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® \Weak Galerkin Finite Element Methods.

® Motivation
® |Implementation

® WG-FEM for Model PDEs.

® Second Order Elliptic Problems.
® Second Order Parabolic Problems.

® Numerical Results.
Joint Work With: Prof. Bhupen Deka.

Naresh Kumar (IITG) Weak Galerkin FEM 2/32



Basic Notation

® We denote by H™(J; B), 1 < m < oo, the space of all measurable functions

¢ : J — B for which
1
2 2
dt] < oo.
B

T
llull () = <;/0 (t)
X = L0, T; HFH(Q)) n HY(0, T; H™1(Q)),

ot/

® The minimal regularity space

equipped with the norm

IvIi% = ||V||%2(O,T;Hm+1(§2)) + ”atVH%Z(O,T;HW*l(Q)).

® We will use || - || for L?-norm.
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Second Order Elliptic Problems

Find u € H}(R) such that
(aVu,Vv) = (f,v) Vv € Hy(Q).

Procedures in the standard Galerkin finite element method:
® Partition Q into triangles or tetrahedra.
e Construct a subspace, denoted by S, C H3(Q), using piecewise polynomials.
® Seek for a finite element solution uy, from S, such that

(aVup, Vv) =(f,v) Vv E 5.

The classical gradient Vu for u € C(Q) can be computed as:

/KVu.gb:—/KuV.ng-/aK u(6.n) Yo € [CHOQP

Thus, u can be extended to {ug, up} with Vu being extended to V,,u.
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Motivation: Weak Function

® Let K be any polygonal or polyhedral domain with interior K° and boundary
oK.

® A weak function on the region K refers to a pair of scalar-valued functions
1
v = {w, v} such that vy € L?(K) and v;, € H2(9K).

® Denote by V(K) the space of weak functions on K; i. e,

V(K) = {v = {vo, v} : vo € L(K), v € H?(8K)}.

® For any weak function v = {vp, vp}, its weak gradient Vv is defined
(interpreted) as a linear functional on H(div, K)) whose action on each
q € H(div, K) is given by

/ Vyv.qdK = —/ wV - qu+/ vpq - nds, (1)
K K oK
where n is the outward normal to 0K.
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Inclusion Result

® The Sobolev space H'(K) can be embedded into the space V(K) by an
inclusion map i, : HY(K) — V(K) defined as follows

iv(®) = {¢lk, dlox}, ¢ € H'(K).

® With the help of the inclusion map iy, the Sobolev space H'(K) can be
viewed as a subspace of V(K) by identifying each ¢ € H(K) with iy ().

® Analogously, a weak function v = {vg, v} € V(K) is said to be in H}(K) if it
can be identified with a function ¢ € H'(K) through the above inclusion
map.

® For u € H(K), we have
iv(u) = {ulk, ulox}-

It is not hard to see that the weak gradient is identical with the
strong/classical gradient.
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Discrete Weak Gradient

Discrete Weak Gradient Operator: A discrete weak gradient operator, denoted by
Vw.m, is defined as the unique polynomial (Vy, mv) € [Pm(K)]? that satisfies the
following equation

/}(V.,V,mv.(bdK = —/KVO(V - p)dK + /BK vp(¢-n)ds Vo € [Pn(K)%  (2)

where v = {v, v} such that vy € [2(K) and v, € H2(9K).
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Weak Galerkin Space

Weak Galerkin space is defined as: (Px(K), P;(9K), [P/(K)]2)
® k > 1 is the degree of polynomials in the interior of the element K,

® ;>0 is the degree of polynomials on the boundary of K and

® | > 0 is the degree of polynomials employed in the computation of weak
gradients or weak first order partial derivatives.

® k. j, | are selected in such a way that minimize the number of unknowns in
the numerical scheme without compromising the accuracy of the numerical
approximation.

Lowest Order Weak Galerkin Space

® A lowest order WG-FEM space is (P1(K), Po(0K), [PO(K)]2

).
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Weak Galerkin Approximation

We choose weak Galerkin space is (Px(K), Pk(0K), [Pk_l(K)}z).
For k > 1, let V}, be WG FE space associated with 7, & defined as:

Vi, ={v={w,w}: wlko € Px(K), vble € Px(e), e € 0K, K € Tp}.

D
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Weak Galerkin Approximation Cont...

® Note that functions in V), are defined on each element, and there are
two-sided values of v, on each interior edge/face e, depicted as v,|g7, and
VblaT, in above Figure.

® We assume that v}, has unique value on each interior edge/face e that is
[V]e=0 Vec &,
[v]e denotes the jump of v € V, across an interior edge e € £7.
* Wewrite VP ={v={vw,vw}€Vy: v,=0 ondQ}.

® For v € Vj, the discrete weak gradient of it is defined as the unique
polynomial (V,,v) € [Px_1(K)]? that satisfies the following equation

/KVW,mv.qbdK = —/KVO(V-¢)dK+/aK vp(¢-n)ds Vo € [Pr_1(K)]%. (3)
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Shape Regularity for Polytopal Elements

Why Shape Regularity?
The shape regularity is needed for

@ trace inequality.
@® inverse inequality.
©® domain inverse inequality.

» (A weak Galerkin mixed finite element method for second order elliptic
problems, Math. Comp., 83 (2014), 2101-2126, by J. Wang and X. Ye for more
details)
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Elliptic Boundary Value Problem

Consider following BVP

-V (Vu)=f inQ, (4)
with boundary condition
u=0 on 9%. (5)
Weak Formulation: Find u € H}(S) such that
/Vu-Vvdx = / fvdx. (6)
Q Q
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Elliptic Boundary Value Problem Cont...

Weak Galerkin Approximation : Find uj = {uo, up} € V? such that

as(un, vn) = (f,vn)  Vviy € V), (7
with

as(un, va) = a(un, vn) + s(un, vn), (8)

where

® a(-,-): Vi, x Vj = Ris a bilinear map given by
a(u’” Vh) (V Up, v Vh) Z (kufh vWVh)Ka (9)
KETh
® with a stabilizer s(-,-) : V}j, x V}j, = R defined by

s(un, va) Z hiH(uo — b, Vo — Vi) ok- (10)
KeTh

® |t is important to check that as(-,-) is positive so that WG approximation (7)
has a unique solution. In fact bilinear map as(-,-) induces a norm.
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Discrete Norms

® We consider following norm associated with the bilinear map as(-, -)
llunlll = v/as(un, up). (11)

® For simplicity, we shall only verify the positive length property for |||-||.

Assume that [|w|| = 0 for some w = {wp, w} € VY.

It follows that V,,w = 0 on each element K € 7, and wy = w;, on OK.

Thus, we have from the definition of weak gradient that for any
¢ € ['Pkfl(K)]Q.

0 = (Vuw,d)k
= —(wo,V - 9)k + (Wb, ¢ nok
= (Vwo,¢) + (Wb — wo, ¢ - n)ok
(Vwo, ¢)k-

® Letting » = Vwy in the above equation yields Vwy =0 on K € Tj,.
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Discrete Norms Contd.

® |t follows that wy = constant on every K € Tp,.

® This, together with the fact that wp, = wy on OK and w, = 0 on 0%, implies
that wg = 0 and wp, = 0.

e We define following discrete H-norm

1

— 2
o= (X UVl + At vo — wel3)) s v = w0, ) € V.
KETh

[Iv

® The following lemma indicates that discrete H-norm is equivalent to triple
bar norm (c.f. Lemma 5.3, A weak Galerkin finite element method with
polynomial reduction, JCAM, 285 (2015) 4558)

There exist two positive constants C; and C, such that

Gllviiie < Ivil £ Gllvil2n Vvh € Vi O
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Some Useful Results

Trace Inequality. (see, Lemma A.3, A weak Galerkin mixed finite element method
for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126). Let K
be an element with e as an edge. For any function ¢ € H*(K), the following trace
inequality holds true

lliZae) < ClhiHleliZaiy + Al Vel i)

Inverse Inequality. (see, Lemma A.6, Math. Comp., 83 (2014), 2101-2126). For
any piecewise polynomial ¢ of degree p on Ty, there exists constant C = C(p)
such that

IVellizky < CP)ht el zgky. VK € Th.

Poincaré-type Inequality. (see, Lemma 7.1, Weak Galerkin finite element methods
on polytopal meshes, IINAM, 12 (2015), 31-53). Assume that the finite element
partition 7T}, is shape regular. Then,there exists a constant C independent of the
mesh size h such that

leoll < Clllell, Yoo = {0, 0} € V.
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Polynomial Approximation in Weak Galerkin Space

L2-Projections.

® For each element K € T}, denote by Qg the usual L? projection operator from
L2(K) onto Px(K) and by Qp the L? projection from L?(e) onto Py(e) for
any e € &,. Then
® We shall combine Qo with Qp by writing Q, = {Qo, Q»}. More precisely, for
¢ € H'(K), we have Qv¢ = {Qod, Qv}.
® In addition to Qp, let Q4 be an another local L2 projection from [L?(K)]?
onto [Px—1(K)]%.
Approximation Results. (See, Lemma 4.1, A weak Galerkin mixed finite element
method for second order elliptic problems, Math. Comp., 2014).

IN

2(k+1
Ch D)2, ks

Ch2k||“||i+1,/<- U

[|u— QOUH%?(K) + hi ||V (u - QOU)”%?(K)
[Vu = Qu(Vu)lZ2k) + Mkl V(Vu = Qu(V 1)) |72y

A
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Error Analysis

® As a traditional way, we split our error into two components using an
intermediate operator. We write

u—up=(u— Quu)+ (Qnu — up).

® For simplicity, we introduce the following notation
€p = {eo, eb} = Up — Qhu. (12)

Convergence Result for H': Let uj, € Vj, be the weak Galerkin finite element
solution of the problem (7) .Assume that the exact solution is so regular that
u € H*"1(Q).Then, there exist a constant C such that

llenll < Ch*[lullksr0. O

(See L. Mu, J. Wang, and X. Ye, Weak Galerkin Finite Element Methods On
Polytopal Meshes Int. Jour. Numer. Anal. Model., 12(2015) 31-54.)
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Error Analysis Contd.

Now, for L? norm error estimate, duality argument leads to following convergence
result.

® Convergence Results for L2-norm: Let up € V4, be the weak Galerkin finite
element solution of the problem (7). Assume that the exact solution is so
regular that u € H*T1(Q). Then, there exist a constant C such that

leoll < CH*Hluf[gs10. O

(See L. Mu, J. Wang, and X. Ye, Weak Galerkin Finite Element Methods On
Polytopal Meshes Int. Jour. Numer. Anal. Model., 12(2015) 31-54.)
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Weak Galerkin Method for Parabolic Problems

Consider the following second order parabolic problem

u—V-(AVu) = finQ, teJ, (13)
u = 0 on 0, teJ, (14)
u(£0) = ¥ inQ. (15)

Where Q is a polygonal domain in R? with Lipschitz boundary 052,
J=(0,T], T < oo and A is a symmetric positive definite matrix.
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Weak Galerkin Method for Parabolic Problems Cont...

Weak Formulation: Find u(-,t) € H3(Q) such that

(ug,v) + (AVu, Vv) = (f,v) Vv e H}(Q), t € J,
u(-,0) = .

® Semi-discrete weak Galerkin finite element approximation: Find
up(t) = {uo(-, t), up(-, )} € VP such that

(e, vo) + as(up, v) = (F, ) Vv ={w,vw}e V2 t>0, (16)
® with

up(+,0) = Qpyp in Q.

Where a4(-, ) is same as in (8) with stabilizer term (10).
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Semi-discrete error estimates for parabolic problems:

Theorem

Assume that u € H™™1(Q). Then there exists a positive constant C > 0
independent of the mesh size h such that

t
llen(-, )I1* < llen(-, 0)|1* + Ch2’/0 ull?,1ds,
and

llen(, O < llen( 0)I + Ch (119112,

e tmﬂ+/nwﬂ$+/mww$ 0

(See Theorem (4.2), Hongoin Zhang et al, Weak Galerkin Finite Element Method
For Second Order Parabolic Equations), International J. Numer. Anal. and
Modeling 13 (2016), 525-544.
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Fully Discrete Weak Galerkin approximation

® let k > 0 be a time step-size. At the time level t = t, = nk, with integer
0<n< N;Nk=T, and denote by U" = U} € V), the approximation of
u(t,) to be determined.

® Weak Formulation: Find U" = U} € V), such that

(OU", wp) + a(U™,v) = (f(ta),w0) VY v={vo,w}eV? n>1 (17)

. = n n—1
°* with JU" = %
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Fully -discrete error estimates:

Theorem

Assume that u € C?([0, T]; H""1(2)). Then there exists a positive constant
C > 0 independent of the mesh size h such that for 0 < n < N

th
1"l < 11€°)1? + C (A lull? 41,00 + k2/0 e | ds)

and

2
lle™I” < C{\|e°||2+h2’(||¢\lf+1+IIU(wf)I\f+1,oo+||ut||3+1,oo

& t
2 [ ualnds) + 4 [ fualPs), O
0 0

where [[ull 1,00 = maxo<e<T {[|u(t)|[r+1}-

(See Theorem (4.2), H. Zhang et al, Weak Galerkin Finite Element Method For
Second Order Parabolic Equations), International J. Numer. Anal. and Modeling
13 (2016), 525-544.
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Weak Galerkin Method Under Minimal Regularity

Let u(x,t) and up(x, t) be the solution to the problem (13)-(15) and the
semi-discrete WG scheme (16) respectively.Assume that the exact solution

u € HY(Q) N H*(Q) and u; € HE(Q) N H*=1(Q) then there exist a constant C
such that

llell 20,72 < CH**Hlull 20,7441

Theorem

Let u and U be the solution of (13)-(16) and (17) respectively.then for
up € H2N HY(Q), f € HY(0, T; L3(RQ)), there exist a constant C independent of h
and k such that

lu = Ullzgo, 7ie20)) < Clk+ W) {llullzo,702) + luell 20, 7:02)}

Joint Work With Dr Bhupen Deka
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Numerical Result

0.8 r 1

0.4r 1

021 1

Figure: Triangulation
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Numerical Result Cont...

Example
Let Q = [0,1] x [0, 1], and the exact solution is
u = exp(—t)sin(wx)sin(my)sin(mx + Ty — t).
The right-hand sides f in (13) are determined from the choice for u and

1
A=y, 22|

WG based on {Pi, P1, Py} space with k = 10"

h Ilell Order llell Order
1/4 0.3432696306 — 1.411571357 -
1/8 | 0.02851317328 1.091 0.41909813963 0.87
1/16 | 0.007142629039 | 1.97 | 0.208296331455 | 1.00
1/32 0.000985569 1.98 0.0705478 1.01
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Numerical Result Cont...

WG based on {P2, P2, P1} space with k =10"*

h llell Order (el Order
1/4 2949236 x 1072 | — [3.363017 x 1071 | -
1/8 | 3.794609 x 103 | 2.95 | 8.970083 x 10~2 | 1.90
1/16 | 4.814101 x 10~* | 2.97 | 2.406542 x 1072 | 1.89
1/32 | 6.317516 x 107° | 2.92 7.25737 x 1073 1.80

WG based on {Ps, Ps, P>} space with k = 10"

h llell Order llell Order
1/4 0.213523 — 1.11226 —
1/8 0.0131348 4.02 0.134914 3.04
1/16 | 0.000633517 437 | 0.0125416 | 3.42
1/32 | 3.60792 x 1075 | 4.13 | 0.00142561 | 3.13
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Numerical Result Cont...

Let Q = [0,2] x [0, 2], and the exact solution is

_ 200 Z Z ( ’"+137(1 — cosF ))sin( m;rx)

m=1 n=1

sin( T2 exp(—m2(m? + n?)t/36)

with initial condition
50 if y <1
Up = .
0 otherwise

The right-hand sides £ in (13) are determined from the choice for u and

A(x) = B ‘1)] _
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Numerical Result Cont...

WG based on {P1, P1, Py} space with k = 10"

h llell Order llell Order
1/4 | 8.0587 x 10~3 - 2.198428 -
1/8 | 2.00095 x 10=3 | 2.00 1.152289 0.93
1/16 | 4.97292 x 10~* | 2.01 | 5.909163 x 10! | 0.96
1/32 | 1.22191 x 10~* | 2.02 | 2.996170 x 10~* | 0.97
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