Gridap: Towards productivity and

performance in Julia
Santiago Badia, F. Verdugo

MWNDEA, Monash University, February 14th 2020

MONASH
University



Disclaimer 1/14

My concerns about poor productivity wrt software
development

Workflow

Design new method — analyse it — implement it (rapid
prototyping) — exploit it in (large scale) applications
(performance)

Probably not your case: Focused on analysis (academic
examples) or application side (existing libraries OK)

S. Badia



Scientific computing teams

PhD students (3-4y), postdocs (1-3y), no computer
scientists

Software dev policies

Start from scratch: Academic codes in dynamic
languages (MATLAB, Python...), wasting previous work,
no performance, usually not accessible code (no
reproducible science)

S. Badia



Existing humerical PDE libraries 3/14

Software dev policies

Reuse: Excellent pool of high-performance libraries:
deal.ii, Fenics, FEMPAR, MOOSE, libmesh, Firedrake,
DUNE, NGSolve, etc.

e Static languages (C++, FORTRANO08S...) for
performance

e Excellent if they provide all you need (Python
interfaces)

e Far more involved if not (productivity loss)

S. Badia



Productivity vs performance

Productivity

Related to dynamic languages (Python, MATLAB...):
More expressive, no compilation step, interactive
development (debugging on-the-fly), better for
math-related bugs (no benefit from static compilation),
no set-up of environment (compilers, system libraries,
etc)

Performance

Related to static languages (C/C++,FORTRAN,...):
Compilers generate highly optimised code

S. Badia



Julia lang 5/14

(U
julia
21st century FORTRAN, designed for numerical
computation (MIT, 2011-)

All-in-one (?)
Productive: Dynamic language (as Python, MATLAB...)

https://julialang.org/

Performant: Advanced type-inference system +
just-in-time (JIT) compilation

S. Badia



Julia features

¢ Not OO: No inheritance of concrete types (only
abstract types), use composition, not inheritance,
classify by their actions, not their attributes...

¢ Multiple dispatching paradigm: functions not
bound to types, dispatching wrt all arguments

S. Badia



Julia features 6/14

¢ Not OO: No inheritance of concrete types (only
abstract types), use composition, not inheritance,
classify by their actions, not their attributes...

¢ Multiple dispatching paradigm: functions not
bound to types, dispatching wrt all arguments

Let us play a little with with Julia...

S. Badia



Gridap 714

Gridap seed started in Christmas 2018 trying to increase
productivity in my team

Some key decisions based on previous experience and
Julia capabilities:

e Functional-like style i.e. immutable objects, no state
diagram (just cache arrays for performance)

e Lazy evaluation of expressions (implement
unary/binary expression trees for types)

In the spirit of the lazy matrix example...

S. Badia



CellFields module 8/14

CellField

Given a cellin a partition 7 of a manifold M (e.g. cells,
faces, edges in a mesh), it provides a Field. A Field
assigns a physical quantity (n-tensor) per space(-time)
point in the manifold.

Key method, lazy evaluation: Given an array of points per
cell in 7, we can evaluate a CellField, returning an array
of scalars/vectors/tensors (FieldValue) per cell per point

Evaluate(cf::CellField,ps::CellPoints)
::CellArray{FieldValue}

S. Badia



FEs, Integration, assembly 9/14

We also implement operations:

e Unary operations: e.g. V(), V x (), V- (), etc.
e Binary operations: inner(, ), x, etc.

With these types, we represent FE functions, FE bases,
constitutive models, etc.

Applying a CellField to a CellPoints (integration points)
plus expression trees we can integrate forms and
assemble matrices

S. Badia



FEs, Integration, assembly 9/14

We also implement operations:

e Unary operations: e.g. V(), V x (), V- (), etc.
e Binary operations: inner(, ), x, etc.

With these types, we represent FE functions, FE bases,
constitutive models, etc.

Applying a CellField to a CellPoints (integration points)
plus expression trees we can integrate forms and
assemble matrices

Let us look at Gridap Tutorial 1

S. Badia



Gridap status 10/14

Gridap is pretty comprehensive (big thanks to F Verdugo’s
amazing work at UPC):

Lagrangian, Raviart-Thomas, Nedelec, dG

Multifield or multiphysics methods
Interaction with GMesh, Pardiso, PETSc...
dimension-agnostic (5-dim Laplacian), order-agnostic

Quite rich documentation, tutorials, automatic testing, etc.

After 1 year and two developers (part time!)... highly
productive environment

S. Badia



Gridap for teaching 1114

Objective: same software for research and teaching

e Designing FE tutorials in MTH5321 - Methods of
computational mathematics

S. Badia



Gridap for teaching 1114

Objective: same software for research and teaching

e One undergrad AMSI project on Gridap (Connor
Mallon, Monash): No idea about FEs/coding — from
patient-specific MRI data of aorta velocity field to
pressure field (Navier-Stokes solver...) in about 2
months

S. Badia



Gridap future 12/14

This is just the beginning:

Distributed-memory integration/assembly

Parallel hp-adaptivity
Historic variables in nonlinear constitutive models

Virtual element methods

Space-time discretisations

Interaction with other Julia packages (optimisation,
ML, UQ, ODE, automatic diff...)

S. Badia



Gridap future 13/14

Performance analysis:

e Poisson solver w/ 1st order FEs on 1453 mesh in 30
sec (CG+AMG about 60%), similar for 30* mesh

¢ Trying to write performant code (type stable), but NO
optimisation yet

e Performance analysis on the way (x2-3 performance
hit OK if x2-3 productivity, but does not seem to be
the case)

e Further topic: In fact, type stability + JIT compilation
eliminates virtualisation overhead in static languages

S. Badia



Further reading 14/14

Learning Julia

julialang.org

Gridap
github.com/gridap/Gridap.jl
Gridap tutorials

github.com/gridap/Tutorials

S. Badia



Further reading 14/14

Learning Julia

julialang.org

Gridap
github.com/gridap/Gridap.jl
Gridap tutorials

github.com/gridap/Tutorials

Thanks!

S. Badia



