Weak Galerkin Finite Element Methods for Elliptic and Parabolic Problems on Polygonal Meshes

 MWNDEA 2020Naresh Kumar

Department of Mathematics
Indian Institute of Technology Guwahati,
Guwahati, India

Outline

- Weak Galerkin Finite Element Methods.
- Motivation
- Implementation
- WG-FEM for Model PDEs.
- Second Order Elliptic Problems.
- Second Order Parabolic Problems.
- Numerical Results.

Joint Work With: Prof. Bhupen Deka.

Basic Notation

- We denote by $H^{m}(J ; \mathcal{B}), 1 \leq m<\infty$, the space of all measurable functions $\phi: J \rightarrow \mathcal{B}$ for which

$$
\|u\|_{H^{m}(J ; \mathcal{B})}=\left(\sum_{j=0}^{m} \int_{0}^{T}\left\|\frac{\partial^{j} u(t)}{\partial t^{j}}\right\|_{\mathcal{B}}^{2} d t\right)^{\frac{1}{2}}<\infty .
$$

- The minimal regularity space

$$
X=L^{2}\left(0, T ; H_{0}^{m+1}(\Omega)\right) \cap H^{1}\left(0, T ; H^{m-1}(\Omega)\right),
$$

equipped with the norm

$$
\|v\|_{X}^{2}=\|v\|_{L^{2}\left(0, T ; H^{m+1}(\Omega)\right)}^{2}+\left\|\partial_{t} v\right\|_{L^{2}\left(0, T ; H^{m-1}(\Omega)\right)}^{2} .
$$

- We will use $\|\cdot\|$ for L^{2}-norm.

Second Order Elliptic Problems

Find $u \in H_{0}^{1}(\Omega)$ such that

$$
(a \nabla u, \nabla v)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega) .
$$

Procedures in the standard Galerkin finite element method:

- Partition Ω into triangles or tetrahedra.
- Construct a subspace, denoted by $S_{h} \subset H_{0}^{1}(\Omega)$, using piecewise polynomials.
- Seek for a finite element solution u_{h} from S_{h} such that

$$
\left(a \nabla u_{h}, \nabla v\right)=(f, v) \quad \forall v \in S_{h} .
$$

The classical gradient ∇u for $u \in C^{1}(\Omega)$ can be computed as:

$$
\int_{K} \nabla u \cdot \phi=-\int_{K} u \nabla \cdot \phi+\int_{\partial K} u(\phi \cdot n) \forall \phi \in\left[C^{1}(\Omega)\right]^{2}
$$

Thus, u can be extended to $\left\{u_{0}, u_{b}\right\}$ with ∇u being extended to $\nabla_{w} u$.

Motivation: Weak Function

- Let K be any polygonal or polyhedral domain with interior K^{0} and boundary ∂K.
- A weak function on the region K refers to a pair of scalar-valued functions $v=\left\{v_{0}, v_{b}\right\}$ such that $v_{0} \in L^{2}(K)$ and $v_{b} \in H^{\frac{1}{2}}(\partial K)$.
- Denote by $\mathcal{V}(K)$ the space of weak functions on K; i. e.,

$$
\mathcal{V}(K)=\left\{v=\left\{v_{0}, v_{b}\right\}: v_{0} \in L^{2}(K), v_{b} \in H^{\frac{1}{2}}(\partial K)\right\} .
$$

- For any weak function $v=\left\{v_{0}, v_{b}\right\}$, its weak gradient $\nabla_{w} v$ is defined (interpreted) as a linear functional on $H(\operatorname{div}, K)$ whose action on each $q \in H(\operatorname{div}, K)$ is given by

$$
\begin{equation*}
\int_{K} \nabla_{w} v \cdot q d K=-\int_{K} v_{0} \nabla \cdot q d K+\int_{\partial K} v_{b} q \cdot \mathbf{n} d s \tag{1}
\end{equation*}
$$

where \mathbf{n} is the outward normal to ∂K.

Inclusion Result

- The Sobolev space $H^{1}(K)$ can be embedded into the space $\mathcal{V}(K)$ by an inclusion map $i \mathcal{V}: H^{1}(K) \mapsto \mathcal{V}(K)$ defined as follows

$$
\dot{i}_{\mathcal{L}}(\phi)=\left\{\left.\phi\right|_{K},\left.\phi\right|_{\partial K}\right\}, \quad \phi \in H^{1}(K) .
$$

- With the help of the inclusion map $i \mathcal{V}$, the Sobolev space $H^{1}(K)$ can be viewed as a subspace of $\mathcal{V}(K)$ by identifying each $\phi \in H^{1}(K)$ with $i_{\mathcal{V}}(\phi)$.
- Analogously, a weak function $v=\left\{v_{0}, v_{b}\right\} \in \mathcal{V}(K)$ is said to be in $H^{1}(K)$ if it can be identified with a function $\phi \in H^{1}(K)$ through the above inclusion map.
- For $u \in H^{1}(K)$, we have

$$
i_{\mathcal{V}}(u)=\left\{\left.u\right|_{K},\left.u\right|_{\partial K}\right\} .
$$

It is not hard to see that the weak gradient is identical with the strong/classical gradient.

Discrete Weak Gradient

Discrete Weak Gradient Operator: A discrete weak gradient operator, denoted by $\nabla_{w, m}$, is defined as the unique polynomial $\left(\nabla_{w, m} v\right) \in\left[\mathcal{P}_{m}(K)\right]^{2}$ that satisfies the following equation

$$
\begin{equation*}
\int_{K} \nabla_{w, m} v \cdot \phi d K=-\int_{K} v_{0}(\nabla \cdot \phi) d K+\int_{\partial K} v_{b}(\phi \cdot \mathbf{n}) d s \quad \forall \phi \in\left[\mathcal{P}_{m}(K)\right]^{2}, \tag{2}
\end{equation*}
$$

where $v=\left\{v_{0}, v_{b}\right\}$ such that $v_{0} \in L^{2}(K)$ and $v_{b} \in H^{\frac{1}{2}}(\partial K)$.

Weak Galerkin Space

Weak Galerkin space is defined as: $\left(\mathcal{P}_{k}(K), \mathcal{P}_{j}(\partial K),\left[\mathcal{P}_{l}(K)\right]^{2}\right)$

- $k \geq 1$ is the degree of polynomials in the interior of the element K,
- $j \geq 0$ is the degree of polynomials on the boundary of K and
- $I \geq 0$ is the degree of polynomials employed in the computation of weak gradients or weak first order partial derivatives.
- k, j, I are selected in such a way that minimize the number of unknowns in the numerical scheme without compromising the accuracy of the numerical approximation.
Lowest Order Weak Galerkin Space
- A lowest order WG-FEM space is $\left(\mathcal{P}_{1}(K), \mathcal{P}_{0}(\partial K),\left[\mathcal{P}_{0}(K)\right]^{2}\right)$.

Weak Galerkin Approximation

We choose weak Galerkin space is $\left(\mathcal{P}_{k}(K), \mathcal{P}_{k}(\partial K),\left[\mathcal{P}_{k-1}(K)\right]^{2}\right)$.
For $k \geq 1$, let V_{h} be WG FE space associated with $\mathcal{T}_{h} \&$ defined as:

$$
V_{h}=\left\{v=\left\{v_{0}, v_{b}\right\}:\left.v_{0}\right|_{K^{0}} \in \mathcal{P}_{k}(K),\left.v_{b}\right|_{e} \in \mathcal{P}_{k}(e), e \in \partial K, K \in \mathcal{T}_{h}\right\} .
$$

Weak Galerkin Approximation Cont...

- Note that functions in V_{h} are defined on each element, and there are two-sided values of v_{b} on each interior edge/face e, depicted as $\left.v_{b}\right|_{\partial T_{1}}$ and $\left.v_{b}\right|_{\partial T_{2}}$ in above Figure.
- We assume that v_{b} has unique value on each interior edge/face e that is

$$
[v]_{e}=0 \quad \forall e \in \mathcal{E}_{h}^{0},
$$

$[v]_{e}$ denotes the jump of $v \in V_{h}$ across an interior edge $e \in \mathcal{E}_{h}^{0}$.

- We write $V_{h}^{0}=\left\{v=\left\{v_{0}, v_{b}\right\} \in V_{h}: v_{b}=0\right.$ on $\left.\partial \Omega\right\}$.
- For $v \in V_{h}$, the discrete weak gradient of it is defined as the unique polynomial $\left(\nabla_{w} v\right) \in\left[\mathcal{P}_{k-1}(K)\right]^{2}$ that satisfies the following equation

$$
\begin{equation*}
\int_{K} \nabla_{w, m} v \cdot \phi d K=-\int_{K} v_{0}(\nabla \cdot \phi) d K+\int_{\partial K} v_{b}(\phi \cdot \mathbf{n}) d s \quad \forall \phi \in\left[\mathcal{P}_{k-1}(K)\right]^{2} . \tag{3}
\end{equation*}
$$

Shape Regularity for Polytopal Elements

Why Shape Regularity?
The shape regularity is needed for
(1) trace inequality.
(2) inverse inequality.
(3) domain inverse inequality.

- (A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126, by J. Wang and X. Ye for more details)

Elliptic Boundary Value Problem

Consider following BVP

$$
\begin{equation*}
-\nabla \cdot(\nabla u)=f \text { in } \Omega, \tag{4}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
u=0 \quad \text { on } \partial \Omega . \tag{5}
\end{equation*}
$$

Weak Formulation: Find $u \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x . \tag{6}
\end{equation*}
$$

Elliptic Boundary Value Problem Cont...

Weak Galerkin Approximation: Find $u_{h}=\left\{u_{0}, u_{b}\right\} \in V_{h}^{0}$ such that

$$
\begin{equation*}
a_{s}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h}^{0}, \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{s}\left(u_{h}, v_{h}\right)=a\left(u_{h}, v_{h}\right)+s\left(u_{h}, v_{h}\right), \tag{8}
\end{equation*}
$$

where

- $a(\cdot, \cdot): V_{h} \times V_{h} \rightarrow \mathbb{R}$ is a bilinear map given by

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\left(\nabla_{w} u_{h}, \nabla_{w} v_{h}\right)=\sum_{k \in \mathcal{T}_{h}}\left(\nabla_{w} u_{h}, \nabla_{w} v_{h}\right)_{k}, \tag{9}
\end{equation*}
$$

- with a stabilizer $s(\cdot, \cdot): V_{h} \times V_{h} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
s\left(u_{h}, v_{h}\right)=\sum_{K \in \mathcal{T}_{h}} h_{K}^{-1}\left\langle u_{0}-u_{b}, v_{0}-v_{b}\right\rangle_{\partial K} . \tag{10}
\end{equation*}
$$

- It is important to check that $a_{s}(\cdot, \cdot)$ is positive so that WG approximation (7) has a unique solution. In fact bilinear map $a_{s}(\cdot, \cdot)$ induces a norm.

Discrete Norms

- We consider following norm associated with the bilinear map $a_{s}(\cdot, \cdot)$

$$
\begin{equation*}
\left\|u_{h}\right\| \|=\sqrt{a_{s}\left(u_{h}, u_{h}\right)} \tag{11}
\end{equation*}
$$

- For simplicity, we shall only verify the positive length property for $\|\|\cdot\|$.
- Assume that $\|w\|=0$ for some $w=\left\{w_{0}, w_{b}\right\} \in V_{h}^{0}$.
- It follows that $\nabla_{w} w=0$ on each element $K \in \mathcal{T}_{h}$ and $w_{0}=w_{b}$ on ∂K.
- Thus, we have from the definition of weak gradient that for any $\phi \in\left[\mathcal{P}_{k-1}(K)\right]^{2}$.

$$
\begin{aligned}
0 & =\left(\nabla_{w} w, \phi\right)_{K} \\
& =-\left(w_{0}, \nabla \cdot \phi\right)_{K}+\left\langle w_{b}, \phi \cdot \mathbf{n}\right\rangle_{\partial K} \\
& =\left(\nabla w_{0}, \phi\right)+\left\langle w_{b}-w_{0}, \phi \cdot \mathbf{n}\right\rangle_{\partial K} \\
& =\left(\nabla w_{0}, \phi\right)_{K} .
\end{aligned}
$$

- Letting $\phi=\nabla w_{0}$ in the above equation yields $\nabla w_{0}=0$ on $K \in \mathcal{T}_{h}$.

Discrete Norms Contd.

- It follows that $w_{0}=$ constant on every $K \in \mathcal{T}_{h}$.
- This, together with the fact that $w_{b}=w_{0}$ on ∂K and $w_{b}=0$ on $\partial \Omega$, implies that $w_{0}=0$ and $w_{b}=0$.
- We define following discrete H^{1}-norm

$$
\|v\|_{1, h}=\left(\sum_{K \in \mathcal{T}_{h}}\left(\left\|\nabla v_{0}\right\|_{K}^{2}+h_{K}^{-1}\left\|v_{0}-v_{b}\right\|_{\partial K}^{2}\right)\right)^{\frac{1}{2}}, v=\left\{v_{0}, v_{b}\right\} \in V_{h}^{0}
$$

- The following lemma indicates that discrete H^{1}-norm is equivalent to triple bar norm (c.f. Lemma 5.3, A weak Galerkin finite element method with polynomial reduction, JCAM, 285 (2015) 4558)

Lemma

There exist two positive constants C_{1} and C_{2} such that

$$
C_{1}\|v\|_{1, h} \leq\|v\| \leq C_{2}\|v\|_{2, h} \quad \forall v_{h} \in V_{h} .
$$

Some Useful Results

Trace Inequality. (see, Lemma A.3, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126). Let K be an element with e as an edge. For any function $\varphi \in H^{1}(K)$, the following trace inequality holds true

$$
\|\varphi\|_{L^{2}(e)}^{2} \leq C\left(h_{K}^{-1}\|\varphi\|_{L^{2}(K)}^{2}+h_{K}\|\nabla \varphi\|_{L^{2}(K)}^{2}\right) .
$$

Inverse Inequality. (see, Lemma A.6, Math. Comp., 83 (2014), 2101-2126). For any piecewise polynomial φ of degree p on \mathcal{T}_{h}, there exists constant $C=C(p)$ such that

$$
\|\nabla \varphi\|_{L^{2}(K)} \leq C(p) h_{K}^{-1}\|\varphi\|_{L^{2}(K)}, \quad \forall K \in \mathcal{T}_{h} .
$$

Poincaré-type Inequality. (see, Lemma 7.1, Weak Galerkin finite element methods on polytopal meshes, IJNAM, 12 (2015), 31-53). Assume that the finite element partition \mathcal{T}_{h} is shape regular. Then,there exists a constant C independent of the mesh size h such that

$$
\left\|\varphi_{0}\right\| \leq C\|\varphi\|, \quad \forall \varphi=\left\{\varphi_{0}, \varphi_{b}\right\} \in V_{h}^{0} .
$$

Polynomial Approximation in Weak Galerkin Space

L^{2}-Projections.

- For each element $K \in \mathcal{T}_{h}$, denote by Q_{0} the usual L^{2} projection operator from $L^{2}(K)$ onto $\mathcal{P}_{k}(K)$ and by Q_{b} the L^{2} projection from $L^{2}(e)$ onto $\mathcal{P}_{k}(e)$ for any $e \in \mathcal{E}_{h}$. Then
- We shall combine Q_{0} with Q_{b} by writing $Q_{h}=\left\{Q_{0}, Q_{b}\right\}$. More precisely, for $\phi \in H^{1}(K)$, we have $Q_{h} \phi=\left\{Q_{0} \phi, Q_{b} \phi\right\}$.
- In addition to Q_{h}, let \mathbb{Q}_{h} be an another local L^{2} projection from $\left[L^{2}(K)\right]^{2}$ onto $\left[\mathcal{P}_{k-1}(K)\right]^{2}$.
Approximation Results. (See, Lemma 4.1, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 2014).

$$
\begin{aligned}
\left\|u-Q_{0} u\right\|_{L^{2}(K)}^{2}+h_{K}^{2}\left\|\nabla\left(u-Q_{0} u\right)\right\|_{L^{2}(K)}^{2} & \leq C h_{K}^{2(k+1)}\|u\|_{k+1, K}^{2}, \\
\left\|\nabla u-\mathbb{Q}_{h}(\nabla u)\right\|_{L^{2}(K)}^{2}+h_{K}^{2} \| \nabla\left(\nabla u-\mathbb{Q}_{h}(\nabla u) \|_{L^{2}(K)}^{2}\right. & \leq C h^{2 k}\|u\|_{k+1, K}^{2} . \square
\end{aligned}
$$

Error Analysis

- As a traditional way, we split our error into two components using an intermediate operator. We write

$$
u-u_{h}=\left(u-Q_{h} u\right)+\left(Q_{h} u-u_{h}\right) .
$$

- For simplicity, we introduce the following notation

$$
\begin{equation*}
e_{h}:=\left\{e_{0}, e_{b}\right\}=u_{h}-Q_{h} u . \tag{12}
\end{equation*}
$$

Convergence Result for H^{1} : Let $u_{h} \in V_{h}$ be the weak Galerkin finite element solution of the problem (7).Assume that the exact solution is so regular that $u \in H^{k+1}(\Omega)$. Then, there exist a constant C such that

$$
\left\|e_{h}\right\| \leq C h^{k}\|u\|_{k+1, \Omega}
$$

(See L. Mu, J. Wang, and X. Ye, Weak Galerkin Finite Element Methods On Polytopal Meshes Int. Jour. Numer. Anal. Model., 12(2015) 31-54.)

Error Analysis Contd.

Now, for L^{2} norm error estimate, duality argument leads to following convergence result.

- Convergence Results for L^{2}-norm: Let $u_{h} \in V_{h}$ be the weak Galerkin finite element solution of the problem (7). Assume that the exact solution is so regular that $u \in H^{k+1}(\Omega)$. Then, there exist a constant C such that

$$
\left\|e_{0}\right\| \leq C h^{k+1}\|u\|_{k+1, \Omega} . \square
$$

(See L. Mu, J. Wang, and X. Ye, Weak Galerkin Finite Element Methods On Polytopal Meshes Int. Jour. Numer. Anal. Model., 12(2015) 31-54.)

Weak Galerkin Method for Parabolic Problems

Consider the following second order parabolic problem

$$
\begin{gather*}
u_{t}-\nabla \cdot(\mathcal{A} \nabla u)=f \text { in } \Omega, t \in J, \tag{13}\\
u=0 \text { on } \partial \Omega, \quad t \in J, \tag{14}\\
u(\cdot, 0)=\psi \text { in } \Omega . \tag{15}
\end{gather*}
$$

Where Ω is a polygonal domain in \mathbb{R}^{2} with Lipschitz boundary $\partial \Omega$, $J=(0, T], T<\infty$ and \mathcal{A} is a symmetric positive definite matrix.

Weak Galerkin Method for Parabolic Problems Cont...

- Weak Formulation: Find $u(\cdot, t) \in H_{0}^{1}(\Omega)$ such that

$$
\begin{aligned}
\left(u_{t}, v\right)+(\mathcal{A} \nabla u, \nabla v) & =(f, v) \quad \forall v \in H_{0}^{1}(\Omega), t \in J, \\
u(\cdot, 0) & =\psi .
\end{aligned}
$$

- Semi-discrete weak Galerkin finite element approximation: Find $u_{h}(t)=\left\{u_{0}(\cdot, t), u_{b}(\cdot, t)\right\} \in V_{h}^{0}$ such that

$$
\begin{equation*}
\left(u_{h t}, v_{0}\right)+a_{s}\left(u_{h}, v\right)=\left(f, v_{0}\right) \quad \forall v=\left\{v_{0}, v_{b}\right\} \in V_{h}^{0}, \quad t>0, \tag{16}
\end{equation*}
$$

- with

$$
u_{h}(\cdot, 0)=Q_{h} \psi \text { in } \Omega .
$$

- Where $a_{s}(\cdot, \cdot)$ is same as in (8) with stabilizer term (10).

Semi-discrete error estimates for parabolic problems:

Theorem

Assume that $u \in H^{r+1}(\Omega)$. Then there exists a positive constant $C>0$ independent of the mesh size h such that

$$
\left\|e_{h}(\cdot, t)\right\|^{2} \leq\left\|e_{h}(\cdot, 0)\right\|^{2}+C h^{2 r} \int_{0}^{t}\|u\|_{r+1}^{2} d s
$$

and

$$
\begin{aligned}
\left\|e_{h}(\cdot, t)\right\|^{2} \leq & \left\|e_{h}(\cdot, 0)\right\|^{2}+C h^{2 r}\left(\|\psi\|_{r+1}^{2}\right. \\
& \left.+\|u(\cdot, t)\|_{r+1}^{2}+\int_{0}^{t}\|u\|_{r+1}^{2} d s+\int_{0}^{t}\left\|u_{t}\right\|_{r+1}^{2} d s\right) .
\end{aligned}
$$

(See Theorem (4.2), Hongoin Zhang et al, Weak Galerkin Finite Element Method For Second Order Parabolic Equations), International J. Numer. Anal. and Modeling 13 (2016), 525-544.

Fully Discrete Weak Galerkin approximation

- Let $k>0$ be a time step-size. At the time level $t=t_{n}=n k$, with integer $0 \leq n \leq N ; N k=T$, and denote by $U^{n}=U_{h}^{n} \in V_{h}$ the approximation of $u\left(t_{n}\right)$ to be determined.
- Weak Formulation: Find $U^{n}=U_{h}^{n} \in V_{h}$ such that

$$
\begin{equation*}
\left(\bar{\partial} U^{n}, v_{0}\right)+a\left(U^{n}, v\right)=\left(f\left(t_{n}\right), v_{0}\right) \quad \forall v=\left\{v_{0}, v_{b}\right\} \in V_{h}^{0}, n \geq 1 \tag{17}
\end{equation*}
$$

- with $\bar{\partial} U^{n}=\frac{U^{n}-U^{n-1}}{k}$.

Fully -discrete error estimates:

Theorem

Assume that $u \in C^{2}\left([0, T] ; H^{r+1}(\Omega)\right)$. Then there exists a positive constant $C>0$ independent of the mesh size h such that for $0<n \leq N$

$$
\left\|e^{n}\right\|^{2} \leq\left\|e^{0}\right\|^{2}+C\left(h^{2 r}\|u\|_{r+1, \infty}^{2}+k^{2} \int_{0}^{t_{n}}\left\|u_{t t}\right\|^{2} d s\right)
$$

and

$$
\begin{aligned}
\left\|e^{n}\right\|^{2} \leq & C\left\{\left\|e^{0}\right\|^{2}+h^{2 r}\left(\|\psi\|_{r+1}^{2}+\|u(\cdot, t)\|_{r+1, \infty}^{2}+\left\|u_{t}\right\|_{r+1, \infty}^{2}\right.\right. \\
& \left.\left.+k^{2} \int_{0}^{t}\left\|u_{t t}\right\|_{r+1}^{2} d s\right)+k^{2} \int_{0}^{t}\left\|u_{t t}\right\|^{2} d s\right\},
\end{aligned}
$$

where $\|u\|_{r+1, \infty}=\max _{0 \leq t \leq T}\left\{\|u(t)\|_{r+1}\right\}$.
(See Theorem (4.2), H. Zhang et al, Weak Galerkin Finite Element Method For Second Order Parabolic Equations), International J. Numer. Anal. and Modeling 13 (2016), 525-544.

Weak Galerkin Method Under Minimal Regularity

Theorem

Let $u(x, t)$ and $u_{h}(x, t)$ be the solution to the problem (13)-(15) and the semi-discrete WG scheme (16) respectively.Assume that the exact solution $u \in H_{0}^{1}(\Omega) \cap H^{k+1}(\Omega)$ and $u_{t} \in H_{0}^{1}(\Omega) \cap H^{k-1}(\Omega)$ then there exist a constant C such that

$$
\|e\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C h^{k+1}\|u\|_{L^{2}\left(0, T ; H^{k+1}\right)}
$$

Theorem

Let u and U be the solution of (13)-(16) and (17) respectively. then for $u_{0} \in H^{2} \cap H_{0}^{1}(\Omega), f \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$, there exist a constant C independent of h and k such that

$$
\|u-U\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} \leq C\left(k+h^{2}\right)\left\{\|u\|_{L^{2}\left(0, T ; H^{2}\right)}+\left\|u_{t}\right\|_{L^{2}\left(0, T ; L^{2}\right)}\right\}
$$

Joint Work With Dr Bhupen Deka

Numerical Result

Figure: Triangulation

Numerical Result Cont...

Example

Let $\Omega=[0,1] \times[0,1]$, and the exact solution is

$$
u=\exp (-t) \sin (\pi x) \sin (\pi y) \sin (\pi x+\pi y-t)
$$

The right-hand sides f in (13) are determined from the choice for u and $\mathcal{A}(x)=\left[\begin{array}{cc}1 & x y \\ x y & x^{2} y^{2}-1\end{array}\right]$.

WG based on $\left\{P_{1}, P_{1}, P_{0}\right\}$ space with $k=10^{-4}$									
h	$\\|e\\|$	Order	$\\|e\\| \\|$	Order					
$1 / 4$	0.3432696306	-	1.411571357	-					
$1 / 8$	0.02851317328	1.91	0.41909813963	0.87					
$1 / 16$	0.007142629039	1.97	0.208296331455	1.00					
$1 / 32$	0.000985569	1.98	0.0705478	1.01					

Numerical Result Cont...

WG based on $\left\{P_{2}, P_{2}, P_{1}\right\}$ space with $k=10^{-4}$

h	$\\|e\\|$	Order	$\\|e\\| \\|$	Order
$1 / 4$	2.949236×10^{-2}	-	3.363017×10^{-1}	-
$1 / 8$	3.794609×10^{-3}	2.95	8.970083×10^{-2}	1.90
$1 / 16$	4.814101×10^{-4}	2.97	2.406542×10^{-2}	1.89
$1 / 32$	6.317516×10^{-5}	2.92	7.25737×10^{-3}	1.80

WG based on $\left\{P_{3}, P_{2}, P_{2}\right\}$ space with $k=10^{-4}$

h	$\\|e\\|$	Order	$\\|e\\| \\|$	Order
$1 / 4$	0.213523	-	1.11226	-
$1 / 8$	0.0131348	4.02	0.134914	3.04
$1 / 16$	0.000633517	4.37	0.0125416	3.42
$1 / 32$	3.60792×10^{-5}	4.13	0.00142561	3.13

Numerical Result Cont...

Example

Let $\Omega=[0,2] \times[0,2]$, and the exact solution is

$$
\begin{array}{r}
u=\frac{200}{\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\frac{\left(1+(-1)^{m+1}\right)\left(1-\cos \frac{n \pi}{2}\right)}{m n}\right) \sin \left(\frac{m \pi x}{2}\right) \\
\sin \left(\frac{m \pi x}{2}\right) \exp \left(-\pi^{2}\left(m^{2}+n^{2}\right) t / 36\right)
\end{array}
$$

with initial condition

$$
u_{0}=\left\{\begin{array}{l}
50 \text { if } y \leq 1 \\
0 \text { otherwise }
\end{array}\right.
$$

The right-hand sides f in (13) are determined from the choice for u and $\mathcal{A}(x)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Numerical Result Cont...

WG based on $\left\{P_{1}, P_{1}, P_{0}\right\}$ space with $k=10^{-4}$									
h	$\\|e\\|$	Order	$\\|e\\| \\|$	Order					
$1 / 4$	8.0587×10^{-3}	-	2.198428	-					
$1 / 8$	2.00095×10^{-3}	2.00	1.152289	0.93					
$1 / 16$	4.97292×10^{-4}	2.01	5.909163×10^{-1}	0.96					
$1 / 32$	1.22191×10^{-4}	2.02	2.996170×10^{-1}	0.97					

References

[1] H. Zhang, Y. Zou, Y. Xu, Q. Zhai, H. Yue, A Weak Galerkin Finite Element Method for Second Order Parabolic Equations, Jour. Numer. Analysis Modeling, 2016.
[2] J. Wang, X. Ye, A Weak Galerkin Mixed Finite Element Method for Second Order Elliptic Problems, Math. Comp., 2014.
[3] L.Mu, J. Wang, X. Ye, A Weak Galerkin Finite Element Method on Polytopal Meshes, Jour. Numer. Analysis Modeling, 2015.
[4] L.Mu, J. Wang, X. Ye, A weak Galerkin finite element method with polynomial reduction, Jour. Comp. Applied Math., 2015.
[5] N. Kumar, B. Deka, A Weak Galerkin Finite Element Method for Second Order Parabolic Problems Under Minimal Regularity, Under Preparations.
[6] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, 1978.

Thank you

