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Qutline

e Alzheimer’s disease & the glymphatic
system

* Modeling of the glymphatics and brain
mechanics: controversies, previous
attempts

* Preconditioning of multi-physics / multi-
scale models



The greying of Europe

Cost of Alzheimer’s disease in Europe amounts to
about |% of GDP and will increase

The disease develops over decades and early treatment
has significant potential

Little effort spent by the computational or
biomechanics community compared to sophisticated
models that have been developed for cardiovascular

diseases

The hallmark feature of the disease is accumulation of
metabolic waste (amyloid beta) (as is also common for
other types of dementia)



Overview of the poro-elastic brain
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Basic facts about the brain’s metabolism

opptak av cerebrospinalveeske

produksjon av
cerebrospinalvaeske

e The brain occupies 1-2% of the
body in volume / weight

e The brain consumes around
10-20% of the body's energy,
oxygen

e Elsewhere in the body, the
lymphatic system plays a central  .cvesnine
role in the disposal of waste arshinen
e The brain does not have a lymph shveduiden

system and how the brain clears
waste is currently unknown

 Comment:The brain is special
because it is bathed in water
(cerebrospinal fluid).



Glymphatic system:; the garbage truck of the brain
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The new pathway:
- the paravascular space that surrounds the arteries/arterioles are
connected with the CSF that surrounds the brain. This space facilitate
a bulk flow (viscous flow)
- the hydrostatic pressure gradient between the arterial and venous
sites facilitate a bulk flow through the interstitium (porous flow)
- the waste is then removed on the venous site (viscous flow)

Nedergaard M. Garbage truck of the brain. Science. 2013



The glymphatic system is hyperactive during
sleep because the extracellular volume

increases
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Xie, Lulu, et al. "Sleep drives metabolite clearance from the adult brain."
Science 2013

3 kDa Texas Red Dextran typically penetrated 100-200 ¢ m in about 20 minutes



Characteristics of Alzheimer’s
disease from a modeling point of view

healthy
brain

advanced

— alzheimer's
[f"

(.

» Massive brain shrinkage

» Accumulation of waste
(amyloid beta) leading
to cell death

* The accumulation of
waste suggests that the
glymphatic system is
malfunctioning

* Hence, a proper
understanding of this
system may have
significant potential



Extracellular flow driven by a hydrostatic
gradient:What is the effective permeability,
flow and pressure?

Piece of grey matter from rat, ~(5 micron)”3

Meshes 54-84 M cells Kinney et.al , | of comparative
Extracellular space 10-20% neurology, 2013

Pressure drop: | mmHg / mm

Stokes flow simulations: ~ 500 CPU hours / 3 hours real-time




Velocities are 100 times slower, permeability also
100 times smaller than expected, and
diffusion dominates:
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Computational models suggest no bulk flow:
~diffusion dominates in the interstitium — the
- porous flow is too slow
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~ “Jin BJ, Smith AJ,Verkman AS. Spatial model of convective solute transport in brain extracellular
space does not support a “glymphatic” mechanism.The Journal of general physiology. 2016

Holter KE, Kehlet B, Devor A, Sejnowski T, Dale AM, Omholt SW, Ottersen OP, Nagelhus EA,
Mardal KA, Pettersen KH. Interstitial solute transport in 3D reconstructed neuropil occurs by
diffusion rather than bulk flow. Proceedings of the National Academy of Sciences.2017
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Glymphatic system: the garbage truck of the brain
— the viscous flow is to slow ...
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M. K. Sharp, R. Carare, and B. Martin,“Dispersion in porous media in oscillatory flow between
flat plates: Ap- plications to intrathecal, periarterial and paraarterial solute transport in the
central nervous system,” Journal of Fluid Mechanics, Accepted

M.Asgari, D. De Zelicourt, and V. Kurtcuoglu, “Glymphatic solute transport does not require
bulk flow,” Scientific reports, vol. 6, 2016.

Both papers find that because the peria/para vascular spaces are narrow; bulk flow or
dissipation effects will be small



-~ ~cw- a—v-Thenew pathway:

Glymphatic system: the garbage truck of the brain
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at surrounds the arteries/arterioles are
at surrounds the brain.This space facilitate

- the paravascular spac
connected with the
a bulk flow

- the hydrostaticgigessure gradient between the arterial and venous
sites facilitat flow through the interstitium

- the waste is then removed on the venous site



New MRI investigations



Intrathecal MR-contrast
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With Lars Magnus Valnes, Geir Ringstad, Per Kristian Eide
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transport in the brain - .
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Respiratory influence on
cerebrospinal fluid flow-a
computational study based on
long-term intracranial pressure
measurements

Vegard Vinje(»?, Geir Ringstad®, Erika Kristina Lindstrem®*, Lars Magnus Valnes*,
Marie E. Rognes?, Per Kristian Eide(»%* & Kent-Andre Mardal ®**
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Roadmap for model development (?)
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Take into account:
- poroelasticity

- complex, realistic geometriefeaft

- multiscale/multiphysics
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Requirements for the new models

Features of the new modeling:
- geometry is complex at all interesting scales: HPC needed
- poroelasticity has not yet been taken into account
- the problem is a multiscale/multiphysics problem and
the dynamics is slow



Main tool for designing efficient
algorithms: Operator preconditioning

Explain concepts of operator
preconditioning in the context of coupled
problems (viscous — porous flow)

The need for fractional derivatives
* Extend to 3D-1D problems



Operator preconditioning in a nutshell

H—]

Mardal KA,Winther R. Preconditioning discretizations of systems of

partial differential equations. Numerical Linear Algebra with Applications.
2011 Jan;18(1):1-40
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Coupling of viscous and
porous flow

/,LAUf—foZO on Qf, 8Qf N 8Qp D
V-uf=00an, ’ ’

u, — Ap, = 0 on €,
f T 2

V -u, =0 on €,
o uf-n=u,-nonl, 8Qf,D 8Qp,N
—ua—nf n+pr=pyonl,
811f FIGURE 1. Schematic domain of Darcy-
—H 7 t— Duf -t=0onl. Stokes problem. Dirichlet conditions

shown in green/blue, and interface in red.

Joint work with Karl Erik Holter and Miro Kuchta

Well-posedness, error estimates already done:

W. J. Layton, F. Schieweck, and I. Yotov, Coupling fluid flow with porous media flow, SIAM
Journal on Numerical Analysis, 40 (2002)

J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling
Stokes-Darcy equations, Electron. Trans. Numer. Anal, 26 (2007),



Stokes problem — wellposedness
is well known

Au—Vp =1 in)
V-u=0 1in{
u=20 onof

—~u€ H),pe L]



Stokes problem weighted by
viscosity is not much different
Au—Vp =1 in)
V:-u=0 inf

u=20 onof2
—u € Hy,p € L
pAua —Vp =1  in ()
V-u=0 1in{
u=0 on o

—u e u'*Hy,p € p L



the weighted wellposedness)
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Darcy Problem well-posedness with
permeability parameter is similar

iu—Vp =1f in{)

K
V-u=g¢g 1inf{)

—ue K Y?Hy(div),p € KY?L2

Jull e = (] (V0 + (V- ufda)!

Ipll 1722 = /Q K p’dz)'/?



Coupling of viscous and

porous flow

pAuy — Vpr =0 on Qy,
V-uf=00an,
%up—App=00n Qy,
V -u, =0 on €,
us-n=u,-nonl,

0Qs N 0y p
Qf T 2

FIGURE 1. Schematic domain of Darcy-
Stokes problem. Dirichlet conditions
shown in green/blue, and interface in red.



What is happening on the interface? Eﬁ
T(Ml/QHl) _ 'U,l/zHl/z
T,(K~'*H(div)) = K '/*H 1/
ul/QHl/z SUusfn=u,nc K'2H Y2 0on T

(Thur — Thu,,q) =0,Vg



What is happening on the interface? Eﬁ
T(Ml/QHl) _ 'U,l/zHl/z
T,(K~'*H(div)) = K '/*H 1/
ul/QHl/z SUusfn=u,nc K'2H Y2 0on T

(Thur — Thu,,q) =0,Vg



What is happening on the interface? Eﬁi
T(MI/QHI) _ /1’1/2H1/2
T.(K'?H(div)) = K '?H'/?
ul/QHl/z S Uufn=u,nc K\2H Y2 0onT
(Thur — Thu,,q) =0,Vg

Tou—Thu, € p?HYAT)+KYV2HYT)



What is happening on the interface? @;&?

(Thus — Thu,,q) =0,Vq
Tous—Thu, € p?HY2(TD)+K12H-12(T)

g € M_I/ZH_I/Z(F) N K1/2Hl/2(r\)



4
What happens on the interface Il ? E’i

(Thus — Thu,,q) =0, Vg
Tous—Thu, € p?HY2(TD)+K12H-12(T)

g € M—I/ZH—I/Q(F) N K1/2H1/2(F)

The sum of two Hilbert spaces X andY is a Hilbert space
denoted by X+Y
And its dual is the intersection of the dual spaces!



A preconditioner for the Darcy- Stokes.
problem (robust in all parameters)

/—p,A -V Trlz\ /Uf\
—1/K -V T u,
A= V- Pf = . .4
V- Pp
\ & T ) \4)
N -1
(% - \
5- :
K
\ i(—A)_lﬂ—i—K(—A)Iﬂ}



Iteration counts....

apys | M K h

1 38 38 36 136 36

10072 | 41 39 39 37 a7

1 1079 | 40 40 41 41 40
100°% | 36 36 35 35 36
1078 | 31 31 31 31 30

1.0 a4 43 42 41 40

1072 | 42 43 45 45 43

1072 | 10-4 | 38 38 39 41 41
1007% | 34 34 34 34 35
10°% | 20 20 20 20 27

1.0 52 53 &b 656 55

1 10072 | 48 49 50 52 52
107% | 1074 | 42 44 45 4T 47
10°% | 38 38 39 39 41
10°% | 34 34 34 34 35

1.0 52 53 56 566 58

1072 | 52 53 54 56 56
10°% | 1074 | 50 s0 50 50 52
1078 | 42 44 45 47 48
10°% | 38 38 39 39 41

1.0 52 55 66 56 68

102 | 52 55 56 56 58
10°% | 1074 | 52 54 55 56 56
1007% | 50 50 50 50 52
1072 | 42 44 45 47 48

MinRes with an appropriate preconditioner

healthy

brain

advanced
alzheimer's




Final comment: boundary conditions I’ EL by
for the Lagrange multiplier at the e
interface

97 N O 3, N Q2

b

e On the Stokes side, H'/? is appropriate for Neumann conditions and H&{ 2

is appropriate for Dirichlet conditions 3,,
e Here, o means that we have removed the dofs at 9Q N T
e We define H&,l/z to be the dual of H&({Z

e On the Darcy side, H&,l/ * is appropriate for Neumann conditions and
H~1/2 is appropriate for Dirichlet conditions

e We remark that for P scalar field have the same number of dofs regardless
of whether I" meets a Dirichlet boundary or not

e The fractional Laplacians are formed by a spectral decomposition of the
Laplacian as described in detail in [Kuchta et.al, SISC, 2016], where the
Laplacian on piecewise constant field @)y, is defined as

(—Apn, qn) = ; /E, {r}} " [p)lalds + Z/EU h™'pgds  pn,qn € Qn

Ep
where E; is the set of internal facets of the mesh, while E, is the set of
facets associated with the Dirichlet boundary. Operators [] and {{}} are the
standard jump and average operators. Note that for operator (—A+1)~1/2
the set Ep is empty.

blem. Setting I' N



Fractional Problems

e They show up at the interface in multi-
physics/multi-scale problems

e Let us therefore consider fast solvers for:

(~A)'u =

There has been a tremendous effort to discretize fractional Laplacians,
but not so much about solving them

We have looked into how they can be solved with multilevel algorithms



Fractional Problems

e They show up at the interface in multi-
physics/multi-scale problems

e Let us therefore consider fast solvers for:

There has been a tremel
but not so much about s

We have looked into ho

—A)u=f

SIAM J. Sc1. CoMPUT. © 2019 Society for Industrial and Applied Mathematics
Vol. 41, No. 2, pp. A948 -A972

MULTIGRID METHODS FOR DISCRETE FRACTIONAL SOBOLEV
SPACES*

TRYGVE BERLANDT, MIROSLAV KUCHTAT, AND KENT-ANDRE MARDAL'

Abstract. Coupled multiphysics problems often give rise to interface conditions naturally for-
mulated in fractional Sobolev spaces. Here, both positive and negative fractionality are common.
When designing efficient solvers for discretizations of such problems it would therefore be useful to
have a preconditioner for the fractional Laplacian. In this work, we develop an additive multigrid
preconditioner for the fractional Laplacian with positive fractionality and show a uniform bound on
the condition number. For the case of negative fractionality, we reuse the preconditioner developed
for the positive fractionality and left-right multiply a regular Laplacian with a preconditioner with
positive fractionality to obtain the desired negative fractionality. Implementational issues are out-
lined in detail as the differences between the discrete operators and their corresponding matrices must



Vessels in a (0.mm)”3 cube:
3D-1D coupled problem
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\ 3D-1D couplings:

D Angelo, Quarteroni,
Boas, David A, et al. Neuroimage 40.3 (2008): Zunino: weighted spaces
L116-1129. with distance functions
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Simple test example 2D-1D

problem

» Strong form

—Auy =
—Ug =h

eu1= U

in Q c R?
onT ={(x(s), y(s)) € Q, s = [sy, 511}
onl



2D-1D weak form

» Strong form
—Auy = f in Q C R?
—uy =f  onT ={(x(s),y(s)) € Q,s=so, 51}
EU1= Up onTl
uy =0 on 0Q)
u =0 on ol

» Weak form using Lagrange multipliers. Find
meVi=H €(Q),upe Vo:=H](T),pe Q:=H"2(T):

(Vuy,Vvi) g +(p.eTvy) = f1,V1

(Uz V2) — (P, V)
(q, eTuy — Wo)



2D-1D Preconditioner

The original problem was

an appropriate preconditioner would then be

B —

Ao
0

0

0
—Ar
0

0 .
0

e2(—A;/?) + —AF

» Robust preconditioner requires parameter-dependent spaces

Vi=H (Q),Va=H(T,Q= %H‘”z M NH'



The preconditioner is good {§it

Table: Condition numbers

M3p Nip log, €

—3 —2 —1 0 1 2 3
99 9 2655 2969 4.786 6.979 7.328 7.357 7.360
323 17 2698 3323 5966 7.597 7.697 7.715 7.717
1155 33 2778 3905 7.031 7.882 7.818 7.816 7.816
4355 65 2932 4769 7.830 8.016 7.855 7.843 7.843
16899 129 | 3.217 5857 8.343 8.081 7.868 7.854 7.852
66563 257 | 3.710 6.964 8.637 8.113 7.872 7.856 7.855

Kuchta, Miroslay, et al. "Preconditioners for saddle point systems with
trace constraints coupling 2d and |1d domains.”
SIAM Journal on Scientific Computing 38.6 (2016):



3D-1D problem

The original problem was

A

0 —-Ar I | |v]l=|g

—Ag 0 0
B=| 0 —Ar 0
0 0 62(—AF0'14) +_AF1

» Robust preconditioner requires parameter-dependent spaces

Vi=H) (Q),Va=H) (), Q= %H—O-” MNHT

Kuchta, M., Mardal, K.A., & Mortensen, M. (2019). Preconditioning trace
coupled 3d- Id systems using fractional Laplacian.
Numerical Methods for Partial Differential Equations, 35(1)



Simple multiscale 3d-1d models of
viscous — porous couping

Vasculature resolved as a three-dimensional structure

—V - (kVu)=f inQ,
V- (RVD)=Ff inQ,
u—o=g onl,

n=h onl.

Impractical for real geometries

Joint work Wlth Federica Laurino, Miroslav Kuchta and Paolo Zunino



Multiscale 3d-1d model by dimensional
reduction

Current models lead non-typical elliptic operators

(Ngu)(y) = (271'R)_1 uo Crdl, R < diam(Q)
Cr(y)

» D’'Angelo, Quarteroni: assymetric continuous problem

A: ViV
I 74V -7’
A= (—ﬂnR —R%AA)
with V = HL(Q) x H(I), V = H,(Q) x H'(I)

» Cerrroni, Laurino, Zunnino: symmetric problem
A: V=V

A= (—EAQ + MNg'Mg  —pMg’ )

—MNg —R?RAN

with V = H}(Q) x HY()

Can we use common black-box preconditioners?



Lagrange multiplier 3d-1d
- formulation

o N
/

BN
N

~ Offers possibly more flexible coupling
o cider A: HYQ) x HY(A) x Q

—kAq '’
A= —R2&AN —TV
M —M

Two options for the Lagrange multiplier space
» Q defined on A

» Q defined in virtual coupling surface '

We wish to construct block-diagonal preconditioners



Formulation with line multiplier,
conforming P|

Riesz map préconditioner |

—Aq o 2-2 -3 o4
— —R2A
B= A (—ap)-1/2 cond(BA) | 40.5 40.6 40.6
—ar

Schur complement of A is R dependent, M = Mg, 1=
R?(M)(—Da) (M) + (M) (=A) (1Y

R-robust preconditioner

—Ag -1
B = —RzA/\
RA(~r) /2 + (~Ar)™!

h

a 2—1.‘ 2—5 2—4 2—5
10-1 | 45162 4.5201 4.5608 4.6189
1072 | 45314 45366 45574 4.6137
1073 | 45311 45312 45315 4.5328

Qn



Nonconforming line multiplier,
P1-P1-PO elements

Stabilized FEM formulation

—I‘CAQ n’
A= ~RRAN Y (p,—Brpq) = Yy _{{n}} " [Pld] Viy
n —f —h?Ar
Conforming-case preconditioner with stabilization term v,
h
a 2—2 2—5 2—4 2—5

10! | 45316 4.5319 45289 4.5506
1072 | 45412 45399 45364 4.5337
10~3 | 45413 45310 4.5364 4.5439 Qh




Formulation with surface multiplier,
conforming Pl

Coupling via
» 1= T (standard 3d-2d trace)
» [1 extension operator A — T

Riesz map preconditioner |

-1

—Aq
B = —R2Ap
(—Ar)~?
At the moment only h-robust
h | 272 273 27% 27°

cond(BA) | 27.4 275 27.6 27.6

Fractional preconditioner computationally expensive



Conclusion

Alzheimer’s disease and the glymphatic system are in
need of new modeling

Waste clearance, porous media flow seems a powerful
framework

Numbers don’t add up, permeability and fluid velocities
seem to low: A lot of open questions!

Multiscale (3D-1D) and multi-physics approach is
warrented

Operator preconditioning is a powerful way of
unraveling the underlying structures and create efficient
algorithms
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