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Introduction to CMB data

Image credit: NASA / WMAP Science Team
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CMB is the remnant heat left over from the Big Bang;

Predicted by Ralph Alpher and Robert Herman in 1948;

Observed by Arno Penzias and Robert Wilson in 1965;

Hundreds of cosmic microwave background experiments have been
conducted to measure CMB;

Most detailed space mission to date was conducted by the European
Space Agency, via the Planck Surveyor satellite (in the range of
frequencies from 30 to 857 GHz).
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Missions

Image credit: https://jgudmunds.wordpress.com
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Next Generation Missions

Next Generation Explorer: CMB-S4

(Sponsored by Simons Foundations, NSF and US Department of Energy)
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What does CMB data look like?

13.77 billion year old temperature fluctuations that correspond to the
seeds that grew to become the galaxies
Current CMB data are at 5 arcminutes resolution on the sphere.
Contains 50,331,648 data collected by Planck mission.
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Research directions

Direction 1: Stochastic modelling and developing new spherical
inference tools: high frequency asymptotics, Minkowski
functionals, Rényi functions

Direction 2: Evolution of CMB: SPDEs

Direction 3: Practical statistical analysis of CMB data: R
package rcosmo
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Spherical random fields

The standard statistical model for CMB is an isotropic random field on the
sphere S2

T = {T (θ, ϕ) = Tω(θ, ϕ) : 0 ≤ θ < π, 0 ≤ ϕ < 2π, ω ∈ Ω} .

CMB can be viewed as a single realization of this random field.

We consider a real-valued second-order spherical random field T that is
continuous in the mean-square sense. The field T can be expanded in the
mean-square sense as a Laplace series

T (θ, ϕ) =
∞∑
l=0

l∑
m=−l

almYlm(θ, ϕ),

where {Ylm(θ, ϕ)} represents the complex spherical harmonics.
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The random coefficients alm in the Laplace series can be obtained through
inversion arguments in the form of mean-square stochastic integrals

alm =

∫ π

0

∫ 2π

0
T (θ, ϕ)Y ∗lm(θ, ϕ) sin θdθdϕ.

The field is isotropic if

Ealma
∗
l ′m′ = δl

′
l δ

m′
m Cl , −l ≤ m ≤ l , −l ′ ≤ m′ ≤ l ′.

Thus, E|alm|2 = Cl , m = 0,±1, ...,±l .

The series {C1,C2, ...,Cl , ...} is called the angular power spectrum of the
isotropic random field T (θ, ϕ).
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Random spherical hyperbolic diffusion

The papers

Anh, V., Broadbridge, P., Olenko, A., Wang, Y. (2018) On
approximation for fractional stochastic partial differential equations on
the sphere. Stoch. Environ. Res. Risk Assess. 32, 2585-2603.

Broadbridge, P., Kolesnik, A.D., Leonenko, N., Olenko, A. (2019)
Random spherical hyperbolic diffusion. Journal of Statistical Physics.
177, 889-916.

Broadbridge, P., Kolesnik, A.D., Leonenko, N., Olenko, A., Omari, D.
(2020) Analysis of spherically restricted random hyperbolic diffusion,
arXiv:1912.08378, will appear in Entropy.

investigated three SPDEs with random initial condition given by CMB.
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Model 1:

The fractional SPDE on S2

dX (t, x) + ψ(−∆S2)X (t, x) = dBH(t, x), t ≥ 0, x ∈ S2,

where the fractional diffusion operator

ψ(−∆S2) := (−∆S2)α/2(I −∆S2)γ/2

is given in terms of Laplace-Beltrami operator ∆S2 on S2.
BH(t, x) is a fractional Brownian motion on S2 with Hurst index
H ∈ [1/2, 1).

This equation is solved under the initial condition X (0, x) = u(t0, x),
where u(t0, x), t0 ≥ 0, is the solution of the fractional stochastic Cauchy
problem at time t0:

∂u(t, x)

∂t
+ ψ(−∆S2)u(t, x) = 0

u(0, x) = T0(x).
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Model 2:

The hyperbolic diffusion equation

1

c2

∂2q(x, t)

∂t2
+

1

D

∂q(x, t)

∂t
= ∆q(x, t), x ∈ R3, t ≥ 0, D > 0, c > 0,

subject to the random initial conditions:

q(x, t)|t=0 = η(x),
∂q(x, t)

∂t

∣∣∣∣
t=0

= 0,

where ∆ is the Laplacian in R3 and η(x) = η(x, ω), x ∈ R3, ω ∈ Ω is the
random field.

We investigated TH(x, t), x ∈ S2, t > 0, which is a restriction of the
spatial-temporal hyperbolic diffusion field q(x, t) to the sphere S2.
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Model 3:

Hyperbolic diffusion equation on the sphere

1

c2

∂2u(θ, ϕ, t)

∂t2
+

1

D

∂u(θ, ϕ, t)

∂t
= k2∆(θ,ϕ) u(θ, ϕ, t),

θ ∈ [0, π), ϕ ∈ [0, 2π), t > 0,

where ∆(θ,ϕ) is the Laplace-Beltrami operator on the sphere

∆(θ,ϕ) =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

The random initial conditions are determined by the isotropic random field
on the sphere

u(θ, ϕ, t)
∣∣
t=0

= T (θ, ϕ),

∂u(θ, ϕ, t)

∂t

∣∣∣∣
t=0

= 0.
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Theorem 1

The random solution u(θ, ϕ, t) of the initial value problem is

u(θ, ϕ, t) = exp

(
−c2t

2D

) ∞∑
l=0

l∑
m=−l

Ylm(θ, ϕ)ξlm(t), t ≥ 0,

where

ξlm(t) =

√
4π

2l + 1
almY

∗
l0(0)[Al(t) + Bl(t)]

are stochastic processes with

Al(t) =

[
cosh (tKl) +

c2

2DKl
sinh (tKl)

]
1{

l≤
√

D2k2+c2−Dk
2Dk

}

and

Bl(t) =

[
cos
(
tK ′l
)

+
c2

2DK ′l
sin
(
tK ′l
)]

1{
l>

√
D2k2+c2−Dk

2Dk

}.
A.Olenko SPDEs on sphere 16 / 32



The covariance function of the random solution u(θ, ϕ, t) is given by

R(cos Θ, t, t ′) = Cov(u(θ, ϕ, t), u(θ′, ϕ′, t ′)) = exp

(
− c2

2D
(t + t ′)

)

×(4π)−1
∞∑
l=0

(2l + 1)ClPl(cos Θ)[Al(t)Al(t
′) + Bl(t)Bl(t

′)],

where Θ = ΘPQ is the angular distance between the points (θ, ϕ) and
(θ′, ϕ′) and Pl(·) is the l-th Legendre polynomial, i.e.

Pl(x) =
1

2l l!

d l

dx l
(x2 − 1)l .
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Convergence study of approximate solutions

The approximation of truncation degree L ∈ N to the solution is

uL(θ, ϕ, t) = exp

(
−c2t

2D

) L−1∑
l=0

l∑
m=−l

Ylm(θ, ϕ)ξlm(t).

Theorem 2

For t > 0 the truncation error is bounded by

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C

( ∞∑
l=L

(2l + 1)Cl

)1/2

.

Moreover, for L >
√
D2k2+c2−Dk

2Dk it holds

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp

(
−c2t

2D

)( ∞∑
l=L

(2l + 1)Cl

)1/2

.
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Corollary 3

Let the angular power spectrum {Cl , l = 0, 1, 2, ...} of the random field
T (θ, ϕ) from the initial condition decay algebraically with order α > 2, i.e.
Cl ≤ C · l−α for all l ≥ l0. Then,

(i) for L > max(l0,
√
D2k2+c2−Dk

2Dk ) the truncation error is bounded by

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp

(
−c2t

2D

)
L−

α−2
2 ,

(ii) for any ε > 0 it holds

P
(
|u(θ, ϕ, t)− uL(θ, ϕ, t)| ≥ ε

)
≤

C exp
(
−c2t/D

)
Lα−2ε2

,

(iii) for all θ ∈ [0, π), ϕ ∈ [0, 2π) and t > 0 it holds

|u(θ, ϕ, t)− uL(θ, ϕ, t)| ≤ L−β P− a.s.,

where β ∈
(
0, α−3

2

)
and α > 3.
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Hölder continuity of solutions and their approximations

Theorem 4

Let u(θ, ϕ, t) be the solution to the initial value problem and the angular
power spectrum {Cl , l = 0, 1, 2, ...} of the random field from the initial
condition satisfies

∞∑
l=0

(2l + 1)3Cl <∞.

Then there exists a constant C such that for all t > 0 it holds

‖u(θ, ϕ, t + h)− u(θ, ϕ, t)‖L2(Ω×S2) ≤ Ch, when h→ 0+,

where the constant C depends only on the parameters c , D and k .
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Corollary 5

If the assumptions of Theorem 4 hold true, then there exists a constant CL

such that for all t > 0 it holds

‖uL(θ, ϕ, t + h)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ CLh, when h→ 0+,

where the constant CL depends only on the parameters c , D and k .
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Theorem 6

Let u(θ, ϕ, t) be the solution to the initial value problem and the angular
power spectrum {Cl , l = 0, 1, 2, ...} of the random field from the initial
condition satisfies

∞∑
l=0

(2l + 1)1+2γCl <∞, γ ∈ [0, 1].

Then, there exists a constant C such that for all t > 0 it holds

MSE(u(θ, ϕ, t)− u(θ′, ϕ′, t)) ≤ C
∞∑
l=0

Cl (2l + 1)1+2γ (1− cos Θ)γ ,

where Θ is the angular distance between (θ, ϕ) and (θ′, ϕ′) and the
constant C depends only on the parameters c , D and k .
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Short and long memory

The random field u(θ, ϕ, t) is short memory if∫ +∞

0
|R(cos Θ, t + h, t)|dh < +∞

for all t and Θ ∈ [0, π].
If the integral is divergent, the field has long memory.

Let G (·) be a spectral measure of the initial condition field, i.e. its
covariance function has the form

Cov(T (θ, ϕ),T (θ, ϕ)) = R(cos Θ) =

∫ ∞
0

sin(2µ sin Θ
2 )

2µ sin Θ
2

G (dµ).

Theorem 7

The random field u(θ, ϕ, t) has short-memory if and only if µ−2G (dµ) is
integrable in a neighbourhood of the origin.
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Numerical studies

Scaled CMB angular power spectra for c = 1, D = 1 and k = 0.01 at time
t ′ = 0, 0.02 and 0.04.
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Covariance for c = 1, D = 1 and k = 0.01 at time lag t ′ and angular
distance Θ.
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Figure: Error field of the
approximation with L = 200 to the
solution with c = 1, D = 1 and
k = 0.01 at time t ′ = 0.04.

Figure: Error field of the
approximation with L = 400 to the
solution with c = 1, D = 1 and
k = 0.01 at time t ′ = 0.04.
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Difference of the mean L2(Ω× S2)-errors and their upper bound for c = 1,
D = 1 and k = 0.1 at t ′ = 10.
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Sensitivity to parameters

Figure: Difference of the mean
L2(Ω× S2)-errors and their upper
bound for c = 1 and k = 0.1 at t ′ = 10.

Figure: Difference of the mean
L2(Ω× S2)-errors and their upper
bound for c = 1 and D = 1 at t ′ = 10.
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R package rcosmo

The first R package for statistical analysis of CMB and HEALPix data.
The package has more than 100 different functions.

https://CRAN.R-project.org/package=rcosmo

D.Fryer, M.Li, A.Olenko. (2019) rcosmo: R Package for Analysis of
Spherical, HEALPix and Cosmological Data, arxiv 1907.05648
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Directions for future research

Study sharpness of the obtained upper bounds.

Develop statistical estimators of equations’ parameters and study
their properties.

Extend the methodology to tangent vector fields on the sphere.

Extend the methodology to tensor random fields on the sphere.

Add new functions to rcosmo.
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