High-order generalized-o methods for dynamic phase-field problems
Pouria Behnoudfar™*, Victor M. Calo™'"

¥School of Earth and Planetary Sciences, Curtin University, Kent Street, Bentley, Perth, WA 6102,
Australia
T Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO),
Kensington, Perth, WA 6152, Australia
* Presenting author, e-mail: Pouria.Behnoudfar @postgrad.curtin.edu.au

ABSTRACT

The generalized-o method was introduced by Chung and Hulbert in [4] for solving structural dynamics
problems. Later, the mothod was modified to deal with the computational fluid dynamics governed by
the parabolic differential equations [6]. Then, the analysis corresponding to applying the method to
non-linear problems was introduced in [5]. This time-marching time integrator provides second-order
accuracy in time and has a feature of user-control on the numerical dissipation in the higher frequencies
of the discrete spectrum. This method includes a wide range of time integrators such as the Newmark
method, the HHT-a method by Hilber, Hughes, and Taylor, and the WBZ-a. method by Wood, Bossak,
and Zienkiewicz; see [4].

We propose a new class of high-order generalized-o methods following [1, 2, 3] for general types of non-
linear phase-field models featuring high-order spatial differential equations that maintain all the attractive
features of the original generalized-o. method. In particular, we extend the time-marching technique to
any arbitrary order of accuracy in time that is unconditionally stable to address a wide range of dynamic
problems such as Swift-Hohenberg, Cahn-Hilliard, and Phase-field crystal. Our method also provides
the user-control on the numerical dissipation in the higher frequencies of the discrete spectrum as well
as delivering an optimal behavior for low-frequencies domains. Finally, we present numerical results
to verify the stability and its high-order accuracy in time. For this aim, we consider a NURBS-based
variational formulation, and the spatial discretization relies on isogeometric analysis.
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