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Peixinho & Mullin, PRL Illuminated flakes

Axial vorticitySimulation

Localised turbulence in a pipe



APPROACH:  TURBULENCE AS A CHAOTIC DYNAMICAL  SYTSTEM



Trajectory in phase space, structured by stable/unstable manifolds 

of the equilibrium points.



Jacobian-free Newton-Krylov

- Only involves evaluations of F(x).

- No preconditioner necessary!

Knoll and Keyes (2004)

Viswanath (2007)

→ GMRES



Jacobian-free Newton-Krylov
Knoll and Keyes (2004)

Viswanath (2007)



Stabilise Newton: Don’t take too large step  δx ...

Knoll and Keyes (2004)

Viswanath (2007)

GMRES:

Jacobian-free Newton-Krylov - Hookstep



Code at openpipeflow.org  (non-problem specific: black box)        arxiv:1908.06730



PROBLEMS

1.  Where to get starting guess  x
0
 !?

2.  Look for recurrences:   ‘small’  

      

                                                     how small?    what norm!?



Observed importance of combination

Re = LU / ν

L,   diameter

U,   mean axial flow

ν,  kinematic viscosity

Osborne Reynolds’ Experiments, 1883

“The only idea I had formed before commencing the experiments, was that at some critical 

velocity the motion must become unstable, so that any disturbance from perfectly steady motion 

would result in eddies.”

i.e. surprised to not find critical flow rate for linear instability

“…the steady motion breaks down suddenly… for disturbances of the magnitude that cause it to 

break down… while it is stable for a smaller disturbance…”

i.e. finite amplitude disturbance required to trigger turbulence
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Adapted from Nikuradse (1950) / Blasius (1913)

Turbulent friction

 Laminar friction

slope approx 0.75



Subcritical instability, nonlinearity important

Saddle-node

bifurcation

|| u’ ||

Re Re

|| u’ ||

?

linearly stable
laminar-turbulent 

boundary

or ‘edge of chaos’

‘turbulence’

Disconnected from 

laminar state.

Q: how to find states?



Shear Flows

U

U
2L

2U

L

Couette flow channel flow

pipe flow

Reynolds number  Re = LU / 

Kinematic viscosity  



turbulence linear

Re observed instability

Pipe flow         1720      inf.?

Channel flow       950   5772

ASBL       367 54370

Couette flow       312      inf.

Stability of shear-flows



Travelling Waves (TWs)  

Flow ratelaminar

Pipe flow

Re=81
lower bound, 

energy stability theory

Re≈2000 Turbulence observed

 (Faisst & Kerswell 2003)

lowest finite-amplitude solution

    m=2, m=3

Re>770 

(Pringle & Kerswell 2007)

lowest finite-amplitude solution

m=1     



Travelling Waves  (TWs)  /  Vortex-Wave Interaction (VWI) state 

 / ‘Exact’ Coherent Structures (ECS) / Invariant Solutions

[Boundary-layer: ]  Hall & Smith (1991), via asymptotic theory.

[Plane-couette:]  Waleffe (1998), via continuation from Taylor-Couette  



S2 S3 S4 S5

Streaks near 

walls
Slower core

Faisst & Eckhardt (2003)

Wedin & Kerswell (2004)

Travelling Wave solutions (TWs) 

 [Pipe:]   via (painful) continuation from system with body force  



Force 2D streaks

3D instability

Reduce force

Discovery of TWs.  (Self sustaining cycle completed ‘by hand’!) 

START:

least-stable 2D eigen mode  Force 

0 Level of forcing

END:

unforced 3D state, self-sustained 

Faisst & Eckhardt (2003)

Wedin & Kerswell (2004)

- A lot can go wrong!

- State really linked to dynamics?



Trajectory in phase space, structured by stable/unstable manifolds 

of the equilibrium points.

Dimension of the space  N → inf.,   

In simulations,  N = O(105-106),   dimension of unstable manifolds n = O(10)



Laminar 

stable point

Unstable TW

becomes attractor 

within ‘edge’

Turbulence

Laminar turbulent boundary calculated by bisection:

Skufca, Yorke & Eckardt (2006)  for a reduced model of shear flow 

Schneider, Eckhardt & Yorke (2007)  for a short periodic pipe 

Itano & Toh (2000)  for channel flow.

IF  n=1 : 

Timestepping + Bisection between ICs.



Laminar 

stable point

Chaotic attractor 

within ‘edge’

Turbulence

Duguet, W. & Kerswell 2008,10 JFM

long pipe, localised coherent structures

within laminar-turbulent boundary

Chaos within edge much

milder than turbulence

→  good candidates for Newton search

IF  n>1 : 

Timestepping + Bisection between ICs.



Discovery of many (spatially periodic) TWs solutions for pipe flow



Puff-like invariant solutions 

Avila, Mellibovsky, Rolland & Hof 2013

Exact localised periodic orbits found in 

m=2 + mirror space

Chantry, Willis & Kerswell 2014 

Exact localised periodic orbits connected

to periodic TWs via spatial subharmonic

bifurcation.localised solution

periodic solutions

L=2π /α 



‘Edge tracking’:

Avila, Mellibovsky, Rolland & Hof 2013

Exact localised solution found in 

m=2 + mirror space

100s of simulations!



TWs disconnected from laminar state.  How to find them?

A

Re

Re = const.

Re

A

Re(t) = Re0 + ĸ.(A0 – A(t))

(Willis, Duguet, Omel’Chenko & Wolfrum, 2017, JFM)



Pipe simulation:   L = 2π /1.25 R,   m = 2,      no S&R etc.

IC

Re(t) = Re0 + ĸ.(A0 – A(t))

increasing 

ĸ



Re(t) = Re0 + ĸ.(A0 – A(t))

increasing 

ĸ



TW in ‘controlled’ and ‘uncontrolled’ system

const. ĸ



unstable UPO

stabilized RPO



‘Method’:

1.  Find a ‘suitable’ amplitude measure A

2.  Link control parameter to A(t), e.g.  Re(t) = Re0 + к (A0 – A(t))

3.  Increase slowly к = к(t) → reduction in A(t)

4.  Fix к if hit a stable point / orbit!

(Willis, Duguet, Omel’Chenko & Wolfrum, 2017, JFM)



Key points:

• TWs (and POs) are weakly unstable solutions of the N-S equations

• Some are found in the laminar-turbulent boundary → transition

• With hindsight, we could have found them yonks ago!

(Willis, Duguet, Omel’Chenko & Wolfrum, 2017, JFM)



Recurrent cycles (periodic orbits, POs) in turbulence



yellow, 2 = -0.3     blue, u
z 
= -0.1

Need to go into moving frame...



Which phase speed !? 



‘Slicing’ 



‘Slicing’ 



Fourier ‘Slicing’ 

(Dynamics of TW 

   just goes around circle) 



Slice vs Poincaré section 



Recurrence plot (sliced dynamics) 



Sliced pipe



Recurrence plot

‘Compensatory’ norm. 

‘Crap’ norm ?



Recurrence plot

DMD/Koopman analysis ?  Page & Kerswell (arXiv:1906.01310)

Machine learning ?   Page & Kerswell 

CSC methods ?   Marensi & Willis 



Summary

● Jacobian-free Newton-Krylov (- Hookstep):  workhorse for dynamical 

systems approach.   arxiv:1908.06730

● Relative equilibria (TWs) and relative periodic orbits (RPOs) embedded in 

laminar-turbulent boundary.

● Getting intital guesses for JFNK main issue.

● Bisection / ‘Surfing’ edge.

● ‘Slicing’ (symmetry reduction) 

● RPOs embedded in turbulence → proxy for turbulence

● Norm problem.
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