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Basic Notation

• We denote by Hm(J;B), 1 ≤ m <∞, the space of all measurable functions
φ : J → B for which

‖u‖Hm(J;B) =

(
m∑
j=0

∫ T

0

∥∥∥∥∂ju(t)

∂t j

∥∥∥∥2

B
dt

) 1
2

<∞.

• The minimal regularity space

X = L2(0,T ;Hm+1
0 (Ω)) ∩ H1(0,T ;Hm−1(Ω)),

equipped with the norm

‖v‖2
X = ‖v‖2

L2(0,T ;Hm+1(Ω)) + ‖∂tv‖2
L2(0,T ;Hm−1(Ω)).

• We will use ‖ · ‖ for L2-norm.
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Second Order Elliptic Problems

Find u ∈ H1
0 (Ω) such that

(a∇u,∇v) = (f , v) ∀v ∈ H1
0 (Ω).

Procedures in the standard Galerkin finite element method:

• Partition Ω into triangles or tetrahedra.

• Construct a subspace, denoted by Sh ⊂ H1
0 (Ω), using piecewise polynomials.

• Seek for a finite element solution uh from Sh such that

(a∇uh,∇v) = (f , v) ∀v ∈ Sh.

The classical gradient ∇u for u ∈ C 1(Ω) can be computed as:∫
K

∇u.φ = −
∫
K

u∇.φ+

∫
∂K

u(φ.n) ∀φ ∈ [C 1(Ω)]2

Thus, u can be extended to {u0, ub} with ∇u being extended to ∇wu.
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Motivation: Weak Function

• Let K be any polygonal or polyhedral domain with interior K 0 and boundary
∂K .

• A weak function on the region K refers to a pair of scalar-valued functions
v = {v0, vb} such that v0 ∈ L2(K ) and vb ∈ H

1
2 (∂K ).

• Denote by V(K ) the space of weak functions on K ; i. e.,

V(K ) = {v = {v0, vb} : v0 ∈ L2(K ), vb ∈ H
1
2 (∂K )}.

• For any weak function v = {v0, vb}, its weak gradient ∇wv is defined
(interpreted) as a linear functional on H(div,K ) whose action on each
q ∈ H(div,K ) is given by∫

K

∇wv .qdK = −
∫
K

v0∇ · qdK +

∫
∂K

vbq · nds, (1)

where n is the outward normal to ∂K .
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Inclusion Result

• The Sobolev space H1(K ) can be embedded into the space V(K ) by an
inclusion map iV : H1(K ) 7→ V(K ) defined as follows

iV(φ) = {φ|K , φ|∂K}, φ ∈ H1(K ).

• With the help of the inclusion map iV , the Sobolev space H1(K ) can be
viewed as a subspace of V(K ) by identifying each φ ∈ H1(K ) with iV(φ).

• Analogously, a weak function v = {v0, vb} ∈ V(K ) is said to be in H1(K ) if it
can be identified with a function φ ∈ H1(K ) through the above inclusion
map.

• For u ∈ H1(K ), we have

iV(u) = {u|K , u|∂K}.

It is not hard to see that the weak gradient is identical with the
strong/classical gradient.
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Discrete Weak Gradient

Discrete Weak Gradient Operator: A discrete weak gradient operator, denoted by
∇w ,m, is defined as the unique polynomial (∇w ,mv) ∈ [Pm(K )]2 that satisfies the
following equation∫

K

∇w ,mv .φdK = −
∫
K

v0(∇ · φ)dK +

∫
∂K

vb(φ · n)ds ∀φ ∈ [Pm(K )]2, (2)

where v = {v0, vb} such that v0 ∈ L2(K ) and vb ∈ H
1
2 (∂K ).
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Weak Galerkin Space

Weak Galerkin space is defined as: (Pk(K ), Pj(∂K ),
[
Pl(K )

]2
)

• k ≥ 1 is the degree of polynomials in the interior of the element K ,

• j ≥ 0 is the degree of polynomials on the boundary of K and

• l ≥ 0 is the degree of polynomials employed in the computation of weak
gradients or weak first order partial derivatives.

• k, j , l are selected in such a way that minimize the number of unknowns in
the numerical scheme without compromising the accuracy of the numerical
approximation.

Lowest Order Weak Galerkin Space

• A lowest order WG-FEM space is (P1(K ), P0(∂K ),
[
P0(K )

]2
).
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Weak Galerkin Approximation

We choose weak Galerkin space is (Pk(K ), Pk(∂K ),
[
Pk−1(K )

]2
).

For k ≥ 1, let Vh be WG FE space associated with Th & defined as:

Vh = {v = {v0, vb} : v0|K 0 ∈ Pk(K ), vb|e ∈ Pk(e), e ∈ ∂K , K ∈ Th}.
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Weak Galerkin Approximation Cont...

• Note that functions in Vh are defined on each element, and there are
two-sided values of vb on each interior edge/face e, depicted as vb|∂T1 and
vb|∂T2 in above Figure.

• We assume that vb has unique value on each interior edge/face e that is

[v ]e = 0 ∀e ∈ E0
h ,

[v ]e denotes the jump of v ∈ Vh across an interior edge e ∈ E0
h .

• We write V 0
h = {v = {v0, vb} ∈ Vh : vb = 0 on ∂Ω}.

• For v ∈ Vh, the discrete weak gradient of it is defined as the unique
polynomial (∇wv) ∈ [Pk−1(K )]2 that satisfies the following equation∫

K

∇w ,mv .φdK = −
∫
K

v0(∇·φ)dK +

∫
∂K

vb(φ ·n)ds ∀φ ∈ [Pk−1(K )]2. (3)
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Shape Regularity for Polytopal Elements

Why Shape Regularity?
The shape regularity is needed for

1 trace inequality.

2 inverse inequality.

3 domain inverse inequality.

(A weak Galerkin mixed finite element method for second order elliptic
problems, Math. Comp., 83 (2014), 2101-2126, by J. Wang and X. Ye for more
details)
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Elliptic Boundary Value Problem

Consider following BVP
−∇ ·

(
∇u) = f in Ω, (4)

with boundary condition

u = 0 on ∂Ω. (5)

Weak Formulation: Find u ∈ H1
0 (Ω) such that

∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx . (6)
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Elliptic Boundary Value Problem Cont...

Weak Galerkin Approximation : Find uh = {u0, ub} ∈ V 0
h such that

as(uh, vh) = (f , vh) ∀vh ∈ V 0
h , (7)

with
as(uh, vh) = a(uh, vh) + s(uh, vh), (8)

where

• a(·, ·) : Vh × Vh → R is a bilinear map given by

a(uh, vh) = (∇wuh,∇wvh) =
∑
K∈Th

(∇wuh,∇wvh)K , (9)

• with a stabilizer s(·, ·) : Vh × Vh → R defined by

s(uh, vh) =
∑
K∈Th

h−1
K 〈u0 − ub, v0 − vb〉∂K . (10)

• It is important to check that as(·, ·) is positive so that WG approximation (7)
has a unique solution. In fact bilinear map as(·, ·) induces a norm.
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Discrete Norms

• We consider following norm associated with the bilinear map as(·, ·)

|||uh||| =
√
as(uh, uh). (11)

• For simplicity, we shall only verify the positive length property for |||·|||.
• Assume that |||w ||| = 0 for some w = {w0,wb} ∈ V 0

h .

• It follows that ∇ww = 0 on each element K ∈ Th and w0 = wb on ∂K .

• Thus, we have from the definition of weak gradient that for any
φ ∈ [Pk−1(K )]2.

0 = (∇ww , φ)K

= −(w0,∇ · φ)K + 〈wb, φ · n〉∂K
= (∇w0, φ) + 〈wb − w0, φ · n〉∂K
= (∇w0, φ)K .

• Letting φ = ∇w0 in the above equation yields ∇w0 = 0 on K ∈ Th.
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Discrete Norms Contd.

• It follows that w0 = constant on every K ∈ Th.

• This, together with the fact that wb = w0 on ∂K and wb = 0 on ∂Ω, implies
that w0 = 0 and wb = 0.

• We define following discrete H1-norm

‖v‖1,h =
( ∑

K∈Th

(‖∇v0‖2
K + h−1

K ‖v0 − vb‖2
∂K )
) 1

2

, v = {v0, vb} ∈ V 0
h .

• The following lemma indicates that discrete H1-norm is equivalent to triple
bar norm (c.f. Lemma 5.3, A weak Galerkin finite element method with
polynomial reduction, JCAM, 285 (2015) 4558)

Lemma
There exist two positive constants C1 and C2 such that

C1‖v‖1,h ≤ |||v ||| ≤ C2‖v‖2,h ∀vh ∈ Vh. �

Naresh Kumar (IITG) Weak Galerkin FEM 15 / 32



Some Useful Results

Trace Inequality. (see, Lemma A.3, A weak Galerkin mixed finite element method
for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126). Let K
be an element with e as an edge. For any function ϕ ∈ H1(K ), the following trace
inequality holds true

‖ϕ‖2
L2(e) ≤ C (h−1

K ‖ϕ‖
2
L2(K) + hK‖∇ϕ‖2

L2(K)).

Inverse Inequality. (see, Lemma A.6, Math. Comp., 83 (2014), 2101-2126). For
any piecewise polynomial ϕ of degree p on Th, there exists constant C = C (p)
such that

‖∇ϕ‖L2(K) ≤ C (p)h−1
K ‖ϕ‖L2(K), ∀K ∈ Th.

Poincaré-type Inequality. (see, Lemma 7.1, Weak Galerkin finite element methods
on polytopal meshes, IJNAM, 12 (2015), 31-53). Assume that the finite element
partition Th is shape regular. Then,there exists a constant C independent of the
mesh size h such that

‖ϕ0‖ ≤ C |||ϕ|||, ∀ϕ = {ϕ0, ϕb} ∈ V 0
h .
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Polynomial Approximation in Weak Galerkin Space

L2-Projections.

• For each element K ∈ Th, denote by Q0 the usual L2 projection operator from
L2(K ) onto Pk(K ) and by Qb the L2 projection from L2(e) onto Pk(e) for
any e ∈ Eh. Then
• We shall combine Q0 with Qb by writing Qh = {Q0,Qb}. More precisely, for
φ ∈ H1(K), we have Qhφ = {Q0φ,Qbφ}.

• In addition to Qh, let Qh be an another local L2 projection from [L2(K )]2

onto [Pk−1(K )]2.

Approximation Results. (See, Lemma 4.1, A weak Galerkin mixed finite element
method for second order elliptic problems, Math. Comp., 2014).

‖u − Q0u‖2
L2(K) + h2

K‖∇(u − Q0u)‖2
L2(K) ≤ Ch

2(k+1)
K ‖u‖2

k+1,K ,

‖∇u −Qh(∇u)‖2
L2(K) + h2

K‖∇(∇u −Qh(∇u))‖2
L2(K) ≤ Ch2k‖u‖2

k+1,K . �
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Error Analysis

• As a traditional way, we split our error into two components using an
intermediate operator. We write

u − uh = (u − Qhu) + (Qhu − uh).

• For simplicity, we introduce the following notation

eh := {e0, eb} = uh − Qhu. (12)

Convergence Result for H1: Let uh ∈ Vh be the weak Galerkin finite element
solution of the problem (7) .Assume that the exact solution is so regular that
u ∈ Hk+1(Ω).Then, there exist a constant C such that

|||eh||| ≤ Chk‖u‖k+1,Ω. �

(See L. Mu, J. Wang, and X. Ye, Weak Galerkin Finite Element Methods On
Polytopal Meshes Int. Jour. Numer. Anal. Model., 12(2015) 31-54.)
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Error Analysis Contd.

Now, for L2 norm error estimate, duality argument leads to following convergence
result.

• Convergence Results for L2-norm: Let uh ∈ Vh be the weak Galerkin finite
element solution of the problem (7). Assume that the exact solution is so
regular that u ∈ Hk+1(Ω). Then, there exist a constant C such that

‖e0‖ ≤ Chk+1‖u‖k+1,Ω. �

(See L. Mu, J. Wang, and X. Ye, Weak Galerkin Finite Element Methods On
Polytopal Meshes Int. Jour. Numer. Anal. Model., 12(2015) 31-54.)
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Weak Galerkin Method for Parabolic Problems

Consider the following second order parabolic problem

ut −∇ · (A∇u) = f in Ω, t ∈ J, (13)

u = 0 on ∂Ω, t ∈ J, (14)

u(·, 0) = ψ in Ω. (15)

Where Ω is a polygonal domain in R2 with Lipschitz boundary ∂Ω,
J = (0,T ], T <∞ and A is a symmetric positive definite matrix.
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Weak Galerkin Method for Parabolic Problems Cont...

• Weak Formulation: Find u(·, t) ∈ H1
0 (Ω) such that

(ut , v) + (A∇u,∇v) = (f , v) ∀v ∈ H1
0 (Ω), t ∈ J,

u(·, 0) = ψ.

• Semi-discrete weak Galerkin finite element approximation: Find
uh(t) = {u0(·, t), ub(·, t)} ∈ V 0

h such that

(uht , v0) + as(uh, v) = (f , v0) ∀v = {v0, vb} ∈ V 0
h , t > 0, (16)

• with

uh(·, 0) = Qhψ in Ω.

• Where as(·, ·) is same as in (8) with stabilizer term (10).
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Semi-discrete error estimates for parabolic problems:

Theorem

Assume that u ∈ H r+1(Ω). Then there exists a positive constant C > 0
independent of the mesh size h such that

‖eh(·, t)‖2 ≤ ‖eh(·, 0)‖2 + Ch2r

∫ t

0

‖u‖2
r+1ds,

and

|||eh(·, t)|||2 ≤ ‖eh(·, 0)‖2 + Ch2r
(
‖ψ‖2

r+1

+‖u(·, t)‖2
r+1 +

∫ t

0

‖u‖2
r+1ds +

∫ t

0

‖ut‖2
r+1ds

)
. �

(See Theorem (4.2), Hongoin Zhang et al, Weak Galerkin Finite Element Method
For Second Order Parabolic Equations), International J. Numer. Anal. and
Modeling 13 (2016), 525-544.
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Fully Discrete Weak Galerkin approximation

• Let k > 0 be a time step-size. At the time level t = tn = nk , with integer
0 ≤ n ≤ N;Nk = T , and denote by Un = Un

h ∈ Vh the approximation of
u(tn) to be determined.

• Weak Formulation: Find Un = Un
h ∈ Vh such that

(∂̄Un, v0) + a(Un, v) = (f (tn), v0) ∀ v = {v0, vb} ∈ V 0
h , n ≥ 1 (17)

• with ∂̄Un = Un−Un−1

k .
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Fully -discrete error estimates:

Theorem

Assume that u ∈ C 2([0,T ];H r+1(Ω)). Then there exists a positive constant
C > 0 independent of the mesh size h such that for 0 < n ≤ N

‖en‖2 ≤ ‖e0‖2 + C
(
h2r‖u‖2

r+1,∞ + k2

∫ tn

0

‖utt‖2ds
)
,

and

|||en|||2 ≤ C{‖e0‖2 + h2r
(
‖ψ‖2

r+1 + ‖u(·, t)‖2
r+1,∞ + ‖ut‖2

r+1,∞

+k2

∫ t

0

‖utt‖2
r+1ds

)
+ k2

∫ t

0

‖utt‖2ds}, �

where ‖u‖r+1,∞ = max0≤t≤T{‖u(t)‖r+1}.

(See Theorem (4.2), H. Zhang et al, Weak Galerkin Finite Element Method For
Second Order Parabolic Equations), International J. Numer. Anal. and Modeling
13 (2016), 525-544.
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Weak Galerkin Method Under Minimal Regularity

Theorem

Let u(x , t) and uh(x , t) be the solution to the problem (13)-(15) and the
semi-discrete WG scheme (16) respectively.Assume that the exact solution
u ∈ H1

0 (Ω) ∩ Hk+1(Ω) and ut ∈ H1
0 (Ω) ∩ Hk−1(Ω) then there exist a constant C

such that

‖e‖L2(0,T ;L2) ≤ Chk+1‖u‖L2(0,T ;Hk+1)

Theorem

Let u and U be the solution of (13)-(16) and (17) respectively.then for
u0 ∈ H2 ∩ H1

0 (Ω), f ∈ H1(0,T ; L2(Ω)), there exist a constant C independent of h
and k such that

‖u − U‖L2(0,T ;L2(Ω)) ≤ C (k + h2){‖u‖L2(0,T ;H2) + ‖ut‖L2(0,T ;L2)}

Joint Work With Dr Bhupen Deka

Naresh Kumar (IITG) Weak Galerkin FEM 25 / 32



Numerical Result
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Figure: Triangulation
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Numerical Result Cont...

Example

Let Ω = [0, 1]× [0, 1], and the exact solution is

u = exp(−t)sin(πx)sin(πy)sin(πx + πy − t).

The right-hand sides f in (13) are determined from the choice for u and

A(x) =

[
1 xy
xy x2y2 − 1

]
.

WG based on {P1,P1,P0} space with k = 10−4

h ‖e‖ Order |||e||| Order
1/4 0.3432696306 − 1.411571357 −
1/8 0.02851317328 1.91 0.41909813963 0.87

1/16 0.007142629039 1.97 0.208296331455 1.00
1/32 0.000985569 1.98 0.0705478 1.01
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Numerical Result Cont...

WG based on {P2,P2,P1} space with k = 10−4

h ‖e‖ Order |||e||| Order
1/4 2.949236× 10−2 − 3.363017× 10−1 −
1/8 3.794609× 10−3 2.95 8.970083× 10−2 1.90

1/16 4.814101× 10−4 2.97 2.406542× 10−2 1.89
1/32 6.317516× 10−5 2.92 7.25737× 10−3 1.80

WG based on {P3,P2,P2} space with k = 10−4

h ‖e‖ Order |||e||| Order
1/4 0.213523 − 1.11226 −
1/8 0.0131348 4.02 0.134914 3.04

1/16 0.000633517 4.37 0.0125416 3.42
1/32 3.60792× 10−5 4.13 0.00142561 3.13
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Numerical Result Cont...

Example

Let Ω = [0, 2]× [0, 2], and the exact solution is

u =
200

π2

∞∑
m=1

∞∑
n=1

( (1 + (−1)m+1)(1− cos nπ
2 )

mn

)
sin(

mπx

2
)

sin(
mπx

2
)exp(−π2(m2 + n2)t/36)

with initial condition

u0 =

{
50 if y ≤ 1

0 otherwise

The right-hand sides f in (13) are determined from the choice for u and

A(x) =

[
1 0
0 1

]
.
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Numerical Result Cont...

WG based on {P1,P1,P0} space with k = 10−4

h ‖e‖ Order |||e||| Order
1/4 8.0587× 10−3 − 2.198428 −
1/8 2.00095× 10−3 2.00 1.152289 0.93

1/16 4.97292× 10−4 2.01 5.909163× 10−1 0.96
1/32 1.22191× 10−4 2.02 2.996170× 10−1 0.97
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