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Motivation (integer-order derivatives)

Let g ∈ C [0, 1]. Set (Jg)(x) =
∫ x

0 g(t) dt for 0 ≤ x ≤ 1.

Then (Jg)′(x) = g(x) for 0 < x < 1. Write as DJg = g .
Consider

(J2g)(x) = J(Jg)(x) =

∫ x

s=0

(∫ s

t=0
g(t) dt

)
ds

=

∫ x

t=0

∫ x

s=t
g(t) ds dt =

∫ x

t=0
(x − t)g(t) dt.

For n = 1, 2 . . . , get

(Jng)(x)=
1

(n − 1)!

∫ x

t=0
(x−t)n−1g(t)dt=

1

Γ(n)

∫ x

t=0
(x−t)n−1g(t)dt

Observe that for any nonnegative integers k and n one has

Dn+kJn = Dn+k−1(DJ)Jn−1 = Dn+k−1Jn−1 = · · · = Dk



Defining a fractional derivative

“fractional” means “not an integer”

Let α ∈ R satisfy m − 1 < α < m for some positive integer m.
We want to define the fractional derivative Dα.

Ideas:

I Generalise formula Dk = Dn+kJn

I Exploit fact that integral operator Jn is defined for
any positive real number n

Define
Dα = DmJm−α.
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Riemann-Liouville fractional derivative Dα

Let α ∈ R satisfy m − 1 < α < m for some positive integer m.
The Riemann-Liouville fractional derivative Dα is defined by

Dαg(x) =

(
d

dx

)m [ 1

Γ(m − α)

∫ x

t=0
(x − t)m−α−1g(t) dt

]
for 0 < x ≤ 1 and all functions g such that Dαg(x) exists.

For example, if g ∈ Cm−1[0, 1] and g (m−1) is absolutely continuous
on [0, 1], then Dαg exists.

[Necessary & sufficient conditions for existence of Dαg ∈ C [0, 1]: G.Vainikko,
Which functions are fractionally differentiable?, Z.Anal.Anwend., 2016]

The definition of Dαg(x) is not local (unlike classical derivatives).
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R-L derivative: good and bad

Dαg where m − 1 < α < m for some positive integer m.

Good property: let g ∈ Cm[0, 1]. Then for each x ∈ (0, 1],

lim
α→(m−1)+

Dαg(x) =
dm−1g

dxm−1
(x), lim

α→m−
Dαg(x) =

dmg

dxm
(x).

Bad properties:

1. Dα(1) 6= 0; in fact Dα(xβ) = 0 for
β = α− 1, α− 2, . . . , α−m [implications for solving ODES...]

2. Product Rule very complicated except in special cases

3. Chain Rule impossibly complicated (so changes of
independent variable are unhelpful)
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Caputo fractional derivative Dα
C

Suppose m − 1 < α < m for some positive integer m.
Define the Caputo fractional derivative Dα

C by

Dα
Cg(x) = Dα

[
g(x)− Tm−1[g ; 0](x)

]
,

where Tm−1[g ; 0](x) denotes the Taylor polynomial of degree
m − 1 of the function g expanded around x = 0.

If g ∈ Cm−1[0, 1] and g (m−1) is absolutely continuous on [0, 1],
then for 0 < x ≤ 1 one also has the equivalent formulation

Dα
Cg(x) :=

1

Γ(m − α)

∫ x

t=0
(x − t)m−α−1g (m)(t) dt.

Could get this from identity Dαu = Jm−αDmu, which is valid for
integer m, α with m > α if 0 = u(0) = u′(0) = · · · = u(m−1)(0).
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If g is smooth, then. . .

Lemma
Suppose m − 1 < α < m for some positive integer m and
g ∈ Cm[0, 1]. Then limx→0+ Dα

Cg(x) = 0.

Proof.
Because g ∈ Cm[0, 1], there is a constant C such that
|g (m)(t)| ≤ C for 0 ≤ t ≤ 1. Hence for 0 < x ≤ 1 one has

|Dα
Cg(x)| =

∣∣∣∣ 1

Γ(m − α)

∫ x

t=0
(x − t)m−α−1g (m)(t) dt

∣∣∣∣
≤ C

Γ(m − α)

∫ x

t=0
(x − t)m−α−1 dt

=
C

(m − α)Γ(m − α)
xm−α.

Thus limx→0+ Dα
Cg(x) = 0 since m > α.
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Heuristic explanation

Recall that when m − 1 < α < m, then

Dα
Cg(x) = Dα

[
g(x)− Tm−1[g ; 0](x)

]
.

Since g ∈ Cm[0, 1], one has (roughly)

g(x)− Tm−1[g ; 0](x) ∼ C1x
m near x = 0

and consequently

Dα
Cg(x) ∼ Dα(C1x

m) = C2x
m−α → 0 as x → 0+.
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The fractional-derivative IVP

Consider the fractional-derivative initial-value problem

Dα
t w(t) = g(t) for t ∈ (0,T ], w(0) = w0,

where g is a given smooth function,
and Dα

t w is a Caputo fractional derivative of order α ∈ (0, 1).



Behaviour of solution to IVP

Take the simplest problem where g(t) ≡ 1:

Dα
t w(t) = 1 for t ∈ (0,T ], w(0) = w0.

Then

w(t) = w0 +
tα

Γ(α + 1)
for 0 ≤ t ≤ T .

Observe that w ∈ C [0,T ] but, since 0 < α < 1,

w ′(t) =
αtα−1

Γ(α + 1)
blows up as t → 0+.

Of course higher-order derivatives of w also blow up at t = 0.
Very different from the classical integer-derivative situation!

Any good numerical method for this class of problems has to
handle this weak singularity in typical solutions
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Huge growth in research activity

MathSciNet data: papers published with
anywhere “fractional derivative” and
“MSC primary classification 65” (i.e., numerical methods/analysis)

1990–1999: 24 papers
2000–2009: 113 papers
2010–2019: 1284 papers
Why such a large increase?

Two reasons:
(i) More applications found where fractional derivatives offer good
approximations
(ii) Not very difficult to write papers in this area if you make
strong assumptions! Solutions to fractional-derivative differential
equations typically have weak singularities, but > 80% of papers
assume that solutions are smooth [i.e., no singularities].
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The mesh
IVP is: with 0 < α < 1,

Dα
t u(t) = g(t) for t ∈ (0,T ], u(0) = u0.

Let M be a positive integer. Set

tm := mτ for m = 0, 1, . . . ,M with τ := T/M.

Computed approximation to the solution at each mesh point tm is
denoted by um.

The Caputo fractional derivative

Dα
t u(tm) =

1

Γ(1− α)

∫ tm

s=0
(tm − s)−αu′(s) ds

=
1

Γ(1− α)

m−1∑
k=0

∫ tk+1

s=tk

(tm − s)−αu′(s) ds



The L1 discretisation

Dα
t u(tm) =

1

Γ(1− α)

m−1∑
k=0

∫ tk+1

s=tk

(tm − s)−αu′(s) ds

is approximated by the so-called L1 approximation

Dα
Mum :=

1

Γ(1− α)

m−1∑
k=0

uk+1 − uk

τ

∫ tk+1

s=tk

(tm − s)−α ds

=
τ−α

Γ(2− α)

[
d1u

m − dmu
0 +

m−1∑
k=1

(dk+1 − dk)um−k

]
,

with dk := k1−α − (k − 1)1−α for k ≥ 1.
Here d1 = 1 and dk > dk+1 > 0.



The finite difference method

Solve the linear system

Dα
Mum = g(tm) for m = 1, 2, . . . ,M, u0 = u(0).

M-matrix, but not sparse — lower Hessenberg matrix.
Can prove (under realistic regularity hypotheses) that

max
m
|u(tm)− um| ≤ CM−α

for some fixed constant C , and this result is sharp.

Method is convergent — but order of convergence α is low.
Can it be improved?
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Graded mesh

Let M be a positive integer. Set

tm := T (m/M)r for m = 0, 1, . . . ,M

with mesh grading r ≥ 1 chosen by the user.

If r = 1, then mesh is uniform.
When r > 1, then mesh points are clustered near t = 0.



Discretisation of Caputo derivative

The Caputo fractional derivative

Dα
t u(tm) =

1

Γ(1− α)

m−1∑
k=0

∫ tk+1

s=tk

(tm − s)−αu′(s) ds

is again approximated by the L1 approximation (but now the mesh
is nonuniform in time)

Dα
Mum :=

1

Γ(1− α)

m−1∑
k=0

uk+1 − uk

tk+1 − tk

∫ tk+1

s=tk

(tm − s)−α ds

=
1

Γ(1− α)

m−1∑
k=0

uk+1 − uk

tk+1 − tk

[
(tm − tk)1−α − (tm − tk+1)1−α]



Convergence on graded mesh

Theorem
The computed solution um satisfies

max
m
|u(tm)− um| ≤ CM−min{2−α, rα}

Hence: for r ≥ (2− α)/α,
the rate of convergence is O

(
M−(2−α)

)
.

Numerical experiments show our theorem is sharp.
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Fractional-derivative PDE (initial-boundary value problem)

Lu := Dα
t u − p

∂2u

∂x2
+ r(x)u = f (x , t)

for (x , t) ∈ Q := (0, l)× (0,T ], with

u(0, t) = u(l , t) = 0 for t ∈ (0,T ],

u(x , 0) = φ(x) for x ∈ [0, l ],

where Dα
t u is a Caputo fractional derivative of order α ∈ (0, 1),

p is a positive constant,
the functions r , f are continuous on Q̄ := [0, l ]× [0,T ]
with r(x) ≥ 0 for all x ,
and φ ∈ C [0, l ].



Example (part 1)
Example. Consider the fractional heat equation

Dα
t v −

∂2v

∂x2
= 0 on (0, π)× (0,T ]

with initial condition v(x , 0) = sin x
and boundary conditions v(0, t) = v(π, t) = 0.
Its solution is

v(x , t) = Eα(−tα) sin x for (x , t) ∈ [0, π]× [0, 1],

where the Mittag-Leffler function

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
.

M-L function is fractional analogue of the exponential function:

Dα
t Eα(λtα) = λEα(λtα) ∀λ ∈ R.



Graph of solution to Example

Plot of surface v(x , t) and its cross-section at x = π/2 when
α = 0.3. An initial layer in v at t = 0 is evident.
Near t = 0 one has v(x , t) ≈ sin x + w(x)tα, some function w
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Example (part 2)

In this Example, one has [recall that 0 < α < 1]

vt(x , t) ≈ Ctα−1 sin x as t → 0+,

vtt(x , t) ≈ Ctα−2 sin x as t → 0+,

while ∣∣∣∣∂ iv(x , t)

∂x i

∣∣∣∣ ≤ C for i = 0, 1, 2, 3, 4 and all (x , t) ∈ Q̄.



Regularity of the solution u (part 1)

Return to our problem

Lu := Dα
t u − p

∂2u

∂x2
+ r(x)u = f (x , t).

Existence/uniqueness/regularity of the solution
can be shown by a separation of variables argument under some
extra hypotheses on the data.
Bounds on derivatives of the solutions are similar to those in our
earlier example.

K.Sakamoto and M.Yamamoto, Initial value/boundary value problems for
fractional diffusion-wave equations and applications to some inverse problems,
J.Math.Anal.Appl., 2011.

Y.Luchko, Initial-boundary-value problems for the one-dimensional
time-fractional diffusion equation, Fract.Calc.Appl.Anal., 2012.



You can’t assume too much regularity!

Consider the time-fractional heat equation

Dα
t v −

∂2v

∂x2
= 0 on (0, π)× (0,T ]

with initial condition v(x , 0) = φ(x) ∈ C 2[0, 1]
satisfying φ(0) = φ(π) = 0 and v(0, t) = v(π, t) = 0.
If one assumes that vt(x , t) is continuous on [0, π]× [0,T ], then
for fixed x , by our earlier lemma one has limt→0 D

α
t v(x , t) = 0.

Now consider limt→0 of the PDE: get 0− φ′′(x) = 0∀x ∈ (0, π).
But we know that φ(0) = φ(π) = 0; hence φ ≡ 0. Consequently

one must have v ≡ 0.

M.Stynes, Too much regularity may force too much uniqueness,
Fract.Calc.Appl.Anal., 2016
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Discretisation: mesh uniform in space, graded in time

Let M and N be positive integers. Set

xn := nh for n = 0, 1, . . . ,N with h := l/N,

tm:= T (m/M)r for m = 0, 1, . . . ,M

with mesh grading r ≥ 1 chosen by the user.

Computed approximation to the solution at each mesh point
(xn, tm) is denoted by umn

Use L1 discretisation Dα
Mumn of Caputo derivative Dα

t u(xn, tm)

and uxx is discretised using a classical approximation:

∂2u

∂x2
(xn, tm) ≈ δ2

xu
m
n :=

umn+1 − 2umn + umn−1

h2
.



The difference scheme

Thus we approximate the IBVP by the discrete problem

Dα
Mumn − p δ2

xu
m
n + r(xn)umn = f (xn, tm)

for 1 ≤ n ≤ N − 1, 1 ≤ m ≤ M;

um0 = 0, umN = 0 for 0 < m ≤ M,

u0
n = φ(xn) for 0 ≤ n ≤ N.

This discretisation has been used by several authors but their error
analyses assume that ut is continuous at t = 0
— so they used meshes that were uniform in time



Convergence on graded meshes
Theorem
Assume the realistic hypothesis that u ∈ C 4,0(Q̄) with∣∣∣∣∂`u∂t` (x , t)

∣∣∣∣ ≤ C (1 + tα−`) for ` = 0, 1, 2.

Then the solution unm of the scheme satisfies

max
(xm,tn)∈Q̄

|u(xm, tn)− unm| ≤ C
(
h2 + M−min{2−α, rα}

)
.

Hence: for r ≥ (2− α)/α, rate of convergence O
(
h2 + M−(2−α)

)
.

Numerical experiments show our theorem is sharp.

M.Stynes, E.O’Riordan and J.L.Gracia,
Error analysis of a finite difference method on graded meshes for a
time-fractional diffusion equation, SIAM J. Numer. Anal., 2017.



(Respectable) other work on this problem

See papers of

(i) Bangti Jin, Raytcho Lazarov, Buyang Li, Zhi Zhou, et al.

(ii) Natalia Kopteva

(iii) Kim-Ngan Le, Bill McLean, Kassem Mustapha, et al.

(iv) Hong-lin Liao, Jiwei Zhang, et al.

and references appearing in these papers

Useful survey:
B.Jin, R.Lazarov & Z.Zhou, Numerical methods for time-fractional
evolution equations with nonsmooth data: a concise overview.
Comput. Methods Appl. Mech. Engrg. 346 (2019), 332–358.
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