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Shear flow stability

*Navier-Stokes equations: nonlinear PDEs having a parameter called
Reynolds number

*In stability analysis consider base flow + small perturbation
Linearised NS can be solved by using normal mode (eigenvalue problem)

*Given wavenumber alpha, the complex wave speed c is obtained as
eigenvalue

sImaginary part of c is the growth rate of the perturbation (Im c positive is
unstable case, i.e. the perturbation grows exponentially)



Inviscid stability of shear flows

Classical case: U(y)
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*Rayleigh’s equation (viscosity is ignored)
Singular at the critical level: viscosity is needed in the critical layer
*Matched asymptotic expansion must be used to analyse the critical layer

Picture taken from Maslowe (2009)



Inviscid stability of shear flows

However, most physically relevant unidirectional flows
vary in two transverse directions, so more general base
flow U(y,z) must be considered!

E.g. stability of flows over corrugated walls, or through
non-circular pipe




Streaks

*Streaks can be visualized as
thread-like structures

*Streamwise velocity naturally
creates inhomogeneity in
transverse direction

Streaks in a boundary layer flow
over flat plate
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Nonlinear theory for shear flows
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At fixed x, periodic flow nonlinear

associated with wave generates

mean motion through Reynolds Critical layer y=/(z)

stresses Rolls corresponding to v(y,z),w(y,z)

Vortex-wave interaction
(Hall & Smith 1991,
Hall & Sherwin 2010)

self-interaction

Self-sustaining process
(Waleffe 1997,
Wang, Gibson & Waleffe 2007)



Derivation of the generalized
problem

Our starting point is the Navier—Stokes equations linearised around the background
flow U(y, z) at the Reynolds number R > 0:

icu+v,+w, =0, ia(U—-cu+Uv+Uw=—iap+R '(A—ao*u, (2.1a,b)

i (U — c)v = —p, +R YA —-a®)v, ia(U—-cw=—-p,+R'(A—-a*>w, 2.1c,d)
where A =297+ 9.

Neglecting the viscous terms,

P, p. \ ., P
((U—e)z)y+<(0—c>2)z U= ="

Hocking (1968), Goldstein (1976), Benney (1984),
Henningson (1987), Hall & Horseman (1991)




Classical stability problem for U(y)

Here, before we begin the analysis of (1.2), we recall some properties of the
classical Rayleigh equation in the pressure form to highlight our main idea (Tollmien
1935; Lin 1945, 1955). For the neutral case, the equation possesses a regular singular
point at y=1y,., where U — ¢ vanishes. In a new coordinate, n =y — y., the singular
point is simply n=0.

Dy I 4 .
((U—c>2)y+ ). w—r ="

The method of Frobenius can be used to show that the local expansion of
the solution contains the term like 72 In n| 4+ -



Classical stability problem for U(y)

Here, before we begin the analysis of (1.2), we recall some properties of the
classical Rayleigh equation in the pressure form to highlight our main idea (Tollmien
1935; Lin 1945, 1955). For the neutral case, the equation possesses a regular singular
point at y=1y,., where U — ¢ vanishes. In a new coordinate, n =y — y., the singular
point is simply n=0.

Inner analysis shows that the outer solution must be written in the form
p = n°fa(n) + {n*L(n) fo(n) + g(n)}, (2.1)

where f,, f», g are continuous regular functions and the jump is absorbed into the
modified logarithmic function

Inn if n > 0,
L(n) = { Inln|+i#0 if n<O0, (2.2)

where @ is a real number describing the phase shift of the wave across the critical
layer. If the critical layer is viscous and linear § = —msgn(uy, |n=0).



(Hereafter we set c=0)

(%) — aQ% — 0. (1.2)
p = n°fa(n) + {n’L(n) fo(n) + g(n)}, (2.1)

Substituting (2.1) to Rayleigh equation (1.2), we find two equations

. o e 2U.
6f+6nf’+n3f”—a2n2f——y(
U

. 2U.
g +20%f + 5nfy — @ g——y(g +n?fy) = 0. (2.4)

3nf +n?f") =0, (2.3)

Here both f,, fy satisfy the first equation

Three 2" order ODEs: Boundary conditions?



We write the local expansion of U as

U=A1n+)\2n2+--- . (25)

From (2.3)-(2.4) it is easy to find the functions f, g must have the local expan-
sions

f=fo+ fin+0(n?), g=go+ gon®+O(n?), (2.6)
where
PR
1= oy, 0 (2.7)
. 2/\202
foo = — 3, %0 = 1igo- (2.8)

For given f,, the value and the first derivative of f is known so we can integrate
the first equation to compute f; we write the solution computed in this way as

f(n; fo).
Thus fa = f(n’ faO) — faOf(n; 1)’ fb - f(na be) - bef(n; 1)
g(n; go) = gog(m, 1).



So if we rewrite the two parameters in the solution as a = fu0,b = go, the general
solution can be written as

p=a{n’f(n; 1)} + b{un’L(n) f(n; 1) + g(n; 1)}. (2.9)

The two unknown constants a, b are fixed by the boundary conditions on the walls,
namely p, = 0 there. Those two conditions can be written in the matrix form

M(‘;)zo (2.10)

with 2 by 2 matrix M computed by f(n;1),g(n;1). In order to have non-trivial
solution

detM(a,c) =0 (2.11)

must be satisfied. We must vary «, ¢ to ensure the real and imaginary parts of the
determinant to vanish - this gives the wavelength and phase speed of the neutral
wave.



Generalised problem for U(y,z)

Py p: . P
((U—cﬂ)f((U—c)Z)z U= ="




Streak-like model flow profile
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Uy,z)=y+(1—9° 3



Growth rate
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Line: NS result, R=10000
Blue triangle: Rayleigh, usual method
Red circle: Rayleigh, new method



Thus we consider the new transformation from (y, z) to the coordinate (7, (),
which we now refer to the base flow fitted coordinate. Here 7(y, 2) is some known
function, and later it is related to the base flow (e.g. 7 = U). The critical layer
and the walls are specified by n = 0 and some constants. For the other coordinate
¢(y, z) we require the orthogonality condition

nyCy + n.¢, = 0. (3'14)

We need initial condition of this differential equation to fix {: here we require that
¢ coincides with the arc length of the critical layer at n = 0.
Setting n = U, the generalised Rayleigh equation in the base flow fitted coor-

dinate (7, () becomes
2
(&n)py + (AQ)pe — &*p + (my + 1) Py — %) + (G +Gpee =0. (3.15)

1

Red: eta constant
Green: zeta constant




Critical layer analysis remains similar to the usual case and we can use the

Frobenius form p = {fa+ f»L(n)}n°+g. Substituting this to the Rayleigh equation
(1.3) we can find the two equations

(An)(f'n+3F) + (n +n5)(f"n +4f")

+H(AQ) fo — 2 F + (¢ + ¢ fechn = 0. (3.18)
(Bn)g' + (BQ)gc — o9+ (1 + )0 — 2) + (G2 + Pl
+(An) fon® + (5 +n3)(2f3m° + 3fem) = 0, (3.19)
where both f,, f5 satisfy the first equation. The small 7 expansions of f, g are
f=rHQ)+An+0m),  g=g0({)+ g2(¢)n* + O(n*), (3.20)
3An

fi= fo, (3.21)

4(ng +n3) | g

foo = p2gl + 1196 + Kogo, (3.23)



Critical layer analysis remains similar to the usual case and we can use the

Frobenius form p = {fa+ f»L(n)}n°+g. Substituting this to the Rayleigh equation
(1.3) we can find the two equations

(An)(f'n+3F) + (n +n5)(f"n +4f")

H(AQ) fe — o f + (¢ + &) fecn = 0. (3.18)
(Bn)g' + (BQ)gc — o9+ (1 + )0 — 2) + (G2 + Pl
+(An) fsn® + (g +n7)(2fen* + 3fsm) =0, (3.19)
where both f,, f» satisfy the first equation. The small 7 expansions of f, g are
f=F@)+ On+0@%),  g=g0(C) + g2()n* + O(n*), (3.20)
fi=-— 4(77%%:7”3) - fo,  (3.21)

Fro0 =@gg +@96 0, (3.23) Complicated functions of U!



From fy the value and the first n derivative of f is known. This means that
the function f can be found by integrating (3.18); we write the solution found in

this way as
f(n,G fo) = f(n, ;Y Ffy™e™) =3 ™ f(n, ¢ e™). (3.24)

Here we Fourier expanded the initial condition for the latter convenience. We
can compute f, and f, using initial conditions f,0, fy9, Which can be specified by

choosing their Fourier coefficients }':(zg"), f;%n ). Given fy, the function g can be found
by integrating (3.19). The initial conditions go = Y 'g‘(()m)e"mc can be linked to
fso through (3.23), so

Z ﬁ((’)n)eimc — Z“(m)%m)eimc’ u™ = —m2uy +impy + po. (3.25)
m

m

Thus the function g can be determined by gg, so we denote
9(n,CG;90) = 9(n, G; 35 e™) = D G 9(n, G ™). (3.26)
m m

Finally we write a,, = f(gl), b = '§(()m) to get

p=>_amn’f(n,(e™) + bn{n’f(n, ¢ u™e ™) L(n) + g(n, (;e™)}. (3.27)



The normal derivative of p, namely p, must be zero on the walls. This means that
all the Fourier coefficients should vanish at two values of 7 representing the walls,
and hence those conditions yield the linear problem

M(E):u (3.28)

The determinant is complex, and we adjust «, ¢ to ensure the real and imaginary
parts of the determinant to be zero.
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FIGURE 3. (Colour online) The model flow (3.12) becomes unstable above the thick black
solid curve according to the linearised Navier—Stokes equations (2.1). The red solid line
is the neutral inviscid limit solution found by (1.2). The green dashed curve is the long-
wavelength asymptotic limit. Approximately 200 collocation points are used in n € [—1, 1],
whilst 35 Fourier harmonics are used for ¢.
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FIGURE 4. (Colour online) The pressure eigensolution on the right-hand branch of the full
neutral curve in figure 1, for R=10000. Panels (a) and (b) are the real part (C,, = 1) and
the imaginary part (C,.. = 0.2), respectively. The black solid curve is the critical curve.
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FIGURE 5. (Colour online) (a) The same results as figure 4, but plotted in the (n, ¢)
coordinates. (b) The inviscid solution obtained by applying the new method to (1.2). This
result corresponds to the red line in figure 3.



Remark 1: We only need singular basis function near the critical layer

Remark 2: Computationally much cheaper than solving NS



Remark 3: Necessary condition for existence of a neutral mode

. 2 o?
For the classical case i

31
p=a{n®f(n; 1)} + b@ﬂw(n; 1)+ g(m 1)} (29)

The two unknown constants a, b are fixed by the boundary conditions on the walls,
namely p, = 0 there. Those two conditions can be written in the matrix form

M(‘;)zo (2.10)

with 2 by 2 matrix M computed by f(n;1),g(n;1).

Inn if n > 0,
L(n) = { Inln|+i#@ if n<O0, (2:2)
where 6 is a real number describing the phase shift of the wave across the critical
layer. If the critical layer is viscous and linear 8 = —7sgn(uy, |n=0).



Remark 3: Necessary condition for existence of a neutral mode

So if the classical problem has a neutral mode, U,, =0
somewhere in the flow.



Remark 3: Necessary condition for existence of a neutral mode

So if the classical problem has a neutral mode, U,, =0
somewhere in the flow.

If the generalised problem has a neutral mode,
(AU){4UyzUyUz + (Uyy _ Uzz)(U)% - Uzz)} < 0

somewhere in the flow.



Conclusion

In order to solve the generalized inviscid stability
problem (a singular PDE) the method of
Frobenius is used in curved coordinates to
construct appropriate basis functions

*The new Rayleigh solver is more efficient than
the full NS solver
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