commutative
diagram in FRA/X

X = T/Λ
[pn]

X = T/Λ

T/pnΛ,

ν

3The notion of uniformization used in this brief discussion is not the correct one as we are working
under the assumption that the universal covering is just a rigid torus; in general, a uniformization
means that X is a quotient G/Zh, where G is a certain extension of an abelian variety by a torus
of dimension h, see [15], 6.7.3. Nevertheless, G X is still a universal covering (loc.cit, Cor.
6.7.9).
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and via (·)an, this corresponds to a commutative diagram in FSCH/X0

X0
[pn]

µ

X0

Y0,

ν0

where ν0 is an etale map and (ν0)
an = ν. Hence, by Lang-Serre, Y0 is an abelian

variety and ν0 is a separable isogeny of degree png. Note that, choosing the identity
of Y0 to be µ(eX0), µ also becomes an isogeny. Since png is also the separable degree
of [pn] : X0 X0, we can use the uniqueness result mentioned earlier to conclude
that ν0 = π.

4.3.2 Another visit to the character group

We concentrate on elliptic curves in order to fix ideas. So from now on X = Gan
m /q

Z

is just a Tate curve.
We saw above that the unipotent part of Πstr(X0) is well behaved; now we will see

that the diagonal part is not — the character group X = X(Πstr) is quite big. From
Lemma 51 we have X = Pic0(X0)〈p〉. Since X0 is self dual, Pic0(X0) = X∨

0 (k)
∼=

X0(k) ∼= X(k) ∼= k×/qZ.

Proposition 67. There is a non-canonical isomorphism of abelian groups X ∼= k×⊕
Zp/Z.

Proof: We have to compute the limit

lim←−

(
· · ·

[p]
k×/qZ

[p]
k×/qZ

[p]
· · ·

)

To do that, we consider the projective systems of abelian groups

A• : · · ·
[p]

Z
[p]

Z
[p]

· · ·

B• : · · ·
[p]

k×
[p]

k×
[p]

· · ·

C• : · · ·
[p]

k×/qZ
[p]

k×/qZ
[p]
· · · .

These fit into an exact sequence (in the category of projective systems of abelian
groups)
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0 A• B• C• 0 so that we will have the long exact sequence

1 k× (k×/qZ)〈p〉 R1 lim←−(A•) R1 lim←−(B•).

Using Prop. 3.5.7 of [43] on p. 83, it follows that R1 lim←−(B•) vanishes and hence

(k×/qZ)〈p〉 is an extension of R1 lim←−(A•) by k
×. Now k× is divisible and consequently

is an injective Z-module (loc.cit., 2.3.2 on p. 39). It follows that the extension
above splits and hence there is an isomorphism of abelian groups (k×/qZ)〈p〉 ∼= k×⊕
R1 lim←−(A•). We are now left with the computation of R1 lim←−(A•). Using that the
projective system A• is isomorphic to the projective system

· · · ⊂ pn+1Z ⊂ pnZ ⊂ · · · ,

the proposition follows from the computation made in loc.cit., example 3.5.5, p. 82.

Putting together propositions 66 and 67, we obtain

Corollary 68. Let X0/k be an elliptic curve with |j(X0)| > 1 (Tate curve) and let Λ
be the rigid fundamental group of Xan

0 (isomorphic to Z). There is an exact sequence
of group schemes

0 Diag(Zp/Z) Πstr(X0) Λalg 0.

Remarks:(a) We can topologize X in such a way that it becomes a Hausdorff
group. This is done by noting that

k× ⊕ Zp

(q, 1)Z

contains k× as k× ⊕ {0} and the quotient is Zp/Z. Since there is only one extension
of Zp/Z by k× up to isomorphism, follows that X ∼= (k× ⊕ Zp)/(q, 1)

Z. I thank A.
Scholl for pointing this out to me.

(b) The general case of an uniformizable abelian variety is analogous, but nota-
tionally cumbersome.
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Chapter 5

Local solutions to differential
equations in the positive
characteristic non-Archimedean
case

5.1 Introduction

A long time ago, Cauchy established the existence and uniqueness of (a system of)
local solutions for ordinary differential equations in the complex domain. Now-a-days,
the usual proof of this theorem makes use of some contraction principle in complete
metric spaces, but Cauchy’s proof is, by far, the most interesting one for the algebraist.
It consists of (1) solving the equations formally in power series and (2) taking care
of convergence in a neighborhood of the point in question (see, for example, the last
chapter of [6]). Once that has been done, the general theory of complex analysis
assures (3) convergence in bigger domains. This last statement is the first one to fail
in the characteristic zero non-Archimedean setting but, nevertheless, (1) and (2) can
still be carried ([13], III, 5.). The goal of this work is to understand better (2) in the
case of a an algebraically closed base field k of positive characteristic and complete
with respect to a non-trivial non-Archimedean absolute value | · | : k∗ R>0.

The reader might interject to point out that in the theory differential equations of
positive characteristic, (2) above (existence of convergent local solutions) is governed
by the p-curvature (Cartier’s Theorem). But this result is a “first order” result and
the concrete analog of differential equations in positive characteristic are modules
having the action of all differential operators. So, for these modules one is presented
with the very basic question of convergence of local solutions.
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That is, let R be a ring of power series
∑∞

0 aix
i with some boundedness condition

on the |ai| (for example, that given in eq. (5.2) below). Let ∂n be the operators
analogous to

1

n!

dn

dxn

on R. A linear stratified differential equation of rank µ is a system of equations,

∂ny1 = b
(n)
11 y1 + . . . b

(n)
1µ yµ

...

∂nyµ = b
(n)
µ1 y1 + . . .+ b

(n)
µµ yµ,

(n ∈ N) (5.1)

where the b
(n)
ij are in R and the matrices (b

(n)
ij ) satisfy some set of relations. These

relations reflect the relations between the operators ∂n, such as (∂1)
p = 0 and ∂0 = id.

If we were in characteristic zero, the constraints would restrict the (b
(n)
ij ) in such a way

that (b
(1)
ij ) is already sufficient information to determine the other matrices; so we are

really dealing with a generalization of differential equations. It is quite easy to see that
these equations will always have solutions (y1, . . . , yµ) in the ring k[[x]], in fact, there
exists a Y = (yij) ∈ GLµ(k[[x]]) whose columns are solutions. Moreover, because the
space of solutions will have k-dimension ≤ µ, follows that any other µ× µ invertible
matrix whose columns are solutions to (5.1) is of the form Y · A, A ∈ GLµ(k).

Formally the problem is resolved, so we ask about convergence of the solutions.
We will see below (the example after Lemma 76) that it is not always possible to find
Y with entries in

k{x} :=

{
∞∑

i=0

aix
i; limsup i

√
|ai| < +∞

}
.

Presented with such an impossibility, we then want to understand how far we are
from solving these equations with convergent functions (in k{x}). At this point, it
becomes convenient to introduce the local fundamental group scheme Πloc (Definition
77) and the monodromy groups = algebraic quotients of Πloc. The introduction of
these concepts is a precious technical tool which helps us to formulate the right
questions pretty much the same way we learned to study Galois groups rather than
try to solve algebraic equations. This point of view is made manifested in Theorem
82 which is modeled in the similar one proved in [25].

Finally, we make a topological consideration. Convergence itself can be thought
as a topological problem, i.e. find “small neighborhoods” in which all solutions ex-
ist as analytic functions. Here we take “neighborhoods” and “analytic” in the sense
Grothendieck taught us to: regular functions of the structure ring of some site. The
existence of formal solutions is just the existence question examined in the smooth
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topology (this is a consequence of the Artin-Néron-Popescu-Rotthaus desingulariza-
tion: see [2] for example). So this work studies convergence in the rigid topology
(which again was an idea of Tate influenced by Grothendieck’s notion of topology).

Throughout this work, we will let k be an algebraically closed field of positive
characteristic p complete with respect to a non-trivial non-Archimedean absolute
value

| · | : k× R>0.

By a group or a group scheme we will mean an affine group scheme (Hopf algebra).

5.2 Premiss

Given a ρ ∈ |k∗|, let

O(ρ) =

{
∞∑

i=0

aix
i ∈ k[[x]]; lim

i
|ai|ρ

i = 0

}
. (5.2)

denote the affinoid algebra of analytic functions on the disk D(ρ) = {z ∈ k; 0 ≤
|z| ≤ ρ}.

Since ρ will be fixed in what follows, we will omit it from the notations and write
R := O(ρ) and D = D(ρ). On R, there are k-linear homomorphisms ∂n defined by

∂n

(∑

i≥0

aix
i

)
=
∑

i≥n

(
i
n

)
· aix

i−n, (n ≥ 0),

these operators are the formal equivalent of 1
n!

dn

dxn
in positive characteristic. Note that

1. ∂0 = id,

2. ∂n(fg) =
∑
∂r(f)∂s(g), where the sum is over all r, s ≥ 0 with r + s = n.

3. ∂m ◦ ∂n =

(
m+ n
m

)
∂m+n.

The subring of Endk(R) generated over R by all these operators is called the ring
of differential operators1 and is denoted by D .

Definition 69. Let M be finite R module. A stratification on M is a homomorphism
of R-algebras

∇ : D Endk(M).

This amounts to a family of k-linear homomorphisms {Dn}n∈N satisfying

1A more indicative name would be the ring of finite differential operators.
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1. D0 = id

2. Dn(f · e) =
∑
∂r(f)Ds(e) for f ∈ R and e ∈ M ; the sum is over all r, s ≥ 0

with r + s = n.

3. Dm ◦Dn =

(
m+ n
m

)
Dm+n.

The reader is directed to sections 5.8.2 and 5.8.3 (specially Corollary 100) of the
appendix for a more sheaf theoretical definition of stratified modules.

The category of modules with a stratification forms an abelian tensor category
as one can see by defining the tensor product stratification module (M,DM

n ) ⊗
(N,DN

n ) := (M ⊗R N,D
M⊗N
n ) where

DM⊗N
n (s⊗ t) =

∑
DM
i (s)⊗DN

j (t), sum over all i, j ≥ 0 such that i+ j = n.

In order to obtain a fibre functor, we need to show that sheaves with a stratification
are locally free. This can be done by copying the proof of Proposition 8.9 in [19], but
we will prove this using the F -divided structure on a module with a stratification.
For now, we assume this fact (see section 5.8.1 of the Appendix).

It follows in particular that the category of stratified modules over D is neutral
Tannakian, if one takes the fibre at 0 as fibre functor ([12], Def. 2.19, p. 138). This
category is denoted by str(D).

Another basic result on stratified modules is the Cartier-Katz Theorem. In the
definition below F : R R is the absolute Frobenius.

Definition 70. The category of F -divided sheaves (or modules over R) on D, Fdiv(D)
has objects {Mn, ϕn}n∈N, where Mn are finite R-modules and ϕn : F ∗Mn+1 Mn

is an isomorphism of R-modules. An arrow θ• : {Mn, ϕn} {Nn, ψn} is a sequence
of R-linear homomorphisms θn :Mn Nn such that ψn ◦ F

∗(θn+1) = θn ◦ ϕn.

Obviously the category of F -divided sheaves is a tensor category, using the faithful
flatness of F , it is also abelian with kernels and cokernels defined termwise. By Lemma
17, if {Mi} is an F -divided module, then all the Mi are locally free over R.

Theorem 71 (Cartier-Katz). The categories Fdiv(D) and str(D) are naturally equiv-
alent tensor categories.

See the Appendix for a discussion of this theorem.

Remark: If the reader is familiar with the Galois theory of linear differential
equations, it is obvious how to connect the notion of a stratification and a system of
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differential equations as in (5.1) above. If the reader is not familiar with this, the
following might be useful.

Let M be a free module over R on the basis e1, . . . , eµ and consider a connection
D :M M : D(fs) = df

dx
s+ f ·D(s). Let D(ej) =

∑
i aijei. The equation

D(y1e1 + . . .+ yµeµ) = 0 (5.3)

will be translated into the system of differential equations for the functions (y1, . . . , yµ):

dyj
dx

+ aj1y1 + . . .+ ajµyµ = 0, j = 1, . . . , µ. (5.4)

And conversely, given such a system of differential equations, we obtain a connection
on the free module Rµ.

The generalization of this to systems of systems of equations like (5.1) above fol-
lows the same reasoning — the only additional difficulty being of a notational nature.
So, stratified modules are really a generalization of linear differential equations and
the elements of a stratified module which are killed by all the differential operators
correspond to solutions to the associated system.

5.3 Fundamental matrices and monodromy groups

In this section we study two aspects of stratified modules. The first (section 5.3.1)
is the problem of finding formal solutions to a system like in eq. (5.1) — in the
terminology of section 5.2 we are trying to find, for each stratified module (M,∇), a
trivialization of (M ⊗k[[x]],∇). As remarked in the introduction, this step goes back
to Cauchy’s philosophy that analytic differential equations should be solved formally
and then made convergent. This is conceptually useful because when looking for
convergent solutions we only have to look for formal solutions that converge. In our
particular case, the F -division plays a central role: we are able to find a basis for the
solution space using a special x-adic limit of matrices, called a fundamental matrix.
The second aspect analyzed (section 5.3.2) are the stratified modules introduced by
H. Matzat and M. van der Put in [25] and their monodromy groups.

We keep the notations of the section 5.2: ρ ∈ |k∗|, R is the ring of analytic
functions on D = D(ρ). Also, let Rn = R ∩ k[[xp

n

]] = Rn ⊂ R be the image of R
under the absolute Frobenius F : R R.

5.3.1 Fundamental matrices

Since R is a principal ideal domain, stratified modules are always free. Take M a free
R-module of rank µ with a stratification ∇ and let {M =M0 ⊃M1 ⊃ . . .} be the F -
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division ofM obtained via the Cartier-Katz Theorem; Mn is the subspace of elements
in M killed by all ∇(∂ν) with 0 < ν < pn. We see each Mn as a subgroup ofM which
is invariant under multiplication by Rn and the natural inclusion Mn+1 ⊂ Mn induces

an isomorphism Mn+1 ⊗Rn+1 Rn Mn of Rn-modules. Take e(0) = (e
(0)
1 , . . . , e

(0)
µ )

a basis of M = M0 and let e(n) be a basis of Mn over Rn. If we agree to write the
column vectors of e(n) in the basis e(0), then e(n) is a matrix in GLµ(R). Let ϕn be
the isomorphism Mn+1 ⊗Rn+1 Rn Mn and identify it with the invertible matrix
with coefficients in Rn representing the lower horizontal arrow in the diagram below

Mn+1 ⊗Rn+1 Rn

via e(n+1)

ϕn
Mn

via e(n)

R⊕µ
n R⊕µ

n .

Again, in matricial terms, we have e(n+1) = e(n) · ϕn. If we let fn := ϕ0 · · ·ϕn−1,
then the operators Dn := ∇(∂n) will be given by (following the recipe given by the
Cartier-Katz Theorem)

Dν(e
(0)) := (Dνe

(0)
1 , . . . , Dνe

(0)
µ ) = e(0) · fn · ∂ν(f

−1
n ), 0 < ν < pn.

If we take ϕn(0) = I (which is always possible if we pick e(n) conveniently), the
sequence {fn} will converge to some element Φ of GLµ(k[[x]]) (in the x-adic topology!)
and the columns of Φ are all killed by Dn for n > 0. To see this, it is sufficient to
prove that for any n > 0,

Dn(e
(0) · Φ) ∈

(⋂

m≥0

xmM̂

)µ

= 0,

where M̂ ⊃ M is the x-adic completion of M . But if ν is large enough, there is a
matrix γ with power series entries such that Φ− fν = xp

n

· γ and hence

Dn(e
(0) · Φ) = Dn(e

(0) · (Φ− fν)) = xp
n

Dn(e
(0) · γ).

Also note that any s ∈ M̂ which is killed by all Dn with n > 0 is a k-linear
combination of the columns of e(0) · Φ, or, in more symbolic terms

Homstr(D(ρ))(1,M) = {α ∈ kµ; Φ · α ∈ M}.

Definition 72. Assume all basis e(n) have been chosen to satisfy ϕn(0) = I. The
matrix Φ constructed above is a called a fundamental matrix of (M,∇). If all the
choices are made explicit, we will say that Φ is the fundamental matrix.
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5.3.2 The stratified modules of Matzat and van der Put

Definition 73 (compare [25]). Given a k-vector space V of finite dimension and a
sequence {ϕn ∈ GL(V ⊗ Rn)}n∈N with ϕn(0) = I, we obtain an F -divided (strati-
fied) module M(ϕ•) by setting M(ϕ•)n = V ⊗k Rn and using the ϕn as transition
isomorphisms.

Moreover, this association preserves the constructions of linear algebra: M((ϕ ⊗
ψ)•) =M(ϕ•)⊗M(ψ•), M((ϕ∨)•) =M(ϕ•)

∨ etc.
The fundamental matrix for M(ϕ•) is just the x-adic limit limn ϕ0 · · ·ϕn.

If we take the matrices ϕn in G(Rn) ⊆ GL(V ⊗Rn), for some algebraic subgroup G
ofGL(V ), then the monodromy group ofM(ϕ•) in str(D) will be naturally a subgroup
of G (Lemma 75). First the formal definition of monodromy (Galois group).

Definition 74. Let G be a group scheme and let V be a representation of it. Let 〈V 〉⊗
be the full subcategory of Repk(G) having as objects the sub-quotients (=quotients of
sub-objects) of objects of the form

V
(a1,...,as)
(b1,...,bs)

:= V a1
b1
⊕ · · · ⊕ V as

bs
, V a

b := V ⊗a ⊗ (V ∨)⊗b, (5.5)

where s runs over the non-negative integers and (a1, . . . , as), (b1, . . . , bs) run over
all the s-uples of non-negative integers. The monodromy group of V is the group
scheme associated, via Tannakian duality ([12], 2.11), to the category 〈V 〉⊗. If C is
a Tannakian category which is equivalent to the category of representations of a group
scheme G, then the monodromy group of an object V ∈ C is just the monodromy group
of the corresponding representation in Repk(G). Notations: G(V,C ) or Gmono(V,C ).

Returning to the discussion of the monodromy group of M(ϕ•) started above,
note that for any representation

θ : G GL(W )

we can associate another stratified module using the matrices θ(ϕn) ∈ GL(W ⊗Rn);
moreover, this defines a tensor functor τ from Repk(G) to the category of stratified
modules over D. Since every representation of G is a sub-quotient of some represen-
tation as in (5.5), follows that τ takes values in the Tannakian subcategory 〈M(ϕ•)〉⊗
which is equivalent to Repk(Gmono(M(ϕ•), str)). Because τ(V ) = M(ϕ•), the group
homomorphism π G obtained from τ is a closed embedding ([12], 2.21, p. 139).
This shows

Lemma 75 (compare [25], Prop. 5.3). If the matrices ϕn defining the stratified
module M(ϕ•) belong to G(Rn), G ⊆ GL(V ) a closed subgroup, then the monodromy
group in the category of stratified modules over D of M(ϕ•) is a closed subgroup of
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G. More precisely, the tensor functor τ : Repk(G) str defined (completely) by
τ(V ) =M(ϕ•) induces a closed embedding.

Remark: (a) One should notice that Kedlaya proves in [21] that every locally
free module over a disk in any dimension is free (the analogous of the Quillen-Suslin
Theorem). So, one can control stratified modules over such affinoids by the method
of fundamental matrices.

(b) Given a stratified module M over R, we have produced a stratified module
over k[[x]] which is trivialized using the fundamental matrix (after choice of a ba-
sis). The reader should notice that the fundamental matrix obtained here is just the
fundamental matrix, in the sense of [25] Def. 3.3, p. 7–8, for the module M ⊗ k[[x]].

5.4 One dimensional modules

Keep ρ ∈ |k∗|. Let again D denote the disk {z ∈ k; 0 ≤ |z| ≤ ρ} and R = O(ρ) its
ring of analytic functions. For a stratified module (M,∇) over D, we let Φ denote
the fundamental matrix obtained in Definition 72 (given a choice of the e(n)).

Let (M,∇) be a rank one stratified module. Write ϕn = 1− xp
n

γn.

Lemma 76. The radius of convergence of Φ is ρ. In particular, if r ∈ |k∗| is strictly
smaller than ρ, then M restricted to D(r) is trivial.

Proof: Let r < ρ be in |k∗| and let ‖ · ‖r denote the spectral norm of the disk
D(r). It is given by

∥∥∥∥∥
∑

i≥0

aix
i

∥∥∥∥∥
r

= sup
i
|ai|r

i = sup
z∈D(r)

∣∣∣∣∣
∑

i≥0

aiz
i

∣∣∣∣∣ ,

and hence is well defined as a function k[[x]] R∪{+∞}. We have the estimates:

1. ‖ϕn‖r = 1.

2. limn ‖ϕn − 1‖r = 0.

The lemma is a consequence of 1. and 2. since ‖ · ‖r is multiplicative on O(r)
and this algebra is complete with respect to it ([4], 6.1.5, p. 234). Both 1. and 2.
will be a consequence of Prop. 5.1.3/1 on p. 193 of [4]; this proposition states that
f ∈ O(1) − {0} is invertible if and only if ‖f‖1 = |f(0)| and ‖f − f(0)‖1 < ‖f‖1.
Because ρ ∈ |k∗|, O(ρ) is isometrically isomorphic to O(1); it follows that

‖xp
n

γn‖ρ < 1.
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Now 1. follows from the fact that ‖xp
n

γn‖r ≤ ‖x
pnγn‖ρ < 1 and ‖ · ‖r is non-

Archimedean. Item 2. follows from

‖ϕn − 1‖r = ‖x
pn‖r · ‖γn‖r ≤ rp

n

· ‖γn‖ρ < rp
n

ρp
−n

= (r/ρ)p
n

.

Example:If we try to adapt the same proof to the case of higher rank, we will
find an obstruction in the existence of nilpotents in the algebra Endk(R

⊕m). The
entries of an invertible matrix in End(R⊕m) might have large spectral norms: take(

1 ∗
0 1

)
for example. If we pick

ϕn =

(
1 anx

pn

0 1

)
,

then

Φ = lim
n
ϕ0 · · ·ϕn =

(
1 θ
0 1

)
, θ =

∞∑

i=0

aix
pi.

Choosing the ai conveniently, this gives an example of a stratified module over D
which, even if we shrink D, is not trivial. One can say that the presence of unipotent
matrices is an obstruction to the convergence. Nevertheless, the stratified module
given by the matrices ϕn above has one solution (horizontal vector) given by (1, 0)t.
Note that this vector is also fixed by ϕn(c) where n runs over N and c over k. To
produce stratified modules with no solutions at all (even in a small disk), we will
avoid the existence of such a fixed vector. See the example of given of Lemma 83.

5.5 Local monodromy groups

We now introduce the formalism of Tannakian categories ([12]) to this situation. As
we are really interested in convergence in some neighbourhood of the origin, str(D(ρ))
is not enough as, in contrast to the complex analytic case, the non-Archimedean world
does not allow solutions to be prolonged to larger disks in the domain of definition
(there is no reason for the restriction str(D(ρ)) str(D(ρ′)) to be an isomor-
phism). Hence the correct setting is the category given in Definition 77 below.

Definition 77. T is the Tannakian category

lim−→
ρ

str(D(ρ)), ρ ∈ |k∗|.
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That is, the class of objects ObT is just the union of the class of objects in str(D(ρ))
for all ρ ∈ |k∗| and the arrows between M ∈ str(D(ρ1)) and N ∈ str(D(ρ2)) are

lim
−→

Homstr(D(r))(M |D(r), N |D(r)), r < min(ρ1, ρ2).

Πloc is the fundamental group scheme associated to it via the fibre functor 0∗ :
T (k −mod) (see [12], Thm. 2.11).

We are interested in the algebraic quotients of Πloc, which are just the monodromy
groups of its objects. The reader should notice that the monodromy group G(?,T )
(Definition 74) is the obstruction to finding a fundamental matrix which converges in
a neighbourhood of the origin.

We give a adaptation of Lemma 75 to this situation.

Lemma 78. Same notation of Lemma 75. The monodromy group of M(ϕ•) in the
category T is a closed subgroup of the monodromy group of M(ϕ•) in str(D(ρ)). In
particular it is a closed subgroup of G.

Moreover, let ρ′ < ρ be in |k∗| and let M (resp. M ′) denote an object of str(D(ρ))
(resp. its restriction to D(ρ′)). Then there exists a natural closed embedding

ι : G(M ′, str(D(ρ′))) G(M, str(D(ρ)))

of the monodromy groups and under this homomorphism the representation cor-
responding to M restricts to the representation corresponding to M ′.

Proof: The monodromy group ofM(ϕ•) in str(D(ρ)) is the Tannakian fundamen-

tal group associated to the category of all sub quotients in str(D(ρ)) ofM(ϕ•)
(a1,...,as)
(b,...,bs)

(notation is that of (5.5)). The monodromy of M(ϕ•) in T is the analogous and the
Lemma is just an application of [12], Prop. 2.21, p. 139.

The second part is just as easy (and uses again the same proposition in loc.cit.).

Corollary 79. Let M be an object of T . Then there is a ρ ∈ |k∗| and an Mρ

such that M is the image of Mρ under the functor str(D(ρ)) T and the natural
homomorphism G(M,T ) G(Mρ, str(D(ρ))) is an isomorphism.

Proof: This is a consequence of Lemma 78 and the fact that all monodromy
groups in str(D(r)) are reduced (Theorem 34).

Choose some r ∈ |k∗| such that M is induced by Mr ∈ str(D(r)). The category
〈M〉⊗ is the direct limit

lim−→
|r′|<|r|

〈Mr′〉⊗ (Mr′ is the restriction of Mr)
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and so G(M,T ) is the projective limit of the corresponding affine group schemes (it
is an exercise to show that the functor Repk takes projective limits to direct limits),
i.e. the monodromy groups of the various Mr′ . But all the arrows in this projective
limit are closed embeddings and all the groups are reduced linear algebraic groups.
It follows that if we pick some ρ ∈ |k∗| with |ρ| < |r| minimizing

dimG(Mr′ , str(D(r′))) and #π0G(Mr′ , str(D(r′))),

then G(Mρ, str(D(ρ))) = G(M,T ).

Given a reduced algebraic group G over k, following [25], we introduce the groups
p(G) and G(p). p(G) is the smallest closed subgroup of G containing all the elements
of order a power of p. Obviously it is a normal subgroup.

Lemma 80 ([25], Claim on p. 28). Notation as above.
i) p(G) is an algebraic subgroup of G.
ii) The connected component of the quotient G(p) := G/p(G) is either trivial or a

torus and π0G
(p) is a finite group of order prime to p.

Lemma 81. Let G be an algebraic quotient of Πloc. Then
i) G is reduced.
ii) If G is finite it is trivial.
iii) G is connected and equals p(G).

Proof: The proof of i) follows from Corollary 79 and the fact (which was used to
prove the Corollary) that all the monodromy groups of str(D(ρ)) are reduced. The
validity of ii) is a consequence of i) and the fact that the local ring lim−→ρ

O(D(ρ)) =

k{x} is strict henselian ([32], 45.5, p. 193). To prove iii), we start by observing that
the connected component (G(p))◦ is trivial or a torus and that π0(G

(p)) is of order
prime to p. By item ii), Πloc has no non-trivial finite etale quotients, so π0(G

(p)) =
{1}. By Lemma 76, every diagonal quotient of Πloc is also trivial. Hence, G(p) =
{1}.

All monodromy groups in T are generated by the elements whose order is a power
of p. The converse is the following theorem, whose proof is given below in Theorem
88: given a connected reduced algebraic group G = p(G), we construct a stratified
module in T whose monodromy is G.

Theorem 82. Any reduced connected algebraic group G which is generated as an
algebraic group by its elements of order a power of p is a quotient of Πloc.
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5.6 Didatic: Theorem 82 for SL(2)

This is a purely didactic digression (inspired by the didatic digression of [25]).
We will keep the notations from sections 5.2 and 5.3. Here we construct a stratified

module over D(ρ) which has monodromy group in the category T isomorphic to SL(2)
(one should bear Lemma 78 in mind). We will take matrices ϕn ∈ SL2(Rn) and form
M :=M(ϕ•). The monodromy group G ofM will then be a closed subgroup of SL(2)
and our task is to show it actually equals SL(2).

If G 6= SL(2), there would exist, by Chevalley’s theory of reconstruction, a sym-
metric power W of the canonical representation k⊕2 such that G fixes a line in W .
In fact, because G is reduced and connected, it has dimension ≤ 2 and hence must
be solvable. By Borel’s Fixed Point Theorem, the fixed line occurs already in k⊕2.
Since in the general case we know almost nothing about G except that it has no
one-dimensional non-trivial representations (Lemma 76), we will carry out the com-
putations with a general symmetric power.

The representation W of G corresponds (via Tannakian duality) to some sym-
metric power of M and the line fixed corresponds to a sub-object of M in T . Since
one dimensional objects are trivial, there is a ρ′ < ρ and an s ∈ M |D(ρ′) which is
a k-linear combination of the columns of a fundamental matrix. Hence, to obtain a
contradiction, we should take ϕn in such a way that the fundamental matrix of its
symmetric powers satisfy:

1. The coefficients of the entries grow very fast.

2. The entries of the first row have infinitely many distinct non-zero coefficients.

Condition 1. above is very natural. Condition 2. is to avoid the following fact:
ξ, η ∈ k[[x]] might have convergence radius zero but some non-trivial linear combina-
tion aξ + bη has positive convergence radius.

The idea is to take matrices ϕn ∈ SL2(Rn) of the form

(
1 anx

pn

0 1

)
or

(
1 0

anx
pn 1

)
.

Take an increasing sequence of non-negative integers {ni}i∈N such that the differ-
ences ni+1 − ni tend to infinity as i tends to infinity. Let an ∈ k

∗ be a sequence such
that limn |an|r

pn =∞ for any r > 0. Define ϕn by
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ϕn =





(
1 anx

pn

0 1

)
, if n = ni with i odd

(
1 0

anx
pn 1

)
, if n = ni with i even

(
1 0
0 1

)
, otherwise.

(5.6)

Note that for any infinite subset N ⊆ {ni},
∑

n∈N anx
pn has convergence radius

0. Let M := M(ϕ•) be the stratified module over D(ρ) obtained via the ϕn as in
Definition 73.

Lemma 83. The monodromy group G of M is SL(2).

Proof: We know that G ⊆ SL(2). If G 6= SL(2), there would be an integer
δ ≥ 1 such that G fixes a line in the representation S δ(V ) of SL(2) (here V = k⊕2

is the canonical representation and S ? is the ?th symmetric power). But fixing a
line means that there is a rank one sub-object of L ⊂ S δ(M) in T . By Lemma
76, such an object will be trivial. Translating this in terms of a fundamental matrix
Φ for S δ(M), there would be a non-zero vector α := (α1, . . . , αr)

t ∈ k⊕r such that
Φ · α ∈ (k[[x]])⊕r has positive convergence radius; here r := dimk S δ(V ) = δ + 1.
We will show that this is impossible. In order to do computations, we (1) note that
S δ(M) isM(S δ(ϕ•)) (2) take a basis for S δ(M) obtained from the basis ofM using
the lexicographic order and (3) rename ϕn to mean its symmetric δ-power. Example
with δ = 2:

ϕni
=




1 ani
xp

ni a2ni
x2p

ni

0 1 2ani
xp

n
i

0 0 1


 i odd; ϕni

=




1 0 0
2ani

xp
ni 1 0

a2ni
x2p

ni ani
xp

ni 1


 i even.

Assume by absurd that there was an α as above. Let i0 be an integer such that
for all i > i0, p

ni+1−ni > δ + 1. Because the convergence radius of

ϕ−1
ni0
· · ·ϕ−1

0 · Φ · α

is positive if and only of the convergence radius of Φ · α is, we can assume without
loss of generality that pni+1−ni > δ for all i. Denote the (i, j)-th coefficient of the

truncation ϕ0 · · ·ϕn by y
(n)
ij and let d

(n)
ij := deg(y

(n)
ij ). To simplify notation, let also

d
(i)
j denote d

(ni)
1j . For convenience of the reader, we make explicit the formula to obtain

y
(ni+1)
1j from y

(ni)
1j . The matrices ϕn are written (ϕ

(n)
ij ).
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y
(ni+1)
1j = y

(ni)
1j +

∑
l<j y

(ni)
1l ϕ

(ni+1)
lj , if i is even,

y
(ni+1)
1j = y

(ni)
1j +

∑
l>j y

(ni)
1l ϕ

(ni+1)
lj , if i is odd.

(5.7)

The lemma will be a consequence of the direct computation:

1.
∏r

j=1 y
(ni)
1j 6= 0 for i > 0.

2. Let i be even. Then the leading term of y
(ni+1)
1j will be lead.term(y

(ni)
11 ) ×

lead.term(ϕ
(ni+1)
1j ). In particular, d

(i+1)
j = d

(i)
1 + (j − 1)pni+1.

3. Let i be odd. The leading term of y
(ni+1)
1j is lead.term(y

(ni)
1r )× lead.term(ϕ

(ni+1)
rj ).

In particular, d
(i+1)
j = d

(i)
r + (r − j)pni+1.

4. d
(i)
j+1 − d

(i)
j = (−1)i+1pni for i > 0.

To see how the above formulae prove the lemma, let yij be the (i, j)-th coefficient
of Φ, so that ξ := α1y11 + . . . + αry1r has convergence radius greater than 0. If ξn
denotes the coefficient of xn in ξ then, except for finitely many, |ξn| ≤ cn (some c > 0).
Let

α = (α1, . . . , αJ , 0, . . . , 0) αJ 6= 0.

From the equations (5.7), one deduces that y1j ≡ y
(ni)
1j mod xp

ni+1
. As d

(i)
j < pni+1 ,

the coefficient of degree d
(i)
j in y1j is the coefficient of the leading term of

y
(ni)
1j .

For i odd, formula (4) above shows that the coefficient of degree d
(i)
J in ξ is the

coefficient of the leading term of y
(ni)
1J multiplied by αJ . Using the formulae (2) – (4)

one more time, it follows that for i odd the coefficient of the leading term of y
(ni)
1j is

aj−1
ni
· (ani−1

· · · an0)
δ

and
d
(i)
j = (j − 1)pni + δ(pni−1 + . . .+ pn0).

The convergence condition on ξ implies that αJ = 0.

Proof of the computation: By the formulae in (5.7) and the inequality pni+1−ni >

δ + 1, it is easy to prove by induction that d
(i)
j < pni+1.
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To prove formula (1), we again use induction. For i = 1 this is immediate. From
the expression in (5.7), we see that all non-zero terms in the summation have no

monomials of degree ≤ deg y
(ni)
1j . Hence y

(ni+1)
1j 6= 0.

We prove (2) – (4) simultaneously by induction that is, assume that (2) – (4) hold

up to i. First take i > 0 even so that ϕni+1
is upper triangular. Since ϕ

(ni+1)
lj is either

zero or has degree (j − l)pni+1 and d
(i)
1 > d

(i)
2 · · · > d

(i)
r , the term of highest degree in

the summation in (5.7) is y
(ni)
11 ϕ

(ni+1)

1j . Also, its degree is bigger than d
(i)
j . It follows

that the leading term of y
(ni+1)
1j is the product of the leading terms of y

(ni)
11 and ϕ

(ni+1)
1j .

This proves (2) and (4) The case i > 0 odd is entirely analogous and proves (3) and
(4) This finishes the computation and consequently the proof of the lemma.

5.7 Differential equations with no non-trivial con-

vergent solutions and proof of main theorem

In this section we will give a proof of the main theorem. The method is similar to
the method used in section 5.6. The idea of proof is as follows. Let G ⊆ GL(m) be
as in the statement of Theorem 82. We want to find matrices ϕn ∈ G(Rn) such that
the canonical embedding of the monodromy group H of M(ϕ•) in G (Lemma 78) is
in fact an isomorphism. Chevalley taught us how to deal with the construction of
quotients G/H by finding lines in some representation W of G which are fixed by H
but not by G (by general Tannakian theory, such a representation is related to the
standard representation G ⊆ GL(m) by linear algebra). We follow his wise idea (as
did [25]) with the constant support of Lemma 76, which states that such a line will
in fact correspond to a fixed element (for the H-action). The proof of Theorem 82
will follow from the non-existence of such fixed vectors (if we chose the ϕn carefully!)
Section 5.7.1 below shows what sort of constraint will appear if there exists such a
fixed vector and section 5.7.2 shows how to pick the matrices ϕn as to violate these
constraints. The proof was inspired by the proof of the main result of [25].

5.7.1 Some properties impeding convergent solutions

In this section we study conditions on the matrices ϕn so that M = M(ϕ•) has no
convergent solution (Lemma 84). Convergent means that there exists a horizontal
morphism from the trivial object of str(D(ρ)) to M , for some small ρ. Of course,
this is equivalent to finding an α ∈ V = 0∗M with Φ · α ∈ V ⊗ O(ρ), as any element
of M̂ = M ⊗ k[[x]] killed by all differential operators of positive order is a k-linear
combination of the columns of Φ.
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In order to see what kind of constraint the convergence of Φ ·α will impose on the
norms ‖ϕn · α‖ρ, we want, firstly, to take ϕn polynomial. This will allow us to use
the degree to compare the coefficients of Φ · α with those of ϕn · α. Secondly, we will
want the degrees to grow fast so that ϕ0 · · ·ϕn+1 is the sum of ϕ0 · · ·ϕn with terms of
higher degree (provided by ϕn+1). As this is not really feasible (for the pair n, n+1),
we follows [25] and introduce very large “gaps” in the sequence ϕn:

ϕ0 · · ·ϕn = ϕ0 · · ·ϕn+1 = . . . = ϕ0 · · ·ϕn′−1

for some n′ ≫ n (see property 2 below).
And finally, in order to avoid that the degree of ϕ0 · · ·ϕnα stays bounded, we

will impose that the group generated by the various ϕn(k) with n ≥ N generate a
subgroup of GL(V ) which does not fix α (Property 4).

Let An := k[xp
n

] and let V be a k-vector space with a fixed basis: km ∼= V . Take
matrices ϕn ∈ GL(V ⊗k An) with the following properties:

Property 1. ϕn(0) = I.

Property 2. There is an increasing sequence of positive integers {ni}i∈N such that
ϕn = I if n 6∈ {ni}. Also, {ni+1 − ni}i∈N is increasing (and hence tends to infinity).

Property 3. If we write ϕn = I + Γn, then the degree of Γn in x is bounded by bpn,
b > 0.

Property 4. Let G be the subgroup of GL(V ) generated by the subset ∪n≥0ϕn(k).
Then, for any N ∈ N, G is also generated by ∪n≥Nϕn(k).

We note that the degree of a matrix in GL(V ⊗k k[x]) = GLm(k[x]) is well defined
as is the degree of a vector f ∈ V ⊗k k[x]. Also, given an element

ξ =
∞∑

i=0

vi ⊗ x
i ∈ V ⊗k k[[x]], (5.8)

we define, for some ρ ∈ |k∗|,
‖ξ‖ρ = sup

i
{|vi|ρ

i},

where |·| : V R≥0 is the maximum norm with respect to the basis giving km ∼= V .
Under these conventions, V ⊗k O(ρ) is the subspace of all ξ with limi |vi|ρ

i = 0.
Note that picking a different basis for V gives a different ‖·‖ρ : V⊗kO(ρ) R≥0,

but the topology is the same. In particular, the concept of a sequence in V ⊗k O(ρ)
having bounded norm is well defined.

85



We will also find convenient to call the monomials vi ⊗ x
i of ξ in (5.8) the terms

of ξ.
The matrices ϕn define a stratified module M(ϕ•) over D(ρ), ρ ∈ |k∗|, and we let

Φ be the fundamental matrix (in the notation of Definition 73). Recall that we are
denoting by G the subgroup of GL(V )(k) generated by ∪n≥0ϕn(k).

Lemma 84. Notations as above. Assume that for some α ∈ V − {0}, Φ · α ∈
V ⊗k k[[x]] is actually in V ⊗k O(ρ). If α is not fixed by G then there exists an
infinite subsequence S ⊆ {ni}i∈N such that Γs · α 6= 0 and ‖Γs · α‖ρ is bounded for all
s ∈ S.

Proof: First of all, Φ ·α ∈ V ⊗k O(ρ) if and only if ϕ−1
n · · ·ϕ

−1
0 Φ ·α ∈ V ⊗k O(ρ).

Thus, we can assume that pni+1 > bpni for all i ≥ 0. Let Φn denote ϕ0 · · ·ϕn. It is
easy to see that the degree of Φni

·α is less than pni+1. These normalizations are made
to study the terms of Φ ·α and show that they are related to the Γ∗ ·α in a way that
the condition Φ · α ∈ V ⊗k O(ρ) gives the desired bound.

More precisely, take an arbitrary i ∈ N and let us study the next step Φni+1
·α in

the sequence. We have

Φni+1
· α = Φni

· α+ (Φni+1
− Φni

) · α =

= Φni
· α + Φni

· Γni+1
· α.

Of course, we might have ϕni+1
· α = α and the second term above is zero. But,

since α 6∈ V G, Property 4 above guarantees that there exists j > i such that ϕnν
·α = α

for all ν ∈ {i+1, . . . , j− 1}, but Γnj
·α 6= 0. Hence Φni

·Γnj
·α 6= 0 (Φn is invertible)

and
Φnj
· α = Φni

· α + Φnj−1
· Γnj

· α and Φnj−1
· Γnj

· α 6= 0.

Now, the condition on the degrees shows that the degree of Φni
·α is less than the

term of least degree in Φnj−1
· Γnj

· α since the degree of Φni
· α is at most bpni and

non-zero terms of Γnj
·α 6= 0 have degree greater or equal pnj . This has the important

consequence that all terms ? ⊗ xd appearing in Φni
· α are also appearing in Φ · α.

If we follow the same reasoning with j in the place of i, follows that the same terms
?⊗xd appearing in Φnj−1

·Γnj
·α appear in Φ ·α. Because Φ ·α belongs to V ⊗k O(ρ),

there exists a constant c > 0 such that ‖Φnj−1
· Γnj

· α‖ρ ≤ c.
All terms in Φnj−1

· Γnj
· α are of the form ?⊗ xd, with

d = ε0r0p
n0 + . . .+ εj−1rj−1p

nj−1 + rjp
nj , ε ∈ {0, 1}, r ∈ {1, . . . , b}.

By the (easy) Lemma 85 below, the terms of Φnj−1
Γnj
·α whose degree is between

pnj and bpnj will be the terms of corresponding degree in Γnj
·α. Hence, ‖Γnj

·α‖ρ ≤ c,
as we wanted.
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Lemma 85. Let {0, . . . , b}⊕N be the restricted product of the set {0, . . . , b} with
respect to the subset {0}. Assume that pni+1 > bpni for all i ≥ 0, then the map
{0, . . . , b}⊕N N given by

(m0, m1, . . .) 7→
∞∑

i=0

mip
ni

is injective.

Proof: Very easy.

5.7.2 Proof of Theorem 82

We now proceed as in section 7 of [25].
Take any reduced connected algebraic groupG such with p(G) = G. Note that any

unipotent subgroup of G is contained in p(G) and hence the closed normal subgroup
U(G) generated by all the unipotent and connected closed subgroups of G is contained
in p(G). The quotient G/U(G) is a torus or trivial and hence contains no elements
of order a power of p, it follows that U(G) = p(G).

Lemma 86 ([25], 7.6). Let G equal p(G) as above. Then there are morphisms
u1, . . . , uh : Ga G taking the 0 to the identity such that G is generated by
∪iui(k).

The reader might profit from knowing (using basic group theory) how to prove this
Lemma in the case G is reductive. In fact, if G is reductive, then G it is immediately
semisimple; G is the semi-direct product R(G) · (G,G), R(G) the radical; by rigidity
of tori, R is a central torus and under the assumption p(G) = G, it has to be trivial.
By Theorem 9.4.1 of [41], it is generated by the root subgroups Uα. The proof of
Lemma 86 is more complicated since some care has to be taken for non-reductive
groups.

Now, let u1, . . . , uh be as in Lemma 86 above. Choose a sequence {an}
∞
n=1 in k∗

such that |an| grows very fast:

lim
n→+∞

log |an|

pn
= +∞; (5.9)

in particular the inequality

|an| ≤ crp
n

, c, r > 0 (5.10)

is only possible for finitely many n.
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Pick a sequence of non-negative integers {ni}i∈N as in Property 3 and define
elements ϕn ∈ G(An) by

ϕn :=

{
I, if n 6∈ {ni}i∈N
ul(ani

xp
ni ), if n = ni and i ≡ l mod h.

(5.11)

Let π : G GL(V ) be a representation. Writing

π ◦ ul(x) = I +
b∑

r=1

γ
(π)
lr ⊗ x

r, γ
(π)
lr ∈ Endk(V ),

follows that

πϕni
= I +

b∑

r=1

arni
· γ

(π)
lr ⊗ x

rpni , if i ≡ l mod h. (5.12)

So, if α ∈ V is such that

‖πϕni
· α− α‖ρ ≤ c, for some c > 0

we have for i ≡ l mod h
|γ

(π)
lr · α| · |ani

|r ≤ cρ−rp
ni . (5.13)

In the presence of growth condition (5.9), inequality (5.13) is possible for infinitely

many values of i if and only if γ
(π)
lr · α = 0.

Let Φ be the fundamental matrix for the moduleM(πϕ•). If for some α ∈ V −{0}
Φ · α actually belongs to V ⊗k O(ρ) (ρ > 0), by Lemma 84, α is fixed by G. In a
nutshell:

Lemma 87. Let G = p(G) and let u1, . . . , uh : Ga G morphisms whose images
generate G. Let {an}n∈N be a sequence in k∗ satisfying eq. (5.9) and let {ni}i∈N be a
sequence of integers as in Property 2 above. Take {ϕn}n∈N as in eq. (5.11) and for
some representation π : G GL(V ), let Φ be the fundamental matrix for M(πϕ•).
If α ∈ V is such that Φ · α ∈ V ⊗k O(ρ), then α ∈ V G.

Theorem 88. Keep the notations of Lemma 87 and assume that π embeds G as a
closed subgroup of GL(V ). Then the canonical inclusion of the monodromy group
Gmono := G(M(πϕ•),T ) ⊆ G given in Lemma 78 is in fact an equality.

Proof:Assume that Gmono 6= G and use Lemma 90 below to obtain a representa-
tion θ : G GL(W ) with

θ = ∧r(πa1b1 ⊕ · · · ⊕ π
as
bs
),
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such that Gmono fixes a line L ⊂W which is not fixed by G. Since Gmono acts trivially
on L (by Lemma 76), there exists α ∈ WGmono which is not in WG. Now, the repre-
sentation of Πloc obtained by the composition Πloc Gmono G GL(W )
induces, by Tannakian duality, an N ∈ T which is just M(θ(ϕ•)), since

r∧(
M(πϕ•)

(a1,...,as)
(b1,...,bs)

)
∼=M

(
∧r
(
(πϕ•)

(a1,...,as)
(b1,...,bs)

))
.

Let Ψ be the fundamental matrix of the stratified module M(θϕ•). By Lemma 89
below, follows that Ψ · α is in W ⊗k O(ρ) for some ρ ∈ |k∗|. By Lemma 87, α ∈ WG,
which is a contradiction. This shows that the representation W cannot exist and
hence that Gmono = G.

Lemma 89. Let V be a k-vector space and let ϕn ∈ GL(V )(An) be such that ϕn(0) =
I. Let Φ denote the fundamental matrix for M(ϕ•). If α ∈ V is fixed by Πloc, then
Φ · α belongs to V ⊗k O(ρ) for some ρ ∈ |k∗|.

Proof: Let a : 1 V be the Πloc-equivariant map that takes 1 to α. This
corresponds to an arrow

A : 1 M(ϕ•)

in some str(D(ρ)), with ρ ∈ |k∗|, such that taking the fibre at 0 gives a back. But
A(1) is of the form Φ · β for some β ∈ V . Since Φ(0) = I, we have α = (Φ · β)(0) = β
and because A is defined over D(ρ) we have Φ · α = Φ · β = A(1) ∈ V ⊗k O(ρ).

Lemma 90. Let H ⊆ G ⊆ GL(V ) and assume that H 6= G. Then there exist
r, a1, . . . , as, b1, . . . , bs ∈ N such that H is the stabilizer of a line in

r∧(
V

(a1,...,as)
(b1,...,bs)

)
.

Proof: From [42], Cor. 1.16, p. 122, there exists a representation U of G which
has H as the stability group of a line L. Such a representation U is of the form U ′/U ′′

with subrepresentations U ′′ ⊂ U ′ ⊆ V
(a1,...,as)
(b1,...,bs)

. It follows easily that H is the stability

group of a subspace U (3) ⊂ V
(a1,...,as)
(b1,...,bs)

. The rest is linear algebra.

5.8 Appendix

5.8.1 Cartier-Katz

Our goal here is to prove (in an ad-hoc manner) the Cartier-Katz Theorem as stated
in section 5.2. Let R be the ring of analytic functions on the disk D(ρ) (ρ ∈ |k∗|).
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As usual, F : R R denotes the Frobenius f 7→ f p. Given an R-module M and
a subgroup of the additive group (M,+), N , which is stable by multiplication by
elements of the form f p

n

, we consider it as an R-module via pn-powers. Naturally
there is a canonical R-linear homomorphism N ⊗R,Fn R M .

Modules with connections, Cartier’s Theorem

Let M be an R-module with a connection D : M M , i.e. D is additive and
D(f · s) = df

dx
· s + f · D(s) for all f ∈ R. Assume now that D has p-curvature 0:

Dp = 0. Define MD to be the subgroup of M consisting of all s ∈ M killed by D.
It is an R-module via p-powers and it is a classical result of Cartier that the natural
homomorphism of R-modules ι :MD ⊗R,F R M is an isomorphism.

We give a proof of this fact following [19], Theorem 5.1 (where the finite type
hypothesis is assumed). First, we show that ι is injective. Let s ∈ ker ι and write it
as
∑m

0 si⊗ x
i ∈MD ⊗R, with sm 6= 0 and m < p. Then 0 = Dm(

∑
xisi) = csm and

this is impossible because c ∈ k∗. So ι is injective. To prove surjectivity, we let

P :M M, s 7→

p−1∑

r=0

(−1)r

r!
xrDr(s).

It is easy to verify that (i) im(P ) ⊆MD. Let

T :M MD ⊗R,F R, s 7→

p−1∑

r=0

P ◦Dr(s)⊗
xr

r!
.

By expanding P (Dr(s)) using the definition of P , we see that ι ◦ T = id, and
hence ι is also surjective.

The Cartier-Katz Theorem

The goal here is to prove that the category of F -divided modules Fdiv is equivalent to
the category of stratified modules str = str(D(ρ)). Recall that all F -divided modules
over R are free.

Now let M be an R-module with a stratification ∇. Denote the maps ∇(∂n) by
the usual Dn and let

Mn = {s ∈M ; Dj(s) = 0, ∀0 < j < pn}.

It is an R-module via pn-powers and δn := Dpn will mapMν into itself for each ν ≥ n,
since δnDν = Dνδn. Using that

∂pn(f
pn) =

(
df

dx

)pn
,
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we see that δn defines a connection on the R-module Mn and this connection is of
p-curvature zero. Moreover, M δn

n =Mn+1 and follows from the above result of Cartier
that Mn+1 ⊗R,F R ∼= Mn. Note that if M0 is finite over R, then so is Mn (seen as a
module via pn-powers). So we have obtained a functor from str to Fdiv; call it U .
Note that, in particular, stratified modules will be locally free if we know (as we do)
that F -divided modules are locally free.

We now construct an equivalence inverse to this functor. Let {Mi} be in Fdiv,
we want to find a stratification on M0. For each ∂n, we define ∇(∂n)(s) as follows.
Take e1, . . . , er freely generating Mν (pν > n) and write s =

∑
fi ⊗ ei. Then

∇(∂n)(s) =
∑

i

∂n(fi)⊗ ei.

It is immediate to see that this is well defined (i.e. is independent of the basis and of
ν) and that ∇ gives a stratification on M0 such that

pν−1⋂

n=1

ker∇(∂n) = im(Mν M0).

Call this functor V , which is certainly a tensor functor.
Then the above equality states that there is a natural equivalence id ⇒ UV ,

the other natural equivalence id ⇒ V U is also trivial. This proves the Cartier-Katz
Theorem.

5.8.2 Differential operators in rigid geometry of positive char-
acteristic

This discussion of differential operators is based on the exposition of W. Traves in
his PhD thesis (Toronto, 1998). Most importantly, the proof of Theorem 98 is just
an adaptation of the classical result presented there (strangely enough, this very
natural result is overlooked in EGAIV4, while the corresponding one for Ω

1 is carefully
analyzed, loc.cit. Cor. 17.2.4). The necessity for such an appendix is to clarify the
definition of stratification given in the main text (section 5.2). This requires a study
of how differential operators behave with respect to the opens of the rigid site over an
affinoid; more precisely, given an affinoid X , we want to obtain the coherence of the
presheaf Dn

X which, to each affinoid domain U ⊆ X , associates the OX(U)-module of
differential operators Dn(OX(U)). Theorem 98 fills this requirement.

Let Affdk denote the category of k-affinoid algebras and let A be an object of this
category. We remind the reader that k is still algebraically closed; this will allow us
to make various simplifications on the nature of differential operators.
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Definition 91. The algebra of principal parts of order n over A, P n
A/k, is the commu-

tative k-algebra A⊗k A/I
n+1, where I is the kernel of multiplication a⊗ b 7→ ab. The

modified algebra of principal parts of order n, fP n
A/k, is the algebra A⊗̂kA/I

n+1, where
I and the structural morphism are defined analogously. For notational convenience
we also define P∞

A := A ⊗k A and A⊗̂kA := fP∞
A . We let d0, d1 : A P n

A denote
the natural k-algebra homomorphism a 7→ a ⊗ 1 and a 7→ 1 ⊗ a . When referring
to P n

A as an A-module we will always mean the structure obtained via d0. Analogous
definitions for fP n

A are in force (also for n =∞).

Lemma 92. Under the hypothesis that k = kp, the natural homomorphism P n
A

fP n
A

is an isomorphism for any n ≥ 0 and fP n
A is a finite A-algebra.

Proof: We note that there is a commutative diagram of k-algebras

P n
A

fP n
A

(A⊗F,A(n),F A)/I
n+1 (A⊗̂A(n)A)/In+1

and that the vertical arrows are clearly isomorphisms. The bottom arrow is also
an isomorphism by the fact that F : A(n) A is finite plus Prop. 6 of 3.7.3, p. 165
of [4]. Hence the top arrow is also an isomorphism.

Now we recall the concept of differential operator. Given A-modules M and N ,
and a k-linear map ∂ :M N we can consider the A-linearization

∂′ : P∞
A ⊗d1,AM N, (a0 ⊗ a1)⊗ s 7→ a0∂(a1m),

where we see P∞
A ⊗M as an A-module via multiplication on the left of P∞

A . The
k-linear map ∂ is also A-linear if and only if ∂′ kills all elements of the form (1⊗ a−
a⊗ 1)⊗ s ∈ P∞

A ⊗M .

Definition 93. The k-linear map ∂ between A-modules M and N is a differential
operator of order ≤ n if the linearization ∂′ : P∞

A ⊗M N factors through P n
A⊗d1,A

M .

If we treat elements of A as k-linear homomorphisms of A-modules a :M N ,
then it is immediate to see that for a differential operator ∂ of order ≤ n, a◦∂ is also a
differential operator of order ≤ n. The A-module of all differential operators of order
≤ n (the action of A being the composition on the left) is denoted by Dn(M,N). The
next lemma is tautological.
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Lemma 94 (Universal Property). Let M and N be a A-modules and consider the
A-module HomA(P

n
A ⊗d1,A M,N) (via the A-module structure of N). The natural

A-linear homomorphism

HomA(P
n
A ⊗d1,AM,N) Dn(M,N), ϕ 7→ (M P n

A ⊗M N)

is an isomorphism.

We now give a more computational way of verifying that a k-linear map between
A-modules ∂ :M N is a differential operator. Introduce the k-linear map

ada(∂)(s) := ∂ ◦ a− a ◦ ∂ :M N.

Obviously ∂ is A-linear (differential operator of order ≤ 0) if and only if ada(∂) = 0
for all a ∈ A. Using that for ξ =

∑
i xi ⊗ yi ∈ I we have

ξ =
∑

(xi ⊗ 1) · (1⊗ yi − yi ⊗ 1),

it follows that ∂ is a differential operator of order ≤ n if and only if for every sequence
a0, . . . , an of elements in A,

ada0 ◦ · · · ◦ adan ◦ ∂ = 0.

5.8.3 Behaviour of differential operators with respect to etale

extensions

Definition 95. An arrow f : A B in Affdk is formally smooth (resp. formally
etale) if given a commutative diagram in Affdk

B
ψ
C/N

A ϕ

f

C

π

(5.14)

with N2 = 0, there exists an arrow (resp. unique) ψ′ : B C making

B
ψ′

ψ
C/N

A ϕ

f

C

π

(5.15)

commute.
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Definition 96 (Huber; [15], Prop. 8.1.1, p. 240). A morphism in Affdk f : A B
is etale if there exists an isomorphism of A-algebras B ∼= A〈x1, . . . , xn〉/(f1, . . . , fn)
with

det

(
∂fj
∂xi

)
∈ B×.

We note that an etale morphism is flat. As usual, we have

Lemma 97. Let B := A〈x1, . . . , xn〉/(f1, . . . , fr) and let

J =

(
∂fj
∂xi

)

be the Jacobian n× r-matrix. Then A B is formally smooth if some r× r minor
of J is invertible in B. If in addition r = n, then B is formally etale.

Proof: We use the following facts about affinoid algebras:
i) All affinoid algebras are k-Banach algebras and any two Banach algebras norms

are equivalent ([15], 3.2.1, p. 48).
ii) On an affinoid algebra T with Banach algebra norm | · |, the subring

T ◦ := {a ∈ T ; ‖a‖spec ≤ 1}

equals the subring
{a ∈ T ; sup

n
|an| <∞}

(loc.cit., 3.4.5, p. 56).
iii) If N ⊂ C is a nilpotent ideal of an affinoid algebra, then the natural projection

C C/N preserves the spectral semi-norm.
iv) Given an affinoid algebra C and a power series F ∈ C〈x1, . . . , xn〉, for any two

a, y ∈ (C◦)n we have

F (a+ y) = F (a) +

n∑

j=1

∂F

∂xj
(a)yj +

∑

i,j

Fijyiyj, Fij ∈ C.

Now to the proof of the Lemma. Consider a diagram as (5.14) and keep the
notation. We seek to find ψ′ as in diagram (5.15). Because ‖ψ(xi)‖spec ≤ 1 (use
the maximum modulus principle), follows that any ci ∈ C above ψ(xi) has spectral
semi-norm bounded by 1. Let c = (c1, . . . , cn) ∈ (C◦)n reduce to (ψ(x1), . . . , ψ(xn)).
Using ϕ, we regard each fi as an element of C〈x〉. Note that some r × r minor of
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the corresponding Jacobian matrix – the first one say – is invertible in C/N and
consequently in C. Then, the system of r × r equations

−fi(c) =
r∑

j=1

∂fi
∂xj

(c)Yj, i = 1, . . . , r (5.16)

has a unique solution y1, . . . , yr ∈ C; reducing the above system to C/N, uniqueness
tells us that yi ∈ N. Now define Ψ : A〈x1, . . . , xn〉 C by xi 7→ ci+yi for 1 ≤ i ≤ r
and xi 7→ ci for j > r. Since N is nilpotent, the formula in iv) above shows that Ψ
factors through B and gives the desired ψ′. The case r = n clearly implies that ψ′ is
uniquely defined by the solutions of the system (5.16).

We now want to show that the algebras P n
A = P n

A/k have a local nature for the
etale topology on Affdk. That is, let f : A B be an arrow in Affdk and consider
the natural homomorphism of k-algebras

P n(f) : P n
A⊗d0,AB P n

B, (a0⊗a1 mod In+1
A )⊗b 7→ b·(f(a0)⊗f(a1)) mod In+1

B

(5.17)

Theorem 98. If f above is etale, then P n(f) is an isomorphism.

Proof: First we need a candidate for the inverse of P n(f). We begin by noting
that the k-algebra P n

A ⊗d0,A B is in fact an affinoid algebra; P n
A is affinoid and since

d0 : A P n
A = (A⊗A(n) A)/In+1 is finite, P n

A ⊗d0,A B is P n
A⊗̂d0,AB ([4], Prop. 6 of

3.7.3, p. 165) and the complete tensor product is affinoid (loc.cit., Prop. 4 of 7.1.4,
p. 268). Now we will use Lemma 97 in order to copy the procedure of proof of the
same result in the classical case. Start with the diagram in Affdk

B
idB B

A
d1⊗1B

f

P n
A ⊗A B

εA⊗AidB=ψ

(5.18)

where εA is the augmentation P n
A A. Because f is flat, follows that the

(kerψ)n+1 = 0 and because f is formally etale, there exists a unique homomorphism
δ : B P n ⊗A B making

B
idB

δ

B

A
d1⊗1B

f

P n
A ⊗A B

ψ

(5.19)
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commute. We want to show that the k-algebra homomorphism δ is a differential
operator of order ≤ n from B to the B-module P n

A ⊗A B. Given b ∈ B, it is easy to
see that

adb(δ) = δ ◦ (1⊗ b)− (1⊗ b) ◦ δ = (δ(b)− 1⊗ b) ◦ δ

and proceeding inductively

adbn ◦ · · · ◦ adb0 ◦ δ =

(
n∏

j=0

(δ(bj)− 1⊗ bj)

)
◦ δ. (5.20)

By the commutativity of the upper triangle in diagram (5.19), follows that ψ(δ(b)−
1 ⊗ b) = 0 and hence the left hand side in equation (5.20) is zero. This means that
δ is a differential operator of order ≤ n. By the universality of P n

B, there must be a
factorization

P n
B

ϕ

B
δ

d1

P n
A ⊗A B

(5.21)

with ϕ B-linear. This is our candidate for the inverse of P n(f). To prove this, we
first prove

Claim: P n(f) ◦ δ = d1,B.
Proof of the Claim: Because f is formally etale (until now we have only used

formal smoothness), we are required to prove that the diagram

B
id

Pn(f)◦δ

B

A

f

d1,B◦f
P n
B

εB

is commutative since, replacing the diagonal arrow above by d1,B, we certainly get a
commutative diagram. The bottom triangle is commutative, as δ◦f = d1,A⊗1B. The
upper triangle is commutative because a direct inspection shows that ψ = εA ⊗ idB
(of (5.19)) is none other than εB ◦ P

n(f). This proves the claim.
Now we show how the claim proves the Theorem. From the commutative diagram

B
d1,B

δ
d1,B

P n
B ϕ P n

A ⊗A B Pn(f)
P n
B
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and the universal property of P n
B, it follows that P

n(f) ◦ ϕ = id. Analogously, we
have the commutative diagram

B

d1,B
δδ

P n ⊗A B
Pn(f)

P n
B ϕ P n

A ⊗A B.

It follows that ϕ ◦P n(f) agrees with the identity on the B-submodule of P n
A⊗AB

generated by the image of δ (call this moduleM). From diagram (5.19),M ⊇ N⊗AB,
where N ⊆ P n

A is the A-submodule generated by the image of d1,A. But it is clear
that N = P n

A. It follows that ϕ ◦ P
n(f) = id and we are done.

Remark: If we keep in mind that the single goal of this discussion is to obtain
Theorem 98 above, then we could restrict the hypothesis to the case of flat and
formally etale A-algebras. It may be the case that all formally etale A-algebras
are flat, but the author was not able to find a convincing reference for this, even
in the classical case of EGAIV1. Indeed, consulting section 19.7 of loc.cit., we find
Thm. 19.7.1 which states that a local, formally smooth homomorphism (of topological
rings, the topology being the linear topology obtained from the maximal ideals) ϕ :
(R,m) (S, n) is flat. But in view of the absence of a clear statement other than
that of loc.cit. Prop. 22.6.4 concerning the relations between the global and local
notions of formal smoothness, it is not safe to assume that all formally etale algebras
are flat. We also note that the proof of Theorem 98 would be reduced to referencing,
at least in the case of rational domains in the affinoid Max(A), if we could prove
that the ring of analytic functions on such an open is formally etale for the discrete
topologies ; that, of course, does not seem to hold, once more due to the fact that
the local notion of formal smoothness is not so well behaved as we are used to in the
finite type case.

We are now in a position to define the sheaf of differential operators on the affinoid
space X = Max(A) (with its strong G-topology).

Definition 99. Given E a coherent OX-module, represented by the finite A-moduleM
([15] Thm. 4.5.2, p. 88), the sheaf of differential operators of order ≤ n on E , Dn(E ),
is the coherent OX-module associated to the finite A-module HomA(P

n
A ⊗A M,M) =

Dn
A(M). The sheaf of differential operators on E , D(E ), is the direct limit of sheaves

lim−→n
Dn(E ) of OX-modules.

Because affinoids are quasi-compact, it is easy to see that D(E ) is in fact the sheaf
associated to the A-algebra D(M) = lim

−→n
Dn(M).
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Using that homomorphism modules HomA(M, ?) behave well under flat base ex-
tension ([24], Thm. 7.11, p. 52) and Theorem 98, we have deduced the first part
of

Corollary 100. i) Given a coherent sheaf E on X, the sheaf Dn(E ) has the following
property: for any rational domain U ⊆ X, we have Dn(E )(U) = Dn

O(U)(E (U)).

ii) If X = D(ρ) (ρ ∈ |k∗|), then the following extra data on E are equivalent:
(a) A stratification on M := E (X)
(b) A homomorphism of OX-algebras ∇ : D(OX) D(E ).

Proof: Just ii) needs proof. First we note that Dn(A) is the A-module generated
by the differential operators ∂q with 0 ≤ q ≤ n; this is an easy consequence of the
fact that P n

A is free on (1 ⊗ x − x ⊗ 1)q. Having this in mind, it is obvious that
the data on (b) induces a stratification on M by using the differential operators
∂n : O(X) O(X). If we have a homomorphism δ : D(O)(X) Endk(M) as
in (a), it is easy to see, using the ad operators, that δ factors through DA(M). In
fact, δ is given by a compatible set of A-linear homomorphisms

δn : Dn(A) Dn
A(M),

which in turn give compatible OX-linear homomorphisms δn : Dn(OX) Dn(E ).
This is the required data in (b).

Remark: It follows from Huber’s Lemma ([15], 8.1.1, p. 240) that all affinoid
domains of an affinoid variety X are etale; hence i) of Corollary 100 holds true in this
more general setting.
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Chapter 6

Natural questions for future work

6.1 Local solutions on proper rigid spaces

We begin by collecting a result of our general theory. Here k is algebraically closed
of positive characteristic p and complete with respect to a non-trivial and non-
Archimedean absolute value.

Proposition 101. Let E be an object of str(X), X = Gan
m /〈q〉 a Tate elliptic curve.

For any point x ∈ X, there exists an admissible U neighbourhood of x in X such that
E |U is trivial.

Proof: Every Tate elliptic curve is algebraizable; there exists an elliptic curve
X0/k and an isomorphism Xan

0
∼= X (of group objects). Hence, using Theorem 55

above, we can assume that E = N ⊗ L , where N is nilpotent (in str(X)) and
L has rank one. From Lemma 76, there exists an admissible neighbourhood U of
x where L is trivial (as an object of str(U)). We also know that N is associated
to an etale covering of X and because OX,x is henselian, it follows that N will also
become trivial if we shrink U (in the rigid topology) even more.

We are presented with the very same question for other projective rigid analytic
spaces.

Question 1. Let X be a connected projective and smooth rigid analytic curve and let
E ∈ str(X). Let x be a point of X. Is there an admissible neighbourhood U of x such
that E |U is trivial?

We explain why this should be true. We have seen above (example in section 5.4)
that the F -divided modules which fail to have a complete system of solutions near
an arbitrary point come from unipotent matrices. So, in a sense, these should be
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nilpotent objects of the category str(X). But nilpotent objects in str(X) come from
etale coverings and hence should be locally trivial.

6.2 Is Πstr the algebraic hull of a topological group?

The title of this section says it all. If X/k is as in section 6.1 above, we can ask if there
exists a topological group Γ = lim

←−i
Γi, with the Γi discrete, such that the continuous1

algebraic hull lim
←−i

Γalg
i is isomorphic to Πstr

X . Using the concrete description of the
stratified fundamental group of an elliptic curve (Tate curve) given in Chapter 3 and
section 4.3.2 and some prototypes of fundamental groups in the non-Archimedean
setting (see [8] and [1]), we can test which one would be appropriate. To be more
specific, we propose to tackle this problem in an experimental way: this means that
first we should actually find an abstract topological group whose character group
(i.e., homomorphisms into k×) is isomorphic to the character group of the stratified
fundamental group in question. In the case of a Tate elliptic curve, this requires that
we find some group whose character group is k×⊕Zp/Z. Note that a distant analogy
is governed by Pontryagin duality (of course, in our case, the group in question is not
Hausdorff and we are interested in homomorphisms into k×, not C×).

We now make a brief comment about the aforementioned prototypes of fundamen-
tal groups and give indications of why they should not yet give the correct answers.

A. de Jong introduced in [8] a new etale fundamental group for analytic spaces
(in the sense of Berkovich) πet

1 — this is a topological group which is usually not
prodiscrete. It is unknown to us how to compute πet

1 , even in simple examples; this
inability seems justifiable since Y. André underwent the work of defining the temperate
fundamental groups to fill a lacuna between the rigid analytic fundamental group and
(de Jong’s) etale fundamental group. Also, the period maps of Gross and Hopkings
show that the etale fundamental group of Ph

Cp
is quite big (πet

1 (P
h
Cp
) surjects onto

SLh+1(Qp)). So, it seems that πet
1 is unproportionally large. Nevertheless it is very

useful to define other fundamental groups.
The temperate fundamental group of André is much better behaved. For example

πtemp
1 (X) ∼= Z×

∏

ℓ

Zℓ,

if X = Gan
m /Z is a Tate curve over Cp. We do not know how to compute πtemp

1 of
a Tate curve over k (positive characteristic), but we believe that it is isomorphic to

1The reason we have asked for the topological group in question to be prodiscrete is influenced
by the fact that the temperate fundamental group is prodiscrete. Of course, at the moment, we have
no indication whatsoever that this is the correct condition to be asked.
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Γ = Z ×
∏

ℓ 6=pZℓ as a prodiscrete topological group (Γ is the projective limit of the
projective system

id× projection : Z×Z/nZ Z× Z/mZ, m|n, (n, p) = 1).

It is likely that this group will provide the answer we are looking for, since the group
of continuous characters (and here we take k with the discrete topology) of Γ is just
k× ⊕ µ(k), where

µ(k) ∼=
⊕

ℓ 6=p

(Qℓ/Zℓ)

is the group of torsion elements in k× (roots of unity).

6.3 Singularities and Riemann’s existence theo-

rem

One natural topic of investigation arises from the study of stratified modules in the
rigid analytic category. It links to the powerful theory of p-adic differential equations
of Dwork, Robba, Christol, Mebkhout and many others. On Chapter 4, we only had to
evoke rigid GAGA in order to compare the fundamental group schemes of str(X) and
str(X0), where X = Xan

0 is the analytification of a projective and smooth algebraic
variety defined over k (algebraically closed, of positive characteristic and complete
with respect to a non-Archimedean absolute value | · |). What about the open case?
How to relate str(X) and str(X0)?

A substantial step towards understanding this problem in the complex analytic
case is the theory of regular singular points of Deligne. The bulk of this theory
is the following: let X0/C be a smooth algebraic variety and let X be the com-
plex analytic manifold obtained from it. There is a natural faithful tensor functor
(·)an : DE(X0/C) DE(X) from the category of algebraic differential equations on
X0 to the category of analytic differential equations on X . Deligne defines a subcate-
gory RSDE(X0/C), called the category of differential equations with regular singular
points, such that the restriction of (·)an to RSDE(X0/C) induces an equivalence. The
objects of RSDE(X0/C) are DEs on X0 which come from DEs with logarithmic poles
on some smooth compactification X0 ⊂ X0 (see [9] for more details). The proof of
the equivalence RSDE(X0/C) ∼= DE(X) consists of (1) using GAGA and (2) proving
that the analogous category of analytic equations, RSDE(X), is in fact the whole
DE(X). At this point, the problem is entirely analytic and is solved by showing the
existence of an extension with logarithmic singularities to the compactification and
the meromorphicity of horizontal sections. Let us comment on the existence of the
extension. One first works locally. Using a simple monodromy argument, it is possible
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to show that integrable differential equations on a polydisk minus coordinate hyper-
planes {z ∈ Cn; |z ≤ δ}−{z; z1 · · · zm 6= 0} can be extended to differential equations
with logarithmic singularities on {zi = 0}. If we stop now and translate what we have
to the non-Archimedean world (of characteristic zero, for the time being), we obtain
a very interesting question.

Question 2. Let D(r)∗ be the punctured disk of radius r in Cp and let (M,∇) be
a differential equation over it. Is there an extension (with singularities) of this dif-
ferential equation to the whole disk D(r)? What kind of poles can one expect at the
origin?

It is our belief that this question already has an answer (known to the experts
in p-adic differential equations). So we are also interested in the case where Cp is
replaced by some positive characteristic analogue. But in this direction, any given
answer has to be more subtle because of Riemann’s existence theorem (RET)2. Keep-
ing in mind that finite etale covers “are” differential equations with finite monodromy,
the question above is a generalization of RET. Fortunately, RET has already been
understood in the non-Archimedean setting (Gabber (unpublished), Lütkebohmert
[22], Schmechta [39], Lütkebohmert-Schmechta [23] and Ramero [36]), even in posi-
tive characteristic. In fact, in [23] a negative answer to RET is given (Artin-Schreier!)
and this is the reason for our belief that the analogue to Question 2 in positive charac-
teristic should be harder. Nevertheless, it is possible that RET is just a consequence,
as it is in the complex analytic case ([20], Appendix), of a positive answer to Question
2.

2In what follows, we will use the name RET to designate Riemann’s existence problem (the
question) and Riemann’s existence theorem (the affirmative answer).
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[11] P. Deligne, Le groupe fondamental de la droite projective moins trois points,
Galois groups over Q (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ.,
16, Springer, New York, 1989.

103



[12] P. Deligne and J. Milne, Tannakian categories, Lecture Notes in Mathematics
900, pp. 101–228, Springer-Verlag, Berlin-New York, 1982.

[13] B. Dwork, G. Gerotto, F. Sullivan, An introduction to G-functions, Annals of
Mathematics Studies, 133. Princeton University Press, Princeton, NJ, 1994.

[14] G. Faltings, Semistable vector bundles on Mumford curves, Invent. Math. 74
(1983), no. 2, 199–212.

[15] J. Fresnel and M. van der Put, Rigid Analytic Geometry and its Applications,
Progress in Mathematics 218, Birkhäuser, Boston, 2004.
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SGA 1, Lecture Notes in Math., 224, Springer-Verlag, Berlin-New York, 1971.

SGA 2, Cohomologie locale des faisceaux cohérentes et Théorèmes de Lefschetz lo-
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