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Disclaimer 1/14

My concerns about poor productivity wrt software
development

Workflow

Design new method — analyse it — implement it (rapid
prototyping) — exploit it in (large scale) applications
(performance)

Probably not your case: Focused on analysis (academic
examples) or application side (existing libraries OK)
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Scientific computing teams

PhD students (3-4y), postdocs (1-3y), no computer
scientists

Software dev policies

Start from scratch: Academic codes in dynamic
languages (MATLAB, Python...), wasting previous work,
no performance, usually not accessible code (no
reproducible science)
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Existing humerical PDE libraries 3/14

Software dev policies

Reuse: Excellent pool of high-performance libraries:
deal.ii, Fenics, FEMPAR, MOOSE, libmesh, Firedrake,
DUNE, NGSolve, etc.

e Static languages (C++, FORTRANO08S...) for
performance

e Excellent if they provide all you need (Python
interfaces)

e Far more involved if not (productivity loss)
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Productivity vs performance

Productivity

Related to dynamic languages (Python, MATLAB...):
More expressive, no compilation step, interactive
development (debugging on-the-fly), better for
math-related bugs (no benefit from static compilation),
no set-up of environment (compilers, system libraries,
etc)

Performance

Related to static languages (C/C++,FORTRAN,...):
Compilers generate highly optimised code
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Julia lang 5/14

(U
julia
21st century FORTRAN, designed for numerical
computation (MIT, 2011-)

All-in-one (?)
Productive: Dynamic language (as Python, MATLAB...)

https://julialang.org/

Performant: Advanced type-inference system +
just-in-time (JIT) compilation
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Julia features

¢ Not OO: No inheritance of concrete types (only
abstract types), use composition, not inheritance,
classify by their actions, not their attributes...

¢ Multiple dispatching paradigm: functions not
bound to types, dispatching wrt all arguments
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Julia features 6/14

¢ Not OO: No inheritance of concrete types (only
abstract types), use composition, not inheritance,
classify by their actions, not their attributes...

¢ Multiple dispatching paradigm: functions not
bound to types, dispatching wrt all arguments

Let us play a little with with Julia...
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Gridap 714

Gridap seed started in Christmas 2018 trying to increase
productivity in my team

Some key decisions based on previous experience and
Julia capabilities:

e Functional-like style i.e. immutable objects, no state
diagram (just cache arrays for performance)

e Lazy evaluation of expressions (implement
unary/binary expression trees for types)

In the spirit of the lazy matrix example...
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CellFields module 8/14

CellField

Given a cellin a partition 7 of a manifold M (e.g. cells,
faces, edges in a mesh), it provides a Field. A Field
assigns a physical quantity (n-tensor) per space(-time)
point in the manifold.

Key method, lazy evaluation: Given an array of points per
cell in 7, we can evaluate a CellField, returning an array
of scalars/vectors/tensors (FieldValue) per cell per point

Evaluate(cf::CellField,ps::CellPoints)
::CellArray{FieldValue}
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FEs, Integration, assembly 9/14

We also implement operations:

e Unary operations: e.g. V(), V x (), V- (), etc.
e Binary operations: inner(, ), x, etc.

With these types, we represent FE functions, FE bases,
constitutive models, etc.

Applying a CellField to a CellPoints (integration points)
plus expression trees we can integrate forms and
assemble matrices
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We also implement operations:

e Unary operations: e.g. V(), V x (), V- (), etc.
e Binary operations: inner(, ), x, etc.

With these types, we represent FE functions, FE bases,
constitutive models, etc.

Applying a CellField to a CellPoints (integration points)
plus expression trees we can integrate forms and
assemble matrices

Let us look at Gridap Tutorial 1
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Gridap status 10/14

Gridap is pretty comprehensive (big thanks to F Verdugo’s
amazing work at UPC):

Lagrangian, Raviart-Thomas, Nedelec, dG

Multifield or multiphysics methods
Interaction with GMesh, Pardiso, PETSc...
dimension-agnostic (5-dim Laplacian), order-agnostic

Quite rich documentation, tutorials, automatic testing, etc.

After 1 year and two developers (part time!)... highly
productive environment
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Gridap for teaching 1114

Objective: same software for research and teaching

e Designing FE tutorials in MTH5321 - Methods of
computational mathematics
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Gridap for teaching 1114

Objective: same software for research and teaching

e One undergrad AMSI project on Gridap (Connor
Mallon, Monash): No idea about FEs/coding — from
patient-specific MRI data of aorta velocity field to
pressure field (Navier-Stokes solver...) in about 2
months
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Gridap future 12/14

This is just the beginning:

Distributed-memory integration/assembly

Parallel hp-adaptivity
Historic variables in nonlinear constitutive models

Virtual element methods

Space-time discretisations

Interaction with other Julia packages (optimisation,
ML, UQ, ODE, automatic diff...)
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Gridap future 13/14

Performance analysis:

e Poisson solver w/ 1st order FEs on 1453 mesh in 30
sec (CG+AMG about 60%), similar for 30* mesh

¢ Trying to write performant code (type stable), but NO
optimisation yet

e Performance analysis on the way (x2-3 performance
hit OK if x2-3 productivity, but does not seem to be
the case)

e Further topic: In fact, type stability + JIT compilation
eliminates virtualisation overhead in static languages
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Further reading 14/14

Learning Julia

julialang.org

Gridap
github.com/gridap/Gridap.jl
Gridap tutorials

github.com/gridap/Tutorials
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Learning Julia

julialang.org

Gridap
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Thanks!
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