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Model of tumour—growth

tumour cells

fluid phase nntotlc
death —e (),
cellular phase division

fluid

cross-section of tumour spheroid

Assumptions

o Cells and fluid exchange matter via the processes, cell
division and cell death.

o Mass and momentum are conserved internally.

@ No blood vessels. Limiting nutrient - Oxygen, follows
diffusion.
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Model of tumour growth

e Domain — 0 <t < T, z € Q(t) = (0,4(t)).
e /(t) — tumour length, 2 = 0 — tumour centre.

@ ¢ — volume fraction of tumour cells, % — cell velocity, ¢ — oxygen
tension.
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Model of tumour growth

e Domain — 0 <t < T, z € Q(t) = (0,4(t)).
e /(t) — tumour length, 2 = 0 — tumour centre.

@ ¢ — volume fraction of tumour cells, % — cell velocity, ¢ — oxygen
tension.

cell volume fraction (hyperbolic conservation law)

Ja 0 14+ s1)éa(l —a So+ s3¢
—+—(dﬁ):( 1)6&(1—d) s3+s3t,
ot Ox 1+ s1¢ 14 s4¢
~——
Birth rate Death rate

a(0,x) = ap(z).

o 1+(1/s1), s2 — maximal birth and death rates, s3/s4 — minimal
death rate.

vy (1-‘1-31)(1—6()6 S2+s3¢
o Set f(4,¢) = 3z — THese
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Model of tumour growth

e Domain — 0 <t < T, z € Q(t) = (0,4(t)).
e /(t) — tumour length, 2 = 0 — tumour centre.

@ ¢ — volume fraction of tumour cells, % — cell velocity, ¢ — oxygen
tension.

cell velocity (elliptic)

o 1 — coefficient of viscosity of cell phase. k — interfacial drag
coefficient.

o Set #(d) = (¢ —a*)t/(1-a&)?%, at = max(a,0).
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Model of tumour growth

e Domain — 0 <t < T, z € Q(t) = (0,4(t)).
e /(t) — tumour length, 2 = 0 — tumour centre.

@ ¢ — volume fraction of tumour cells, % — cell velocity, ¢ — oxygen
tension.

Oxygen tension (parabolic)

o¢ 0% .
i
Ox. consumption rate

oc¢

¢(0,2) = co(z), a(t,O) =0, ¢(t,l(t) =1

e (Q — Maximum oxygen consumption rate.
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Model of tumour growth

e Domain — 0 <t < T, z € Q(t) = (0,4(t)).
e /(t) — tumour length, 2 = 0 — tumour centre.

@ ¢ — volume fraction of tumour cells, % — cell velocity, ¢ — oxygen
tension.

boundary evolution
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Idea of extended model

extended model

original model
T T
1
O + Oz (uar) = (,},f;’(},ﬂ c)
= = a>0 Ju=0
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/ CPr\Dr =
1
Dr I P7\Dr
0 £(0) b 0 £(0) b,
space (z)

space (z)

o / as the interface between o > 0 and « = 0.
e velocity and oxygen tension extended by 0 and 1, respectively.
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Idea of threshold model

threshold model

extended model
T T
I 1

oo + 0y (uar) = a(/'}’(ju c) Ora + 0y (uar) = (1_/';’0, c)
) /7 = Z
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I Clo\Dy =1 ! C|2r\Dy = 1
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0 (0) b, 0 (0) b
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o / as the interface between a > 0 and o <= .
e velocity and oxygen tension extended by 0 and 1, resp.
@ ayp, facilitates estimates on cell velocity and is required

numerically.
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Threshold solution

A threshold solution (with threshold atp, € (0,1)) and domain D%br of
the threshold model in 27 is a 4-tuple («,u, ¢, ) such that:

0 0<mi1 <ajqu <miz <1foralltel0,T],
@ mi11 < mo1, mi2 > Mo2
e c>0,

and the following hold:
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Threshold solution

cell volume fraction

The volume fraction a € L (Zr) is such that Vo € €2°(]0,T) x
(0,6m)),

/ (a,ua)~vt7$4pdtdx+/ ©(0,2) apdz
2 2(0)

+/@T(a—athr)+f(a,c)d:c:0‘
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Threshold solution

tumour boundary

The set DtThr is of the form

D = Ugcrer({t} x Q(t)),

where Q(t) = (0,£(t)), and we have o < cp, on 27\ D,
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Threshold solution

o H“(D¥™):={ve L2(D") : 9,v € L2(Dih)
and v(t,0) =0Vt e (0,7)}.
o ue Hy"(D¥r) and Vo € Hy"(DSY), satisfies
T T
|ttty eena= [ ceena o
0 0
where a : HY(Q(t)) x HY(Q(¢)) — R is a bilinear form and £ :
H'(Q(t)) — R is a linear form as follows:
at(u,v)=k (au,v> + p(adzu,03v) gy and (2)
11—« Q)
L (v)= (H(a),0:0)q 1) - (3)

Extend u to 27 by setting u] =0,

th
.@T\DT r
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Threshold solution

oxygen tension

o Hgl);:(D%hr) = {11 c LQ(D%H) : Oy € LQ(D’E—}‘II‘)
and v(t,£(t)) =0Vt € (0,T)}.
ec—1l¢ Héf(DtThr) satisfies,

—/ cOpdrdt+ A &m&wdxdt—/ co(x)v(0,2)dx
B Q(0)

thr
DT

—Q acvdzdt =0, (1)

thr
DT

Vv e Hy (D) such that dyv € L2(DT). Extend ¢ to Zr by

setting ¢ —= =1,
g |@T\D%hr
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Threshold value - comments

o To obtain a lower bound strictly greater than zero for o.
o Facilitates bounded variation estimates on .

o To obtain supremum norm bounds on u and 0, u.
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Threshold value - comments

o To obtain a lower bound strictly greater than zero for o.
o Facilitates bounded variation estimates on .

o To obtain supremum norm bounds on u and 0, u.

An unavoidable disadvantage

@ Residual volume fraction - creates spurious growth outside the
tumour domain.

o Essential from numerical vantage point.

e Modified source term (o — ayny) ™ f(a,¢) eliminates spurious
growth.

o As agnr — 0, (a—ayne) T f(,¢) approaches af (o, c).
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© Discretisation




Discrete scheme

@ Space: O=xg<---<xzj=4Ly, Time: O=tog<---t, =T

o Uniform discretisation: 6 =t,41 —tn, h =41 — ;.

scheme

o volume fraction: «} - upwind finite volume scheme.
° S(;t m = rrgn{xj raf <agpr on (25,4m)} and

Qh = (07£h)'
o Conforming Lagrange P'1-FEM to obtain UZIQ"’ and set

h

up =0 outside Qf.

o Time-implicit mass lumped P'-FEM to obtain czlgn, and
h
set ¢, = 1 outside Q}.
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Discrete solution

Definition (Time-reconstruct)

For a family of functions (f}'){o<n<n} on a set X, define the
time-reconstruct fp, 5:(0,7) x X = R as fj 5 := f/' on [tn,tn41) for
0<n<N.
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Discrete solution

Definition (Time-reconstruct)

For a family of functions (f}'){o<n<n} on a set X, define the
time-reconstruct fp, 5:(0,7) x X = R as fj 5 := f/' on [tn,tn41) for
0<n<N.

Definition (Discrete solution)

The 4-tuple (ap,s,Uh,5,Ch,6,¢h,5), Where ap, 5, un 5, ch,s, and £ s are
the respective time-reconstructs corresponding to the families
(@ )n, (Up)n, (¢} )n, and (£}})y is called the discrete solution.
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Why a mixed numerical scheme?

Finite volume method

o Respects mass conservation property at the discrete level.
o Upwind flux (+ CFL) yields a stable scheme.

o FVM - significant numerical diffusion.

e Large error in locating ¢} as the boundary where o} becomes 0.
°

Solution: Locate £} as min{z; : a}} < agnr on (25,6m]}-

Oghr
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Why a mixed numerical scheme?

Finite element methods

o Velocity equation - elliptic, oxygen tension equation - parabolic.

o Unknown Lagrange P!-FEM - boundary nodes of (z;,2j41), and
easy to compute the upwind flux.

o Mass lumping in oxygen tension equation is crucial to obtain L>°
bounds.

o Time-implicitness yields stability in L?(0,7; H'(0,4,,)).
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@ Main Theorem




Uy, 5. continuous modification of wuy, g

A A st O s(t))
| | |
1 1 T »
bns(t,-) U lm

(a) up s(t,-). (b) wp s(t,-).

Figure: The left-hand side plot illustrates the discontinuous function wuy, s
and the right-hand side plot illustrates the continuous modification ﬂh,g.
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Few notations

Mass lumping operator

e Set x; = (x; —h/2,2; +h/2), S, M1 — piecewise constant
functions on x;.
o Mass lumping operator: IIj, : °([0, L]) — Sp, a1, such

that II,w = Z}‘]:O w(mj)l;yv
J

e Set T}, scn.s by Hh’(sch)(g(t,-) = Hh(ch,g(t,-)).

1 &
I e I e I x

Tj—1/2  Tj Tjg1/2 Tjp1 Tjg3/2
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Few notations

Time-dependent spaces

L2(0,T; HY(0,4,,)) := {f € L*(0,T; H'(0,£,,)) : f(t,£(t)) =0
for a.e. t€[0,T]},

L2(0,T; HY(0,4,,)) :={f € L*(0,T; H(0,4,,)) : £(t,0)=0
for a.e. t €[0,7]}.
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Main Theorem I - Hypothesis

Theorem (compactness)

Let the properties stated below be true.

o The initial volume fraction cg belongs to BV (0,4,,) and
0 <mo1 < ag <moa <1, where mg1 and moz are constants.

o The discretisation parameters h and 0 satisfy the following
conditions:

5 /** 1— * |2
pbcrr <~ <CcrrL = aup 1= o] and

h 2, |a* — o
1— —

5<min<p72(1 m),
S92 1+ s9

where p, a. and a* are constants chosen such that p <1,
0 < ax <mg1, and 0 < mgpz < a*.
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Main Theorem I - Conclusions

Theorem (compactness)

Then, there exists a finite time T = Ty (p, ax,a™), a subsequence of the

family of functions {(an,s,Un,s5,¢h,5,4h,5)}h,s and a 4-tuple of
functions (o, u,c,l) such that

e a€BV(9r,)
o c€ L2(0,T; HY(0,4,))
o e L2(0,T,; H(0,4,,))
e Ve BV(0,Ty)
with 97, = (0,T%) x (0,4,,) and as h,d — 0,
® aps — « almost everywhere and in L™ weak™ on 9r,,

o IIj, scp 5 — c strongly in L*(Pr,) and Oycp 5 — Oyc weakly in
L*(2r.),
® Up 5 — U and Oup 5 — OU weakly in L*(2r,), and

o U5 — L almost everywhere in (0,T%).
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Main Theorem 11

Theorem (convergence)

Let (a,u,c,t) be the limit provided by the compactness theorem.
Define Q(t) := (0,£(t)) and the threshold domain

DPr = {(t,z) :x < L(t),t € (0,T%)}

and let u:=1 on DI and u:=0 on D7, \Di™. Then, (a,u,c,Q) is a
threshold solution with T =T.

4
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Idea for proof of Main Theorem I

@ Proof is through inductive arguments on time-step, n.

e Fix two constants a* € (max(a*,mg2),1) and
ax € (0,min(nr, mo1))-

o The time of existence Ty on a* and ax, and is explicitly provided
by Theorem (well-posedness).

Theorem (well-posedness)

For all n € N such that t, < T, aps(tn,-), un,s(tn,-), and cp s5(tn,-)
are well defined, and it holds:

0 ay < ah75(tn,')mz <a*,

® 0< cps(tn,)j(0,6m) < 1

o Necessary compactness results proved using supremum norm
bounds from the Theorem (well-posedness).
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Proof of well-posedness Theorem

Step 1: Energy estimate of @

There exists a unique solution %} to discrete weak form of ve-
locity equation in €2} and it satisfies the following estimates:

—n \/ a
H\/ah,é(tn,-)axuh mla” = o7

and
T %2
om pll— *|
ey
H aps(t uh

b la* — ™|
kp [1—a*|?”

\/1 ah6 ny’

0,Qp

o Keeping the coefficients yields optimal estimates, which improves
the existence time 7.

e Estimate on 0,uj} yields

A |a* = a7

Vaep [1—a*2”

[[wn,s(tns )l Loe (0,6m) <
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Proof of well-posedness Theorem

Step 3: BV and L bound on dzup, 5(tn,-)

It holds:

||paen, 5 (tns ) Ozt 6 (tn, ) — 7 (atn 5 (tn, )| BV (0,6m)

k |a* —a*|

S L il
TV ul—axpp/?

k |a* —a*|

pi—apre "

|[(neen,5(tn, ) Oxtin,5(tns ) " [ Lo0 (0,6m) < fm

k |a* —a*|

ﬁ |1—CL*|5/2

a*(a* —a*)
(1—a*)?

||,uah,6(tna ')a$uh,5(tn7 ')HLOO(O,Em) </l

_|_
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Proof of well-posedness Theorem

Step 3: L bound on ap, 5(tn,-)

There exists Ty > 0 such that if n+1 < N, :=T,/d, then

4, < min "< max oa?Tl<a*
jiajeqntt J 0<5<J -1

The discrete weak form corresponding to the oxygen tension
equation has a unique solution EZ‘H in OF, and it holds 0 <
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@ Compactness results

problems



Check-list of compactness estimates

Q a uniform L?(0,T,; H(0,¢,,)) estimate for the family {cp, s}n.s —
weak L2(0,7T,; H'(0,4,,)) convergence.

@ a uniform spatial and temporal BV estimate for the family
{an5}h,s — strong LP(Zr,) convergence.

@ a uniform BV estimate for the family {¢}, 5}5,5 — strong
LP(0,T;) convergence.

@ the family {IIj, scp 5}h,5 is relatively compact in L*(927,) —
strong L?(Zr,) convergence.

@ a uniform L?(0,T,; H'(0,4,,)) estimate for the family
{tn.s}ns — weak L2(0,Ty; H(0,4,,)) convergence .
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Relative compactness of {Il,cp, 5}.5

Auxiliary function Define ¢}, 5 := ¢j 5 — 1. For a fixed € > 0, define the
auxiliary function ¢y _:[0,4,,] — [0,1] by

1 0<z<IF—p¢,
@) =9 Up—z)/e (F—e<z<lp,
0 0 <x <Aty

O —

n n
fh, —€ éh ém,
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@ The mass lumped function can be split into

Iy s¢h,6 =1n 5(Ch,69n,e) + 1,5 (Ch,s (1 — ©h,e)),

where ¢p, ¢ = @) . on [ty,tpy1) for 0<n < N, —1.
@ The second term can be bounded by:

|MTh6(Ch,s (1= on,e )l L2(2p, ) < VTxe

The family of functions {I1p, 5(¢n,eCh,s)}n,s s relatively compact in

o Proof follows from the Discrete Aubin - Simon Theorem.

The family of functions {Ilp, scp 5 }th,5 is relatively compact in
L*(Zr,).

@ Proof follows from the fact ¢ > 0,

{IIn,5¢h,5 n,s C {1ln,6(Pn,eCh,s)}ns + Bre(ay, ) (0; V T*e) :
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@ Convergence results

problems



Idea of proof of convergence theorem

@ The domains
Aps ={(t,z) 1z <lps(t),t€(0,T%)}
converge to
D= {(t,x) s 2 < L(t),t € (0,T)}.

@ The limit function « satisfies the weak form (volume fraction)
with T'=T.

@ The restricted limit function @, Dy satisfies weak form (cell
velocity) with T = T.

@ The limit function ¢ Dy satisfies weak form (oxygen tension)
with T'=T.
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@ Numerical results




Parameters

E=1,pu=1,Q=05,s; =10=s4, 5o =0.5=s3, o* =0.8L.
The bounds of the cell volume fraction are set to be a, = 0.4 and
a* =0.82.

The extended domain length ¢, is set as 10.

The threshold value is taken as atp, = 0.1.
p=0.1,0=1E—-3 and h=5E—2.

Set T, = 50.

Predicted time by compactness theorem: 1E—7 to 1E—1.

IBreward, C.J.W., Byrne, H.M. and Lewis, C.E., 2002. The role of cell-cell
interactions in a two-phase model for avascular tumour growth. J. of Math. Bio.,
45(2), pp. 125-152.
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Czhyg(t, I)

Ch.s (t, .T)

—t=5
=10
— =15

t=20
—t=2
=30
— =35
— =40
— =45

=50

(a) cell volume fraction

— =5
=10
—t=15

t=20
— =2
—t=30
=35
=40
|—t=145

=150

uns(t, x)

Oy s(t)

(b) cell velocity

Numer




Conclusive remarks

o Sufficiency of compactness and convergence theorems - Existence
of solutions beyond T} is possible.
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Conclusive remarks

o Sufficiency of compactness and convergence theorems - Existence
of solutions beyond T} is possible.

. . «
e Convergence theorem guarantees existences of a domain DT“".
However, it is not known whether it is unique.
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Conclusive remarks

o Sufficiency of compactness and convergence theorems - Existence
of solutions beyond T} is possible.

. . «
e Convergence theorem guarantees existences of a domain DT“".
However, it is not known whether it is unique.

o Framework can be extended to similar problems and models.
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Conclusive remarks

o Sufficiency of compactness and convergence theorems - Existence
of solutions beyond T} is possible.

. . «
e Convergence theorem guarantees existences of a domain DT“".
However, it is not known whether it is unique.

o Framework can be extended to similar problems and models.

o Higher dimensional study (on going work).
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