Sorbonne Université Théorie des Nombres 2 (MU4MA034) Mars-Mai 2021.

Séance 6, 26 mars 2021

Premiers inertes, ramifies et totalement décomposés

- Pour chaque n > 1, μ_n , resp. μ'_n , note l'ensemble des racines de l'unité dans \mathbb{C} , resp. les racines primitives.
- Si K est un corps de nombres, Δ_K note le discriminant de K. Il s'agit d'un entier.
- Si K est un corps de nombres, un idéal premier de K est un idéal premier de \mathfrak{O}_K . Pour un tel premier \mathfrak{p} , le corps résiduel $\mathfrak{O}_K/\mathfrak{p}$ sera noté $\mathbb{F}_{\mathfrak{p}}$.

Exercice 1. Soit $m \in \mathbb{Z} \setminus \{0, 1\}$ un entier sans facteur carré et $K = \mathbb{Q}(\sqrt{m})$. Le discriminant de K sera noté par d dans la suite.

- 1/ Rappeler le lien entre d et m. En déduire que d détermine K.
- 2/ L'entier d est soit $\equiv 0$, soit $\equiv 1$ modulo 4. Justifier.
- 3/ En écrivant $\delta = \frac{d + \sqrt{d}}{2}$, montrer que $\{1, \delta\}$ est toujours une base entière de \mathfrak{O}_K .
- 4/ Soit p un nombre premier. Exprimer $\mathfrak{O}_K/(p)$ comme $\mathbb{F}_p[X]/(f(X))$, où f est un polynôme unitaire.

On fixe p > 2 un nombre premier.

- 5/ Soit $F = X^2 + bX + c \in \mathbb{F}_p[X]$ et $\Delta = b^2 4c$. Montrer que si $\Delta = 0$ si et seulement si F est le carré d'un polynôme de degré 1. Montrer que $\Delta \neq 0$ est un carré de \mathbb{F}_p^* si et seulement si F est le produit de deux polynômes linéaires distincts. Montrer que Δ n'est pas un carré si et seulement si F est irréductible. (Dit autrement, sur $\mathbb{F}_p[X]$ la théorie "marche" comme sur $\mathbb{R}[X]$.)
- 6/ Montrer que p se ramifie dans K si et seulement si $p \mid d$.
- 7/ Montrer que p se décompose en K si et seulement si d est un carré modulo p.
- 8/Montrer que p est inerte dans K si et seulement si d n'est pas un carré modulo p.
- 9/ Montrer que 2 ramifie si et seulement si $d \equiv 0 \mod 4$.
- 10/ Montrer que 2 se décompose si et seulement si $d \equiv 1 \mod 8$.
- 11/ Montrer que 2 est inerte si et seulement si $d \equiv 5 \mod 8$.

Exercice 2. Soient $\alpha = \sqrt[3]{2}$ et $K = \mathbb{Q}(\alpha)$. Décomposer 5, 7 et 11 en premiers dans \mathfrak{O}_K . En suite, calculer le degré de chaque premier dans les décompositions.

Exercice 3. Soit p un nombre premier, $f = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ un polynôme p-Eisenstein, α une racine de f et $K = \mathbb{Q}(\alpha)$.

- 1/ Soit \mathfrak{p} un premier de \mathfrak{O}_K au dessus de p et soit e la puissance maximale de \mathfrak{p} qui divise p. Montrer que e est aussi la puissance maximale de \mathfrak{p} qui divise a_0 .
- 2/ En regardant la puissance maximale de \mathfrak{p} qui divise $\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha = -a_0$, montrer que e = n, c'est-à-dire, que p est totalement ramifié.

Exercice 4. On souhaite étudier la décomposition des nombres premiers dans une extension cyclotomique. On fixe ainsi p un nombre premier et n > 1 un entier qui n'est pas divisible par p.

- 1/ Soient E/\mathbb{F}_p une extension finie et $\zeta \in E$ une racine primitive n-ème de l'unité. Montrer que $f = [\mathbb{F}_p(\zeta) : \mathbb{F}_p]$ est l'ordre de p dans $(\mathbb{Z}/n)^*$.
- 2/ Soit $K = \mathbb{Q}(\mu_n)$ et \mathfrak{p} un idéal premier de K au-dessus p, c'est-à-dire, $p \in \mathfrak{p}$. Montrer que pour chaque $\zeta \in \mu_n$, l'égalité suivante

ordre de
$$\zeta$$
 dans $\mu_n = \text{ ordre de } \zeta + \mathfrak{p} \text{ dans } \mathbb{F}_{\mathfrak{p}}^*$

est vérifiée. Indication : On regardera les racines du polynôme X^n-1 en $\mathbb{F}_{\mathfrak{p}}$.

À partir de maintenant, n est une puissance d'un premier ℓ .

 $3/\star \text{Soit } K = \mathbb{Q}(\mu_n)$. Montrer que $p\mathfrak{O}_K$ n'est pas ramifié, c'est-à-dire, il existe des premiers $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ deux-à-deux distincts de K tels que

$$p\mathfrak{O}_K = \mathfrak{p}_1 \cdots \mathfrak{p}_r$$
.

- $4/\star$ On garde les notations de la question précédente. Prouver que le degré de chaque \mathfrak{p}_i (qui vaut $[\mathbb{F}_{\mathfrak{p}_i} : \mathbb{F}_p]$), est l'ordre de p dans $(\mathbb{Z}/n)^*$. Indication : Faire appel à la question 2. En déduire que si $p \equiv 1 \mod n$, alors p est totalement décomposé en K.
- $5/\star \text{On suppose } n=8 \text{ et } p=3.$ Décomposer l'idéal $p\mathfrak{O}_K$ en premiers.