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Abstract

• We consider numerical estimations of Perron-Frobenius (P-F)
operators in RKHS.

• A P-F operator is a linear operator which describes the time evolution
of a dynamical system.

• Recently, using P-F operators for time-series data analysis have been
actively researched.

• We investigate theoretical analyses of Krylov subspace methods for
estimating P-F operators.

Krylov subspace methods for P-F operators in RKHSs Y. H. and T. N. 2 / 17



Contents

1. Background

2. Existing Krylov subspace methods for Perron-Frobenius operators

3. Difference from classical settings

4. New analyses of the Krylov subspace methods

5. Numerical experiments

6. Conclusion

Krylov subspace methods for P-F operators in RKHSs Y. H. and T. N. 3 / 17



Dynamical systems with random noise

(Ω,F) : A measurable space,
(X ,B) : A Borel measurable and locally compact Hausdorff vector space,
Xt, ξt : random variables from Ω to X ,
{ξt} : An i.i.d. stochastic process corresponds to the random noise in X (ξt
is also independent of Xt),
h : X → X (nonlinear in general)

Dynamical system with random noise
Xt+1 = h(Xt) + ξt, (1)

P : A probability measure on Ω, Xt

Transform
Xt∗P ,

where Xt∗P (B) = P (Xt
−1(B)) for B ∈ B : The push forward measure

Xt+1∗P = βt∗(Xt∗P ⊗ P ), (2)
where βt(x, ω) = h(x) + ξt(ω)
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RKHS and kernel mean embedding

To define an inner product between measures, we employ the theory of
RKHSs and kernel mean embeddings.

k : A positive definite kernel, ϕ(x) = k(x, ·): The feature map
Hk = {

∑m−1
t=0 ctϕ(xt) | m ∈ N, xt ∈ X , ct ∈ C} : The RKHS

M(X) : The space of all the finite signed Borel measures on X
Φ : M(X ) → Hk µ 7→

∫
x∈X ϕ(x) dµ(x) : The kernel mean embedding

Hk (An infinite dimensional Hilbert sp.)X (Usually a finite dimensional sp.)

Feature map ϕ

Kernel mean embedding Φ

x
µ Φ(µ)

ϕ(x)

⟨Φ(µ),Φ(ν)⟩ =
∫
y∈X

∫
x∈X k(x, y)dµ(x)dν(y)

: The inner product between Φ(µ) and Φ(ν)
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Perron-Frobenius operators in RKHSs

Linear relation between Xt∗P and Xt+1∗P

Xt+1∗P = βt∗(Xt∗P ⊗ P ) (2)

Definition 1 (Perron Frobenius operator in RKHS)
An operator K : Φ(M(X )) → Hk is called a Perron-Frobenius operator in
Hk if it satisfies

KΦ(µ) := Φ(βt∗(µ⊗ P )), (3)

for µ ∈ M(X ).

It can be shown that:
• K is well-defined with some mild conditions of k.
• K is linear.
• K does not depend on time t.
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Construction of a Krylov subspace of the P-F operator

{x0, x1, . . . , xT } ⊆ X : observed time-series data
µS
t,N := 1/N

∑N−1
i=0 δxt+iS (t = 0, . . . ,m) : empirical measures

(We will drop superscript S for simplicity)
δx : Dirc measure of x ∈ X

Assumptions
1. µt,N converge to a finite Borel measure µt weakly as N → ∞ for

t = 0, . . .m

2. limN→∞
1
N

∑N−1
i=0

∫
ω∈Ωf(h(xt+iS) + ξt(ω)) dP (ω) (Space average)

= limN→∞
1
N

∑N−1
i=0 f(h(xt+iS) + ξt+iS(η)) (Time average)

a.s. η ∈ Ω

If K is bounded, KΦ(µt) = Φ(µt+1) (t = 0, . . . ,m− 1) (4)

Span{Φ(µ0), . . . ,Φ(µm−1)} = Span{Φ(µ0),KΦ(µ0), . . . ,K
m−1Φ(µ0)}

: Krylov subspace of K and Φ(µ0), denoted as Km(K,Φ(µ0))
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Numerical estimation for the P-F operator1

Km(K,Φ(µ0)) = Span{Φ(µ0), . . . ,Φ(µm−1)}
· · · constructed only with observed data

[Φ(µ0), . . . ,Φ(µm−1)] = QmRm : QR decomposition

Proposition 1 (Numerical estimation of K)

Let Km := Q∗
mKQm, the operator projected onto Km(K,Φ(µS

0 )). Then,
Km is represented only with observed data as:

Km = Q∗[Φ(µ0), . . . ,Φ(µm−1)]R
−1
m (5)

For application, we want to know the time evolution of the dynamical
system at some time t > T → Estimate Kv for v = ϕ(xt)
(T : The number of observables in the time-series data)

Arnoldi approximation of Kv

Kv ≈ QTKmQ∗
T v (6)

1Hashimoto et al., arXiv:1909.03634v3, 2019.
Krylov subspace methods for P-F operators in RKHSs Y. H. and T. N. 8 / 17

Observable
at time t



Unboundedness of the P-F operator

In fact, the P-F operators can be unbounded2. In this case, the Arnoldi
approximation Km does not converge to K as m → ∞.

K (Unbounded) Transform
(γI −K)−1 (Bounded), where γ /∈ Λ(K)

ut,N =
∑t

i=0

(
t
i

)
(−1)iγt−iΦ(µi,N ), limN→∞ ut,N = ut

(γI −K)−1ut+1 = ut (7)

Km((γI −K)−1, uSm) = Span{u1, . . . , um}
[uS1 , . . . , u

S
m] = QmRm : QR decomposition

Lm := Q∗
T (γI −K)−1QT = Q∗

T [u1, . . . , um]R−1
m

Shift-invert Arnoldi approximation of Kv

Kv ≈ QTKmQ∗
T v, Km := γI− L−1

m (8)

2Ikeda, Ishikawa and Sawano, arXiv:1911.11992, 2019.
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Difference from classical settings

Our setting with P-F operators is different from classical ones in numerical
linear algebra. Although the analyses for classical settings have been
actively investigated, those for P-F operators have not been investigated.

Our setting with a P-F operator K

• Data driven approach
• K is not given, instead,

observed data are given
• Kv for a vector v have to be

estimated by data

EstimateModel
Data

The Classical setting with a linear
operator A

(A typical example of A
: Laplace operator)

• Model driven approach
• Operators are given
• Av for a vector v can be

computed

Extract
Model

Data
Behavior
of the model

New analyses for the Krylov subspace methods for P-F operators are needed
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Residual of a Krylov approximation

Krylov approximations for classical settings have a strong connection with
their residuals. → We also investigate a connection of the Krylov
approximations of P-F operators with their residuals.

Kv ≈ um → ∥v −K−1um∥ : residual of um

The steps of our analysis :
1. Find a minimizer of the residual
2. Derive the relation between the residual of the Arnoldi approximation

and that of the minimizer

Theorem 1 (Minimizer of the Residual)
Let ũm := Qm+1Km+1Q

∗
m+1QmQ∗

mv. Then, ũm minimizes the residual in
Km(K,Φ(µ1)), that is:

ũm = argmin
u∈Km(K,Φ(µ1))

∥v −K−1u∥. (9)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)
Let ũm := Qm+1Km+1Q

∗
m+1QmQ∗

mv. Then, ũm minimizes the residual in
Km(K,Φ(µ1)), that is:

ũm = argmin
u∈Km(K,Φ(µ1))

∥v −K−1u∥. (9)

Proof. QmQ∗
mv =: pm−1(K)Φ(µ0)

∈ Km(K,Φ(µ0)) = Span{Φ(µ0),KΦ(µ0), . . . ,K
m−1Φ(µ0)}

argmin
u∈Km(K,Φ(µ0))

∥v − u∥ = QmQ∗
mv

= pm−1(K) = K−1pm−1(K)Φ(µ1).

(10)

• argminu∈Km(K,Φ(µ0)) ∥v − u∥ = K−1pm−1(K)Φ(µ1),

• For v ∈ Km(K,Φ(µ1)), K−1v ∈ Km(K,Φ(µ0)),

∴ pm−1(K)Φ(µ1) = argmin
u∈Km(K,Φ(µ1))

∥v −K−1u∥. (11)
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Theorem 1 (Minimizer of the Residual)
Let ũm := Qm+1Km+1Q

∗
m+1QmQ∗

mv. Then, ũm minimizes the residual in
Km(K,Φ(µ1)), that is:

ũm = argmin
u∈Km(K,Φ(µ1))

∥v −K−1u∥. (9)

Proof

pm−1(K)Φ(µ1) ∈ Km+1(K,Φ(µ0))

= Qm+1Q
∗
m+1pm−1(K)Φ(µ1)

= Qm+1Q
∗
m+1Kpm−1(K)Φ(µ0) ∈ Km+1(K,Φ(µ0))

= Qm+1Q
∗
m+1KQm+1Q

∗
m+1pm−1(K)Φ(µ0)

= Qm+1Km+1Q
∗
m+1QmQ∗

mv

= ũm.

(12)
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Residual of a Krylov approximation

ũm = argminu∈Km(K,Φ(µ1)) ∥v −K−1u∥
· · · A minimizer of the residual

Theorem 2 (Residual of an Arnoldi approximation)

let um := QmKmQ∗
mv ∈ Km(K,Φ(µS

0 )) be the Arnoldi approximation of
Kv. Then, there exists Cm > 0 such that

∥v −K−1um∥ ≤ (1 + Cm)∥v −K−1ũm−1∥. (13)

For ϵ > 0, if m is sufficiently large so that the Krylov subspace
Km(K,Φ(µS

0 )) is sufficiently close to Hk, and if K is bounded, then

Cm ≤ 1 + ∥K−1∥∥K∥ ϵ. (14)

We have also shown similar theorems about the Shift-invert Arnoldi
approximations.
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Numerical experiments

Example 1 (Landau equation)

X = [0,∞) dr

dt
= 0.5r − r3 (15)

Discretizing and adding random noise
Xt = Xt−1 +∆t(0.5Xt−1 −X3

t−1 + ξt) (16)

Fig. 1: The dimension of the Krylov subspace m versus the residual

Krylov subspace methods for P-F operators in RKHSs Y. H. and T. N. 15 / 17



Numerical experiments

Example 2 (Real-world Internet traffic data)
xt : the amount of Internet traffic (gbps) that passed through a certain
node (ID 12) in a network composed of 23 nodes and 227 links at time t.

Fig. 2: The amount of Internet traffic at
each t

Fig. 3: The dimension of the Krylov
subspace m versus the residual
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Conclusions

• We considered Krylov subspace methods for P-F operators.

• Since the setting with P-F operators is different from classical settings
in numerical linear algebra, new analyses for the Krylov subspace
methods for P-F operators are required.

• We have shown connections of the Krylov approximations with their
residuals.
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