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The rate of flow through a pipe is measured by the Reynolds number, Re, and the flow typically undergoes

a transition from (smooth) laminar flow to (chaotic) turbulence for Re > 2000. This result dates back to

Osborne Reynolds’ observations in 1883 [1]. For a long time, the only theoretical bound for transition,

based on energy stability, predicted that Re > 81 [2], a long way off the observed Re > 2000. The difficulty

stemmed from the absence of nonlinear solutions to the Navier-Stokes equations that could be found for

pipe flow. (The situation was simiar for many other simple shear-flows.) Reynolds had observed that

the transition occurs in the absence of a linear instability, so that the transition is inherently nonlinear.

Without the linear instability, no new branch of solutions can be tracked off the laminar solution. A new

approach was needed.

The development of methods to numerically compute solutions for high-dimensional systems has revo-

lutionised our approach to understanding the transition to turbulence. This has enabled us to extract

invariant solutions (equilibria and periodic orbits) directly from simulations. Taken directly from the

natural measure of turbulence, we have good reason to believe that these solutions provide a ‘skeleton’ or

‘backbone’ for the dynamics, which can now be viewed as a 1-dimensional trajectory that shadows these

solutions in a high-dimensional phase space [3].

In this talk I will outline some of the methods that have enabled us to find solutions within turbulence

(Newton-Krylov [4]; slicing [5]), methods to probe the laminar-turbulent boundary (edge-tracking [6];

adjoint optimisation [7]), and I will point out some of the challenges that still remain in their application

to a high-dimensional system.
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