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challenges in computational science and engineering

I exascale computing
I faults
I synchronisation and communication
I new approximations

I assimilating data with computational solutions of PDEs
I including extensive computations in control
I uncertainty in models, data and computations
I managing very complex computational codes
I focus on quantities of interest and dual problems

I inverse problems and optimisation
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role of mathematics

I enhance understanding of assumptions and observations used
in code development

I approximation errors in legacy and new code
I complexity
I properties of models (e.g. PDE existence and uniqueness

theorems)
I error propagation
I understanding the nature of collaborations and role of different

disciplines
I people are interdisciplinary
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our project
I code base: GENE – development lead by Frank Jenko, IPP

Munich
I highly scalable, tested on various HPCs
I international user base
I under constant development

I our aim: extending the capability of GENE without changing
the core
I approach: numerical extrapolation based on multiple

simulations with different grid parameters
I applications: solve larger problems, parameter optimisation,

uncertainty quantification
I resources: 4 PhD students, ARC Linkage project with Fujitsu

Europe and collaboration with TU Munich through DFG
excellence initiative

I so far: fault tolerant sparse grids
I target: mathematics behind GENE computations
I in this talk: explore approximations used
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GENE

I open source plasma research code
I state of the art, highly optimised for high performance

computers
I our work: utilise sparse grids to improve performance and fault

tolerance
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Collaborators

This talk is based on past and current collaborative research with
Yuancheng Zhou (ANU), Christoph Kowitz (formerly TU Munich),
Brendan Harding (UoA), Peter Strazdins (ANU), Peter Vasiliou
(ANU), Matthew Hole (ANU), Stuart Hudson (PPL Princeton),
Frank Jenko (MPI Garching) and Dirk Pfluger (Uni Stuttgart)
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Approximation 1: PDEs approximating ODEs
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dynamics of a single particle

I Newton’s equations for charged particles

d
dt

[
x
v

]
=
[

v
1
mF (x , v)

]

I Lorentz force F (x , v) = q(E + v ∧ B)

I Hamilton’s equations

d
dt

[
x
p

]
=
[
0 I
−I 0

]
∇H

I Hamiltonian H(x , p) = 1
2m‖p −

q
c A‖2 + φ(x)

I fields E = ∇φ− ∂A
∂t and B = ∇∧ A

I momentum p = v + q
c A
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Maxwell’s equations

∂E
∂t = c2∇∧ B − j

ε0
∂B
∂t = −∇ ∧ E

and
∇ · E = ρ

ε0
∇ · B = 0
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solutions

E = −∇φ− ∂A
∂t

B = ∇∧ A

where
φ(x , t) =

∫
ρ(ξ, t − r/c)

2πε0r dξ

A(x , t) =
∫ j(ξ, t − r/c)

2πε0r dξ

and r = ‖x − ξ‖

I GENE solves Poisson-Ampere equations
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Vlasov equations
I let X (t) and V (t) solve Newton’s equations
I let µ0(x , v) be continuously differentiable and

µ(x , v ; t) = µ0(x − X (t), v − V (t))
I then µ satisfies

∂µ

∂t = ẊT∇xµ+ V̇ T∇uµ

I eliminate the derivatives of X and V using Newton’s equations

∂µ

∂t = V · ∇xµ+ F (X ,V )
m · ∇uµ

I Vlasov equations

∂µ

∂t = v · ∇xµ+ F (x , v)
m · ∇uµ

approximation if supp(µ0) small
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multiple particles

I could use Vlasov equations to define (very) weak solutions of
ODEs

I here we consider instead multiple particle solutions given by

µ(x , v ; t) = 1
n

n∑
i=1

µ0(x − X (i)(t), v − V (i)(t))

I if all (X (i)(t),V (i)(t)) satisfy Newtons equations one gets the
Vlasov approximation as

∂µ

∂t = v · ∇xµ+ F (x , v)
m · ∇uµ

if the forces are purely external, i.e., there are no interactions
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multiple particles with interactions
I interactions between the particles: approximate F which now

depends on µ

∂µ

∂t = v · ∇xµ+ F (x , v ;µ)
m · ∇uµ

I interactions between the particles obtained from the charge and
current densities ρ and j

ρq(x ; t) = q
∫
µ(x , v ; t) dv ,

jq(x ; t) = q
∫

vµ(x , v) dv

I nonlinear (quadratic) system of integro-differential equations
⇒ turbulence

Approximation 1: PDEs approximating ODEs computational plasma physics 15 / 40



application and approximation

I the Vlasov equations are used to approximate systems of ODEs
arising from very large systems of charged particles

I Vlasov equations are often solved using particle methods which
basically model the dynamics of agglomerates of particles

I the accuracy and of the approximations of distributions of
discrete particles by densities µ is an area of active research in
mathematics especially for the case of Lorentz forces, i.e., the
Vlasov-Maxwell equations

I MHD based on moments of µ similar to ρ and j
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Approximation 2: gyrokinetics
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constant fields

mdv
dt = q(E + v ∧ B)

I decomposition into terms parallel and orthogonal to B

B = (0, 0, |B|)T

v = v‖ + v⊥, E = E‖ + E⊥

B ∧ v = |B|

 0 1 0
−1 0 0
0 0 0

 v

I differential equations for v

dv‖
dt = q

mE‖
dv⊥
dt = q

m (E⊥ + v⊥ ∧ B)
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solutions of the constant field case

v‖(t) = v‖(0) +
qE‖
m t

v⊥(t) = u⊥ +
[

cos(τ) sin(τ)
− sin(τ) cos τ

]
(v⊥(0)− u⊥)

where partial (constant) solution u⊥ satisfies E⊥ + u⊥ ∧ B = 0 and
τ = Ωt where the gyrofrequency is Ω = q|B|

m

I integrate to get location

x‖(t) = x‖(0) + v‖(0) t +
qE‖
m

t2

2

x⊥(t) = x⊥(0) + u⊥ t + Ω
[

sin(τ) − cos(τ) + 1
cos(τ)− 1 sin(τ)

]
(v⊥(0)− u⊥)
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discussion of solution

I solution takes the form of a spiral which has two components:
1. movement of centre

I in direction of B
I drifting from this direction

2. gyration with frequency Ω around centre

I Hamiltonian formulation leads to introduction of gyro
coordinates and separation of gyro motion from the rest
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invariants and dimension reduction
I Vlasov equations for Hamiltonian systems

∂f
∂t = {H, f }

where Poisson bracket is

{H, f } = ∇pHT∇x f −∇xHT∇pf

I for particles with charge e and E = ∇φ and B = ∇∧ A

H = 1
2m‖p −

e
c A‖2 + φ

I if ∂H/∂xi = 0 then Vlasov equations don’t contain ∂f /∂pi
which allows integration
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Example

I simple 1D example H = p2/2 then

∂f
∂t = pfx

with solution f = g(pt + x)
I constant fields with φ = ET x , B = ∇∧ A and Hamiltonian

H = 1
2‖p −

q
2c B ∧ x‖2 + ET x

= 1
2

(
p1 + q|B|

2c x2

)2
+ 1

2

(
p2 −

q|B|
2c x1

)2
+ 1

2p2
3 + E1x1 + E2x2

I Hamiltonian independent of x3
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Gyrokinetic equations
I approximate one gyrating particle by uniform particle density

rotating around gyrocentre
I new coordinates: gyrocentre X , parallel velocity v‖ and

magnetic moment µ = |mv⊥|2
2B (apologies: different µ . . . )

I ODEs (based on Lorentz force)
dX
dt = φ1(x , v‖, µ; t)

dv‖
dt = φ2(x , v‖, µ; t)

dµ
dt = 0

I Vlasov equations
∂f
∂t + φT

1
∂f
∂X + φ2

∂f
∂v‖

= 0

I need to transform Maxwell’s equations too
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Approximation 3: Lie perturbation
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Approximating turbulence
I model:

physical fields = background + turbulent fluctuations
I turbulence smaller than background

δf
f and δBB = O(ε)

I time and spatial scales of turbulence larger than gyrations
ω

Ω and ρL = O(ε) (ρ: gyroradius, Ω: gyrofrequency)

I turbulence extends along the magnetic field

k‖
k⊥

= O(ε)

I Lie perturbation = turbulence perturbation + gyrokinetics
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Approximation 4: numerics
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geometry and coordinates – fluxtubes

I geometry: torus
I coordinates aligned with magnetic field for efficiency:

B ∼ ∇x ∧∇y (Clebsch)

I original GENE (2000) B constant on toroidal surfaces
I x : radial, z : parallel and y : “poloidal”
I computation in magnetic fluxtubes with dimensions ∼

correlation lengths (long in B direction, short orthogonal)
I current GENE: more general geometry, full 3D domains
I state space = torus × R2

I velocity space approximated by rectangle
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discretisation (original local GENE)

I 4th order finite differences on equidistant grid for
I z with quasiperiodic bnd
I v‖ with Dirichlet bnd f = 0

I µ: Gauss-Legendre (or Laguerre) points (required for integral
eqn part)

I Fourier spectral method for x and y – use complex
computations

I integration in time with fourth order Runge-Kutta
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Approximation 5: sparse grids
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sparse grid combination technique

I let h = (h1, . . . , h5) be grid sizes of a regular grid
approximation fh in the five dimensions

I choose hi ∼ 2−i

I sparse grid combination approximation

fS =
∑

h
whfh

I use error splitting

fh = f +
∑
α

cα2−α

to obtain error bounds and determine weights wh
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properties and extensions

I optimal choice of wh give provably smaller errors than any
component fh

I choose wh such that method is robust against errors
I solving the component problems for fh provide another

dimension of parallelism
I the solutions f appear to be very smooth so that both the

sparse grid and the combination technique perform well
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quantities of interest
I partial differential equation: find u ∈ V such that

F(u) = 0

I in our plasma example:
I u = (f1, . . . , fk) densities fs(x , v) in state space
I F stands for Vlasov-Maxwell equations

I numerical approximation (GENE): find uh ∈ Vh such that

Fh(uh) = 0

I quantity of interest: q = Q(u)
I example

Q(u) =
∑

s
ms

∫
Ω

∣∣∣∣∫
R3

v fs(x , v) dv
∣∣∣∣2 dx

I approximation (GENE): qh = Qh(uh)
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a sparse grid

a simple sparse grid

∪ =

sparse grid in frequency / scale space

∪ =

captures fine scales in both dimensions but not joint fine scales
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sparse grid error

five dimensional case

102 104 106 108 1010 1012
10−4

10−3

10−2

10−1

100

number of grid points

er
ro
r

isotropic grid
sparse grid

I only asymptotic error rates
given here

I constants and preasymptotics
also depend on dimension

I practical experience: with
sparse grids up to 10
dimensions

I Zenger 1991

asymptotic rates number of points L2 error

regular isotropic grids h−d h2

sparse grids h−1 | log2 h|d−1 h2 | log2 h|d−1
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combination technique
I compute combination coefficients using exclusion-inclusion

principle
I uh approximations of u, h = (h1, h2, . . .) = (2−γ1 , 2−γ2 , . . .)

size of grid cells
I uSG sparse grid approximation
I uC combination approximation
I examples: interpolation, best approximation, Galerkin solution

of PDE, other PDE solvers
I if the approximations for any two discretisations commute, then

the sparse grid approximation is equal to the combination
approximation – example: interpolation

I error-splitting formulas replace Euler-Maclaurin:

uh − u = β1h2
1 + β2h2

2 + β3h2
1h2

2 + · · ·

only available for simple cases (Laplace equation etc)
I study of the surplus for wider range of cases suggests that error

splitting holds more widely
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combination formula
sparse grid points sparse grid scale diagram

combination formula

uC = u1,16 + u2,8 + u4,4 + u8,2 + u16,1 − u1,8 − u2,4 − u4,2 − u8,1

Griebel, Schneider, Zenger 1992
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fault tolerant sparse grids
sparse grid points sparse grid scale diagram

revised combination formula

uC = u1,16 + u4,4 + u8,2 + u16,1 − u4,2 − u8,1 − u1,4
H. CTAC 2003, Harding 2012
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Other approximations
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examples

I Strang splitting
I MHD
I SPH – particle methods, meshless methods
I discontinuous Galerkin
I reduced basis methods
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