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Localised turbulence in a pipe

Peixinho & Mullin, PRL llluminated flakes

Simulation Axial vorticity



APPROACH: TURBULENCE AS A CHAOTIC DYNAMICAL SYTSTEM

x = f(x)
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Trajectory in phase space, structured by stable/unstable manifolds
of the equilibrium points.

flow x = f(x)

flow-map ¢t
xo = ®(xo). [equilibrium = fixed point]

x: = ®(x)
x, = &7 (x,). [periodic orbit (PO)]



Knoll and Keyes (2004)

Jacobian-free Newton-Krylov Viswanath (2007)

want roots x, such that

F(x,) =0 where F(x)= ®(x)—x.

Newton iteration, given guess Xo:

OF

(a) xj11=x;+0x; where (b) —| &x;=—F(x;).

X X;

(b) is in form

Adx =b. —> GMRES

for given ox,

OF 1
B y ox ~ . (F(x; +€dx) — F(x;)) .

- Only involves evaluations of F(x).
- No preconditioner necessary!



Jacobian-free Newton-Krylov

Need to solve

for (x, T).

F(x, T)=®"(x) —x=0,

Augment whole system: Put

ii — (X,’, T,')

and b= (—F(%k)

Now want to solve a system of the form

Let

Adx; =b,

?

0).

Knoll and Keyes (2004)
Viswanath (2007)



Knoll and Keyes (2004)
Jacobian-free Newton-Krylov - Hookstep  Viswanath (2007)

Adx=Db.
Look for solution dx in span{Ky, Ko,..., Ky}
GMRES: ..
ox=cKi+ooKy+..+cmnKn
e Put K; =b/||b]| .
e Evaluate PN(,-+1 = AK,.
e Orthonormalise K1 against K;, j < i by Gram-Schmidt
— Ki+1-
e Minimise
err = [|A dx — b over coefficients ¢j, j <7 +1
Hookstep:
e Minimise
err = ||A dx — b || over coefficients ¢j, j <i+1

subject to constraint
|ox]| < 6.

e 0 is size of trust region.



Code at openpipeflow.org (non-problem specific: black box)
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Newton-Krylov method

Free to download:

CODE (MATLAB / GNU Octave): Template-Example: File:Newton Lorenz m.zip / File:Newton Lorenz m.tgz
CODE (FORTRAN): Template-Example: File:Newton Lorenz.f90.

Info on main subroutine: File:NewtonHook.f0 (essentially same for FORTRAN/MATLAB versions)

{(An Extended overview of the Newton-Krylov method is here (pdf,arxiv): [1]& See section 4 on using the code.)

The codes above implement the Jacobian-free Newton-Krylov (JFNK) method for solving
F(x) =0,

where X and F' are n-vectors, supplemented with a Hookstep--Trust-region approach.
This is a powerful method that can solve for X for a complicated nonlinearF(x). For example, to find an equifibrium solution or a periodic orbit, let F[x] :
condition X.
Newton-Raphson method [edit]
To find the roots & of a function f(m] in one dimension, given an initial guess Ty, the Newton-Raphson method generates improvements using the iteratior
The iteration can be re-expressed as

2, == +0x; where f'(z;)0z; = —f(z;).
The extension of Newton's method to an 7i-dimensional system is then

(a) xi) =x; +9x; where (b) 8—F ox; = —F(x;).
Ox |,



PROBLEMS

1. Where to get starting guess x !?

2. Look for recurrences: ‘small’ |[|x: — X¢—A¢l|

how small? what norm!?



Osborne Reynolds’ Experiments, 1883

N

ANFTHIGE

Observed importance of combination
Re=LU/v

L, diameter

U, mean axial flow
v, kinematic viscosity

“The only idea | had formed before commencing the experiments, was that at some critical
velocity the motion must become unstable, so that any disturbance from perfectly steady motion
would result in eddies.”

l.e. surprised to not find critical flow rate for linear instability

“...the steady motion breaks down suddenly... for disturbances of the magnitude that cause it to
break down... while it is stable for a smaller disturbance...”

l.e. finite amplitude disturbance required to trigger turbulence



Turbulent

Turbulent friction / Laminar friction (drag). 5 \)C\JDQ

- el e
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Adapted from Nikuradse (1950) / Blasius (1913)



Subcritical instability, nonlinearity important

| u || | |

‘turbulence’

___________________________ Saddle-node
/ bifurcation
4 > >
Re Re
laminar-turbulent : .
linearly stable Disconnected from

boundary

laminar state.
or ‘edge of chaos’

Q: how to find states?



Shear Flows

Couette flow channel flow

Reynolds number Re=LU /v
Kinematic viscosity v

pipe flow



Stability of shear-flows

turbulence linear
Re observed instability
Pipe flow 1720 inf.?
Channel flow 950 5772
ASBL 367 54370

Couette flow 312 inf.



Pipe flow

Re=81
lower bound,
energy stability theory

Re~2000 Turbulence observed

>
>

laminar

Re>770
(Pringle & Kerswell 2007)
lowest finite-amplitude solution

m=1

(Faisst & Kerswell 2003)
lowest finite-amplitude solution

m=2, m=3

Travelling Waves (TWs)

Flow rate



Travelling Waves (TWs) / Vortex-Wave Interaction (VWI) state
/ ‘Exact’ Coherent Structures (ECS) / Invariant Solutions

[Boundary-layer: ] Hall & Smith (1991), via asymptotic theory.

[Plane-couette:] Waleffe (1998), via continuation from Taylor-Couette



Travelling Wave solutions (TWs)

|

walls

Faisst & Eckhardt (2003)

Wedin & Kerswell (2004)

[Pipe:] via (painful) continuation from system with body force



Discovery of TWs. (Self sustaining cycle completed ‘by hand')

END:
unforced 3D state, self-sustained

START:
least-stable 2D eigen mode — Force

Wme

Faisst & Eckhardt (2003) |
Wedin & Kerswell (2004) -

3D instability
Force 2D streaks‘

2 3 4 5 6 7 8
A (x10-3)

>
Level of forcing

- A lot can go wrong!
- State really linked to dynamics?



Trajectory in phase space, structured by stable/unstable manifolds
of the equilibrium points.

flow x = f(x)

Dimension of the space N = inf,,

In simulations, N = 0(10°-10°%), dimension of unstable manifolds n = O(10)



IF n=1:
Timestepping + Bisection between ICs.

Turbulence

Unstable TW
\}f becomes attractor
N within ‘edge’

N
@)
Vol
Laminar
stable point

Laminar turbulent boundary calculated by bisection:

Skufca, Yorke & Eckardt (2006) for a reduced model of shear flow
Schneider, Eckhardt & Yorke (2007) for a short periodic pipe
Itano & Toh (2000) for channel flow.



IF n>1:
Timestepping + Bisection between ICs.

Turbulence

Chaotic attractor
within ‘edge’

N
@)
7N
Laminar Chaos within edge much
stable point milder than turbulence

— good candidates for Newton search

Duguet, W. & Kerswell 2008,10 JFM
long pipe, localised coherent structures
within laminar-turbulent boundary



Discovery of many (spatially periodic) TWs solutions for pipe flow
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Puff-like invariant solutions

Avila, Mellibovsky, Rolland & Hof 2013
Exact localised periodic orbits found in (@)
m=2 + mirror space (b)

(c)

W,

o
o
~

|~ periodic solutions

©

o

>
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Friction factor, A
o
(an]
an

0.04 Chantry, Willis & Kerswell 2014
0.0
/1 0 01 0Z 03 02 05 08 Exact localised periodic orbits connected
] a

to periodic TWs via spatial subharmonic

localised solution L=2mt /a bifurcation.



‘Edge tracking’:

Avila, Mellibovsky, Rolland & Hof 2013

Exact localised solution found in
m=2 + mirror space
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TWs disconnected from laminar state. How to find them?

Re
Re = const. Re(t) = Re, + K.(A, — A(t))

(Willis, Duguet, Omel’Chenko & Wolfrum, 2017, JFM)



Pipe simulation: L=2m/1.25R, m=2, no S&R etc.
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‘Method’:
1. Find a ‘suitable’ amplitude measure A

2. Link control parameter to A(t), e.g. Re(t) = Re, + K (A, —A(t))

3. Increase slowly K = K(t) = reduction in A(t)

4. Fix K if hit a stable point / orbit!

(Willis, Duguet, Omel’Chenko & Wolfrum, 2017, JFM)



Key points:

* TWs (and POs) are weakly unstable solutions of the N-S equations
* Some are found in the laminar-turbulent boundary = transition

* With hindsight, we could have found them yonks ago!

(Willis, Duguet, Omel’Chenko & Wolfrum, 2017, JFM)



Recurrent cycles (periodic orbits, POs) in turbulence
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Need to go into moving frame...
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Which phase speed !?

50 1000 1500 2000 2500
Re



‘Slicing’

Original dynamics of RPO:

X0

[
0

time-dependent shift /; :  X: = g(—/t) x;

0




‘Slicing’

time-dependent shift I : %X = g(—/) x¢

/\ﬁo K¢
0

relative periodic orbit (RPO) — periodic orbit (PO)

relative equilibrium (=TW) —  equilibrium (=fixed pt.)



Fourier ‘Slicing’
Construct
x" = X cos ax + Xs sin ax,

Calculate

-
a3

~_g(h)x, for all /

any non-zero X., Xs. L =2w/a.

x = g(—(L/2m) ) x

(Dynamics of TW
just goes around circle)

Xt — (81,32)1— — 91— — lr:(l_/27(')9t — ﬁ:g(—/t)x



Slice vs Poincaré section

e Poincaré section P pierced by trajectories.

e Sliced trajectory lies within M.



Recurrence plot (sliced dynamics)

Xt — Xe—Aclle
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Sliced pipe

Model of pipe flow x; € R”, n = 154755.

Sliced dynamics — eliminate axial shifts.

(Willis, Short and Cvitanovi¢ 2016)



Recurrence plot

||>’Et —f(t—At‘lc

| ‘Compensatory’ norm.

[Xe—acelle ‘Crap’ norm ?
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Recurrence plot

|[%e — Xe—aellc

[1%e-aclle

0
! 0.35
10 - . 0.3
0.25
0.2
20 -_ - 0.15
I . T T T 0.1
< =
0.05
30 - - - 0
40 ‘. —
50 L ] 1 1 1 1 1
310 320 330 340 350 360 370 380

t

DMD/Koopman analysis ? Page & Kerswell (arXiv:1906.01310)
Machine learning ? Page & Kerswell

CSC methods ? Marensi & Willis



Summary
* Jacobian-free Newton-Krylov (- Hookstep): workhorse for dynamical
systems approach. arxiv:1908.06730

* Relative equilibria (TWs) and relative periodic orbits (RPOs) embedded in
laminar-turbulent boundary.

* Getting intital guesses for JFNK main issue.

* Bisection / ‘Surfing’ edge.

* ‘Slicing’ (symmetry reduction)

* RPOs embedded in turbulence - proxy for turbulence

* Norm problem.
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