
Gridap: Towards productivity and
performance in Julia

Santiago Badia, F. Verdugo

MWNDEA, Monash University, February 14th 2020



Disclaimer 1/14

My concerns about poor productivity wrt software
development

Workflow
Design new method→ analyse it→ implement it (rapid
prototyping)→ exploit it in (large scale) applications
(performance)

Probably not your case: Focused on analysis (academic
examples) or application side (existing libraries OK)

S. Badia



Scientific computing teams 2/14

PhD students (3-4y), postdocs (1-3y), no computer
scientists

Software dev policies
Start from scratch: Academic codes in dynamic
languages (MATLAB, Python...), wasting previous work,
no performance, usually not accessible code (no
reproducible science)

S. Badia



Existing numerical PDE libraries 3/14

Software dev policies
Reuse: Excellent pool of high-performance libraries:
deal.ii, Fenics, FEMPAR, MOOSE, libmesh, Firedrake,
DUNE, NGSolve, etc.

• Static languages (C++, FORTRAN08...) for
performance

• Excellent if they provide all you need (Python
interfaces)

• Far more involved if not (productivity loss)

S. Badia



Productivity vs performance 4/14

Productivity
Related to dynamic languages (Python, MATLAB...):
More expressive, no compilation step, interactive
development (debugging on-the-fly), better for
math-related bugs (no benefit from static compilation),
no set-up of environment (compilers, system libraries,
etc)

Performance
Related to static languages (C/C++,FORTRAN,...):
Compilers generate highly optimised code

S. Badia



Julia lang 5/14

https://julialang.org/

21st century FORTRAN, designed for numerical
computation (MIT, 2011-)

All-in-one (?)
Productive: Dynamic language (as Python, MATLAB...)

Performant: Advanced type-inference system +
just-in-time (JIT) compilation

S. Badia



Julia features 6/14

• Not OO: No inheritance of concrete types (only
abstract types), use composition, not inheritance,
classify by their actions, not their attributes...

• Multiple dispatching paradigm: functions not
bound to types, dispatching wrt all arguments

Let us play a little with with Julia...

S. Badia



Julia features 6/14

• Not OO: No inheritance of concrete types (only
abstract types), use composition, not inheritance,
classify by their actions, not their attributes...

• Multiple dispatching paradigm: functions not
bound to types, dispatching wrt all arguments

Let us play a little with with Julia...

S. Badia



Gridap 7/14

Gridap seed started in Christmas 2018 trying to increase
productivity in my team

Some key decisions based on previous experience and
Julia capabilities:

• Functional-like style i.e. immutable objects, no state
diagram (just cache arrays for performance)

• Lazy evaluation of expressions (implement
unary/binary expression trees for types)

In the spirit of the lazy matrix example...

S. Badia



CellFields module 8/14

CellField

Given a cell in a partition T of a manifoldM (e.g. cells,
faces, edges in a mesh), it provides a Field. A Field
assigns a physical quantity (n-tensor) per space(-time)
point in the manifold.

Key method, lazy evaluation: Given an array of points per
cell in T , we can evaluate a CellField, returning an array
of scalars/vectors/tensors (FieldValue) per cell per point

Evaluate(cf::CellField,ps::CellPoints)
::CellArray{FieldValue}

S. Badia



FEs, Integration, assembly 9/14

We also implement operations:

• Unary operations: e.g. ∇(), ∇× (), ∇ · (), etc.

• Binary operations: inner(, ), ×, etc.

With these types, we represent FE functions, FE bases,
constitutive models, etc.

Applying a CellField to a CellPoints (integration points)
plus expression trees we can integrate forms and
assemble matrices

Let us look at Gridap Tutorial 1

S. Badia



FEs, Integration, assembly 9/14

We also implement operations:

• Unary operations: e.g. ∇(), ∇× (), ∇ · (), etc.

• Binary operations: inner(, ), ×, etc.

With these types, we represent FE functions, FE bases,
constitutive models, etc.

Applying a CellField to a CellPoints (integration points)
plus expression trees we can integrate forms and
assemble matrices

Let us look at Gridap Tutorial 1
S. Badia



Gridap status 10/14

Gridap is pretty comprehensive (big thanks to F Verdugo’s
amazing work at UPC):

• Lagrangian, Raviart-Thomas, Nedelec, dG

• Multifield or multiphysics methods

• Interaction with GMesh, Pardiso, PETSc...

• dimension-agnostic (5-dim Laplacian), order-agnostic

Quite rich documentation, tutorials, automatic testing, etc.

After 1 year and two developers (part time!)... highly
productive environment

S. Badia



Gridap for teaching 11/14

Objective: same software for research and teaching

• Designing FE tutorials in MTH5321 - Methods of
computational mathematics

S. Badia



Gridap for teaching 11/14

Objective: same software for research and teaching

• One undergrad AMSI project on Gridap (Connor
Mallon, Monash): No idea about FEs/coding→ from
patient-specific MRI data of aorta velocity field to
pressure field (Navier-Stokes solver...) in about 2
months

S. Badia



Gridap future 12/14

This is just the beginning:

• Distributed-memory integration/assembly

• Parallel hp-adaptivity

• Historic variables in nonlinear constitutive models

• Virtual element methods

• Space-time discretisations

• Interaction with other Julia packages (optimisation,
ML, UQ, ODE, automatic diff...)

• ...

S. Badia



Gridap future 13/14

Performance analysis:

• Poisson solver w/ 1st order FEs on 1453 mesh in 30

sec (CG+AMG about 60%), similar for 304 mesh

• Trying to write performant code (type stable), but NO
optimisation yet

• Performance analysis on the way (x2-3 performance
hit OK if x2-3 productivity, but does not seem to be
the case)

• Further topic: In fact, type stability + JIT compilation
eliminates virtualisation overhead in static languages

S. Badia



Further reading 14/14

Learning Julia

julialang.org

Gridap

github.com/gridap/Gridap.jl

Gridap tutorials

github.com/gridap/Tutorials

Thanks!

S. Badia



Further reading 14/14

Learning Julia

julialang.org

Gridap

github.com/gridap/Gridap.jl

Gridap tutorials

github.com/gridap/Tutorials

Thanks!
S. Badia


