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Abstract

® We consider numerical estimations of Perron-Frobenius (P-F)
operators in RKHS.

e A P-F operator is a linear operator which describes the time evolution
of a dynamical system.

e Recently, using P-F operators for time-series data analysis have been
actively researched.

e \We investigate theoretical analyses of Krylov subspace methods for
estimating P-F operators.
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Dynamical systems with random noise

(£2,F) : A measurable space,

(X,B) : A Borel measurable and locally compact Hausdorff vector space,
X, & : random variables from (2 to X,

{&} : An i.i.d. stochastic process corresponds to the random noise in X" (&
is also independent of X}),

h: X — X (nonlinear in general)

Dynamical system with random noise
Xep1 = h(Xt) + &,

P : A probability measure on {2, X
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Dynamical systems with random noise

(£2,F) : A measurable space,

(X,B) : A Borel measurable and locally compact Hausdorff vector space,
X, & : random variables from (2 to X,

{&} : An i.i.d. stochastic process corresponds to the random noise in X" (&
is also independent of X}),

h: X — X (nonlinear in general)

Dynamical system with random noise
Xip1 = h(Xy) + &, (1)

P : A probability measure on {2, X T@:m X, P,

where X;, P(B) = P(X; Y(B)) for B € B : The push forward measure
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Dynamical systems with random noise

(£2,F) : A measurable space,

(X,B) : A Borel measurable and locally compact Hausdorff vector space,
X, & : random variables from (2 to X,

{&} : An i.i.d. stochastic process corresponds to the random noise in X" (&
is also independent of X}),

h: X — X (nonlinear in general)

Dynamical system with random noise
Xip1 = h(Xy) + &, (1)

P : A probability measure on {2, X T@:m X, P,

where X;, P(B) = P(X; Y(B)) for B € B : The push forward measure

Xip1, P =B (X1, P ® P), (2)
where f(z,w) = h(z) + & (w) linear
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RKHS and kernel mean embedding

To define an inner product between measures, we employ the theory of
RKHSs and kernel mean embeddings.

k : A positive definite kernel, ¢(x) = k(z,-): The feature map

Hi = {37 () | meN, o, € X, ¢, € C}: The RKHS
M(X) : The space of all the finite signed Borel measures on X

D M(X) = Hy o [ep @() du(z) : The kernel mean embedding

_— Featuremap ¢

°p(x)
Kernel mean embedding ® » D(p)

X (Usually a finite dimensional sp.) H} (An infinite dimensional Hilbert sp.)

(@(1), @) = [ yex Jocn Bz, y)dp()dv(y)
: The inner product between ®(u) and ®(v)
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Perron-Frobenius operators in RKHSs

Linear relation between X, ./ and X, P

Xs1, P =B (X, P ® P) (2)

Definition 1 (Perron Frobenius operator in RKHS)

An operator K : ®(M(X)) — Hy, is called a Perron-Frobenius operator in
H;, if it satisfies
K®(11) := @(Biu (1 ® P)), (3)

for 1 € M(X).
It can be shown that:
e K is well-defined with some mild conditions of k.

e K is linear.

® K does not depend on time t.
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Construction of a Krylov subspace of the P-F operator

{xg,xl, ...,x7} € X : observed time-series data

,utN = 1/N ZN ! 02,005 (t=0,...,m) : empirical measures
(We will drop superscript S for simplicity)

0y : Dirc measure of x € X

Assumptions
1. p¢ v converge to a finite Borel measure u; weakly as N — oo for
t=0,...
2. Himyo0 & SN [ e f (B(Beyis) + & (w)) dP(w)  (Space average)

= limy_00 & vazal (h(t4i5) + &+is(n))  (Time average)
a.s.m € 2

| S
3 |

If K is bounded, K®(ut) = ®(pe41) (t=0,...,m—1) (4)

Span{®(up), - - ., ®(tm—1)} = Span{® (1), K (j10), ..., K™ 1D (p0)}
: Krylov subspace of K and © (1), denoted as Ko (K, P(110))
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Numerical estimation for the P-F operator?

K (K, @(po)) = Span{®(10). . ... ®(pm—1)}
-+ - constructed only with observed data
[D(10), - s P(pn—1)] = QmRin : QR decomposition

Proposition 1 (Numerical estimation of K)

Let K,, := Q}, KQy,, the operator projected onto K, (K, ® (). Then,
K., is represented only with observed data as:

Kin = Q[®(10), - -, 2(ptm—1)|R! (5)

For application, we want to know the time evolution of the dynamical
system at some time t > T' — Estimate Kv for v =|¢(z;) [Observable
(T : The number of observables in the time-series data)  at time ¢

Arnoldi approximation of Kv
Kv =~ QrK,,Q5v (6)

1Hashimoto et al., arXiv:1909.03634v3, 2019.
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Unboundedness of the P-F operator

In fact, the P-F operators can be unbounded?. In this case, the Arnoldi
approximation K,,, does not converge to K as m — oo.

K (Unbounded) Tﬂm (vI — K)~! (Bounded), where v ¢ A(K)
Ut, N = Zfzo (t)(_l)Z’Ytﬂq)(Mz‘,N). lmpy o0 ur, N = g

(VI = K) " ugn = w (7)
,Cm((ﬁy]- - K)717U§1) - Spa‘n{ub cety Um}

[uf, ..., ud] = QmRy : QR decomposition
L = Q5(7] — K) 7 'Qr = Q% fuy, ..., um] R}

Shift-invert Arnoldi approximation of Kv
Ko~ QrK,Qrv, Ky, :=~1-L,' (8)

2|keda, Ishikawa and Sawano, arXiv:1911.11992, 20109.
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Difference from classical settings

Our setting with P-F operators is different from classical ones in numerical

linear algebra. Although the analyses for classical settings have been

actively investigated, those for P-F operators have not been investigated.
The Classical setting with a linear

Our setting with a P-F operator K operator A
(A typical example of A

® Data driven approach . Laplace operator)
* K is not given, instead, ® Model driven approach

observed data are given e Operators are given
e Kw for a vector v have to be o Auv for a vector v can be

estimated by data computed

Data Data

Model .t
@e/ Model Bfehavior
“Extract _.of the model

New analyses for the Krylov subspace methods for P-F operators are needed
Y. H.and T. N. 10 / 17

Krylov subspace methods for P-F operators in RKHSs



Residual of a Krylov approximation

Krylov approximations for classical settings have a strong connection with
their residuals. — We also investigate a connection of the Krylov
approximations of P-F operators with their residuals.

Kv = Uy, — ||[v— Ky, @ residual of uy,

The steps of our analysis :

1. Find a minimizer of the residual
2. Derive the relation between the residual of the Arnoldi approximation
and that of the minimizer

Theorem 1 (Minimizer of the Residual)

Let Uy = Qm+1Km+1Q5, 11 Q@mQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul. (9)
UERy (K, @(p1))
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let U = Qm+1Km+1Q5, 11 Q@m0 Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul. (9)
UERm (K,®(p1))

Proof. QTILQ;L/U = pm—l(K)q)(HO)
€ K (K, ®(po)) = Span{®(uo), K® (o), - - -, K™ ®(p0)}
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let U = Qm+1Km+1Q5, 11 Q@m0 Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul. (9)
UERm (K,®(p1))

Proof. Qum@Qy,v =t pm—1(K)® (ko) Projection onto /C,, (K, ®(140))
argmin  ||v —ul| = Q. Qv
e

(10)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let U = Qm+1Km+1Q5, 11 Q@m0 Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin |lv — K tul. 9)
UEKm (K, ®(p1))
(If’(roc;ﬁ IC(?(;L(QTS;U = Prm—1(K)P(0) Projection onto K, (K, ®(10))
K1) = Ho) - . B _ "
Time evolution of pg uel?i%}?qiao)) |lv — ull

= Pt (K)K ' @(u1) = K 'pu1 (K)®@(u1).  (10)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let U = Qm+1Km+1Q5, 11 Q@m0 Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul. (9)
UERm (K,®(p1))
(I;D(roc;f. ng’)”(Q:;v = Pm-1(K)®(p0) Projection onto /C,,, (K, ®(110))
M) = o) : ; _ _ *
Time evolution of pg ue,?i%;g&o)) o= ull

= Pt (K)K ' @(u1) = K 'p1 (K)®@(u1).  (10)

® argmlnuelCm(KtI’ (ro)) ||’U ’LLH = K71p7n71<K)(I><u1)'
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Uy = Qm+1Kim+1Q5, 11 Q@mQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul. (9)
UERm (K,®(p1))
(If’(roc;f. }?qT(Q:;v = Pm-1(K)®(p0) Projection onto /C,,, (K, ®(110))
M) = o) : ; _ _ *
Time evolution of pg ue,?i%;g&o)) o= ull

= Pt (K)K ' @(u1) = K 'p1 (K)®@(u1).  (10)

¢ arg mlnuelCm(KtI’ (po)) ||’U - ’LLH K71p7n71<K)(I>(/1’1)'
® For v € K, (K, ®(11)), Kt € K (K, ®(uo)),
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Uy = Qm+1Kim+1Q5, 11 Q@mQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul. (9)
UEK (K, (p11))
(If’(roc;f. ng’)”(Q;)Tv =t Pm—1(K)®(po) Projection onto /C,, (K, ®(140))
H1) = Ho) - ; _ — *
Time evolution of pg ue,?i%;g&o)) o= ul
N (K B(u) = K (K)(u). (10)
° argminger, (o) IV = ull = K~ pm—1(K)® (1),
® Forv € K (K, ®(u )) KY€ K (K, ®(uo)),
pra(K)B(u) = argmin - KNl (11)

’MGICm, (Kz(b(l“ ))
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UERm (K,®(p1))

Proof
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UERm (K,®(p1))

Proof
Pm—1(K)®(u1) € Kpp1 (K, (o))

(12)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UERm (K,®(p1))

Proof

Prm—1(K)®(p1) € K1 (K, (o))
= QTrL+1Q:1+1p7rL—1(K)(I>(M1)

(12)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UERm (K,®(p1))

Proof

pm—l(K)@(,ul) S lcm+1(K, (ID(,UJO)) (I’.(,ul) _ K‘?(HO) :
= Qu1Q% 1 Pm—1(K)®(u1)—" Time evolution of 1

(12)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UERm (K,®(p1))

Proof

Pm-1(K)®(p1) € K1 (K, ®(p0)) (1) = K®(po) :
_ Qm+1Q:1+1pm—1(K)q)<Ml‘)/ Time evolution of pg
= Qm+1Q:n+1Kpm—l(K)q)(/‘0)

(12)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UERm (K,®(p1))

Proof

Pm-1(K)®(p1) € K1 (K, ®(p0)) (1) = K®(po) :
_ Qm+1Q:1+1pm—1(K)q)(Ml‘)/ Time evolution of pg
= Q1@ 1 Kpm—1(K)®(p0) € Ky 1 (K, (10))

(12)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UERm (K,®(p1))

Proof
Pm-1(K)®(p1) € K1 (K, ®(p0)) (1) = K®(po) :
_ Qm+1Q:1+1pm—l(K)q)<Ml‘)/ Time evolution of pg
= Qm—i—lQ:n-&-lemfl(K)q)(ﬂO) € ’Cm+1(K7 @(MO))
= QerlQ:m—&-lKQerlQin,—i-lpm—l(K>©</L0)

(12)
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UEK m (K, P (p1))

Proof
Pm-1(K)®(p1) € K1 (K, ®(p0)) (1) = K®(po) :
_ Qm+1Q:1+1pm—1(K)q)<Ml‘)/ Time evolution of pg
= Qm+1Qr 1 1 KPm—1 (K)2(p0) € Kiny1 (K, 2 (p0))
= Qm+1Q7 1 KQm+1Q710m—1 (K)P(10)

T Bythedef. of K,y (12)

By the def. of p,, 1
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let Gy = Qm+1Km+1Q5, 11 QmQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UEK m (K, P (p1))

Proof

Pm—1(K)® (1) € K1 (K, @(p0)) (1) = K (pao) :
_ Qm+1Q:1+1pm—1(K)q)<Ml‘)/ Time evolution of pg
= Q1@ 1 Kpm—1(K)®(10) € K1 (K, (p10))
= Qm-+1Q 1 K Qm+1Q11Pm—1 (1) P (110)

= Qm+1Km+1Q:n+1Qman”
By the def. of K, 1 (12)
By the def. of p,,,_1
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Residual of a Krylov approximation

Theorem 1 (Minimizer of the Residual)

Let i = Qmi1Km+1Q5, 11 Q@mQr,v- Then, @, minimizes the residual in
K (K, ®(p1)), that is:

Uy = argmin  |jv — K tul|. 9)
UERm (K,®(p1))

Proof

Pm—1(K)® (1) € K1 (K, @(p0)) (1) = K (pao) :
_ Qm+1Q:1+1pm—1(K)q)(Ml‘)/ Time evolution of pg
= Q1@ 1 Kpm—1(K)®(po) € K1 (K, ©(10))
= Qm+1Q;‘n+1KQm+1Q:n+1pmfl(K)q’(MO)

= Qm+1Km+1Q5,11QmQ;,v
= Up.- \ By the def. of K, 11 (12)
By the def. of p,,—1
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Residual of a Krylov approximation

~1
U, = argmin,ex, . (ko)) IV — K|
- A minimizer of the residual

Theorem 2 (Residual of an Arnoldi approximation)

let um == QmKmQv € K (K, ®(u3)) be the Arnoldi approximation of
Kwv. Then, there exists C,,, > 0 such that

lo = K ]l < (14 Con) o = K it (13)

For e > 0, if m is sufficiently large so that the Krylov subspace
Km (K, ®(ug)) is sufficiently close to Hy, and if K is bounded, then

Cm < 1+ KK e (14)

We have also shown similar theorems about the Shift-invert Arnoldi
approximations.
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Numerical experiments

Example 1 (Landau equation)

X = [0,00) 0 05— (15)
dt
LDiscretizing and adding random noise
Xi =X 1+ At(05X; 1 — X2, + &) (16)
0.4 2 —8— Arnoldi
\ Shift-invert Arnoldi
£03 .\
T N
, N
> 02 S
= L
T,
0.1 : S
2 4 6 8 10 12
m
Fig. 1: The dimension of the Krylov subspace m versus the residual

Y. H.and T. N. 15 / 17
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Numerical experiments

Example 2 (Real-world Internet traffic data)

xy : the amount of Internet traffic (gbps) that passed through a certain
node (ID 12) in a network composed of 23 nodes and 227 links at time ¢.

0551 _o— Arnoldi
1.0 Shift-invert Arnoldi
N
0.8 3’5 0.50
—
%06 '¥
04 1 o0as
02
0 250 500 750 1000 1250 1500 1750
t 0.40 |
Fig. 2: The amount of Internet traffic at 2 4 6 8 10 12

each t
Fig. 3: The dimension of the Krylov

subspace m versus the residual
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Conclusions

® We considered Krylov subspace methods for P-F operators.

® Since the setting with P-F operators is different from classical settings
in numerical linear algebra, new analyses for the Krylov subspace
methods for P-F operators are required.

® We have shown connections of the Krylov approximations with their
residuals.
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