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Abstract. In this paper, we prove, following [1], existence and unique-
ness of the solutions of convection-diffusion equations on an open sub-
set of RN , with a measure as data and different boundary condi-
tions: mixed, Neumann or Fourier. The first part is devoted to the
proof of regularity results for solutions of convection-diffusion equa-
tions with these boundary conditions and data in (W 1,q(Ω))′, when
q < N/(N − 1). The second part transforms, thanks to a duality trick,
these regularity results into existence and uniqueness results when the
data are measures.

1. Introduction and notations. In all the sequel, Ω is a bounded
domain in RN (N ≥ 2), with a Lipschitz continuous boundary. n is the unit
normal to ∂Ω outward to Ω. We denote by x ·y the usual Euclidean product
of two vectors (x, y) ∈ RN × RN ; the associated Euclidean norm is written
|.|. The Lebesgue measure of a measurable subset E in RN is denoted by
|E|; σ is the Lebesgue measure on ∂Ω (i.e., the (N−1)-dimensional Hausdorff
measure).

For q ∈ [1,+∞], q′ denotes the conjugate exponent of q (i.e., 1/q +
1/q′ = 1). W 1,q(Ω) is the usual Sobolev space, endowed with the norm
||u||W 1,q(Ω) = ||u||Lq(Ω) + || |∇u| ||Lq(Ω). W

1,q
∗ (Ω) denotes the space of func-

tions of W 1,q(Ω) which have a null mean value on Ω. When Γ is a mea-
surable subset of ∂Ω, W 1,q

Γ (Ω) is the space of functions of W 1,q(Ω) which
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have a null trace on Γ. W
1− 1

q
,q

(∂Ω) denotes the Banach space of the traces
on ∂Ω of functions of W 1,q(Ω), endowed with the norm ||f ||W 1−1/q,q(∂Ω) =

inf
{
||u||W 1,q(Ω) : u|∂Ω = f

}
(the trace of u ∈W 1,q(Ω) on ∂Ω is also denoted

by u). When Γ is a measurable subset of ∂Ω, W
1−1/q,q
Γ (∂Ω) denotes the

space of functions of W 1−1/q,q(∂Ω) which are null σ-a.e. on Γ (it is endowed
with the same norm as W 1−1/q,q(∂Ω)).

In the following, we make the hypotheses

A : Ω→MN (R) is a measurable function which satisfies:
∃α > 0 such that A(x)ξ · ξ ≥ α|ξ|2 for a.e. x ∈ Ω , ∀ξ ∈ RN ,

∃M > 0 such that ||A(x)|| := sup
{
|A(x)ξ|, ξ ∈ RN , |ξ| = 1

}
≤M

for a.e. x ∈ Ω

(1.1)

(where MN (R) is the space of N ×N real valued matrices), and

v : Ω→ RN is a Lipschitz continuous function. (1.2)

We take αA a coercitivity constant for A, ΛA an essential upper bound of
||A(.)|| on Ω and Λv an upper bound of |v(.)| on Ω.

Hypothesis (1.2) on v may seem too strong since we have accepted a
discontinuous diffusion matrix. Indeed, in the pure Dirichlet case, one can
take far less regular convection terms (see Remarks 2.8 and 2.9). But, since
we intend to handle different boundary conditions (mixed, Neumann and
Fourier), we need such an hypothesis on v (it is necessary for the many
integrations by parts we will have to do).

In the first part, we prove some regularity results on the solutions of

− div(A∇u) + div(uv) + bu = L (1.3)

when L ∈
⋃
p>N (W 1,p′(Ω))′ and when we consider mixed (but “well dis-

tributed”), Neumann or Fourier conditions on the boundary of Ω; these
conditions do not need to be homogeneous, but must be more regular than
what is strictly necessary to apply the Lax-Milgram Theorem to the varia-
tional formulation of Problem (1.3). We obtain, in each of the three cases
(mixed, Neumann or Fourier — in fact four cases, since the Fourier bound-
ary conditions gather two different cases), a κ ∈]0, 1 − N/p] such that the
solution is κ-Hölder continuous on Ω.

In [1], G. Stampacchia proved this result for the homogeneous Dirichlet
boundary conditions; however, the way he handles the boundary problems
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(i.e., proving the Hölder continuity of the solution near the boundary of Ω)
does not seem so clear, so we will give here an alternate proof, which is easily
adaptable to many different boundary conditions. We will, in fact, use a
result of [1] to show that the solutions to our problems are Hölder continuous
on any compact subset of Ω, and we will see how, by some reflection tricks,
the regularity near the boundary of Ω can be proved using the regularity
result on the compact subsets of Ω. This Hölder continuity near ∂Ω could
also be proved, in the Neumann and Fourier cases, by using the same tools
that prove the regularity on the compact subsets of Ω, see [12] (this is due
to the fact that, in the Neumann and Fourier cases, there is no condition on
the values on ∂Ω of admissible test functions).

The fact that κ ≤ 1−N/p is foreseeable: thanks to [9] we know that, if Ω
has a regular boundary (C2), if A is Lipschitz continuous and (for example)
v = 0, b = 0, the solution to the homogeneous Dirichlet problem with
L ∈ (W 1,p′(Ω))′ is in W 1,p

0 (Ω) which is, when p > N , composed of (1−N/p)-
Hölder continuous functions. Moreover, with the regularity we have chosen
on A and Ω, if v = 0 and b = 0, it is proved in [8] (in the homogeneous
Dirichlet case), in [10] (in the homogeneous Neumann case) and in [11] (in
the homogeneous mixed case) that this result is still true, provided that
p is greater than but close enough to 2; thus, when N = 2, [8], [10] and
[11] entails the results of the present paper in the homogeneous Dirichlet,
Neumann and mixed cases.

In the second part of the paper, we show how the regularity results of
the first part can be used, thanks to a duality method, to show existence
and uniqueness of solutions to linear elliptic problems with less regular data,
namely measures on Ω. Solving such problems, and even non-linear ones,
has already been done in [2]; however, the tool used in [2] (approximating
the problem by more regular problems) does not give the uniqueness of the
solution. We will indeed see, thanks to a counter-example introduced in [6]
and modified in [7], that the solution we find here by a duality method is
strictly stronger than the solution in [2], except in the case N = 2; this last
case is indeed particular since the results of [8], [10] and [11] show that the
solution of [2] is, when N = 2, unique.

We will also show how the precise dependence of the constants (with
respect to the data) we obtain in the first part of the paper can be used
to obtain a stability result on the solutions to these dual elliptic problems
and, thanks to the Leray-Schauder topological degree (see [4]), to solve some
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semi-linear elliptic problems with measures as data.

The results in the first part of this paper are new in the treatment of the
boundary conditions. The L∞ bound in the Neumann case demands more
computations than in the Dirichlet case, but the main new idea with respect
to [1] is to use a trick of transport and reflection, which allows us to handle
many different boundary conditions and not only the Dirichlet one.

The main idea of the second part, that is to say using a duality method to
transform regularity results into existence and uniqueness results for weaker
data, is also contained in [1]; but getting the strong integral formulation of
the equation from the duality formulation is not as straightforward in the
Fourier or mixed case as in the Dirichlet case. The comparison between the
solutions obtained by duality and those obtained by approximation (in [2])
had already been made in [7] in the Dirichlet case; we have adapted the
methods used in this last paper to show that the same comparison can be
made in the mixed or Fourier case. In this part, the main new results come
from the application of the duality method to the boundary conditions (see
section 3.2), not only to the right hand side of the equation.

The results of the last part of this paper, i.e., the stability result for the
linear dual equation and the existence result for a non-linear dual problem,
seem quite new. In particular, it does not seem possible to handle the kind of
non-linearity of the right-hand side of (4.24) with an approximation method.

2. The regularity results.

2.1. Presentation of the problems. We describe here the three prob-
lems for which a regularity result is proved.

2.1.1. Mixed boundary conditions. The mixed problem is
−div(A∇u) + div(uv) + bu = L in Ω,
u = gd on Γd,
A∇u · n + λu = gn on Γn.

(2.1)

We make the following hypotheses on the data:

Γd ∪ Γn = ∂Ω , σ(Γd ∩ Γn) = 0 , σ(Γd) > 0, (2.2)

b ∈ Lr(Ω) with r = N
2 if N > 2 and r > 1 if N = 2,

1
2div(v)(x) + b(x) ≥ 0 for a.e. x ∈ Ω,

(2.3)
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λ ∈ Lq(Γn) with q = N − 1 if N > 2 and q > 1 if N = 2,
1
2v · n + λ ≥ 0 σ-a.e. on Γn,

(2.4)

L ∈
(
H1(Ω)

)′
, gd ∈ H1/2(∂Ω) , gn ∈ H−1/2(∂Ω) :=

(
H1/2(∂Ω)

)′
. (2.5)

Introducing u0 ∈ H1(Ω), a function with trace gd on ∂Ω, we can write the
variational formulation of (2.1) as



w = u− u0 ∈ H1
Γd

(Ω),∫
Ω
A∇w · ∇ϕ+

∫
Γn

λwϕdσ −
∫

Ω
wv · ∇ϕ+

∫
Γn

wϕv · n dσ

+

∫
Ω
bwϕ = 〈L,ϕ〉(H1(Ω))′,H1(Ω) + 〈gn, ϕ〉(H1/2(∂Ω))′,H1/2(∂Ω)

−
∫

Ω
A∇u0 · ∇ϕ−

∫
Γn

λu0ϕdσ +

∫
Ω
u0v · ∇ϕ

−
∫

Γn

u0ϕv · n dσ −
∫

Ω
bu0ϕ , ∀ϕ ∈ H1

Γd
(Ω).

(2.6)

It is well known that, under Hypotheses (1.1), (1.2) and (2.2)—(2.5), Prob-
lem (2.6) has a unique solution.

Remark 2.1. Let us consider the simple case A ≡ IN (the identity matrix)
on Ω, v = 0, b = 0, gd = 0, λ = 0 and gn = 0. When u and L are
regular (for example, C∞), the solution of (2.6) is exactly the solution of
(2.1). But, when the data are less regular, we must be careful with the
meaning of (2.1); for example, if F ∈ (C∞(Ω))N and L ∈ (H1(Ω))′ is defined
by 〈L,ϕ〉(H1(Ω))′,H1(Ω) =

∫
Ω F · ∇ϕ (notice that L 6∈ C∞, unless F · n = 0 on

∂Ω), the solution of the corresponding weak formulation u ∈ H1
Γd

(Ω),∫
Ω
∇u · ∇ϕ = 〈L,ϕ〉(H1(Ω))′,H1(Ω) , ∀ϕ ∈ H1

Γd
(Ω),

(2.7)

is in fact the solution u ∈ H1
Γd

(Ω) of
−∆u = −div(F ) in D′(Ω),
u = 0 on Γd,
∇u · n = F · n on Γn,

(2.8)
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and not the solution of −∆u = L in (H1(Ω))′ (this expression, anyway, has
no defined sense since there is an infinity of extensions of ∆u as an element
of (H1(Ω))′).

The same kind of consideration can arise in the sequel, whenever there is
a Neumann or Fourier condition on some part of ∂Ω, but this will not cause
us troubles, since we will only use the weak (i.e., variational) formulations
of the problems.

By strenghtening Hypotheses (2.3)—(2.5) and adding an assumption on
Γd and Γn, more regularity on the solution of (2.6) can be proved.

Let us introduce two kinds of mappings, that will describe the way Γd
and Γn are distributed on ∂Ω.

O is an open subset of RN ,
h : O → B := {x ∈ RN | |x| < 1} is a Lipschitz continuous

homeomorphism with a Lipschitz continuous inverse mapping,
h(O ∩ Ω) = B+ := {x ∈ B | xN > 0},

h(O ∩ ∂Ω) = BN−1 := {x ∈ ∂B+ | xN = 0}

(2.9)

It is well known that, since Ω has a Lipschitz continuous boundary, there
exists a finite number of (Oi, hi)i∈[1,m], such that, for all i ∈ [1,m], (Oi, hi)
satisfy (2.9) and ∂Ω ⊂ ∪mi=1Oi.

But, to handle the mixed boundary conditions, we will need another kind
of mapping, which tells that Γd and Γn are “well separated”:

O is an open subset of RN ,
h : O → B is a Lipschitz continuous homeomorphism

with Lipschitz continuous inverse mapping,
h(O ∩ Ω) = B++ := {x ∈ B | xN > 0 , xN−1 > 0},

h(O ∩ Γn) = Γ1 := {x ∈ ∂B++ | xN−1 = 0},
h(O ∩ Γd) = Γ2 := {x ∈ ∂B++ | xN = 0}.

(2.10)

The additional assumption we make on Γd and Γn is the following:

There exists a finite number of (Oi, hi)i∈[1,m] such that ∂Ω ⊂ ∪mi=1Oi
and, for all i ∈ [1,m], (Oi, hi) is of one of the following types:∣∣∣∣∣∣

(D) Oi ∩ ∂Ω = Oi ∩ Γd and (Oi, hi) satisfies (2.9)
(F ) Oi ∩ ∂Ω = Oi ∩ Γn and (Oi, hi) satisfies (2.9)
(DF ) (Oi, hi) satisfies (2.10).

(2.11)
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Theorem 2.1. Let p > N . Under Hypotheses (1.1), (1.2), (2.2), (2.11) and

b ∈ L
Np
N+p (Ω) , 1

2div(v)(x) + b(x) ≥ 0 for a.e. x ∈ Ω,

λ ∈ L(N−1) p
N (Γn) , 1

2v · n + λ ≥ 0 σ-a.e. on Γn,
(2.12)

L ∈ (W 1,p′(Ω))′ , gd ∈W 1− 1
p
,p

(∂Ω) , gn ∈ (W
1− 1

p′ ,p
′
(∂Ω))′, (2.13)

there exists κ ∈]0, 1 − N/p] only depending on (Ω, αA,ΛA, p) such that the
solution u of (2.6) is κ-Hölder continuous on Ω. Moreover, if Λ is such that

||b||
L
Np
N+p (Ω)

+ ||λ||
L(N−1)

p
N (Γn)

+||L||(W 1,p′ (Ω))′ + ||gd||W 1− 1
p ,p(∂Ω)

+ ||gn||(
W

1− 1
p′ ,p
′
(∂Ω)

)′ ≤ Λ, (2.14)

there exists C > 0 only depending on (Ω,Γd, αA,ΛA, p,Λv,Λ) such that

||u||C0,κ(Ω) ≤ C. (2.15)

Remark 2.2. Notice that (2.12) implies (2.3), (2.4) and that (2.13) im-
plies (2.5); in fact, since p′ < N ′ ≤ 2, H1(Ω) is continuously and densely
imbedded in W 1,p′(Ω) and H1/2(∂Ω) is continuously and densely imbedded in

W
1− 1

p′ ,p
′
(∂Ω), so that (W 1,p′(Ω))′ is continuously imbedded in (H1(Ω))′ and

(W
1− 1

p′ ,p
′
(∂Ω))′ is continuously imbedded in H−1/2(∂Ω); moreover, since

p ≥ 2, W
1− 1

p
,p

(∂Ω) ⊂ H1/2(∂Ω).

Remark 2.3. An example of an element of (W 1−1/p′,p′(∂Ω))′ is any element

of L(N−1) p
N (∂Ω), since W

1− 1
p′ ,p
′
(∂Ω) is continuously and densely imbedded

in L(N−1)p′/(N−p′)(∂Ω) (see [5]), and ((N − 1)p′/(N − p′))′ = (N − 1)p/N .

Remark 2.4. Recall that C0,κ(Ω) is the space of all κ-Hölder continuous
functions endowed with the norm

||f ||C0,κ(Ω) = ||f ||L∞(Ω) + sup
x 6=y

|f(x)− f(y)|
|x− y|κ

.
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Remark 2.5. This result has already been proved by G. Stampacchia in [1]
in the case of the Dirichlet homogeneous equation (that is to say Γd = ∂Ω
and u0 = 0); in fact, we will use the results of [1] to prove, under the good
hypotheses, the regularity of the solutions of (2.6), (2.19) and (2.28) within
the domain Ω. Then, by a transport and reflection trick, we will prove that
the regularity of these solutions near the boundary of Ω is also a consequence
of the inner regularity of the solution of a Dirichlet problem.

2.1.2. Neumann boundary conditions. The Neumann problem is{
−div(A∇u) + div(uv) = L in Ω,
A∇u · n = g on ∂Ω.

(2.16)

The hypotheses on the data are:

div(v)(x) = 0 for a.e. x ∈ Ω , v · n = 0 σ-a.e. on ∂Ω, (2.17)

L ∈ (H1(Ω))′ , g ∈ H−1/2(∂Ω),
〈L, 1〉(H1(Ω))′,H1(Ω) + 〈g, 1〉(H1/2(∂Ω))′,H1/2(∂Ω) = 0.

(2.18)

Under Hypotheses (1.1), (1.2), (2.17) and (2.18), there exists a unique
solution to (2.16) in the sense

u ∈ H1
∗ (Ω),∫

Ω
A∇u · ∇ϕ−

∫
Ω
uv · ∇ϕ = 〈L,ϕ〉(H1(Ω))′,H1(Ω)

+〈g, ϕ〉(H1/2(∂Ω))′,H1/2(∂Ω) , ∀ϕ ∈ H1(Ω).

(2.19)

As for the mixed case, we will prove that, with stronger hypotheses on g
and L, more regularity on the solution of (2.19) can be proved.

Theorem 2.2. Let p > N . Under Hypotheses (1.1), (1.2), (2.17) and

L ∈ (W 1,p′(Ω))′ , g ∈
(
W

1− 1
p′ ,p
′
(∂Ω)

)′
,

〈L, 1〉(W 1,p′ (Ω))′,W 1,p′ (Ω) + 〈g, 1〉(W 1−1/p′,p′ (∂Ω))′,W 1−1/p′,p′ (∂Ω) = 0,
(2.20)

there exists κ ∈]0, 1 − N/p] only depending on (Ω, αA,ΛA, p) such that the
solution u to (2.19) is κ-Hölder continuous on Ω. Moreover, if Λ is such
that

||L||(W 1,p′ (Ω))′ + ||g||(W 1−1/p′,p′ (∂Ω))′ ≤ Λ, (2.21)

then there exists C > 0 only depending on (Ω, αA,ΛA, p,Λv,Λ) such that u
satisfies (2.15).
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2.1.3. Fourier boundary conditions. The last problem we will study
is the Fourier problem, obtained by taking Γd = ∅ in (2.1), that is to say:{

−div(A∇u) + div(uv) + bu = L in Ω,
A∇u · n + λu = g on ∂Ω,

(2.22)

with the hypotheses

b ∈ Lr(Ω) with r = N
2 if N > 2 and r > 1 if N = 2,

1
2div(v)(x) + b(x) ≥ 0 for a.e. x ∈ Ω,

(2.23)

λ ∈ Lq(∂Ω) with q = N − 1 if N > 2 and q > 1 if N = 2,
1
2v · n + λ ≥ 0 σ-a.e. on ∂Ω

(2.24)

and, to get the coercitivity of the bilinear form in the variational formulation,
either one of the two following:

∃b0 > 0 , ∃E ⊂ Ω such that |E| > 0 and 1
2div(v) + b ≥ b0 on E, (2.25)

∃λ0 > 0 , ∃S ⊂ ∂Ω such that σ(S) > 0 and 1
2v · n + λ ≥ λ0 on S. (2.26)

Finally, the hypotheses on L and g are

L ∈ (H1(Ω))′ , g ∈ H−1/2(∂Ω). (2.27)

The variational formulation of (2.22), which has a unique solution under
Hypotheses (1.1), (1.2), (2.23), (2.24), (2.27) and either (2.25) or (2.26), is

u ∈ H1(Ω),∫
Ω
A∇u · ∇ϕ+

∫
∂Ω
λuϕdσ −

∫
Ω
uv · ∇ϕ+

∫
∂Ω
uϕv · n dσ +

∫
Ω
buϕ =

〈L,ϕ〉(H1(Ω))′,H1(Ω) + 〈g, ϕ〉(H1/2(∂Ω))′,H1/2(∂Ω) , ∀ϕ ∈ H1(Ω).

(2.28)
The regularity result we will prove for this equation is the following.

Theorem 2.3. Let p > N . Under Hypotheses (1.1), (1.2),

b ∈ L
Np
N+p (Ω) , 1

2div(v)(x) + b(x) ≥ 0 for a.e. x ∈ Ω,

λ ∈ L(N−1) p
N (∂Ω) , 1

2v · n + λ ≥ 0 σ-a.e. on ∂Ω,

L ∈ (W 1,p′(Ω))′ , g ∈
(
W

1− 1
p′ ,p
′
(∂Ω)

)′ (2.29)
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and either (2.25) or (2.26), there exists κ ∈]0, 1 − N/p] only depending on
(Ω, αA,ΛA, p) such that the solution u to (2.28) is κ-Hölder continuous on
Ω. Moreover, if Λ is such that

||b||
L
Np
N+p (Ω)

+ ||λ||
L(N−1)

p
N (∂Ω)

+ ||L||(W 1,p′ (Ω))′ + ||g||(W 1−1/p′,p′ (∂Ω))′ ≤ Λ,

(2.30)
then there exists C > 0 only depending on

(Ω, E, b0, αA,ΛA, p,Λv,Λ) in the case where (2.25) is satisfied

(Ω, S, λ0, αA,ΛA, p,Λv,Λ) in the case where (2.26) is satisfied

such that u satisfies (2.15).

2.2. Estimate in L∞. Here, we take the first step forward the proof
of Theorems 2.1, 2.2 and 2.3, by proving that, under Hypotheses of these
theorems, their solutions are bounded on Ω.

Proposition 2.1. Let p > N . Under Hypotheses (1.1), (1.2), (2.2), (2.12)
and (2.13), the solution u of (2.6) is in L∞(Ω) and, if Λ satisfies the in-
equality (2.14), there exists C > 0 only depending on (Ω,Γd, αA,ΛA, p,Λv,Λ)
such that

||u||L∞(Ω) ≤ C. (2.31)

Remark 2.6. Notice that this result is true without Hypothesis (2.11).

Remark 2.7. We will see, in the course of the proof of this proposition,
that when gd = 0 and gn = 0, we just need Λ to be an upper bound of
||L||(W 1,p′ (Ω))′ to have this estimate.

Remark 2.8. It is well known that, in the Dirichlet case (that is to say
Γd = ∂Ω), thanks to the Sobolev injection of H1(Ω) (in L2N/(N−2)(Ω) when
N > 2, or Lr(Ω) for all r < ∞ when N = 2), one just needs, instead of
(1.2), v ∈ (LN (Ω))N if N > 2 or v ∈ (Lq(Ω))N with some arbitrary q > 2 if
N = 2 to have existence and uniqueness of a solution to (2.6). We will see,
in Remark 2.9, that the result of Proposition 2.1 si still true in the Dirichlet
case when v ∈ (Lp(Ω))N , in which case the condition “1

2div(v) + b ≥ 0” is
to be understood in the sense of the distributions on Ω.
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In fact, when b ≡ 0, this last condition “div(v) ≥ 0” is not necessary to
obtain the existence of a solution to the Dirichlet problem{

−div(A∇u) + div(vu) = f ∈ L∞(Ω),
u = 0 on ∂Ω.

(2.32)

Though the corresponding bilinear form is not coercitive, an approximation
method can be used to prove the existence of a solution u ∈ H1

0 (Ω) ∩ L∞(Ω)
to (2.32) (L. Boccardo, private communication).

Proposition 2.2. Let p > N . Under Hypotheses (1.1), (1.2), (2.17) and
(2.20), the solution u of (2.19) is in L∞(Ω) and, if Λ satisfies the inequality
(2.21), there exists C > 0 only depending on (Ω, αA, p,Λ) such that u satisfies
(2.31).

Proposition 2.3. Let p > N . Under Hypotheses (1.1), (1.2), (2.29) and
either (2.25) or (2.26), the solution u of (2.28) is in L∞(Ω) and, if Λ satisfies
the inequality (2.21), there exists C > 0 only depending on

(Ω, E, b0, αA, p,Λv,Λ) in the case where (2.25) is satisfied

(Ω, S, λ0, αA, p,Λv,Λ) in the case where (2.26) is satisfied

such that u satisfies (2.31).

Let us begin with a technical lemma.

Lemma 2.1. Let, for k ≥ 0, ϕk : R → R be the function ϕk(s) = min(s +
k, (s−k)+) (where f+ denotes the non-negative part of a function f , that is to
say f+ = max(f, 0)). Under Hypotheses (1.2) and (2.2)—(2.4) or (2.23)—
(2.24), if U ∈ H1

Γd
(Ω) (with Γd = ∅ in the case of Hypotheses (2.23)—

(2.24)), then∫
Γn

λUϕk(U) dσ −
∫

Ω
Uv · ∇(ϕk(U))

+

∫
Γn

Uϕk(U)v · n dσ +

∫
Ω
bUϕk(U)

≥
∫

Ω

(
1

2
div(v) + b

)
(ϕk(U))2 +

∫
Γn

(
1

2
v · n + λ

)
(ϕk(U))2 dσ

−kΛv

2
|| |∇(ϕk(U))| ||L1(Ω). (2.33)
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Proof of Lemma 2.1.
We know that ϕk(U) ∈ H1

Γd
(Ω) and that ∇(ϕk(U)) = χ{|U|≥k}∇U (where

χA denotes the characteristic function of a measurable set A). Moreover,
|ϕk(U)| ∈ H1

Γd
(Ω) and

∇(|ϕk(U)|) = (χ{ϕk(U)>0} − χ{ϕk(U)<0})∇(ϕk(U)) = (χ{U>k} − χ{U<k})∇U ,
(2.34)

so that

Uv · ∇(ϕk(U)) = (χ{U>k} + χ{U<k})Uv · ∇U
= ((U − k)χ{U>k} + (U + k)χ{U<k})v · ∇U

+(kχ{U>k} − kχ{U<k})v · ∇U
= ϕk(U)v · ∇U + kv · ∇(|ϕk(U)|)

= v · ∇
(

(ϕk(U))2

2

)
+ kv · ∇(|ϕk(U)|). (2.35)

With an integration by parts, we get

−
∫

Ω
Uv · ∇(ϕk(U))

= −
∫

Γn

1

2
v · n(ϕk(U))2 +

∫
Ω

1

2
div(v)(ϕk(U))2 − k

∫
Ω
v · ∇(|ϕk(U)|).

Since Uϕk(U)− (ϕk(U))2 = k|ϕk(U)|, we find∫
Γn

λUϕk(U) dσ −
∫

Ω
Uv · ∇(ϕk(U))

+

∫
Γn

Uϕk(U)v · n dσ +

∫
Ω
bUϕk(U)

=

∫
Ω

(
1

2
div(v) + b

)
(ϕk(U))2 +

∫
Γn

(
1

2
v · n + λ

)
(ϕk(U))2 dσ +

k

∫
Ω
b|ϕk(U)|+ k

∫
Γn

v · n|ϕk(U)|+ k

∫
Γn

λ|ϕk(U)| dσ

−k
∫

Ω
v · ∇(|ϕk(U)|). (2.36)

But 1
2div(v) + b ≥ 0 a.e. on Ω and 1

2v · n + λ ≥ 0 σ-a.e. on Γn, so that∫
Ω
b|ϕk(U)|+

∫
Γn

v · n|ϕk(U)| dσ
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+

∫
Γn

λ|ϕk(U)| dσ −
∫

Ω

1

2
v · ∇(|ϕk(U)|)

=

∫
Ω

(
1

2
div(v) + b

)
|ϕk(U)|+

∫
Γn

(
1

2
v · n + λ

)
|ϕk(U)| dσ

≥ 0,

and (2.36) give then∫
Γn

λUϕk(U) dσ −
∫

Ω
Uv · ∇(ϕk(U)) +

∫
Γn

Uϕk(U)v · n dσ +

∫
Ω
bUϕk(U)

≥
∫

Ω

(
1

2
div(v) + b

)
(ϕk(U))2 +

∫
Γn

(
1

2
v · n + λ

)
(ϕk(U))2 dσ

−k
2

∫
Ω
v · ∇(|ϕk(U)|).

With (2.34), we see that∫
Ω
v · ∇(|ϕk(U)|) ≤ Λv|| |∇(ϕk(U))| ||L1(Ω)

and (2.33) is thus proved.

Remark 2.9. If Γd = ∂Ω, v ∈ (Lp(Ω))N (instead of (1.2)) and 1
2div(v)+b ≥

0 in the sense of the distributions on Ω, then (2.35) gives

−
∫

Ω
Uv · ∇(ϕk(U)) +

∫
Ω
bUϕk(U)

=

∫
Ω

(
−1

2
v · ∇((ϕk(U))2) + b(ϕk(U))2

)
+k

∫
Ω

(
−1

2
v · ∇(|ϕk(U)|) + b|ϕk(U)|

)
− k

2

∫
Ω
v · ∇(|ϕk(U)|)

≥ −k
2
|| |v| ||Lp(Ω)|| |∇(ϕk(U))| ||Lp′ (Ω).

This inequality, used instead of (2.33) in the following proof, allows us to
prove what we have claimed in Remark 2.8, that is to say that the result of
Proposition 2.1 is still true in the Dirichlet case when v is only in (Lp(Ω))N .
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Proof of Proposition 2.1

Since gd ∈W 1− 1
p
,p

(∂Ω) (Hypothesis (2.13)), we can choose u0 ∈W 1,p(Ω)
such that u0 |∂Ω = gd and, thanks to the definition of the norm on the space

W 1−1/p,p(∂Ω), such that ||u0||W 1,p(Ω) ≤ 2||gd||W 1−1/p,p(∂Ω) ≤ 2Λ.
By the Sobolev injection, since p > N , u0 ∈ L∞(Ω) and there exists C1

only depending on (Ω, p) such that ||u0||L∞(Ω) ≤ C1||u0||W 1,p(Ω) ≤ 2C1Λ;
thus, proving the result of Proposition 2.1 for w = u − u0 will give us the
same conclusion for the solution u of (2.6).

Let us introduce another useful notation: with this u0, we denote by
L̃1 ∈ (W 1,p′(Ω))′ the linear form of the right hand side of (2.6), that is to
say

〈L̃1, ϕ〉(W 1,p′ (Ω))′,W 1,p′ (Ω)

= 〈L,ϕ〉(W 1,p′ (Ω))′,W 1,p′ (Ω) + 〈gn, ϕ〉(W 1−1/p′,p′ (∂Ω))′,W 1−1/p′,p′ (∂Ω)

−
∫

Ω
A∇u0 · ∇ϕ−

∫
Γn

λu0ϕdσ +

∫
Ω
u0v · ∇ϕ−

∫
Γn

u0ϕv · n dσ

−
∫

Ω
bu0ϕ.

It is easy to show, thanks to Hypotheses (2.12), (2.13) and (2.14), that
there exists C2 only depending on (Ω, p,ΛA,Λv,Λ) such that

||L̃1||(W 1,p′ (Ω))′ ≤ C2. (2.37)

Notice that, when gn = 0 and gd = 0 (in which case we take u0 = 0),
L̃1 = L and thus, with Λ being any upper bound of ||L||(W 1,p′ (Ω))′ , C2 = Λ
is correct.

Let k > 0.
Lemma 2.1 applied to U = w and Hypotheses (2.3)—(2.4) give us∫

Γn

λwϕk(w) dσ −
∫

Ω
wv · ∇(ϕk(w))

+

∫
Γn

wϕk(w)v · n dσ +

∫
Ω
bwϕk(w) ≥ −kΛv

2
|| |∇(ϕk(w))| ||L1(Ω).

Thus, using ϕk(w) as a test function in (2.6), we see that∫
Ω
A∇(ϕk(w)) · ∇(ϕk(w))
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=

∫
Ω
A∇w · ∇(ϕk(w))

≤ 〈L̃1, ϕk(w)〉(W 1,p′ (Ω))′,W 1,p′ (Ω) +
Λv

2
k|| |∇(ϕk(w))| ||L1(Ω)

≤
(
||L̃1||(W 1,p′ (Ω))′ +

1

2
Λv|Ω|1/pk

)
||ϕk(w)||W 1,p′ (Ω),

which gives, thanks to the coercitivity of A, to (2.37) and to the Poincaré

inequality in W 1,p′

Γd
(Ω),

|| |∇(ϕk(w))| ||2L2(Ω) ≤ C3(1 + k)|| |∇(ϕk(w))| ||Lp′ (Ω), (2.38)

where C3 only depends on (Ω,Γd, αA,ΛA, C2,Λv).
Defining Ak = {x ∈ Ω | |w(x)| ≥ k}, we see that ∇(ϕk(w)) = 0 a.e.

outside Ak, so that, thanks to Hölder inequality,

|| |∇(ϕk(w))| ||Lp′ (Ω) ≤ |Ak|
1
2
− 1
p || |∇(ϕk(w))| ||L2(Ω).

Using this in (2.38), we find

|| |∇(ϕk(w))| ||Lp′ (Ω) ≤ C3(1 + k)|Ak|1−
2
p . (2.39)

The Sobolev injection W 1,p′(Ω) ↪→ L
Np′
N−p′ (Ω) (p′ < N) and the Poincaré

inequality give us C4 depending on (Ω,Γd, p) such that

(∫
Ω
|ϕk(w)|

Np′
N−p′

)N−p′
Np′

≤ C4|| |∇ϕk(w))| ||Lp′ (Ω)

≤ C4C3(1 + k)|Ak|1−
2
p .

But |ϕk(u)| ≥ (h− k) on Ah, for all h > k, so that, with C5 = C4C3,

(h− k)
Np′
N−p′ |Ah| ≤ (C5(1 + k))

Np′
N−p′ |Ak|

Np′
N−p′

(
1− 2

p

)
for all h > k ≥ 0,

that is to say, with β = Np′

N−p′ and γ = Np′

N−p′ (1−
2
p) = Np−2N

Np−N−p > 1,

|Ah| ≤
Cβ5 (1 + k)β

(h− k)β
|Ak|γ for all h > k ≥ 0. (2.40)
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Lemma 2.2 following this proof allows us to see that, if

H = exp

∑
n≥0

C5|Ω|
γ−1
β(

2
γ−1
β

)n
 < +∞,

then |AH | = 0, i.e., |w| ≤ H a.e. on Ω.

Lemma 2.2. Let F : R+ → R+ be a non-increasing function. If there exist
β > 0, γ > 1 and C > 0 such that

∀h > k ≥ 0 , F (h) ≤ Cβ(1 + k)β

(h− k)β
F (k)γ

and if

H = exp

∑
n≥0

CF (0)
γ−1
β(

2
γ−1
β

)n
 < +∞,

then F (H) = 0.

This is a variant of the Lemma 4.1, i) in [1], which states the same result
without the term (1 + k). In this paper, G. Stampacchia proves the result
of Proposition 2.1 (in the homogeneous Dirichlet case, and with slightly
different hypotheses on the convection term) with another method, involving
a reasoning by induction. But we found it more readable to state this simple
variant, which is the key to the proof of Propositions 2.1, 2.2 and 2.3.

Proof of Lemma 2.2.
If F (0) = 0, the lemma is trivial; we suppose thus that F (0) > 0.
Let h0 = 0 and define, by induction,

hn+1 =

1 +
CF (0)

γ−1
β(

2
γ−1
β

)n
hn +

CF (0)
γ−1
β(

2
γ−1
β

)n > hn.

It is easy to see, by induction, that F (hn) ≤ F (0)/2n for all n ≥ 0;
indeed, it is true for n = 0 and, if F (hn) ≤ F (0)/2n, one sees that

F (hn+1) ≤ Cβ(1 + hn)β

(hn+1 − hn)β
F (hn)γ
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≤ Cβ(1 + hn)β

Cβ(1 + hn)βF (0)γ−1/2(γ−1)n

F (0)γ

2γn

≤ F (0)

2n
.

Moreover, if ln = hn + 1, one sees that, for all n ≥ 0,

ln+1 =

1 +
CF (0)

γ−1
β(

2
γ−1
β

)n
 ln,

so that, for all n ≥ 1,

ln =

n−1∏
k=0

1 +
CF (0)

γ−1
β(

2
γ−1
β

)k
 .

Taking the logarithm of this, we have

ln(ln) =
n−1∑
k=0

ln

1 +
CF (0)

γ−1
β(

2
γ−1
β

)k


≤
n−1∑
k=0

CF (0)
γ−1
β(

2
γ−1
β

)k ≤ ln(H),

which means that, for all n ≥ 0, hn ≤ ln ≤ H. Since F is non-negative and
non-increasing, we get 0 ≤ F (H) ≤ F (hn) ≤ F (0)/2n for all n ≥ 0, which
implies, as n→∞, F (H) = 0.

Proof of Proposition 2.2
With the same ϕk as in Lemma (2.1), since

−
∫

Ω
uv · ∇(ϕk(u)) = −

∫
Ω
v · ∇(uϕk(u)) +

∫
Ω
v · ∇

(
(ϕk(u))2

2

)
= 0,

using ϕk(u) as a test function in (2.19) allows us to see that

|| |∇(ϕk(u))| ||2L2(Ω) ≤
Λ

αA
||ϕk(u)||W 1,p′ (Ω). (2.41)
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In order to continue this proof as the preceding one, we need a Poincaré
inequality on ϕk(u).

The Sobolev injection W 1,p′(Ω) ↪→ L
Np′
N−p′ gives us C1 depending on (Ω, p)

such that(∫
Ω
|ϕk(u)|

Np′
N−p′

)N−p′
Np′

≤ C1||ϕk(u)||Lp′ (Ω) +C1|| |∇(ϕk(u))| ||Lp′ (Ω). (2.42)

Moreover, thanks to Hölder inequality, we have

||ϕk(u)||Lp′ (Ω) ≤ |Ak|
1
N ||ϕk(u)||

L
Np′
N−p′ (Ω)

,

where Ak = {x ∈ Ω | |u(x)| ≥ k}, so that

||ϕk(u)||Lp′ (Ω) ≤ C1|Ak|
1
N ||ϕk(u)||Lp′ (Ω) + C1|Ak|

1
N || |∇(ϕk(u))| ||Lp′ (Ω).

(2.43)
But the Tchebycheff inequality gives us

|Ak| ≤
1

k2
||u||2L2(Ω) ≤

C2

k2
,

with C2 only depending on (Ω, αA,Λ) (because u is the solution of (2.19)).

Thus, if k ≥ k0 =
√

(2C1)NC2, we have C1|Ak|
1
N ≤ 1

2 which gives, in
(2.43),

||ϕk(u)||Lp′ (Ω) ≤ 2C1|Ak|
1
N || |∇(ϕk(u))| ||Lp′ (Ω)

≤ 2C1|Ω|
1
N || |∇(ϕk(u))| ||Lp′ (Ω),

that is to say

||ϕk(u)||W 1,p′ (Ω) ≤ C3|| |∇(ϕk(u))| ||Lp′ (Ω), (2.44)

with C3 = 2C1|Ω|
1
N + 1, i.e., the Poincaré inequality which we wanted to

conclude the proof of this proposition.
Indeed, using (2.44) in (2.41), we get, forall k ≥ k0,

|| |∇(ϕk(u))| ||2L2(Ω) ≤
ΛC3

αA
|| |∇(ϕk(u))| ||Lp′ (Ω)
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and, with the Hölder inequality,

|| |∇(ϕk(u))| ||Lp′ (Ω) ≤ C4|Ak|1−
2
p ,

where C4 only depends on (Ω, αA, p,Λ).
Moreover, (2.44) used in (2.42) gives, for all k ≥ k0,

(∫
Ω
|ϕk(u)|

Np′
N−p′

)N−p′
Np′

≤ C1C3|| |∇(ϕk(u))| ||Lp′ (Ω) ≤ C1C3C4|Ak|1−
2
p .

Then, using |ϕk(u)| ≥ h− k on Ah, when h > k ≥ k0, we find

|Ah| ≤
Cβ5

(h− k)β
|Ak|γ

(with the same β and γ as in the proof of Proposition 2.1), with C5 only
depending on (Ω, αA, p,Λ).

We can thus use Lemma 4.1 of [1], or Lemma 2.2, to conclude (here, the
term (1 + k) we found in the course of the demonstration of Proposition 2.1
does not appear, so that the classical Stampacchia Lemma applies).

For example, by noticing that

|Ah| ≤
Cβ5

(h− k)β
|Ak|γ ≤

Cβ5 (1 + k)β

(h− k)β
|Ak|γ for all h > k ≥ k0

and defining

H = k0 + exp

∑
n≥0

C5|Ω|
γ−1
β(

2
γ−1
β

)n
 < +∞,

which only depends on (Ω, αA, p,Λ), Lemma 2.2 applied to F (k) = |Ak0+k|
gives us |AH | = 0.

Proof of Proposition 2.3
Thanks to Lemma 2.1 applied to U = u, to the coercitivity of A and to

Hypothesis (2.25) or (2.26), we find, using ϕk(u) as a test function in (2.28),
C1 only depending on (Ω, αA,Λ) and

(E, b0) if (2.25) is satisfied

(S, λ0) if (2.26) is satisfied
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such that

||ϕk(u)||2H1(Ω) ≤ C1||ϕk(u)||W 1,p′ (Ω) + C1
Λvk

2
|| |∇(ϕk(u))| ||L1(Ω)

≤ C1||ϕk(u)||W 1,p′ (Ω) +
Λv|Ω|1/p

2
k|| |∇(ϕk(u))| ||Lp′ (Ω)

≤ C2(1 + k)||ϕk(u)||W 1,p′ (Ω), (2.45)

where C2 only depends on (C1,Ω, p,Λv).
Thanks to Hölder inequality (and since ϕk(u) = |∇(ϕk(u))| = 0 outside

Ak), we have

||ϕk(u)||W 1,p′ (Ω) ≤ |Ak|
1
2
− 1
p ||ϕk(u)||H1(Ω),

which gives

||ϕk(u)||W 1,p′ (Ω) ≤ C2(1 + k)|Ak|1−
2
p .

With the Sobolev injection W 1,p′(Ω) ↪→ L
Np′
N−p′ (Ω), we find thus C3 only

depending on (Ω, p) such that, for all k ≥ 0,

(∫
Ω
|ϕk(u)|

Np′
N−p′

)N−p′
Np′

≤ C3||ϕk(u)||W 1,p′ (Ω) ≤ C2C3(1 + k)|Ak|1−
2
p

and the conclusion is similar to that of the proof of Proposition 2.1.

2.3. Continuity within the domain Ω. In [1], the author proves the
following result. The precise dependence of the “constants” C and κ can be
found in [12].

Theorem 2.4. Let Ω0 be an open subset of RN and A0 : Ω0 → MN (R)
be a measurable bounded uniformly elliptic matrix valued function; we de-
note by αA0 a coercitivity constant for A0 and ΛA0 an essential upper bound

of ||A0(.)|| on Ω0. If p > N and L0 ∈ W−1,p(Ω0) := (W 1,p′

0 (Ω0))′, then
there exists κ ∈]0, 1−N/p] only depending on (N,αA0 ,ΛA0 , p) such that any
solution u of u ∈ H1(Ω),∫

Ω0

A0∇u · ∇ϕ = 〈L0, ϕ〉(H1
0 (Ω0))′,H1

0 (Ω0) , ∀ϕ ∈ H1
0 (Ω0)

(2.46)
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is κ-Hölder continuous on any compact subset of Ω0. Moreover, for all com-
pact subset K of Ω0, if ΛL0 is an upper bound of ||L0||W−1,p(Ω0) and Λu is
an upper bound for ||u||L2(Ω0), there exists C only depending on

(Ω0, αA0 ,ΛA0 , p,ΛL0 ,Λu,K)

such that
||u||C0,κ(K) ≤ C. (2.47)

Remark 2.10. We have chosen, on W 1,p′

0 (Ω0), the norm ||ϕ||
W 1,p′

0 (Ω0)
=

|| |∇ϕ| ||Lp′ (Ω0). The norm on W−1,p(Ω0) is the associated dual norm.

All the following regularity results come from this one, as we shall see.
In fact, since we already know that the solutions of (2.6), (2.19) and

(2.28) are bounded, we can eliminate the terms involving v, b and λ from
the equations satisfied by these solutions.

Lemma 2.3. Let p > N . Suppose Hypotheses (1.1), (1.2), (2.2), (2.12),
(2.13) and (2.14). Let u0 ∈W 1,p(Ω) such that u0 |∂Ω = gd and ||u0||W 1,p(Ω) ≤
2||gd||W 1−1/p,p(Ω). Then there exists L̃ ∈ (W 1,p′(Ω))′ such that the solution u
of (2.6) is solution of w = u− u0 ∈ H1

Γd
(Ω),∫

Ω
A∇w · ∇ϕ = 〈L̃, ϕ〉(H1(Ω))′,H1(Ω) , ∀ϕ ∈ H1

Γd
(Ω)

(2.48)

and such that ||L̃||(W 1,p′ (Ω))′ ≤ C, where C only depends on

(Ω,Γd, αA, p,ΛA,Λv,Λ).

Proof of Lemma 2.3
We have already seen that w = u− u0 satisfies
w = u− u0 ∈ H1

Γd
(Ω),∫

Ω
A∇w · ∇ϕ = 〈L̃1, ϕ〉(H1(Ω))′,H1(Ω) −

∫
Γn

λwϕdσ

+

∫
Ω
wv · ∇ϕ−

∫
Γn

wϕv · n dσ −
∫

Ω
bwϕ , ∀ϕ ∈ H1

Γd
(Ω)

(2.49)
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with L̃1 ∈ (W 1,p′(Ω))′ satisfying (2.37).
But we know that w ∈ H1(Ω) ∩ L∞(Ω), and that the norm of w in this

space is bounded by C1 only depending on (Ω,Γd, αA,ΛA, p,Λv,Λ); one can
show that this implies w ∈ L∞(∂Ω), with ||w||L∞(∂Ω) ≤ C1.

Thus, λw ∈ L(N−1) p
N (Γn), wv ∈ (Lp(Ω))N , wv · n ∈ Lp(∂Ω), bw ∈

L
Np
N+p (Ω), and all these functions have their norms in these respective spaces

bounded by C2 only depending on (Ω,Γd, αA,ΛA, p,Λv,Λ); for all ϕ ∈
W 1,p′(Ω), we have then, using Hölder inequalities,

−
∫

Γn

λwϕdσ +

∫
Ω
wv · ∇ϕ−

∫
Γn

wϕv · n dσ −
∫

Ω
bwϕ

≤ ||wλ||
L(N−1)

p
N (Γn)

||ϕ||
L

(N−1)p′
N−p′ (∂Ω)

+ ||wv||(Lp(Ω))N ||ϕ||W 1,p′ (Ω)

+||wv · n||Lp(∂Ω)||ϕ||Lp′ (∂Ω) + ||bw||
L
Np
N+p (Ω)

||ϕ||
L

Np′
N−p′ (Ω)

≤ (C2C3 + C2 + C2C4 + C2C5)||ϕ||W 1,p′ (Ω),

with C3, C4 and C5 only depending on (Ω, p) (C4 is the norm of the trace
operator W 1,p′(Ω) → Lp

′
(∂Ω) and C3, C5 are the norms of the Sobolev

injections W 1−1/p′,p′(∂Ω) ↪→ L
(N−1)p′
N−p′ (∂Ω) and W 1,p′(Ω) ↪→ L

Np′
N−p′ (Ω), see

[5]). The result of the lemma is proved.

Lemma 2.4. Let p > N . Under Hypotheses (1.1), (1.2), (2.17), (2.20)
and (2.21), there exists L̃ ∈ (W 1,p′(Ω))′ such that the solution u of (2.19) is
solution of u ∈ H1

∗ (Ω),∫
Ω
A∇u · ∇ϕ = 〈L̃, ϕ〉(H1(Ω))′,H1(Ω) , ∀ϕ ∈ H1(Ω)

(2.50)

and such that ||L̃||(W 1,p′ (Ω))′ ≤ C, where C only depends on (Ω, αA, p,Λv,Λ).

Lemma 2.5. Let p > N . Under Hypotheses (1.1), (1.2), (2.29), (2.30) and
either (2.25) or (2.26), there exists L̃ ∈ (W 1,p′(Ω))′ such that the solution u
of (2.28) is solution of u ∈ H1(Ω),∫

Ω
A∇u · ∇ϕ = 〈L̃, ϕ〉(H1(Ω))′,H1(Ω) , ∀ϕ ∈ H1(Ω)

(2.51)
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and such that ||L̃||(W 1,p′ (Ω))′ ≤ C, where C only depends on

(Ω, E, b0, αA, p,Λv,Λ) in the case where (2.25) is satisfied,

(Ω, S, λ0, αA, p,Λv,Λ) in the case where (2.26) is satisfied.

The demonstrations of these lemmas are of the same kind as the proof
of Lemma 2.3, and we omit them.

Corollary 2.1. Under the hypotheses of Lemma 2.3, 2.4 or 2.5, there exists
κ ∈]0, 1−N/p] only depending on (N,αA,ΛA, p) such that the solution u of
the corresponding problem (i.e., the mixed, Neumann or Fourier problem)
is κ-Hölder continuous on any compact subset of Ω. Moreover, if K is a
compact subset of Ω, there exists C only depending on

(Ω,Γd, αA,ΛA, p,Λv,Λ,K) in the case of the mixed problem,
(Ω, αA,ΛA, p,Λv,Λ,K) in the case of the Neumann problem,
(Ω, E, b0, αA,ΛA, p,Λv,Λ,K) in the case of the Fourier problem

with Hypothesis (2.25),
(Ω, S, λ0, αA,ΛA, p,Λv,Λ,K) in the case of the Fourier problem

with Hypothesis (2.26),

such that u satisfies (2.47).

Proof of Corollary 2.1
The fact that the solutions of these problems are in C0,κ(K) for a κ ∈

]0, 1−N/p] is clear from Lemmas 2.3, 2.4, 2.5 and Theorem 2.4.
The upper bound on ||u||C0,κ(Ω) is a consequence of the following remark:

if l ∈ (W 1,p′(Ω))′ then

||l||W−1,p(Ω)

:= sup
{
〈l, ϕ〉(W 1,p′ (Ω))′,W 1,p′ (Ω) , ϕ ∈W

1,p′

0 (Ω) , || |∇ϕ| ||Lp(Ω) ≤ 1
}

≤ (1 + diam(Ω)1/p′)||l||(W 1,p′ (Ω))′ ,

which is clear once we recall the Poincaré inequality:

∀ϕ ∈W 1,p′

0 (Ω) , ||ϕ||W 1,p′ (Ω) ≤ (1 + diam(Ω)1/p′)|| |∇ϕ| ||Lp′ (Ω).
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2.4. Continuity near the boundary of the domain. We will now
prove that the solutions of the mixed, Neumann and Fourier problems are, in
fact, Hölder continuous on Ω (which implies that they are Hölder continuous
on Ω). Since we already know that they are Hölder continuous on any
compact subset of Ω, it is sufficient to prove the Hölder continuity near
the boundary of Ω and this is where the boundary conditions (especially
Hypothesis (2.11), which we have not used up to now) come into play.

Proposition 2.4. Let p > N . Under Hypotheses (1.1), (1.2), (2.2), (2.11),
(2.12), (2.13) and (2.14), for all i ∈ [1,m], there exists κ only depending
on (N,αA,ΛA, p, hi) such that the solution u of (2.6) is κ-Hölder continuous
on any compact subset of Oi ∩Ω. Moreover, for all such compact subset K,
there exists C only depending on (Ω,Γd, αA,ΛA, p,Λv,Λ, hi,K) such that

||u||C0,κ(K) ≤ C. (2.52)

Proof of Proposition 2.4
Let u0 ∈W 1,p(Ω) ⊂ C0,1−N/p(Ω) as in Lemma 2.3; it is sufficient to prove

the result for w = u− u0, which satisfies (2.48).
Thanks to Hypothesis (2.11), we see that{

H1(Oi) −→ H1(B)

ϕ −→ ϕ ◦ h−1
i

and {
H1

Γd
(Ω ∩Oi) −→ H1

hi(Γd)(B+)

ϕ −→ ϕ ◦ h−1
i

are isomorphisms. It is also well known that we can compute the derivatives
of ϕ◦h−1

i (or ψ ◦hi, when ψ ∈ H1(B) or ψ ∈ H1(B+)) by using the classical
chain rule.

The case when (Oi, hi) is of type (F) is the easier; we thus begin by this
one. Then, we will handle the more difficult case when (Oi, hi) is of type
(D), and we will quickly see how we can deduce the case (DF) from the two
preceding ones.

Step 1: The mapping (Oi, hi) is of type (F).
Taking φ ∈ C∞c (B), we notice that ϕ = φ◦hi : Oi∩Ω→ R is in H1(Oi∩Ω)

and has a compact support in Oi; thus, the extension of ϕ, still denoted by
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ϕ, to Ω by zero outside Oi ∩ Ω is in H1
Γd

(Ω) (since Γd ∩ Oi = ∅). We have,
thanks a change of variable (Jhi denotes the Jacobian determinant of hi),
and by denoting wtr = w ◦ h−1

i ,

〈L̃, ϕ〉(H1(Ω))′,H1(Ω) =

∫
Ω
A∇w · ∇ϕ

=

∫
Oi∩Ω

A∇(wtr ◦ hi) · ∇(φ ◦ hi)

=

∫
Oi∩Ω

h′iA(h′i)
T (∇wtr) ◦ hi · (∇φ) ◦ hi

=

∫
B+

(
h′iA(h′i)

T

|Jhi|
◦ h−1

i

)
∇wtr · ∇φ,

with L̃ ∈ W 1,p′(Ω) given by Lemma 2.3; we denote by C1 the upper bound
on ||L̃||(W 1,p′ (Ω))′ given by this lemma (i.e., C1 only depends on Ω, Γd, αA,

p, ΛA, Λv and Λ).

We notice that Atr =
(
(h′iA(h′i)

T )/|Jhi|
)
◦ h−1

i has the same properties
as A, with a coercitivity constant αAtr only depending on (αA, hi) and an
upper bound ΛAtr only depending on (ΛA, hi). If Γ0 = {x ∈ ∂B+ | xN > 0},
we also notice that{

C∞c (B) −→ R,
φ −→ 〈L̃, φ ◦ hi〉(H1(Ω))′,H1(Ω)

(where φ ◦ hi has been naturally extented to Ω by 0 outside Oi) defines a
continuous linear form for the norm of W 1,p′(B+) and can thus be extented

to W 1,p′

Γ0
(B+) in a continuous linear form, denoted by L̃tr, whose norm is

bounded by C2 only depending on (Ω, hi,Γd, αA, p,ΛA,Λv,Λ).

We thus have proven that wtr satisfies
wtr ∈ H1(B+),∫
B+

Atr∇wtr · ∇φ = 〈L̃tr, φ〉(H1
Γ0

(B+))′,H1
Γ0

(B+) , ∀φ ∈ H1
Γ0

(B+)
(2.53)

and, since wtr = w ◦ h−1
i (with h−1

i Lipschitz continuous), it is sufficient, to
conclude this step, to prove that wtr is κ-Hölder continuous on any compact
subset of B ∩B+.
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To see this point, we will show that wtr is the restriction to B+ of a
function W ∈ H1(B) which satisfies an equation of the kind (2.46).

Let us define the reflection τ : RN → RN , τ(x′, xN ) = (x′,−xN ) (where
x′ = (x1, . . . , xN−1)); we will make no difference between τ and the matrix
which represent τ in the canonical base of RN . We also define

A : B →MN (R) by
A(x) = Atr(x) if x ∈ B+ , A(x) = τAtr(τ(x))τ if x ∈ τ(B+)

(2.54)

and

L ∈W−1,p(B) by, ∀φ ∈W 1,p′

0 (B) ,

〈L, φ〉
(W 1,p′

0 (B))′,W 1,p′
0 (B)

= 〈L̃tr, φ|B+
〉
(W 1,p′

Γ0
(B+))′,W 1,p′

Γ0
(B+)

+〈L̃tr, φ ◦ τ|B+
〉
(W 1,p′

Γ0
(B+))′,W 1,p′

Γ0
(B+)

.

(2.55)

It is clear (no matter the definition of A on BN−1) that A satisfies the
same hypotheses as Atr, with the same constants (since τ is a symmetric

isometry), and that L such defined is in W−1,p(B) = (W 1,p′

0 (B))′, with a
norm in this space bounded by C3 only depending of Ω, Γd, αA, p, ΛA, Λv,
Λ, and hi.

We then define W ∈ H1(B), and show that it satisfies Problem (2.46)
with Ω0 = B, A0 = A and L0 = L.{

W (x) = wtr(x) if x ∈ B+,
W (x) = wtr ◦ τ(x) if x ∈ τ(B+) := B−

(it is a classical result that W , such defined, is in H1(B)).
Let φ ∈ H1

0 (B): since (φ|B+
, φ ◦ τ|B+

) ∈ H1
Γ0

(B+), we have∫
B+

A∇W · ∇φ =

∫
B+

Atr∇wtr · ∇φ = 〈L̃tr, φ〉(H1
Γ0

(B+))′,H1
Γ0

(B+) (2.56)

and ∫
B−

A∇W · ∇φ =

∫
B+

τAtrτ(τ∇wtr) · (τ∇(φ ◦ τ))

=

∫
B+

Atr∇wtr · ∇(φ ◦ τ)

= 〈L̃tr, φ ◦ τ|B+
〉
(W 1,p′

Γ0
(B+))′,W 1,p′

Γ0
(B+)

(2.57)
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(using the fact that τ is symmetric and involutive).

The sum of (2.56) and (2.57) shows us that W satisfies (2.46) with Ω0 =
B, A0 = A and L0 = L; we deduce from Theorem 2.4 that there exists κ ∈
]0, 1−N/p] only depending on (N,αAtr ,ΛAtr , p), i.e., on (hi, αA,ΛA, p) [notice
that a dependence on hi, as well as a dependence on Ω, takes into account
a dependence on N ], such that W is κ-Hölder continuous on any compact
subset K of B, with a norm in C0,κ(K) bounded by C4 only depending on
(hi, αA,ΛA, p, C3,K), i.e., on (Ω,Γd, hi, αA,ΛA, p,Λv,Λ,K), and the result
of the proposition is proved in this case.

Step 2: The mapping (Oi, hi) is of type (D).

With the same Atr and the same L̃tr ∈ (W 1,p′

Γ0
(B+))′ as in step 1 (recall

that Γ0 = ∂B+\BN−1), using φ ∈ C∞c (B+) and ϕ = φ ◦ hi ∈ H1
Γd

(Ω)

(extented by 0 outside Oi), we notice that wtr (where wtr = w ◦ h−1
i , as in

step 1) satisfies
wtr ∈ H1

BN−1(B+),∫
B+

Atr∇wtr · ∇φ = 〈L̃tr, φ〉(H1
Γ0

(B+))′,H1
Γ0

(B+) , ∀φ ∈ H1
0 (B+).

(2.58)

We will also prove that wtr is the restriction of a W ∈ H1(B) satisfying
a problem of the type (2.46)... but this is here somehow more difficult than
in the case (F), because of the necessity to choose test functions in (2.58)
which satisfy φ|BN−1 = 0.

We define W , whose restriction to B+ is wtr, by{
W (x) = wtr(x) if x ∈ B+,
W (x) = −wtr ◦ τ(x) if x ∈ B−,

A by (2.54) and L ∈W−1,p(B) by: ∀φ ∈W 1,p′

0 (B),

〈L, φ〉
(W 1,p′

0 (B))′,W 1,p′
0 (B)

= 〈L̃tr, φ|B+
〉
(W 1,p′

Γ0
(B+))′,W 1,p′

Γ0
(B+)

−〈L̃tr, φ ◦ τ|B+
〉
(W 1,p′

Γ0
(B+))′,W 1,p′

Γ0
(B+)

(this time, we make an odd reflection of wtr and L̃tr), and we prove that
W satisfies (2.46) for Ω0 = B, A0 = A and L0 = L, which will allow us to
conclude as in step 1.
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For θ ∈ C∞c (B), define wtr,θ = θwtr: wtr,θ satisfies
wtr,θ ∈ H1

0 (B+),∫
B+

Atr∇(wtr,θ) · ∇φ = 〈L̃tr, θφ〉(H1
Γ0

(B+))′,H1
Γ0

(B+)

−
∫
B+

φAtr∇wtr · ∇θ +

∫
B+

wtrAtr∇θ · ∇φ , ∀φ ∈ H1
0 (B+).

(2.59)
Define L̃tr,θ ∈ (H1

Γ0
(B+))′ by

〈L̃tr,θ, φ〉(H1
Γ0

(B+))′,H1
Γ0

(B+)

= 〈L̃tr, θφ〉(H1
Γ0

(B+))′,H1
Γ0

(B+) −
∫
B+

φAtr∇wtr · ∇θ +

∫
B+

wtrAtr∇θ · ∇φ

(notice that L̃tr,θ is not, in general, in (W 1,p′

Γ0
(Ω))′, because of the term∫

B+
φAtr∇wtr · ∇θ; this is why we have not multiplied w by θ before trans-

porting the problem into B+) and Lθ ∈ H−1(B) by

〈Lθ, φ〉(H1
0 (B))′,H1

0 (B)

= 〈L̃tr,θ, φ|B+
〉(H1

Γ0
(B+))′,H1

Γ0
(B+) − 〈L̃tr,θ, φ ◦ τ|B+

〉(H1
Γ0

)′,H1
Γ0

= 〈L, θφ〉(H1
0 (B))′,H1

0 (B) −
∫
B+

φAtr∇wtr · ∇θ +

∫
B+

wtrAtr∇θ · ∇φ

+

∫
B+

φ ◦ τAtr∇wtr · ∇θ −
∫
B+

wtrAtr∇θ · ∇(φ ◦ τ).

Let Vθ be the unique solution to Vθ ∈ H1
0 (B),∫

B
A∇Vθ · ∇φ = 〈Lθ, φ〉(H1

0 (B))′,H1
0 (B) , ∀φ ∈ H1

0 (B).
(2.60)

We want to show, using the uniqueness of the solution of (2.59), that

Vθ = wtr,θ on B+,
Vθ = −wtr,θ ◦ τ on B−.

(2.61)

Let us first verify that Vθ satisfies the equation of (2.59): for all φ ∈
H1

0 (B+), by denoting also φ ∈ H1
0 (B) the extension of φ by 0 to B−, we
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have ∫
B+

Atr∇Vθ · ∇φ

=

∫
B
A∇Vθ · ∇φ

= 〈Lθ, φ〉(H1
0 (B))′,H1

0 (B)

= 〈L̃tr,θ, φ|B+
〉(H1

Γ0
(B+))′,H1

Γ0
(B+) − 〈L̃tr,θ, φ ◦ τ|B+

〉(H1
Γ0

)′,H1
Γ0

= 〈L̃tr,θ, φ|B+
〉(H1

Γ0
(B+))′,H1

Γ0
(B+),

since φ ◦ τ|B+
= 0.

To have Vθ = wtr,θ on B+, it remains to show that Vθ |BN−1 = 0. In
fact, we will show that Vθ = −Vθ ◦ τ on B, which will immediately give us
Vθ |BN−1 = 0, so that Vθ = wtr,θ on B+ (uniqueness of the solution to (2.59))
and, using Vθ = −Vθ ◦ τ once again, Vθ = −wtr,θ ◦ τ on B−.

Let V = −Vθ ◦ τ ∈ H1
0 (B): proving that V satisfy (2.60) is enough,

thanks to the uniqueness of the solution to this problem, to have V = Vθ.
Let φ ∈ H1

0 (B): by noticing that A(x) = τA(τ(x))τ for a.e. x ∈ B, we can
compute∫

B
A∇V · ∇φ

= −
∫
B
τA(τ(x))τ(τ(∇Vθ) ◦ τ(x)) · (τ(∇(φ ◦ τ)) ◦ τ(x)) dx

= −
∫
B
A(τ(x))∇Vθ(τ(x)) · (∇(φ ◦ τ))(τ(x)) dx

= −
∫
B
A∇Vθ · ∇(φ ◦ τ)

= −〈Lθ, φ ◦ τ〉(H1
0 (B))′,H1

0 (B)

= −〈L̃tr,θ, φ ◦ τ|B+
〉(H1

Γ0
(B+))′,H1

Γ0
(B+) + 〈L̃tr,θ, φ|B+

〉(H1
Γ0

(B+))′,H1
Γ0

(B+)

= 〈Lθ, φ〉(H1
0 (B))′,H1

0 (B),

which is exactly what we wanted.

We can now conclude this step, by proving that W ∈ H1(B) satisfies
(2.46) with Ω0 = B, A0 = A, and L0 = L.



30 jérôme droniou

Let φ ∈ C∞c (B) and choose θ ∈ C∞c (B) such that θ ≡ 1 on a neighbour-
hood of the support of φ and θ is invariant by τ (that is to say, θ ◦ τ = θ);
we have then Vθ = θW (cf. the definition of W and property (2.61) of Vθ).
By (2.60), we have∫

B
A∇(θW ) · ∇φ = 〈Lθ, φ〉(H1

0 (B))′,H1
0 (B) (2.62)

Since θ ≡ 1 on a neighbourhood of supp(φ) ∪ supp(φ ◦ τ),∫
B
A∇(θW ) · ∇φ =

∫
B
A∇W · ∇φ (2.63)

and, with the definition of Lθ,

〈Lθ, φ〉(H1
0 (B))′,H1

0 (B) = 〈L, φ〉(H1
0 (B))′,H1

0 (B). (2.64)

(2.62), (2.63) and (2.64) give us∫
B
A∇W · ∇φ = 〈L, φ〉(H1

0 (B))′,H1
0 (B)

i.e., exactly what we wanted to prove, which concludes this step.

Step 3: The mapping (Oi, hi) is of the type (DF).

This case, as we said before, can be handled thanks to the tools we have
introduced in the two preceding steps.

Let Atr =
(
(h′iA(h′i)

T )/|Jhi|
)
◦ h−1

i : B++ →MN (R).

The linear form{
C∞c (B) −→ R

φ −→ 〈L̃, φ ◦ hi〉(W 1,p′ (Ω))′,W 1,p′ (Ω)

(with φ ◦ hi extented by 0 outside Oi ∩ Ω) is continuous for the norm of
W 1,p′(B++) and can thus be extented in a continuous linear form L̃tr on

W 1,p′

Γ0,+
(B++), where Γ0,+ = Γ0 ∩ ∂B++ = {x ∈ ∂B++ | xN > 0 , xN−1 > 0},

whose norm is bounded by a constant only depending on Ω, hi, Γd, αA, ΛA,
p, Λv, and Λ.

If φ ∈ C∞c (B+), φ ◦ hi ∈ H1
Γd∩Oi(Oi ∩ Ω) and has a compact support in

Oi, so that its extension to Ω by zero outside Oi is in H1
Γd

(Ω), and the same
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kind of calculus as in steps 1 or 2 allows us to see that wtr is a solution to
wtr ∈ H1

Γ2
(B++),∫

B++

Atr∇wtr · ∇φ = 〈L̃tr, φ〉(H1
Γ3

(B++))′,H1
Γ3

(B++) , ∀φ ∈ H1
Γ3

(B++),

(2.65)
where Γ3 = Γ2 ∪ Γ0,+ (cf (2.10) for the definition of Γ2).

If τ1 : RN → RN is the reflection with respect to Γ1, i.e.,

τ1(x′′, xN−1, xN ) = (x′′,−xN−1, xN ) (with x′′ = (x1, . . . , xN−2)),

we define then W ∈ H1
BN−1(B+) by{
W (x) = wtr(x) on B++,
W (x) = wtr ◦ τ1(x) on τ1(B++)

and we see, as in step 1, that W is a solution to W ∈ H1
BN−1(B+),∫

A∇W · ∇φ = 〈L, φ〉(H1
0 (B+))′,H1

0 (B+) , ∀φ ∈ H1
0 (B+),

(2.66)

with A = A on B++, A = τ1(Atr ◦ τ1)τ1 on τ1(B++) and L ∈ (W 1,p′

Γ0
(B+))′

defined by

〈L, φ〉
(W 1,p′

Γ0
(B+))′,W 1,p′

Γ0
(B+)

= 〈L̃tr, φ|B++
〉
(W 1,p′

Γ0,+
(B++))′,W 1,p′

Γ0,+
(B++)

+〈L̃tr, φ ◦ τ1 |B++
〉
(W 1,p′

Γ0,+
(B++))′,W 1,p′

Γ0,+
(B++)

.

Since W satisfies (2.66), a problem of the same form as (2.58), the step
2 allows us to see that W is κ-Hölder continuous on any compact subset of
B∩B+, and since W|B++

= w, this concludes this step and the demonstration
of this proposition.

Proposition 2.5. Let p > N . Under Hypotheses (1.1), (1.2), (2.17), (2.20)
and (2.21), if (Oi, hi)i∈[1,m] are mappings of the boundary of Ω (i.e., such

that (Oi)i∈[1,m] is a covering of ∂Ω by open subsets of RN and, for all i ∈
[1,m], (Oi, hi) satisfies (2.9)), then for all i ∈ [1,m], there exists κ > 0 only
depending on (N,αA,ΛA, p, hi) such that the solution u of (2.19) is κ-Hölder
continuous on any compact subset of Oi ∩ Ω. Moreover, for such a compact
subset K, there exists C only depending on (Ω, hi, αA,ΛA, p,Λv,Λ,K) such
that u satisfies (2.52).
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Proposition 2.6. Let p > N . Under Hypotheses (1.1), (1.2), (2.29), (2.30)
and either (2.25) or (2.26), if (Oi, hi)i∈[1,m] are mappings of the boundary of
Ω, then for all i ∈ [1,m], there exists κ only depending on (N,αA,ΛA, p, hi)
such that the solution u of (2.28) is κ-Hölder continuous on any compact
subset of Oi ∩ Ω. Moreover, for such a compact subset K, there exists C
only depending on (Ω, hi, αA,ΛA, p,Λv,Λ,K) and

(E, b0) if (2.25) is verified,
(S, λ0) if (2.26) is verified

such that u satisfies (2.52).

The proofs of these propositions are of the same kind as that of Proposi-
tion 2.4, except that they are far easier, since the only case that appears is
the case studied in step 1 (this is due to the fact that there is no condition
on the values on ∂Ω of the test functions). We omit them.

Theorems 2.1, 2.2 and 2.3 are now easy consequences of Corollary 2.1
and Propositions 2.4, 2.5 and 2.6; for example, the κ of Theorem 2.1 can be
chosen as the infimum between the κ of Corollary 2.1 (for the mixed case)
and the κ’s corresponding to each mapping (Oi, hi) in Proposition 2.4.

We omit the details of these proofs, which consist in putting together the
preceding results, but the reader can find them in [12].

3. The dual problem. We study the dual problem only in the mixed
and Fourier cases, and we refer the reader to [12] for the study in the case
of Neumann boundary conditions.

In the following, we suppose either one of the two series of hypotheses:

In the mixed case: Hypotheses (1.1), (1.2), (2.2), (2.3), (2.4) and (2.11),
(3.1)

In the Fourier case: Γd = ∅, Γn = ∂Ω and
Hypotheses (1.1), (1.2), (2.23), (2.24) and either (2.25) or (2.26).

(3.2)

We also take p ∈]N,+∞[ and suppose (2.12).

3.1. Solving the problem with a measure as data. For each l ∈
(H1

Γd
(Ω))′, there exists an extension L ∈ (H1(Ω))′. We can thus solve, in

the mixed case, Problem (2.6) for this L, with gd = 0 and gn = 0, or, in the
Fourier case, Problem (2.28) for this L, with g = 0; it is easy to see that
the solution u of this problem only depends on the values of L on H1

Γd
(Ω),
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i.e., on l. This allows us to define the continuous (because the norm of L in
(H1(Ω))′ can be chosen equal to the norm of l in (H1

Γd
(Ω))′) linear operator

T1

{ (
H1

Γd
(Ω)
)′
−→ H1

Γd
(Ω),

l −→ u such defined.
(3.3)

When l ∈ (W 1,p′

Γd
(Ω))′, since there exists an extension L of l to W 1,p′(Ω)

whose norm in (W 1,p′(Ω))′ is the norm of l in (W 1,p′

Γd
(Ω))′, Theorem 2.1 (in

the mixed case) or 2.3 (in the Fourier case) allows us to see that T1(l) ∈ C(Ω);
we define thus

T1,p

{ (
W 1,p′

Γd
(Ω)
)′
−→ C(Ω),

l −→ T1(l),
(3.4)

and estimate (2.15) gives us, since T1 is linear, the continuity of T1,p.

We denote by M(Ω) the space of bounded measures on Ω, which is,
thanks to the Riesz representation theorem, identified to the dual of C(Ω).

The adjoint operator of T1,p, T ∗1,p : M(Ω) → ((W 1,p′

Γd
(Ω))′)′ = W 1,p′

Γd
(Ω)

(since p′ ∈]1, N/(N − 1)[, W 1,p′

Γd
(Ω) is a reflexive space), is such that, for all

µ ∈M(Ω), f = T ∗1,p(µ) is the unique solution to f ∈W 1,p′

Γd
(Ω),

∀l ∈ (W 1,p′

Γd
(Ω))′ , 〈l, f〉

(W 1,p′
Γd

(Ω))′,W 1,p′
Γd

(Ω)
= 〈µ, T1(l)〉(C(Ω))′,C(Ω).

(3.5)

Remark 3.1. If we take stronger hypotheses on b and λ, namely b ∈ L∞(Ω)
and λ ∈ L∞(Γn), we can solve (3.5) for each p ∈]N,+∞[; since the spaces

W 1,p′

Γd
(Ω) are imbedded one into another, and since the solution to each (3.5)

is unique, we have in fact a unique solution to
f ∈

⋂
q< N

N−1

W 1,q
Γd

(Ω),

∀q < N
N−1 , ∀l ∈ (W 1,q

Γd
(Ω))′ ,

〈l, f〉
(W 1,q

Γd
(Ω))′,W 1,q

Γd
(Ω)

= 〈µ, T1(l)〉(C(Ω))′,C(Ω).

(3.6)
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We will say that f is the solution to the equation
−div(AT∇f)− div(fv) + (div(v) + b)f = µ in Ω,
f = 0 on Γd,
AT∇f · n + (λ+ v · n)f = 0 on Γn.

(3.7)

The following subsections will give us evidences that the solution to (3.5)
can be considered, in a certain way, as a solution to (3.7).

Remark 3.2. By denoting

̂ : (A,v, b, λ)→ (Â, v̂, b̂, λ̂) = (AT ,−v,div(v) + b, λ+ v · n)

( ̂ is an involution), we notice that the data (A,v, b, λ) satisfy (3.1) in the
mixed case (respectively (3.2) in the Fourier case) if and only if the data
(Â, v̂, b̂, λ̂) satisfy (3.1) in the mixed case (respectively (3.2) in the Fourier
case). Thus, ̂ defines a bijection between “well-posed” problems of the form

−div(Â∇f) + div(f v̂) + b̂f = µ in Ω,
f = 0 on Γd,

Â∇f · n + λ̂f = 0 on Γn,

(3.8)

and “well-posed” problems of the form (3.7).

3.1.1. Link with the variational formulation. When µ ∈ (H1(Ω))′,
there exists a unique solution to (3.7) in the variational sense

f̂ ∈ H1
Γd

(Ω),∫
Ω
AT∇f̂ · ∇ψ +

∫
Γn

(λ+ v · n)f̂ψ dσ −
∫

Ω
ψv · ∇f̂ +

∫
Ω
bf̂ψ

= 〈µ, ψ〉(H1(Ω))′,H1(Ω) , ∀ψ ∈ H1
Γd

(Ω).

(3.9)

We will see that the solution f to (3.5) is, when µ ∈ (H1(Ω))′ ∩M(Ω),
the solution f̂ to (3.9) (which is the first reason toward the fact that f is
the solution of (3.7)).

Indeed, since the solution f to (3.5) is unique, it is sufficient to prove that

f̂ satisfies (3.5); but f̂ ∈ H1
Γd

(Ω) ⊂W 1,p′

Γd
(Ω) and, for all l ∈ (W 1,p′

Γd
(Ω))′, by

definition of T1(l) ∈ H1
Γd

(Ω) ∩ C(Ω),

〈µ, T1(l)〉(C(Ω))′,C(Ω) = 〈µ, T1(l)〉(H1(Ω))′,H1(Ω)
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=

∫
Ω
AT∇f̂ · ∇(T1(l)) +

∫
Γn

(λ+ v · n)f̂T1(l) dσ

−
∫

Ω
T1(l)v · ∇f̂ +

∫
Ω
bf̂T1(l)

= 〈l, f̂〉
(W 1,p′

Γd
(Ω))′,W 1,p′

Γd
(Ω)
.

Thus, f̂ satisfies (3.5) and f̂ = f in this case.

3.1.2. Strong integral formulation of (3.5). It is maybe easier to
see why f can be considered as the solution of (3.7) once we have put (3.5)
in an equivalent formulation which involves (as the variational formulations
of classical elliptic problems) integrals.

However, to do that, we need some preliminaries.
Since p ∈]N,+∞[, one can see that the application{

C∞c (Ω) −→
(
W 1,p′

Γd
(Ω)
)′

ϕ −→
(
ψ −→

∫
Ω ϕψ

) (3.10)

is an dense imbedding (the density comes from the classical characterisation

of elements of (W 1,p′

Γd
(Ω))′ as sums of elements of Lp(Ω) and of “divergences”

— in a certain sense — of elements of (Lp(Ω))N ).
We define, for q ∈]1,+∞[, the continuous linear function

Θq

{
W 1,q

Γd
(Ω) −→

(
W 1,q′

Γd
(Ω)
)′

ϕ −→ Θq(ϕ)

such that, for all ψ ∈W 1,q′

Γd
(Ω),

〈Θq(ϕ), ψ〉
(W 1,q′

Γd
(Ω))′,W 1,q′

Γd
(Ω)

=

∫
Ω
A∇ϕ · ∇ψ +

∫
Γn

λϕψ dσ

−
∫

Ω
ϕv · ∇ψ +

∫
Γn

ϕψv · n dσ +

∫
Ω
bϕψ

and we notice two properties of this function Θq, which will be useful to put
(3.5) under an integral formulation:

i) for all ϕ ∈ W 1,q
Γd

(Ω), Θq(ϕ)|D(Ω) = −div(A∇ϕ) + div(ϕv) + bϕ in the
sense of D′(Ω),
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ii) Θ2 ◦ T1 = Id(H1
Γd

(Ω))′ and, for all q ≥ 2, T1 ◦Θq = Id|W 1,q
Γd

(Ω)
.

Remark 3.3. In the Dirichlet case, that is to say Γd = ∂Ω and Γn = ∅,
(W 1,q′

0 (Ω))′ ⊂ D′(Ω) (because D(Ω) is densely imbedded in W 1,q′

0 (Ω)), that is

to say that any element of (W 1,q′

0 (Ω))′ is fully known by its values on D(Ω).

We have thus, for all ϕ ∈W 1,q
0 (Ω), Θq(ϕ) = −div(A∇ϕ) + div(ϕv) + bϕ in

(W 1,q′

0 (Ω))′.
This is not, in general, the case (but this is true if Θq(ϕ) ∈ C∞c (Ω), see

below).

Proof of property i): By definition, we have, for all ψ ∈ D(Ω) ⊂
W 1,q′

Γd
(Ω),

〈Θq(ϕ)|D(Ω), ψ〉(D(Ω))′,D(Ω) = 〈Θq(ϕ), ψ〉
(W 1,q′

Γd
(Ω))′,W 1,q′

Γd
(Ω)

=

∫
Ω
A∇ϕ · ∇ψ −

∫
Ω
ϕv · ∇ψ +

∫
Ω
bϕψ

(since ψ = 0 on Γn when ψ ∈ D(Ω)), which exactly means Θq(ϕ)|D(Ω) =
−div(A∇ϕ) + div(ϕv) + bϕ in D′(Ω).

Proof of property ii): For all l ∈ (H1
Γd

(Ω))′, we have, by definition of

T1, for all ψ ∈ H1
Γd

(Ω),

〈l, ψ〉(H1
Γd

(Ω))′,H1
Γd

(Ω)

=

∫
Ω
A∇(T1(l)) · ∇ψ +

∫
Γn

λT1(l)ψ dσ −
∫

Ω
T1(l)v · ∇ψ

+

∫
Γn

T1(l)ψv · n dσ +

∫
Ω
bT1(l)ψ

= 〈Θ2(T1(l)), ψ〉(H1
Γd

(Ω))′,H1
Γd

(Ω)

which gives Θ2(T1(l)) = l in (H1
Γd

(Ω))′, i.e., Θ2 ◦ T1 = Id(H1
Γd

(Ω))′ .

If ϕ ∈W 1,q
Γd

(Ω) with q ≥ 2, we have, by definition of Θq,
ϕ ∈ H1

Γd
(Ω),∫

Ω
A∇ϕ · ∇ψ +

∫
Γn

λϕψ dσ −
∫

Ω
ϕv · ∇ψ +

∫
Γn

ϕψv · n dσ +

∫
Ω
bϕψ

= 〈Θq(ϕ), ψ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) , ∀ψ ∈ H1
Γd

(Ω) ⊂W 1,q′

Γd
(Ω).
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But the unique solution to this problem is T1(Θq(ϕ)), so that T1(Θq(ϕ)) = ϕ
in H1

Γd
(Ω), which gives T1 ◦Θq = Id|W 1,q

Γd
(Ω)

.

We can now give the strong integral formulation of (3.5).

Since C∞c (Ω) is densely imbedded by (3.10) in (W 1,p′

Γd
(Ω))′, (3.5) is equiv-

alent to f ∈W 1,p′

Γd
(Ω),

∀l ∈ C∞c (Ω) , 〈l, f〉
(W 1,p′

Γd
(Ω))′,W 1,p′

Γd
(Ω)

=

∫
Ω
lf = 〈µ, T1(l)〉(C(Ω))′,C(Ω)

(3.11)

By the preliminaries up above, there is a bijection

C∞c (Ω) −→
{
ϕ ∈ H1

Γd
(Ω) , Θ2(ϕ) ∈ C∞c (Ω)

}
which, to any l ∈ C∞c (Ω), associates ϕ = T1(l) and, to any ϕ ∈ H1

Γd
(Ω) such

that Θ2(ϕ) ∈ C∞c (Ω) associates l = Θ2(ϕ). We also notice that, if Θ2(ϕ) ∈
C∞c (Ω) ⊂ (W 1,p′

Γd
(Ω))′, since T1(Θ2(ϕ)) = T1,p(Θ2(ϕ)) = ϕ in H1

Γd
(Ω), one

has ϕ ∈ C(Ω).

Thus, (3.11) is equivalent to


f ∈W 1,p′

Γd
(Ω),

∀ϕ ∈ H1
Γd

such that Θ2(ϕ) ∈ C∞c (Ω),

〈Θ2(ϕ), f〉
(W 1,p′

Γd
(Ω))′,W 1,p′

Γd
(Ω)

=

∫
Ω

Θ2(ϕ)f = 〈µ, ϕ〉(C(Ω))′,C(Ω)

(3.12)

But, when Θ2(ϕ) ∈ C∞c (Ω), we see that Θ2(ϕ), as an element of the dual

space ofW 1,p′

Γd
(Ω) through (3.10), is fully known by its values onD(Ω), i.e., by

Θ2(ϕ)|D(Ω) (this is the fondamental lemma of the distributions, which states
that we can consider L1

loc(Ω) as a subspace of D′(Ω)). Thus, when Θ2(ϕ) ∈
C∞c (Ω), one has, thanks to property i), Θ2(ϕ) = −div(A∇ϕ) + div(ϕv) + bϕ
in D′(Ω), i.e., on Ω since these are functions.

Thus, we have proven the following theorem:

Theorem 3.1. Let p > N . Under Hypotheses (3.1) and (2.12) in the mixed
case or (3.2) and (2.12) in the Fourier case, there exists a unique solution
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f to (3.7) in the sense
f ∈W 1,p′

Γd
(Ω),

∀ϕ ∈ H1
Γd

(Ω) such that Θ2(ϕ) ∈ C∞c (Ω) ,∫
Ω
f(−div(A∇ϕ) + div(ϕv) + bϕ) =

∫
Ω
ϕdµ.

(3.13)

Remark 3.4. In the Dirichlet case, thanks to Remark 3.3, the condition
“Θ2(ϕ) ∈ C∞c (Ω)” is equivalent to “−div(A∇ϕ) + div(ϕv) + b ∈ C∞c (Ω)”,
where the derivatives are taken in the sense of the distributions on Ω.

Remark 3.5. If b ∈ L∞(Ω) and λ ∈ L∞(Γn), the same reasoning shows
that (3.6) is equivalent to

f ∈
⋂

q< N
N−1

W 1,q
Γd

(Ω),

∀ϕ ∈ H1
Γd

(Ω) such that Θ2(ϕ) ∈ C∞c (Ω) ,∫
Ω
f(−div(A∇ϕ) + div(ϕv) + bϕ) =

∫
Ω
ϕdµ.

(3.14)

3.1.3. Weak integral formulation of (3.5). In fact, what we will
see here is not really a formulation of (3.5), since it is not equivalent to this
problem, but it is the third and last reason which allows us to say that f
solves (3.7).

Let ϕ ∈ W 1,p
Γd

(Ω) ⊂ C(Ω); since L = Θp(ϕ) ∈ (W 1,p′

Γd
(Ω))′ and T1 ◦

Θp(ϕ) = ϕ (p ≥ 2), we see that f satisfies

〈Θp(ϕ), f〉
(W 1,p′

Γd
(Ω))′,W 1,p′

Γd
(Ω)

= 〈µ, ϕ〉(C(Ω))′,C(Ω).

Since f ∈ W 1,p′

Γd
(Ω), we have fϕ ∈ W 1,1

Γd
(Ω), and some integrations by parts

allows us to see that

〈Θp(ϕ), f〉
(W 1,p′

Γd
(Ω))′,W 1,p′

Γd
(Ω)

=

∫
Ω
A∇ϕ · ∇f +

∫
Γn

λϕf dσ

−
∫

Ω
ϕv · ∇f +

∫
Γn

ϕfv · n dσ +

∫
Ω
bfϕ

=

∫
Ω
AT∇f · ∇ϕ+

∫
Γn

fλϕdσ

+

∫
Ω
fv · ∇ϕ+

∫
Ω

(div(v) + b)fϕ.
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Thus, the solution f to (3.5) is also a solution to
f ∈W 1,p′

Γd
(Ω),∫

Ω
AT∇f · ∇ϕ+

∫
Γn

λfϕdσ +

∫
Ω
fv · ∇ϕ+

∫
Ω

(div(v) + b)fϕ

=

∫
Ω
ϕdµ , ∀ϕ ∈W 1,p

Γd
(Ω).

(3.15)

Remark 3.6. This is a “natural” integral formulation of (3.7), i.e., one
obtained by multiplying the equation of (3.7) by ϕ null on Γd and integrat-
ing formally by parts. However, (3.15) and (3.7) are not equivalent since,
in general, the solution to (3.15) is not unique (see Remark 3.7 and the
following section).

Remark 3.7. If we suppose b ∈ L∞(Ω) and λ ∈ L∞(∂Ω), we can see the
same way that the solution f to (3.6) is also a solution to

f ∈
⋂

q< N
N−1

W 1,q
Γd

(Ω),∫
Ω
AT∇f · ∇ϕ+

∫
Γn

fλϕdσ +

∫
Ω
fv · ∇ϕ+

∫
Ω

(div(v) + b)fϕ

=

∫
Ω
ϕdµ , ∀ϕ ∈

⋃
p>N

W 1,p
Γd

(Ω)

(3.16)

which is, in fact, the solution L. Boccardo and T. Gallouët found in [2],
using approximation methods. But, even for this equation (which is stronger
than (3.15), because of the space to which the solution belongs), there is not
uniqueness, in general, of the solution as soon as N > 2 (see the following
section).

3.1.4. Non-uniqueness of the solution of (3.16). In the case N =
2, a result by A. Monier ([11], from the work of N.G. Meyers in [8]) shows
that the solution of (3.15) is unique, which implies that (3.5) and (3.15) are
equivalent (since the solution to (3.5) is the solution to (3.15)).

In the case N > 2 (and v = 0, b = 0, Γd = ∂Ω, i.e., the Dirichlet ho-
mogeneous case), a result by J. Serrin [6] modified by A. Prignet [7] shows
that the solution to (3.15) is not unique, and so that (3.5) and (3.15) are not
equivalent. Indeed, if we would have wanted to show that a solution of (3.15)

is also a solution of (3.5), we would have taken, for any l ∈ (W 1,p′

Γd
(Ω))′, the



40 jérôme droniou

test function ϕ = T1(l) . . . and we would have not been able to go further,
since (except in the case where the theorem by Agmon, Douglis and Nirem-
berg applies — i.e., with A and Ω more regular, cf [9] — or in the case where
the theorem by Meyers applies — i.e., with N = 2, see [11]) T1(l) is not an
element of W 1,p

Γd
(Ω).

We show here how the counter-example by J. Serrin can be adapted to
prove, in the mixed and Fourier cases with v = 0, b ≡ 1 and λ = 0, that the
solution of (3.16) in the case N ≥ 3 is not unique (since a solution to (3.16)
is also a solution of (3.15) for any p ∈]N,+∞[, this proves that the solution
to any Problem (3.15) is not unique). Since (3.16) is a linear problem, it is
sufficient to find a domain Ω of RN with a Lispchitz continuous boundary,
a A satisfying (1.1) and a ḟ 6= 0 solution of (3.16) when µ = 0.

We take Ω = B := {x ∈ RN | |x| < 1}, with N ≥ 3. We notice (that will
be useful in the following) that, when a function F : B → R only depends on
the first two coordinates (that is to say F (x) = F̃ (x1, x2)), F is integrable
on B if and only if F̃ is integrable on D := {(x1, x2) ∈ R2 | x2

1 + x2
2 < 1}.

Let ε ∈]0, 1[ and define A : B →MN (R) by

A(x) =



1 +
(

1
ε2
− 1
) x2

1
r2

(
1
ε2
− 1
)
x1x2
r2 0 · · · 0(

1
ε2
− 1
)
x1x2
r2 1 +

(
1
ε2
− 1
) x2

2
r2 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1


,

where x = (x1, . . . , xN )T and r =
√
x2

1 + x2
2; A satisfies (1.1) (with αA = 1).

Notice also that AT = A.
Define f : B → R by

f(x) =
x1

r1+ε
.

f is C∞ on B\{r = 0} and f ∈ Lq(B) for all q < 2/(1 + ε) (in fact for all
q < 2/ε). Moreover, on B\{r = 0},

∂f

∂x1
=

1

r1+ε
− (1 + ε)x2

1

r3+ε
,

∂f

∂x2
=
−(1 + ε)x1x2

r3+ε
,

∂f

∂xj
= 0 if j ≥ 3,

(3.17)



solving convection-diffusion equations 41

and, using the fact that these functions are regular on B\{r = 0} and
bounded by M/r1+ε on the neighbourhood of r = 0, we see that (3.17) also
gives the derivatives of f in the sense of the distributions on B (see [7]). We
see thus that f ∈W 1,q(B) for all q < 2/(1 + ε), and that f is not in H1(B)

(to see this last point, compute
∫
D |D̃2f |2 by using the polar coordinates).

Let us study A∇f · n : ∂B → R: it is a regular function except at the
points (0, 0, x3, . . . , xN ) ∈ ∂B, i.e., σ-a.e. on ∂B: A∇f ·n is thus measurable
on ∂Ω; the only componants of A∇f which are not null being the first two
components, we have A∇f · n = (A∇f)1x1 + (A∇f)2x2, so that A∇f · n is
bounded by M/rε on ∂B and is thus a function of L2(∂B) (the boundary of
B is of dimension N − 1 ≥ 2).

Moreover, a rather long computation (see [7] or [12]) allows us to see
that div(A∇f) = 0 on B\{r = 0} (this function is regular on this set) and,
using once again the estimates on A∇f · n near r = 0, one can see that, for
all ϕ ∈ C∞(B), ∫

B
A∇f · ∇ϕ =

∫
∂B
A∇f · nϕ.

By density, this expression is also true when ϕ ∈
⋃
p>(2/(1+ε))′W

1,p(B).

Since A∇f · n ∈ L2(∂B), we deduce from the preceding inequality that

ϕ ∈ C∞(B) −→
∫
B
A∇f · ∇ϕ

can be extented to H1(B) in a continuous linear form L ∈ (H1(B))′.
One can prove (see [7]) that, when ε < 1/(N − 1), f ∈ H1/2(∂B) (but

without f ∈ H1(B)).
Since f ∈ L2(B) (f ∈ Lq(Ω) for all q < 2/ε), we can solve the following

mixed (if σ(Γd) > 0) or Fourier (if Γd = ∅) variational problem
−div(A∇f̌) + f̌ = L+ f in B,

f̌ = f on Γd,

A∇f̌ · n = 0 on Γn

(3.18)

that is to say, using f0 ∈ H1(B), a function with trace f ,
w̌ = f̌ − f0 ∈ H1

Γd
(B)∫

B
A∇w̌ · ∇ϕ+

∫
B
w̌ϕ = 〈L,ϕ〉(H1(B))′,H1(B)

+

∫
B
fϕ−

∫
B
A∇f0 · ∇ϕ−

∫
B
f0ϕ , ∀ϕ ∈ H1

Γd
(B).

(3.19)
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Choosing ε < 1/(N −1) small enough so that 2/(1 + ε) ≥ N/(N −1), we
define ḟ = f − f̌ ∈

⋂
q<2/(1+ε)W

1,q
Γd

(B) ⊂
⋂
q<N/(N−1)W

1,p
Γd

(B); ḟ is not null

(since f̌ ∈ H1(B), f 6∈ H1(B)) and ḟ satisfies, for all ϕ ∈
⋃
p>N W

1,p
Γd

(B) ⊂
H1

Γd
(B) ∩

⋃
p>(2/(1+ε))′W

1,p(B),∫
B
A∇ḟ · ∇ϕ+

∫
B
ḟϕ = 0.

We have thus find a non null solution of (3.16) when µ = 0, which is what
we wanted.

3.2. Getting the traces of the solution of (3.5).

3.2.1. The trace of f . Under Hypothesis (3.1) or (3.2), by the same
tricks as in the preceding section, we can define

T2

{ (
H

1/2
Γd

(∂Ω)
)′
−→ H1

Γd
(Ω)

gn −→ u solution of (2.6) with this gn, L = 0, gd = 0.

If we suppose (2.12) with p ∈]N,+∞[, then, for all gn ∈ (W
1−1/p′,p′

Γd
(Ω))′,

we see as before that T2(gn) ∈ C(Ω) and that

T2,p


(
W

1− 1
p′ ,p
′

Γd
(∂Ω)

)′
−→ C(Ω),

gn −→ T2(gn)

is linear continuous.
Thus, we can also study the adjoint operator of T2,p, i.e., T ∗2,p :M(Ω)→

W
1−1/p′,p′

Γd
(∂Ω) (W

1−1/p′,p′

Γd
(∂Ω) is reflexive, since p′ ∈]1,+∞[), such that, for

all µ ∈M(Ω), f∂ = T ∗2,p(µ) is the unique solution to
f∂ ∈W

1− 1
p′ ,p
′

Γd
(∂Ω),

∀gn ∈
(
W

1− 1
p′ ,p
′

Γd
(∂Ω)

)′
,

〈gn, f∂〉(W 1−1/p′,p′
Γd

(∂Ω))′,W
1−1/p′,p′
Γd

(∂Ω)
= 〈µ, T2(gn)〉(C(Ω))′,C(Ω).

(3.20)
In fact, we will show that f∂ is the trace, on ∂Ω, of the solution f to

(3.5).
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For gn ∈ (W
1−1/p′,p′

Γd
(Ω))′, define g̃n ∈ (W 1,p′

Γd
(Ω))′ by

〈g̃n, ϕ〉(W 1,p′
Γd

(Ω))′,W 1,p′
Γd

(Ω)
= 〈gn, ϕ〉(W 1−1/p′,p′

Γd
(∂Ω))′,W

1−1/p′,p′
Γd

(∂Ω)
,

and notice that T2(gn) = T1(g̃n) (it is immediate on (2.6)). We have thus,

for all gn ∈ (W
1−1/p′,p′

Γd
(Ω))′,

〈gn, f∂〉(W 1−1/p′,p′
Γd

(∂Ω))′,W
1−1/p′,p′
Γd

(∂Ω)
= 〈µ, T2(gn)〉(C(Ω))′,C(Ω)

= 〈µ, T1(g̃n)〉(C(Ω))′,C(Ω)

= 〈g̃n, f〉(W 1,p′
Γd

(Ω))′,W 1,p′
Γd

(Ω)

= 〈gn, f〉(W 1−1/p′,p′
Γd

(∂Ω))′,W
1−1/p′,p′
Γd

(∂Ω)
,

that is to say f = f∂ on ∂Ω.

3.2.2. The trace of AT∇f · n. Under Hypothesis (3.1) or (3.2), we
define

T3

{
H1/2(∂Ω) −→ H1(Ω),

gd −→ u solution of (2.6) with this gd, L = 0 and gn = 0,

and we notice that

T3,p

{
W

1− 1
p (∂Ω) −→ C(Ω),

gd −→ T3(gd)

is, thanks to Theorem 2.1, well defined, linear and continuous. Moreover, it

is easy to see that the kernel of T3,p is W
1−1/p,p
Γd

(∂Ω) (the solution u of (2.6)
only depends of the values of gd on Γd); thus, if

E = W 1−1/p,p(∂Ω))

/(
W

1−1/p,p
Γd

(∂Ω)
)
,

we can define

T3,p

{
E −→ C(Ω),

π(gd) −→ T3(gd)

(where π(gd) denotes the class of gd ∈W 1−1/p,p(∂Ω) in E).
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The adjoint operator of T3,p is T3,p
∗

: M(Ω) → E′, such that, for all
µ ∈M(Ω), f∇,∂ = T3,p

∗
(µ) is the unique solution to{

f∇,∂ ∈ E′,
∀π(gd) ∈ E , 〈f∇,∂ , π(gd)〉(E)′,E = 〈µ, T3(gd)〉(C(Ω))′,C(Ω).

(3.21)

But it is a classical result that E′ is isomorphic to (W
1−1/p,p
Γd

(∂Ω))◦, the

space of linear forms on W 1−1/p,p(∂Ω) which are null on W
1−1/p,p
Γd

(∂Ω), by
the following isomorphism:{ (

W
1−1/p,p
Γd

(∂Ω)
)◦
−→

(
(W 1−1/p,p(∂Ω))/(W

1−1/p,p
Γd

(∂Ω))
)′
,

l −→ l ◦ π.

Thus, f∇,∂ is the unique solution to
f∇,∂ ∈ (W

1−1/p,p
Γd

(∂Ω))◦ ⊂
(
W 1−1/p,p(∂Ω)

)′
,

∀gd ∈W 1−1/p,p(∂Ω) ,
〈f∇,∂ , gd〉(W 1−1/p,p(∂Ω))′,W 1−1/p,p(∂Ω) = 〈µ, T3(gd)〉(C(Ω))′,C(Ω).

(3.22)
We will see that f∇,∂ is, in fact, the trace on ∂Ω of −AT∇f ·n−(λ+v·n)f ,

with a coherent definition of this expression.
Let us first define

{
AT∇f · n + v · nf

}
∈ (W 1−1/p,p(∂Ω))′. Since f sat-

isfies (3.15), we have

−div(AT∇f)−div(fv)+(div(v)+b)f = µ in the sense of D′(Ω). (3.23)

Define
{
AT∇f · n + v · nf

}
as an element of (W 1−1/p,p(∂Ω))′ by: ∀gd ∈

W 1−1/p,p(∂Ω),

〈
{
AT∇f · n + v · nf

}
, gd〉(W 1−1/p,p(∂Ω))′,W 1−1/p,p(∂Ω)

= 〈(div(v) + b)f − µ, u0〉(C(Ω))′,C(Ω) +

∫
Ω
AT∇f · ∇u0 +

∫
Ω
fv · ∇u0

=

∫
Ω

(div(v) + b)fu0 −
∫

Ω
u0 dµ+

∫
Ω
AT∇f · ∇u0

+

∫
Ω
fv · ∇u0, (3.24)

where u0 is any function of W 1,p(Ω) (recall that p > N , so that W 1,p(Ω) ↪→
C(Ω)) with trace on ∂Ω equal to gd (this definition only depends on gd
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because, when u0 ∈ D(Ω), thanks to (3.23), the right hand side of this
expression is null and, by density of D(Ω) in W 1,p

0 (Ω), is still null when

u0 ∈W 1,p
0 (Ω)); with the norm we have put on W 1−1/p,p(∂Ω), it is clear that

(3.24) defines a continuous linear form on W 1−1/p,p(∂Ω). Notice that we
can not define separately AT∇f · n or v · nf , since div(AT∇f) or div(fv)
are not, in general, measures on Ω; we must thus always use the whole
expression

{
AT∇f · n + v · nf

}
and the + of this expression is not a sum

in (W 1−1/p,p(∂Ω))′ (that is why we put this expression into brackets).

Remark 3.8. Of course, we have denoted the linear form of (3.24) by this
way because, when the data (A,v, b, λ, µ) are regular (say of class C∞(Ω))
and f is a classical C∞(Ω) solution of (3.7), we have

〈{AT∇f · n + v · n}, gd〉(W 1−1/p,p(∂Ω))′,W 1−1/p,p(∂Ω)

=

∫
Ω

(div(AT∇f) + div(fv))u0 +

∫
Ω
AT∇f · ∇u0 +

∫
Ω
fv · ∇u0,

and some integrations by parts allow us to see that this linear form is AT∇f ·
n + v · nf , when this expression is understood in the classical sense.

Since λ ∈ L(N−1) p
N (∂Ω) and f ∈ W 1−1/p′,p′(∂Ω), we have, by a Sobolev

injection (see [5]), f ∈ L(N−1)p/(Np−N−p)(∂Ω), which gives λf ∈ L1(∂Ω) ↪→
(W 1−1/p,p(∂Ω))′ (because W 1−1/p,p(∂Ω) is densely imbedded in C(∂Ω)).

We have thus defined
{
AT∇f · n + v · nf

}
+ λf ∈ (W 1−1/p,p(∂Ω))′.

Let us now show that f∇,∂ = −
{
AT∇f · n + v · nf

}
− λf . For all gd ∈

W 1−1/p,p(∂Ω), with u0 ∈W 1,p(Ω), a function with trace gd, we have

〈
{
AT∇f · n + v · nf

}
+ λf, gd〉(W 1−1/p,p(∂Ω))′,W 1−1/p,p(∂Ω)

= −〈µ, u0〉(C(Ω))′,C(Ω) +

∫
Ω

(div(v) + b)fu0 +

∫
Ω
AT∇f · ∇u0

+

∫
Ω
fv · ∇u0 +

∫
Γn

λfu0 dσ.

Since f ∈W 1,p′

Γd
(Ω) and u0 ∈W 1,p(Ω), an integration by parts gives∫

Ω
(div(v) + b)fu0 +

∫
Ω
AT∇f · ∇u0 +

∫
Ω
fv · ∇u0 +

∫
Γn

λfu0 dσ

=

∫
Γn

u0fv · n dσ −
∫

Ω
u0v · ∇f +

∫
Ω
bu0f +

∫
Ω
A∇u0 · ∇f
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+

∫
Γn

λu0f dσ.

This last term is a linear continuous form lu0 in f ∈ W 1,p′

Γd
(Ω), so that, by

(3.5),

〈lu0 , f〉(W 1,p′
Γd

(Ω))′,W 1,p′
Γd

(Ω)
=

∫
Ω
A∇u0 · ∇f +

∫
Γn

λu0f dσ −
∫

Ω
u0v · ∇f

+

∫
Γn

fu0v · n dσ +

∫
Ω
bu0f

= 〈µ, T1(lu0)〉(C(Ω))′,C(Ω),

and we finally have

〈
{
AT∇f · n + v · nf

}
+ λf, gd〉(W 1−1/p,p(∂Ω))′,W 1−1/p,p(∂Ω)

= 〈µ, T1(lu0)− u0〉(C(Ω))′,C(Ω).

But, by definition of T1, T3 and lu0 , T3(gd)−u0 ∈ H1
Γd

(Ω) and T1(−lu0) ∈
H1

Γd
(Ω) are both solutions of (2.6) when L = 0, gn = 0; thus, T3(gd)− u0 =

−T1(lu0) and we have, for all gd ∈W 1−1/p,p(∂Ω),

〈
{
AT∇f · n + v · nf

}
+ λf, gd〉(W 1−1/p,p(∂Ω))′,W 1−1/p,p(∂Ω)

= −〈µ, T3(gd)〉(C(Ω))′,C(Ω)

= −〈f∇,∂ , gd〉(W 1−1/p,p(∂Ω))′,W 1−1/p,p(∂Ω),

i.e., exactly f∇,∂ = −
{
AT∇f · n + v · nf

}
− λf in (W 1−1/p,p(∂Ω))′; notice

that the condition f∇,∂ ∈ (W
1−1/p,p
Γd

(∂Ω))◦ is the equivalent of AT∇f · n +
(λ+ v · n)f = 0 on Γn (cf (3.7)).

4. Applications. As before, we study the mixed and Fourier problems,
thus supposing Hypotheses (3.1) or Hypotheses (3.2). We also take p ∈
]N,+∞[ and we suppose Hypothesis (2.12).

In the preceding section, we have only used Theorems 2.1 and 2.3 to say
that the solutions of (2.1) and (2.22) are (when the data are more regular
than usual) continuous on Ω; but these theorems state much more than this:
indeed, the solutions of (2.1) and (2.22) are Hölder continuous, and we have
an estimate on the Hölder spaces to which these solutions belong, as well
as a bound on their norms in these spaces. We will show here how these
estimates can be used to obtain a stability result on the solution of (3.5) and
to solve non-linear elliptic problems with measures as data.
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4.1. A stability result. We prove here a stability result on the solution
of (3.5).

We make the following hypotheses:

∀m ≥ 1 , Am : Ω→MN (R) is a measurable function,
∃αA > 0 such that Am(x)ξ · ξ ≥ αA|ξ|2 for all m ≥ 1,

for a.e. x ∈ Ω and for all ξ ∈ RN ,
∃ΛA ≥ 0 such that ||Am(x)|| ≤ ΛA for all m ≥ 1 and for a.e. x ∈ Ω,

Am −→ A a.e. on Ω as m→∞,
(4.1)

∀m ≥ 1 , vm : Ω→ RN is a Lipschitz continuous function,
(vm)m≥1 is bounded in C0,1(Ω;RN ),

vm −→ v uniformly on Ω,
(4.2)

∀m ≥ 1 , bm ∈ L
Np
N+p (Ω),

bm −→ b weakly in L
Np
N+p (Ω),

(4.3)

∀m ≥ 1 , λm ∈ L(N−1) p
N (Γn),

λm −→ λ weakly in L(N−1) p
N (Γn),

(4.4)

∀m ≥ 1 , µm ∈M(Ω),

µm −→ µ in M(Ω) weak-∗. (4.5)

We take Λ ≥ 0 such that, for all m ≥ 1,

||vm||C0,1(Ω;RN ) + ||bm||
L
Np
N+p (Ω)

+ ||λm||
L(N−1)

p
N (Γn)

+ ||µm||M(Ω) ≤ Λ.

We also suppose that our problems are “well-posed”, that is to say

∀m ≥ 1 , 1
2div(vm) + bm ≥ 0 a.e. on Ω, 1

2vm · n + λm ≥ 0 σ-a.e. on Γn,
(4.6)

and

i) in the mixed case:

Hypotheses (2.2), (2.11), (4.7)
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ii) in the Fourier case, one of the following:

∃b0 > 0 , ∃E ⊂ Ω such that |E| > 0 and,
for all m ≥ 1, 1

2div(vm) + bm ≥ b0 on E,
or

∃λ0 > 0 , ∃S ⊂ ∂Ω such that σ(S) > 0 and,
for all m ≥ 1, 1

2vm · n + λm ≥ b0 on S.

(4.8)

Theorem 4.1. Under Hypotheses (4.1)—(4.6) and (4.7) in the mixed case
or (4.8) in the Fourier case, by denoting fm the solution to (3.5) for the data
(Am,vm, bm, λm, µm) and f the solution to (3.5) for the data (A,v, b, λ, µ),
we have

fm
m→∞−→ f strongly in W 1,q

Γd
(Ω) for all q < p′, and weakly in W 1,p′

Γd
(Ω).

(4.9)

Remark 4.1. We also have a stability result for the solution of (3.6): under
the hypotheses of Theorem 4.1, if bm → b in L∞(Ω) for the weak-∗ topology
and if λm → λ in L∞(Γn) for the weak-∗ topology, then the solution fm
to (3.6) for (Am,vm, bm, λm, µm) converges to the solution f to (3.6) for
(A,v, b, λ, µ) strongly in W 1,q

Γd
(Ω) for all q < N/(N − 1) (this is an easy

consequence of Theorem 4.1).

We need, to make the proof of Theorem 4.1 more readable, some technical
lemmas.

Lemma 4.1. Under the notations and hypotheses of Theorem 4.1, fm → f

weakly in W 1,p′

Γd
(Ω) and strongly in Lp

′
(Ω).

Let us define, for all k ∈ R+, the function Tk : R → R by Tk(s) =
min(k,max(−k, s)). We notice that Tk is a continuous piecewise C1 function,
with a derivative T ′k(s) = χ]−k,k[(s) in L∞(R).

Lemma 4.2. Let A satisfy (1.1), v : Ω→ R a Lipschitz continuous function,

b ∈ L
Np
N+p (Ω), λ ∈ L(N−1) p

N (Γn) and µ ∈M(Ω). We suppose that these data
satisfy Hypotheses (2.3) and (2.4); we also suppose that they satisfy (2.2) and
(2.11) in the mixed case or either (2.25) or (2.26) in the Fourier case. If f is
the solution to (3.5) for (A,v, b, λ, µ), then, for all k ∈ R+, Tk(f) ∈ H1

Γd
(Ω).
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Lemma 4.3. Under Hypothesis (4.1), if (am)m≥1 ∈ H1(Ω) and am → a
weakly in H1(Ω), then∫

Ω
AT∇a · ∇a ≤ lim inf

m→∞

∫
Ω
ATm∇am · ∇am.

Lemma 4.4. Under the notations of Lemma 4.2, if α is a coercitivity con-
stant for A, Λ is an essential bound for {||A(x)|| , x ∈ Ω}, and if Λ0 is such
that

||v||C0,1(Ω) + ||b||
L
Np
N+p (Ω)

+ ||λ||
L(N−1)

p
N (Γn)

+ ||µ||M(Ω) ≤ Λ0,

then there exists C > 0 only depending on (Ω,Γd,Λ0, α,Λ, p) in the mixed
case, (Ω,Λ0, α,Λ, p) and (b0, E) or (λ0, S) in the Fourier case such that, for
all δ ∈]0, 1[, k ∈ R+ and ψ ∈ H1

Γd
(Ω),∫

Ω
AT∇(Tk+1(f)) · ∇(Tδ(Tk+1(f)− Tk(ψ)) ≤ Cδ. (4.10)

Proof of Lemma 4.1.
Denote by T (m)

1 (respectively by T1) the application defined by (3.3) for
(Am,vm, bm, λm) (respectively for (A,v, b, λ)).

Let us first notice that, for all l ∈ (W 1,p′

Γd
(Ω))′, T (m)

1 (l)→ T1(l) in C(Ω):
to see this, we notice that, thanks to Hypotheses (4.1)—(4.3) (which imply
that (vm)m≥1, (bm)m≥1 and (λm)m≥1 are bounded in their respective spaces)

and to Theorem 2.1 or 2.3, there exists κ > 0 such that (T (m)
1 (l))m≥1 is

bounded in C0,κ(Ω), and thus relatively compact in C(Ω); we thus just have

to prove that, if a subsequence of (T (m)
1 (l))m≥1 converges in C(Ω), the limit

must be T1(l); but it is a classical result that T (m)
1 (l) → T1(l) in H1

Γd
(Ω),

and the convergence in C(Ω) is thus proved.

We can now see that fm → f weakly in W 1,p′

Γd
(Ω): for all l ∈ (W 1,p′

Γd
(Ω))′,

we have

〈l, fm − f〉(W 1,p′
Γd

(Ω))′,W 1,p′
Γd

(Ω)

= 〈µm, T (m)
1 (l)〉(C(Ω))′,C(Ω) − 〈µ, T1(l)〉(C(Ω))′,C(Ω) → 0 as m→∞,
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since µm → µ in M(Ω) weak-∗ and T (m)
1 (l)→ T1(l) strongly in C(Ω).

The end of the proof is a classical argument: by the Rellich theorem,
and since the only limit of the subsequences of (fm)m≥1 in Lp

′
(Ω) is f , we

deduce that fm → f in Lp
′
(Ω).

Proof of Lemma 4.2. Let µj ∈ L2(Ω) such that µj → µ in M(Ω)

weak-∗. Let f (j) be the solution of (3.5) for (A,v, b, λ, µj): we know that

f (j) is, in fact, the solution of the variational problem (3.9) for theses data.

Thus, Tk(f
(j)) ∈ H1

Γd
(Ω) and, using this function in the problem satisfied

by f (j), we find∫
Ω
AT∇(Tk(f

(j))) · ∇(Tk(f
(j))) +

∫
Γn

(v · n + λ)f (j)Tk(f
(j)) dσ

−
∫

Ω
Tk(f

(j))v0 · ∇f (j) +

∫
Ω
bf (j)Tk(f

(j)) =

∫
Ω
µjTk(f

(j)). (4.11)

But we have

−
∫

Ω
Tk(f

(j))v · ∇f (j)

= −
∫

Ω
v · ∇(f (j)Tk(f

(j))) +

∫
Ω
f (j)v · ∇(Tk(f

(j))

= −
∫

Γn

f (j)Tk(f
(j))v · n dσ +

∫
Ω

div(v)f (j)Tk(f
(j))

+

∫
Ω
v · ∇

(
(Tk(f

(j)))2

2

)

= −
∫

Γn

f (j)Tk(f
(j))v · n dσ +

∫
Ω

div(v)f (j)Tk(f
(j))

+

∫
Γn

1

2
(Tk(f

(j)))2v · n dσ −
∫

Ω

1

2
(Tk(f

(j)))2div(v),

so that∫
Γn

(v · n + λ)f (j)Tk(f
(j)) dσ −

∫
Ω
Tk(f

(j))v · ∇f (j) +

∫
Ω
bf (j)Tk(f

(j))

=

∫
Γn

(
1

2
v · n + λ

)
(Tk(f

(j)))2 dσ +

∫
Ω

(
1

2
div(v) + b

)
(Tk(f

(j)))2
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+

∫
Γn

λ(f (j)Tk(f
(j))− (Tk(f

(j)))2) dσ

+

∫
Ω

(div(v) + b)(f (j)Tk(f
(j))− (Tk(f

(j)))2). (4.12)

We also have∫
Ω

(f (j)Tk(f
(j))− (Tk(f

(j)))2)div(v)

−
∫

Γn

(f (j)Tk(f
(j))− (Tk(f

(j)))2)v · n dσ

= −
∫

Ω
v · ∇(f (j)Tk(f

(j))− (Tk(f
(j)))2)

≥ −|| |v| ||L∞(Ω)|| |∇(f (j)Tk(f
(j))− (Tk(f

(j)))2)| ||L1(Ω). (4.13)

By denoting T̃k : R→ R the function T̃k(s) = k(|s| − k)+, whose deriva-
tive is T̃ ′k(s) = kχR\[−k,k](s), we have

f (j)Tk(f
(j))− (Tk(f

(j)))2 = kT̃k(f
(j)) ≥ 0, (4.14)

so that, using 1
2div(v) + b ≥ 0 a.e. on Ω and 1

2v ·n+λ ≥ 0 σ-a.e. on Γn, we
obtain ∫

Γn

λ(f (j)Tk(f
(j))− (Tk(f

(j)))2) dσ

+

∫
Ω

(div(v) + b)(f (j)Tk(f
(j))− (Tk(f

(j)))2)

=

∫
Γn

(
1

2
v · n + λ

)
(f (j)Tk(f

(j))− (Tk(f
(j)))2)

+

∫
Ω

(
1

2
div(v) + b

)
(f (j)Tk(f

(j))− (Tk(f
(j)))2)

+
1

2

∫
Ω

div(v)(f (j)Tk(f
(j))− (Tk(f

(j)))2)

−1

2

∫
Γn

(f (j)Tk(f
(j))− (Tk(f

(j)))2)v · n dσ

≥ −
|| |v| ||L∞(Ω)

2
|| |∇(T̃k(f

(j)))| ||L1(Ω)

≥ −
k|| |v| ||L∞(Ω)

2
|| |∇f (j)| ||L1(Ω). (4.15)
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(4.11), (4.12) and (4.15) give thus∫
Ω
AT∇(Tk(f

(j))) · ∇(Tk(f
(j))) +

∫
Γn

(
1

2
v · n + λ

)
(Tk(f

(j)))2 dσ

+

∫
Ω

(
1

2
div(v) + b

)
(Tk(f

(j)))2

≤
k|| |v| ||L∞(Ω)

2
|| |∇f (j)| ||L1(Ω) + k||µj ||L1(Ω).

Thanks to the hypotheses on the data (i.e., the coercitivity of the bilinear
form on the left hand side of this expression), we obtain C such that, for all
j ≥ 1,

||Tk(f (j))||H1
Γd

(Ω) ≤ C(||f (j)||
W 1,1

Γd
(Ω)

+ ||µj ||L1(Ω)). (4.16)

Lemma 4.1 (in fact a simplier version of this lemma, since (A,v, b, λ) are
fixed here) allows us to see that f (j) → f weakly in W 1,1

Γd
(Ω) and strongly

in L1(Ω). We see thus that (f (j))j≥1 is bounded in W 1,1
Γd

(Ω) and, since

(µj)j≥1 is bounded in M(Ω) (it converges weakly-∗ in this space), we find,

thanks to (4.16), that (Tk(f
(j)))j≥1 is bounded in H1

Γd
(Ω) (recall that, when

µj ∈ L1(Ω), ||µj ||L1(Ω) = ||µj ||M(Ω)).

Up to a subsequence, we can suppose that (Tk(f
(j)))j≥1 weakly converges

in H1
Γd

(Ω) and a.e. on Ω. Since, up to a subsequence, f (j) → f a.e. on Ω

(because of the convergence in L1(Ω)), so that Tk(f
(j)) → Tk(f) a.e. on Ω,

we have proven that, for all k ∈ R+, Tk(f) is in H1
Γd

(Ω), as the weak limit

in this space of (Tk(f
(j)))j≥1.

Proof of Lemma 4.3.

Let Bm be the symetric bilinear form defined on H1(Ω) by (ATm+Am)/2,
that is to say

∀(w, w̃) ∈ H1(Ω) , Bm(a, ã) =

∫
Ω

ATm +Am
2

∇w · ∇w̃

Hypothesis (4.1) allows us to see that, for all w ∈ H1(Ω),

Bm(w,w) =

∫
Ω
ATm∇w · ∇w ≥ 0.
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Thus, Bm being a non-negative symetric bilinear form, we can apply the
Cauchy-Schwartz inegality to find, for all m ≥ 1,

Bm(a, am)2 ≤ Bm(am, am)Bm(a, a). (4.17)

Since Am → A a.e. on Ω and (Am)m≥1 is bounded in L∞(Ω;MN (R)),
we have 1

2(ATm +Am)∇a→ 1
2(AT +A)∇a in (L2(Ω))N ; we obtain thus∫

Ω

1

2
(ATm +Am)∇a · ∇a→

∫
Ω

1

2
(AT +A)∇a · ∇a =

∫
Ω
AT∇a · ∇a

and, using the fact that am → a weakly in H1(Ω),∫
Ω

1

2
(ATm +Am)∇a · ∇am →

∫
Ω

1

2
(AT +A)∇a · ∇a =

∫
Ω
AT∇a · ∇a.

Taking the lim inf as m→∞ in (4.17), we get(∫
Ω
AT∇a · ∇a

)2

≤
(

lim inf
m→∞

∫
Ω
ATm∇am · ∇am

)∫
Ω
AT∇a · ∇a,

which concludes the proof of this lemma.

Proof of Lemma 4.4.

Let µj ∈ L2(Ω) which converges to µ in M(Ω) weak-∗ and such that

||µj ||L1(Ω) ≤ ||µ||M(Ω) ≤ Λ0. Let f (j) as in the proof of Lemma 4.2; up

to a subsequence, we can suppose that f (j) → f a.e. on Ω and, since

(Tδ(Tk+1(f (j)−Tk(ψ)))j≥1 is bounded in H1
Γd

(Ω) ((Tk+1(f (j)))j≥1 is bounded
in this space, thanks to the proof of Lemma 4.2), we can suppose that
Tδ(Tk+1(f (j) − Tk(ψ))→ Tδ(Tk+1(f)− Tk(ψ)) weakly in H1

Γd
(Ω).

Using Tδ(Tk+1(f (j)) − Tk(ψ)) ∈ H1
Γd

(Ω) as a test function in the varia-

tional problem satisfied by f (j), we find∫
Ω
AT∇f (j) · ∇(Tδ(Tk+1(f (j))− Tk(ψ))

=

∫
Ω

(µj − bf (j) + v · ∇f (j))Tδ(Tk+1(f (j))− Tk(ψ))

−
∫

Γn

(λ+ v · n)f (j)Tδ(Tk+1(f (j))− Tk(ψ)) dσ. (4.18)
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If we denote by T1,p the application defined by (3.4) for (A,v, b, λ), then

Theorem 2.1 or 2.3 gives us C1 only depending on (Ω, αA,ΛA, p,Λ0) and

Γd in the mixed case,
(b0, E) or (λ0, S) in the Fourier case,

such that

||T1,p
∗||L(M(Ω),W 1,p′

Γd
(Ω))

= ||T1,p||L((W 1,p′
Γd

(Ω))′,C(Ω))
≤ C1.

Since f (j) = T1,p
∗(µj), we notice that (f (j))j≥1 is bounded in W 1,p′

Γd
(Ω) by

C1Λ0, and thus in W 1,1
Γd

(Ω) by C1Λ0|Ω|1/p.

By denoting C2 the norm of the Sobolev injection W 1,p′

Γd
(Ω) ↪→ L

Np′
N−p′ (Ω)

and C3 the norm of the Sobolev injection W 1,p′

Γd
(Ω) ↪→ L

(N−1)p′
N−p′ (Γn) (C2

and C3 only depend on (Ω, p)), we thus obtain that (f (j))j≥1 is bounded in

L
Np′
N−p′ (Ω) by C1C2Λ0 and in L

(N−1)p′
N−p′ (Γn) by C1C3Λ0 (and thus in L1(Γn)

by C1C3Λ0σ(Γn)
(N−1)p′
N(p′−1) ).

Using the hypotheses on b and λ, we see that (b f (j))j≥1 is bounded in

L1(Ω) by C1C2Λ2
0 and that (λ f (j))j≥1 is bounded in L1(Γn) by C1C3Λ2

0.

Since ||Tδ(Tk+1(f (j))− Tk(ψ))||L∞(Ω) ≤ δ, we deduce that∫
Ω

(µj − bf (j) + v · ∇f (j))Tδ(Tk+1(f (j))− Tk(ψ))

−
∫

Γn

(λ+ v · n)f (j)Tδ(Tk+1(f (j))− Tk(ψ)) dσ

≤
(
||µj ||L1(Ω) + C1C2Λ2

0 + || |v| ||L∞(Ω)C1Λ0|Ω|1/p

+C1C3Λ2
0 + ||v · n||L∞(Γn)C1C3Λ0σ(Γn)

(N−1)p′
N(p′−1)

)
δ

≤ C4δ, (4.19)

where C4 only depends on (Ω, αA,ΛA, p,Λ0) and

Γd in the mixed case,
(b0, E) or (λ0, S) in the Fourier case.



solving convection-diffusion equations 55

We have, for all ϕ ∈ H1
Γd

(Ω),

∇ϕ · ∇(Tδ(ϕ− Tk(ψ)) = ∇(Tk+1(ϕ)) · ∇(Tδ(ϕ− Tk(ψ)) (4.20)

(recall that δ ∈]0, 1[) and

∇(Tδ(ϕ−Tk(ψ)))·∇(Tδ(ϕ−Tk(ψ)) = ∇(ϕ−Tk(ψ))·∇(Tδ(ϕ−Tk(ψ)). (4.21)

Thus, applying (4.20) with ϕ = f (j) and (4.21) with ϕ = Tk+1(f (j)), we
find ∫

Ω
AT∇f (j) · ∇(Tδ(Tk+1(f (j))− Tk(ψ)) =∫

Ω
AT∇(Tk+1(f (j))− Tk(ψ)) · ∇(Tδ(Tk+1(f (j))− Tk(ψ))

+

∫
Ω
AT∇(Tk(ψ)) · ∇(Tδ(Tk+1(f (j))− Tk(ψ)) =∫

Ω
AT∇(Tδ(Tk+1(f (j))− Tk(ψ))) · ∇(Tδ(Tk+1(f (j))− Tk(ψ))

+

∫
Ω
AT∇(Tk(ψ)) · ∇(Tδ(Tk+1(f (j))− Tk(ψ)). (4.22)

(4.18), (4.19) and (4.22) give thus∫
Ω
AT∇(Tδ(Tk+1(f (j))− Tk(ψ))) · ∇(Tδ(Tk+1(f (j))− Tk(ψ))

≤ C4δ −
∫

Ω
AT∇(Tk(ψ)) · ∇(Tδ(Tk+1(f (j))− Tk(ψ)).

By taking the lim inf of this as j →∞, using the fact that Tδ(Tk+1(f (j))−
Tk(ψ))→ Tδ(Tk+1(f)− Tk(ψ)) in H1

Γd
(Ω) weak-∗ and Lemma 4.3, we find∫

Ω
AT∇(Tδ(Tk+1(f)− Tk(ψ))) · ∇(Tδ(Tk+1(f)− Tk(ψ)))

≤ C4δ −
∫

Ω
AT∇(Tk(ψ)) · ∇(Tδ(Tk+1(f)− Tk(ψ)))

which gives, since AT∇(Tδ(Tk+1(f) − Tk(ψ))) · ∇(Tδ(Tk+1(f) − Tk(ψ))) =

AT∇(Tk+1(f) − Tk(ψ)) · ∇(Tδ(Tk+1(f) − Tk(ψ))), the result of Lemma 4.4.
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Proof of Theorem 4.1.
We already know that fm → f weakly in W 1,p′

Γd
(Ω) on strongly in Lp

′
(Ω)

(Lemma 4.1). We thus deduce that (fm)m≥1 is bounded in W 1,p′

Γd
(Ω): if we

prove that ∇fm → ∇f in measure on Ω, then we have ∇fm → ∇f a.e. up to
a subsequence and, thanks a classical lemma, ∇fm → ∇f in Lq(Ω), for all
q < p′, up to a subsequence; since the only possible limit for subsequences of
(∇fm)m≥1 in Lq(Ω) is ∇f , the whole sequence (∇fm)m≥1 converges in these
spaces.

We thus have to show that ∇fm → ∇f in measure, i.e., by denoting
{F > r} the subset of Ω where a function F : Ω→ R is greater than r ∈ R,
we have to prove that, for all η > 0, |{|∇fm −∇f | > η}| → 0 as m→∞.

We write, following [3],

{|∇fm −∇f | > η} ⊂ {|f | > k} ∪ {|fm − f | > δ} ∪ Ek,m,δ, (4.23)

with δ ∈]0, 1[ and Ek,m,δ = {|∇fm −∇f | > η} ∩ {|f | ≤ k} ∩ {|fm − f | ≤ δ}.
Let ε > 0 and choose k ∈ R+ such that |{|f | > k}| ≤ ε.
By Lemma 4.4, there exists C only depending on (Ω, αA,ΛA,Λ, p) and

Γd in the mixed case,
(b0, E) or (λ0, S) in the Fourier case

such that, for all m ≥ 1,∫
Ω
ATm∇(Tk+1(fm)) · ∇(Tδ(Tk+1(fm)− Tk(f)) ≤ Cδ.

We also choose δ ∈]0, 1[ such that Cδ < ε.
We prove now that, with these choices of k and δ, we can find m1 ≥ 1

such that, for all m ≥ m1, |{|∇fm − ∇f | > η}| ≤ Mε, where M does not
depend on m or ε. Let m0 ≥ 1 such that, for all m ≥ m0, |{|fm−f | > δ}| ≤ ε
(recall that fm → f in Lq(Ω), thus also in measure).

We have

αAη
2|Ek,m,δ| ≤

∫
Ω
ATm∇(Tδ(Tk+1(fm)− Tk(f)) · (Tδ(Tk+1(fm)− Tk(f))

=

∫
Ω
ATm∇(Tk+1(fm)) · ∇(Tδ(Tk+1(fm)− Tk(f))

−
∫

Ω
ATm∇(Tk(f)) · ∇(Tδ(Tk+1(fm)− Tk(f))

≤ Cδ −
∫

Ω
ATm∇(Tk(f)) · ∇(Tδ(Tk+1(fm)− Tk(f)).
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But Tδ(Tk+1(fm)− Tk(f))→ Tδ(Tk+1(f)− Tk(f)) weakly in H1
Γd

(Ω), so
that ∫

Ω
ATm∇(Tk(f)) · ∇(Tδ(Tk+1(fm)− Tk(f))

m→∞−→
∫

Ω
AT∇(Tk(f)) · ∇(Tδ(Tk+1(f)− Tk(f)) = 0

(since∇(Tk(f))·∇(Tδ(Tk+1(f)−Tk(f))) = ∇f ·∇(Tk+1(f)−Tk(f))χ{|f |<k} =
0 a.e.).

We can thus find m1 ≥ m0 such that, for all m ≥ m1,∣∣∣∣∫
Ω
ATm∇(Tk(f)) · ∇(Tδ(Tk+1(fm)− Tk(f))

∣∣∣∣ ≤ ε,
which gives, thanks to (4.23) and the choices of k and δ,

|{|∇fm −∇f | > η}| ≤
(

2 +
2

αAη2

)
ε for all m ≥ m1,

and the theorem is proved.

4.2. Solving non-linear problems. We use here the stability result
that has just been proved and the Leray-Schauder topological degree to
obtain the existence of a solution to a semi-linear problem with a measure
as data.

The problem we want to solve is
−div(A(f)T∇f)− div(fv) + (div(v) + b(f))f = µ[f ] in Ω,
f = 0 on Γd,
A(f)T∇f + (λ(f) + v · n)f = 0 on Γn,

(4.24)
and we make the following hypotheses.

A : Ω× R→MN (R) is a Caratheodory function,
∃αA > 0 such that A(x, s)ξ · ξ ≥ αA|ξ|2 for a.e. x ∈ Ω,

for all s ∈ R and ξ ∈ RN ,
∃ΛA > 0 such that ||A(x, s)|| ≤ ΛA for a.e. x ∈ Ω, for all s ∈ R,

(4.25)

v : Ω→ R is a Lipschitz continuous function. (4.26)
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There exists q ∈ [1, p′[, r1 ∈ [ NpN+p ,
Np

N+p−Np ] and r2 ∈ [ (N−1)p
N , (N−1)p

N−(N−1)p ]
such that, by denoting

q∗ =
Nq

N − q
, q =

(N − 1)q

N − q
, δ = q∗

(
N + p

Np
− 1

r1

)
∈ [0, q∗]

and ζ = q

(
N

(N − 1)p
− 1

r2

)
∈ [0, q],

we have

b : Ω× R→ R is a Caratheodory function,

∃C0 ∈ Lr1(Ω) , ∃C1 ∈ L
Np
N+p (Ω) satisfying

|b(x, s)| ≤ C0(x)|s|δ + C1(x) for a.e. x ∈ Ω, for all s ∈ R,
1
2div(v)(x) + b(x, s) ≥ 0 for a.e. x ∈ Ω, for all s ∈ R,

(4.27)

λ : ∂Ω× R→ R is a Caratheodory function,

∃C2 ∈ Lr2(Ω) , ∃C3 ∈ L(N−1) p
N (∂Ω) satisfying

|λ(x, s)| ≤ C2(x)|s|ζ + C3(x) for σ-a.e. x ∈ ∂Ω, for all s ∈ R,
1
2v · n(x) + λ(x, s) ≥ 0 for σ-a.e. x ∈ ∂Ω, for all s ∈ R.

(4.28)

In the mixed case, we add Hypotheses (2.2) and (2.11).

In the Fourier case, we add either Hypothesis (2.25) or (2.26) uniform
with respect to s ∈ R, that is to say

∃b0 > 0 , ∃E ⊂ Ω such that |E| > 0
and 1

2div(v)(x) + b(x, s) ≥ b0 for all x ∈ E, for all s ∈ R
or

∃λ0 > 0 , ∃S ⊂ Ω such that σ(S) > 0
and 1

2v · n(x) + λ(x, s) ≥ λ0 for all x ∈ S, for all s ∈ R

(4.29)

The hypothesis on the right-hand side is:

µ : W 1,q
Γd

(Ω)→M(Ω) is a sequentially continuous function

(when M(Ω) is endowed with its weak-∗ topology) which satisfies:

there exists C4 > 0, C5 > 0 and ν ∈ [0, 1[ such that, for all f ∈W 1,q
Γd

(Ω),

||µ[f ]||M(Ω) ≤ C4||f ||νW 1,q
Γd

(Ω)
+ C5.

(4.30)
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Remark 4.2. Two examples of such functions:

1) If S ⊂ Ω is a measurable subset of an hyperplan or S is a measurable
subset of ∂Ω, ν ∈ [0, 1[ and c : S × R→ R is a Caratheodory function
such that there exists d1 ∈ L(q/ν)′(S,LN−1) and d2 ∈ L1(S,LN−1)
(LN−1 denotes the Lebesgue measure on S, i.e., the (N−1)-dimensional
Hausdorff measure) satisfying

|c(x, s)| ≤ d1(x)|s|ν + d2(x) for σ-a.e. x ∈ S, for all s ∈ R,

then µ[f ] = c(., f(.))LN−1 satisfies Hypothesis (4.30).

2) If G : Ω × R × RN → R is a Caratheodory function such that there
exists ν ∈ [0, 1[, E1 ∈ L(q∗/ν)′(Ω), E2 ∈ L(q/ν)′(Ω) and E3 ∈ L1(Ω)
satisfying

|G(x, s, ξ)| ≤ E1(x)|s|ν + E2(x)|ξ|ν + E3(x)

for a.e. x ∈ Ω, for all s ∈ R, for all ξ ∈ RN ,

then µ[f ] = G(., f(.),∇f(.))LN (with LN the Lebesgue measure on Ω)
satisfies Hypothesis (4.30).

Theorem 4.2. Under Hypotheses (4.25)—(4.28), (4.30) and

(2.2) and (2.11) in the mixed case,

(4.29) in the Fourier case,

there exists at least one solution to (4.24) in the sense
f ∈W 1,p′

Γd
(Ω),∫

Ω
A(f)T∇f · ∇ϕ+

∫
Γn

λ(f)fϕ dσ +

∫
Ω
fv · ∇ϕ

+

∫
Ω

(div(v) + b(f))fϕ =

∫
Ω
ϕd(µ[f ]) , ∀ϕ ∈W 1,p

Γd
(Ω).

(4.31)

Remark 4.3. We have chosen an integral formulation of the kind (3.15)
because the uniqueness of the solution we had in (3.5) or (3.13) is lost here.
But we will see in the course of the proof that, in fact, we find a solution f
to (4.24) in the sense of formulations of the kind (3.5) or (3.13)... which
are here far more difficult to write than in the linear case (since T1 or Θ2

must now depend on f through the non-linearity of (4.24) in A).
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Proof of Theorem 4.2.
Step 1: a sub-linear function . . .
If f ∈ W 1,q

Γd
(Ω) ⊂ Lq

∗
(Ω), (A(f),v, b(., f(.)), λ(., f(.))) satisfy (3.1) in

the mixed case and (3.2) in the Fourier case; denote by T f1 the application
defined by (3.3) for (A(f),v, b(f), λ(f)).

Thanks to Theorem 2.1 or 2.3, to Proposition 2.1 (with Remark 2.7)
or 2.3 and to Hypotheses (4.29), there exists M1 > 0 not depending on

f ∈W 1,q
Γd

(Ω) neither on l ∈ (W 1,p′

Γd
(Ω))′ such that

||T f1 (l)||C(Ω) ≤M1||l||(W 1,p′
Γd

(Ω))′

(we have used the linearity of T f1 and applied Propositions 2.1 or 2.3 with
Λ = 1; recall that C(Ω) is endowed with the same norm as L∞(Ω)), that is
to say

||T f1 ||L((W 1,p′
Γd

(Ω))′,C(Ω))
≤M1.

But it is well known that

||(T f1 )∗||L(M(Ω),W 1,p′
Γd

(Ω))
= ||T f1 ||L((W 1,p′

Γd
(Ω))′,C(Ω))

,

so that
||(T f1 )∗||L(M(Ω),W 1,p′

Γd
(Ω))
≤M1. (4.32)

Define

Φ

{
W 1,q

Γd
(Ω) −→ W 1,p′

Γd
(Ω) ↪→W 1,q

Γd
(Ω),

f −→ (T f1 )∗(µ[f ]).

Thanks to Hypothesis (4.30) and by denoting M2 the norm of the injection

W 1,p′

Γd
(Ω) ↪→W 1,q

Γd
(Ω), Φ satisfies, for all f ∈W 1,q

Γd
(Ω),

||Φ(f)||
W 1,q

Γd
(Ω)
≤M2||Φ(f)||

W 1,p′
Γd

(Ω)
≤M1M2C4||f ||νW 1,q

Γd
(Ω)

+M1M2C5.

(4.33)
Step 2: . . . which is also continuous . . .
We show here that Φ : W 1,q

Γd
(Ω)→W 1,q

Γd
(Ω) is continuous.

Suppose that (fm)m≥1 converges to f in W 1,q
Γd

(Ω); by a classical trick, it
is sufficient to show that there exists a subsequence of (fm)m≥1, still denoted
by (fm)m≥1, such that (Φ(fm))m≥1 converges to Φ(f) in W 1,q

Γd
(Ω).
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Thus, up to a subsequence, we can suppose that fm → f a.e. on Ω by
being dominated by F ∈ W 1,q

Γd
(Ω) and that ∇fm → ∇f a.e. on Ω by being

dominated by F̃ ∈ Lq(Ω).

(Am,vm, bm, λm, µm) = (A(fm),v, b(., fm(.)), λ(., fm(.)), µ[fm])

satisfy then Hypotheses (4.1)—(4.6) and (4.7) or (4.8) with

(A(f),v, b(., f(.)), λ(., f(.)), µ[f ])

as a limit (recall that µ is sequentially continuous for the weak-∗ topology or
M(Ω)), and Theorem 4.1 gives thus the convergence of Φ(fm) toward Φ(f)
in W 1,q

Γd
(Ω) (since q < p′).

Step 3: . . . and such that Φ({f ∈ W 1,q
Γd

(Ω) | ||f ||
W 1,q

Γd
(Ω)
≤ R}) is rela-

tively compact in W 1,q
Γd

(Ω), for all R > 0.

Indeed, if (fm)m≥1 is bounded in W 1,q
Γd

(Ω), we can suppose, up to a
subsequence, that fm → f a.e. on Ω: we have then A(fm) → A(f) a.e. on
Ω.

Since

(b(., fm(.)))m≥1 is bounded in L
Np
N+p (Ω),

(λ(., fm(.)))m≥1 is bounded in L(N−1) p
N (∂Ω),

(µ[fm])m≥1 is bounded in M(Ω) (Hypothesis (4.30)),

there exist b∞ ∈ L
Np
N+p (Ω), λ∞ ∈ L(N−1) p

N (∂Ω) and µ∞ ∈ M(Ω) such that,
up to subsequences,

b(., fm(.))→ b∞ weakly in L
Np
N+p (Ω),

λ(., fm(.))→ λ∞ weakly in L(N−1) p
N (∂Ω),

µ[fm]→ µ∞ in M(Ω) for the weak-∗ topology.

Thus,

(Am,vm, bm, λm, µm) = (A(fm),v, b(., fm(.)), λ(., fm(.)), µ[fm])

satisfy Hypotheses (4.1)—(4.6) and (4.7) or (4.8) with (A(f),v, b∞, λ∞, µ∞)
as a limit, and we have, thanks to Theorem 4.1, the convergence in W 1,q

Γd
(Ω)
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of (Φ(fm))m≥1 toward the solution f̃ of (3.5) for (A(f),v, b∞, λ∞, µ∞), since
q < p′.

Step 4: Conclusion.
Lemma 4.5 just after this proof shows us that Φ has a fixed point in

W 1,q
Γd

(Ω), i.e., a f ∈ W 1,q
Γd

(Ω) such that f = Φ(f); since Φ takes its values

into W 1,p′

Γd
(Ω), we see that f is in fact in W 1,p′

Γd
(Ω).

Thus, f is the unique solution to (3.5) for the data A(f), v , b(., f(.)),
λ(., f(.)) and µ[f ].

But we have already proven that the solution to (3.5) is a solution to
(3.15), and this concludes the demonstration of this theorem.

Lemma 4.5. Let E be a Banach space. Let F : E → E be a compact
operator, that is to say, F is continuous and F ({x ∈ E | ||x|| ≤ R}) is
relatively compact in E, for all R ≥ 0. If F is sub-linear, that is to say there
exists K1 > 0, K2 > 0 and ω ∈ [0, 1[ such that, for all x ∈ E,

||F (x)|| ≤ K1||x||ω +K2

then F has a fixed point in E, i.e., a x ∈ E such that F (x) = x.

The demonstration of this lemma is a straightforward application of the
Leray-Schauder topological degree (see [4]); recall that the topological degree
is an application d : A → Z, defined on

A =
{

(Id− J, U, y) , U bounded open set of E , J : U → E compact

operator , y 6∈ (Id− J)(∂U)}

and such that

i) d(Id, U, y) = 1 if y ∈ U ,

ii) If h : [0, 1]×U → E is a compact operator and if y 6∈ (Id−h(t, .))(∂U)
for all t ∈ [0, 1], then d(Id− h(0, .), U, y) = d(Id− h(1, .), U, y),

iii) If d(Id− J, U, y) 6= 0, then there exists x ∈ U such that x− J(x) = y.

There are others properties to this degree, but we will use only these three.
Proof of Lemma 4.5.
Let R > 0 (that we will precise later) and denote by BR the open ball of

radius R and center 0 in E.
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We want to prove that we can choose R large enough such that d(Id −
F,BR, 0) = 1; thanks to Property iii) of the topological degree, this will give
us x ∈ BR such that x− F (x) = 0, i.e., a fixed point for F .

To prove this, we introduce the natural homotopy h between F and the
null function, and we prove that, if R is large enough, 0 6∈ (Id−h(t, .))(∂BR)
for all t ∈ [0, 1]; applying then Properties ii) and i) of the topological de-
gree, we deduce that d(Id − F,BR, 0) = d(Id − h(1, .), BR, 0) = d(Id −
h(0, .), BR, 0) = d(Id,Br, 0) = 1.

Let h : [0, 1]×BR → E be h(t, x) = tF (x). h is continuous on [0, 1]×BR
and, if (tn)n≥1 ∈ [0, 1], (xn)n≥1 ∈ BR, then by compacity of [0, 1] and F ,
there exists subsequences, still denoted by (tn)n≥1 and (xn)n≥1 such that
tn → t ∈ [0, 1] and F (xn) → x∞ ∈ E; thus h(tn, xn) → tx∞, and we have
proved that h is a compact operator.

Suppose that there exists t ∈ [0, 1] such that 0 ∈ (Id−h(t, .))(∂BR), i.e.,
such that there exists x ∈ E, with ||x|| = R and x − tF (x) = 0. Thanks to
the sublinear property of F , we have then

||x|| = R ≤ t||F (x)|| ≤ K1t||x||ω +K2t ≤ K1R
ω +K2

Since ω ∈ [0, 1[, there exists R0 > 0 such that R0 > K1R
ω
0 + K2. For this

R0, we thus have 0 6∈ (Id − h(t, .))(∂BR0) for all t ∈ [0, 1]. This is exactly
what we needed to conclude this proof.

REFERENCES

[1] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du
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