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Smooth data interpolation

(a) interpolating spline (b) smoothing spline

Figure: y = e−30(x−0.5)2
with uniform noise [-0.05,0.05]
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Thin-plate spline

Thin-plate spline (TPS) is a technique for interpolating and
smoothing surface over scattered data 1.
TPS smoother f (x) predicts response values y = f (x) ∈ R
based on predictor values x ∈ Rd .
Given n data points {(x(i), y(i)), i = 1,2, ...,n}, TPS
smoother f (x) minimises

Jα(f ) =
1
n

n∑
i=1

(f (x(i))− y(i))2 + α

∫
Ω

∑
|v |=2

(Dv f (x))2dx ,

where α is the smoothing parameter.

1Buhmann, M.D., 2003. Radial basis functions: theory and implementations (Vol.
12). Cambridge university press.
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1D example: smoothing

(a) α = 0 (b) α = 0.0001

Figure: TPS interpolation
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1D example: filling gaps

(a) data with a gap (b) TPS with α = 0.0001

Figure: TPS interpolation
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Limitations

TPS requires a lot of storage for large datasets and is
computationally expensive.

System of equations is dense.
Size of the system is proportional to the number of data
points.

Example TPS approximations:
compactly-supported radial basis functions;
adaptive TPS;
fast evaluation methods.
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Finite element thin-plate splines

Finite element thin-plate spline (TPSFEM) is a method that
combines the finite element surface fitting and the TPS 1.
TPSFEM smoother s(x) is represented as a linear
combination of piecewise linear basis functions

s(x) = b(x)T c,

where b are basis functions b(x) = [b1(x), ...,bm(x)]T and
c are coefficients of the basis functions.
The size of the system depends on the number of basis
functions instead of data points.

1Roberts, S., Hegland, M. and Altas, I., 2003. Approximation of a thin plate spline
smoother using continuous piecewise polynomial functions. SIAM Journal on
Numerical Analysis, 41(1), pp.208-234.
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The H1(Ω) method

Recall

Jα(f ) =
1
n

n∑
i=1

(f (x(i))− y(i))2 + α

∫
Ω

∑
|v |=2

(Dv f (x))2dx .

Second order derivatives are not defined for piecewise linear
basis functions b(x). Auxiliary functions u are introduced to
represent the gradient of the smoother s(x), where

∇s = u =

u1
...
ud

 =

b(x)g1
...

b(x)gd

 ,
and g1, ...,gd are coefficients to the basis representation of
u1, ...,ud .
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Constraint

s(x) and u satisfy the relationship∫
Ω
∇s(x)∇bj(x)dx =

∫
Ω

u(x)∇bj(x)dx

for every basis function bj(x). It is written as

Lc =
d∑

k=1

Gkgk ,

where L is a matrix approximation to the negative Laplace
operator (Li,j =

∫
Ω∇bi · ∇bjdx) and Gk is a matrix

approximation to the gradient operator ((Gk )i,j =
∫

Ω bi · ∂kbjdx).

Lishan Fang TPSFEM



Discrete minimisation problem

The minimisation problem becomes

Jα(c,g) =
1
n

n∑
i=1

(b(x(i))T c − y(i))2 + α

∫
Ω
∇
(
b(x)T g

)
∇
(
b(x)T g

)
dx

= cT Ac − 2dT c + yT y/n + α

d∑
k=1

gT
k Lgk ,

subject to Lc =
d∑

k=1

Gkgk , where

A =
1
n

n∑
i=1

b(x(i))b(x(i))T and d =
1
n

n∑
i=1

b(x(i))y(i).
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1D example: smoothing

(a) TPS (b) TPSFEM with 20 nodes

Figure: f (x) = e−30(x−0.5)2
with uniform noise [-0.05,0.05]
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1D example: filling gaps

(a) TPS (b) TPSFEM with 20 nodes

Figure: y = e−30(x−0.5)2
with noise [-0.05,0.05] and a gap
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Adaptive refinement

The accuracy of the finite element solution depends on the size
of the finite element grid.

Uniform refinement is an approach to refine the whole region
iteratively. But

high computational costs,
high storage space.

Adaptive refinement adapt the precision of the solution within
certain sensitive regions dynamically during the iterative
refinement process 1. E.g. peaks, boundaries, singularities.

1Mitchell, W.F., 1989. A comparison of adaptive refinement techniques for elliptic
problems. ACM Transactions on Mathematical Software (TOMS), 15(4), pp.326-347.
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1D adaptive example

Assume function f (x) is given, we can estimate the error using
the true solution during the adaptive refinement process.

(a) initial grid (b) adaptively refined grid

Figure: Adaptively refinement grids of f (x) = e−30(x−0.5)2
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Regression metrics

In reality unction f (x) is unknown but we can measure
regression errors of the TPSFEM smoother against data points.

(a) no noise (b) uniform noise [-0.05,0.05]

Figure: Root mean squared error (RMSE) of f (x) = e−30(x−0.5)2
with

400 data points and 40 nodes
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Challenges

Traditional error indicators of the FEM might not work for the
TPSFEM:

Error indicators are given different information.
Data is usually perturbed by noise.
Data are not uniformly distributed and some regions might
not have any data.
Error convergence of the TPSFEM depends on
α + d4 + h4, where α is the smoothing parameter, d is the
minimum distance to any data point and h is the finite
element mesh size.
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Error indicator

Error indicators are methods that indicate large errors for
elements in the finite element grid.

Error estimate: estimate error bounds for the finite element
solution in a specified norm.
Error indicator: not necessarily estimate the error of the
finite element solution.

Example finite element error indicators:
auxiliary problem error indicator;
recovery-based error indicator.
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Auxiliary problem error indicator

Estimate the error by comparing the current TPSFEM
smoother with a more accurate solution.
Approximate a more accurate local solution ŝ by solving
the TPSFEM in a union of a smaller number of elements 1.
The error is approximated by ||ŝ − s||.
Determine the space for improvement in accuracy instead
of estimating the error directly.
Higher accuracy

higher order polynomial,
refine the elements with the same order polynomial.

1Mitchell, W.F., 1989. A comparison of adaptive refinement techniques for elliptic
problems. ACM Transactions on Mathematical Software (TOMS), 15(4), pp.326-347.
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Auxiliary problem examples

Dotted line is the current TPSFEM smoother.
Solid line is the local solution.

(a) large error (b) small error
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Recovery-based error indicator

Calculates the error norm by post-processing the
discontinuous gradients across interelement boundaries 1.
The improved gradient ∇̂si is determined by

n∑
i=1

∫
Ω

bjbi∇̂sidΩ =

∫
Ω

bj∇sdΩ, j = 1, ...,m, (1)

where ∇s is the current gradient.
The error is estimated by

||e||2E ≈
∫

Ω
(∇̂s −∇s)2dΩ. (2)

1Zienkiewicz, O.C. and Zhu, J.Z., 1987. A simple error estimator and adaptive
procedure for practical engineering analysis. International journal for numerical
methods in engineering, 24(2), pp.337-357.
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Discontinuous gradient

Dashed line is the current TPSFEM approximation.
Solid line is the true model problem solution.
Dash-dotted line is the improved gradient.

(a) FE approximation (b) gradient discontinuities
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Model problem

Figure: Ebagoola magnetic dataset of 735700 points
with latitude, longitude and magnetic field strength
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Initial TPSFEM smoother

(a) FE grid with 81 nodes (b) smoother with error 20.34

Figure: Initial TPSFEM smoother before refinement
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Adaptively refined grids I

(a) FE grid with 5540 nodes (b) smoother with error 5.83

Figure: Adaptively refined TPSFEM smoother
using the auxiliary problem error indicator
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Adaptively refined grids II

(a) grid with 5440 nodes (b) smoother with error 5.69

Figure: Adaptively refined TPSFEM smoother
using the recovery-based error indicator
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Limitations

Auxiliary problem error indicator:
Require high computational costs and memory
requirement.
May lead to over-refinement due to noise.

Recovery-based error indicator
May not detect smaller trends in data that are not modeled
by the finite element grid.
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Future research

Address the influence of α and d .
Test error indicators with datasets with different model
problems, distributions and noises.
Adaptive smoothing of the TPSFEM.
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