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Abstract The aim of this work is to adapt the gradient schemes, discretisations of
weak variational formulations using independent approximations of functions and
gradients, to obstacle problems modelled by linear and non-linear elliptic variational
inequalities. It is highlighted in this paper that four properties which are coercivity,
consistency, limit conformity and compactness are adequate to ensure the conver-
gence of this scheme. Under some suitable assumptions, the error estimate for linear
equations is also investigated.

Key words: Elliptic variational inequalities, Gradient scheme, An Obstacle Prob-
lem, Convergence and analysis.

1 Introduction

We are interested in obstacle problems formulated as linear and non-linear ellip-
tic variational inequalities and their approximate solutions obtained by gradient
schemes. In what follows, Ω is an open bounded subset of Rd . The problem we
consider is

(−div(Λ(x, ū)∇ū)− f (x))(g(x)− ū(x)) = 0, x ∈Ω, (1a)
ū(x)≤ g(x), x ∈Ω, (1b)

div(Λ(x, ū)∇ū)+ f (x)≥ 0, x ∈Ω, (1c)
ū(x) = 0, x ∈ ∂Ω, (1d)
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under the following assumptions:

Λ is a Caratheodory function from Ω×R to Sd(R)
(the set of d×d symmetric matrices) such that,

for a.e. x ∈Ω and all s ∈ R, Λ(x,s) has eigenvalues in (λ ,λ )⊂ (0,+∞),
(2a)

f ∈ L2(Ω), g ∈ H1(Ω) and γ(g)≥ 0 on ∂Ω. (2b)

Under these assumptions, the weak formulation of Problem (1) is written

Find ū ∈ K = {v ∈ H1
0 (Ω) : v≤ g in Ω} such that, ∀v ∈ K,∫

Ω

Λ(x, ū)∇ū(x) ·∇(ū(x)− v(x))dx ≤
∫

Ω

f (x)(ū(x)− v(x))dx. (3)

Note that K is a non-empty set since v = min(0,g) ∈ K.
Variational inequalities with different boundary conditions have been employed

to model several physical problems, such as lubrication phenomena and seepage of
liquid in porous media (see [7] and references therein). Mathematical theories as-
sociated to existence, uniqueness and stability of the solution of obstacle problems
have been extensively developed (see [4, 9], for example). From the numerical per-
spective, Herbin and Marchand [8] showed that if Λ≡ Id the solution of the 2-points
finite volume scheme converges in L2(Ω) to the unique solution as the size mesh
tends to zero. Under H2 regularity conditions on the exact solution they provide
O(h) error estimate. This 2-points finite volume method, however, requires grids to
satisfy a strong orthogonality assumption. Under a number of assumptions, Falk [6]
underlines that the convergence estimate of finite elements method is of order h.
Both schemes are only applicable for Λ≡ Id in Problem (1).

Our goal in this paper is to use gradient schemes to construct a general for-
mulation of several discretisations of Problem (3). The gradient scheme has been
developed analyse the convergence of numerical methods for diffusion equations
(see [3, 5]). Furthermore, Droniou et al. [3] noticed that this framework contains
various methods such as Galerkin and some MPFA schemes.

This paper is arranged as follows. In Section 2, we present the definitions of
some concepts, which are necessary to construct gradient schemes and to prove their
convergence. In Section 3, we give an error estimate and a convergence proof in the
linear case. Since we deal here with nonconforming schemes, the technique used
in [6] is not useful to obtain error estimates. Although we use a similar technique as
in [5], dealing with variational inequalities in this nonconforming setting requires
us to establish new preliminary estimates, which modify the final error estimate.
Finally, Section 4 is devoted to prove a convergence result for non-linear equations.
Numerical experiments will be the purpose of a future work.
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2 Gradient discretisation and gradient schemes

Gradient schemes are based on gradient discretisations, which consist of discrete
spaces and mappings, and provide a general formulation of different numerical
methods. Except for the definition of consistency, the definitions presented here are
the same as in [3].

Definition 1. A gradient discretisation D for homogeneous Dirichlet boundary con-
ditions is defined by a triplet D = (XD ,0,ΠD ,∇D ), where

1. the set of discrete unknowns XD ,0 is a finite dimensional vector space of R,
2. the linear mapping ΠD : XD ,0 −→ L2(Ω) gives the reconstructed function,
3. the linear mapping ∇D : XD ,0 −→ L2(Ω)d gives a reconstructed discrete gradient,

which must be defined such that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm on XD ,0.

Throughout this paper, D is a gradient discretisation in the sense of Definition 1.
The gradient scheme associated to D for Problem (3) is given by

Find u ∈ KD = {v ∈ XD ,0 : ΠDv≤ g in Ω} such that, ∀v ∈ KD ,∫
Ω

Λ(x,ΠDu(x))∇Du(x) ·∇D (u(x)− v(x))dx ≤
∫

Ω

f (x)ΠD (u(x)− v(x))dx. (4)

Definition 2 (Coercivity, consistency, limit-conformity and compactness). Let
CD be the norm of linear mapping ΠD , defined by

CD = max
v∈XD ,0\{0}

‖ΠDv‖L2(Ω)

‖∇Dv‖L2(Ω)d
. (5)

A sequence (Dm)m∈N is called coercive if there exits CP ∈ R+ such that CDm ≤CP
for all m ∈ N.

We say that a sequence (Dm)m∈N is consistent if, for all ϕ ∈K, lim
m→∞

SDm(ϕ) = 0,

where SD : K −→ [0,+∞) is defined by

∀ϕ ∈ K, SD (ϕ) = min
v∈KD

(‖ΠDv−ϕ‖L2(Ω)+‖∇Dv−∇ϕ‖L2(Ω)d ). (6)

A sequence (Dm)m∈N is called limit-conforming if lim
m→∞

WDm(ϕ) = 0 for all ϕ ∈
Hdiv(Ω), where WD : Hdiv(Ω)−→ [0,+∞) is defined by

∀ϕ ∈ Hdiv(Ω), W (ϕ) = sup
v∈XD ,0\{0}

∣∣∣∫
Ω

(∇Dv ·ϕ +ΠDv ·div(ϕ))dx
∣∣∣

‖∇Dv‖L2(Ω)d
. (7)

A sequence (Dm)m∈N is called compact if, for any sequence (um)m∈N with um ∈
KDm and such that (‖um‖Dm)m∈N is bounded, the sequence (‖ΠDmum‖L2(Ω))m∈N is
relatively compact in L2(Ω).
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3 Convergence and Error Estimate in the Linear Case

We consider here Λ(x,u) = Λ(x). Based on the previous properties, we give an error
estimate that requires div(Λ∇ū) ∈ L2(Ω). We note that Brezis and Stampacchia [1]
establish an H2 regularity result on ū under proper assumption on the data. If we
further assume that Λ is Lipschitz-continuous, then div(Λ∇ū) ∈ L2(Ω).
In what follows, we define the interpolant PD : K −→ KD as follows

PDϕ = arg min
v∈KD

(‖ΠDv−ϕ‖L2(Ω)+‖∇Dv−∇ϕ‖L2(Ω)d ). (8)

Theorem 1. (Error estimate) Under Assumptions (2), let ū ∈ K be the solution
to Problem (1) and let D = {x ∈ Ω : ū(x) = g(x) in Ω}. If we assume that D is a
gradient discretisation and KD is a non-empty set, then there exists a unique solution
u∈KD to the gradient scheme (4). Moreover, if div(Λ∇ū)∈ L2(Ω) then this solution
satisfies the following inequalities:

‖∇Du−∇ū‖L2(Ω)d ≤
√

2
λ

ED (ū)+
1

λ
2 [WD (Λ∇ū)+λSD (ū)]2 +SD (ū), (9)

‖ΠDu− ū‖L2(Ω) ≤CD

√
2
λ

ED (ū)+
1

λ
2 [WD (Λ∇ū)+λSD (ū)]2 +SD (ū), (10)

in which ED (ū) =
∫

D
(div(Λ∇ū)+ f )(ū−ΠD (PD ū))dx.

Remark 1. Note that |ED (ū)| ≤ ‖div(Λ∇ū)+ f‖L2(Ω)‖ū−ΠD (PD ū)‖L2(Ω).

Proof. The techniques used in [5] and [7] will be followed in this proof.
Since KD is a closed convex set, we can apply Stampacchia’s theorem which states
that there exists a unique solution to Problem (4).
Under the assumption that div(Λ∇ū)∈ L2(Ω), we note that Λ∇ū∈Hdiv(Ω). For any
v ∈ XD ,0, replacing ϕ with Λ∇ū in the definition of limit conformity (7) therefore
implies∫

Ω

∇Dv ·Λ∇ūdx+
∫

Ω

ΠDv ·div(Λ∇ū)dx≤ ‖∇Dv‖L2(Ω)dWD (Λ∇ū). (11)

It is obvious that∫
Ω

ΠD (u−PD ū)div(Λ∇ū)dx =
∫

Ω

(ΠDu−g)(div(Λ∇ū)+ f )dx

+
∫

Ω

(g−ΠD (PD ū))(div(Λ∇ū)+ f )dx

−
∫

Ω

(ΠDu−ΠD (PD ū)) f dx.

Using (1) and u ∈ KD , we obtain
∫

Ω

(ΠDu−g)(div(Λ∇ū)+ f )dx≤ 0, so that
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ΠD (u−PD ū)div(Λ∇ū)dx ≤
∫

Ω

(g−ΠD (PD ū))(div(Λ∇ū)+ f )dx

−
∫

Ω

(ΠDu−ΠD (PD ū)) f dx

=
∫

Ω

(g− ū)(div(Λ∇ū)+ f )dx

+
∫

Ω

(ū−ΠD (PD ū))(div(Λ∇ū)+ f )dx

−
∫

Ω

(ΠDu−ΠD (PD ū)) f dx.

It follows, since ū is the solution to Problem (1),∫
Ω

ΠD (u−PD ū)div(Λ∇ū)dx ≤
∫

Ω

(ū−ΠD (PD ū))(div(Λ∇ū)+ f )dx

−
∫

Ω

(ΠDu−ΠD (PD ū)) f dx.

Because div(Λ∇ū)+ f = 0 in Ω \D, the above inequality becomes∫
Ω

ΠD (u−PD ū)div(Λ∇ū)dx ≤
∫

D
(ū−ΠD (PD ū))(div(Λ∇ū)+ f )dx

−
∫

Ω

(ΠDu−ΠD (PD ū)) f dx.

Using the definition of ED (ū), one has∫
Ω

ΠD (PD ū−u)div(Λ∇ū)dx ≥−ED (ū)−
∫

Ω

ΠD (PD ū−u) f dx.

From this inequality and setting v = PD ū−u ∈ XD ,0 in (11), we obtain∫
Ω

∇D (PD ū−u) ·Λ∇ūdx−
∫

Ω

f ΠD (PD ū−u)dx≤ ED (ū)

+‖∇D (PD ū−u)‖L2(Ω)dWD (Λ∇ū).

Since u is the solution to Problem (4), we get∫
Ω

Λ∇D (PD ū−u)[∇ū−∇Du]dx≤ ‖∇D (PD ū−u)‖L2(Ω)dWD (Λ∇ū)+ED (ū)

and, thanks to the definition of PD , we obtain

λ‖∇D (PD ū)−∇Du‖2
L2(Ω)d

≤ ‖∇D (PD ū)−∇Du‖L2(Ω)d [WD (Λ∇ū)+λSD (ū)]+ED (ū).

Applying Young’s inequality leads to

‖∇D (PD ū)−∇Du)‖ ≤
√

2
λ

ED (ū)+
1

λ
2 [WD (Λ∇ū)+λSD (ū)]2
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and, from ‖∇D (PD ū)−∇ū‖≤ SD (ū), Estimate (9) is achieved. Using (5), we obtain

‖ΠD (PD ū−u)‖ ≤CD

√
2
λ

ED (ū)+
1

λ
2 [WD (Λ∇ū)+λSD (ū)]2

which shows that (10) holds, owing to ‖ΠD (PD ū)− ū‖L2(Ω) ≤ SD (ū). ut

Remark 2. It can be seen in [5] that for most gradient schemes based on meshes,
WD and SD are O(h) (where h is the mesh size) if ū ∈ H2(Ω)∩H1

0 (Ω) and Λ is
Lipschitz-continuous. In these cases, Theorem 1 gives an O(

√
h) error estimate.

Given that div(Λ∇ū)+ f = 0 outside D and u = g on D, there is potential, if g is
constant or smooth, for the interplant PD to give a better approximation of ū on D.
The term ū−ΠD (PD ū) therefore may be much lower on D than SD (ū). This means
that ED is expected to be lower than O(h) and therefore that the error estimate could
be indeed better than O(

√
h) in practice.

From the above theorem and Remark, we can obtain the following convergence of
the scheme.

Corollary 1. (Convergence) Let (Dm)m∈N be a sequence of gradient discretisation
which is coercive, consistent and limit-conforming. Let ū be the exact solution to
Problem (3). Assume that KDm is non-empty set for any m ∈ N. If um ∈ KDm is the
solution to gradient scheme (4), then ΠDmum converges strongly to ū in L2(Ω) and
∇Dmum strongly converges in L2(Ω)d to ∇ū.

Remark 3. It is noted that the convergence proof and error estimate for linear equa-
tions are obtained without using compactness property.

4 Convergence in Non-Linear Case

In this section, we study the convergence of non-linear case written as Problem (1).
Such this non-linear equation can be seen in the seepage problems (see [10]).

Theorem 2. (Convergence) Under Hypotheses (2), let (Dm)m∈N be a sequence of
gradient discretisations, which is coercive, consistent, limit-conforming and com-
pact, and such that KDm is a non-empty set for any m. Then, for any m ∈ N, the
gradient scheme (4) has at least one solution um ∈ KDm and, up to a subsequence,
ΠDmum converges strongly in L2(Ω) to a weak solution ū of Problem (3), and ∇Dmum
strongly converges in L2(Ω)d to ∇ū.

Proof. We follow here the same approach used in [3].
Define the mapping T : v −→ u where for any v ∈ XD ,0, u ∈ KD is defined as the
solution to

for all w ∈ KD ,
∫

Ω

Λ(x,ΠDv)∇Du ·∇D (u−w)dx ≤
∫

Ω

f ΠD (u−w)dx.
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That is u is the solution to the variational inequality with the non-linearity in Λ

frozen to v. There is only one such u, so the mapping T is well defined, and it is
clearly continuous from XD ,0 into XD ,0. Since it sends all of XD ,0 inside a fixed ball
of this space (see estimate to follow), Brouwer’s theorem ensures the existence of a
fixed point u = T (u), which is a solution to the non-linear variational inequality.
Let ϕ ∈ K. Thanks to consistency, we can choose vm ∈ KDm defined as vm = PDmϕ

(see (8)). Setting u := um and v := vm ∈KDm in (4) and applying the Cauchy-Schwarz
inequality, we deduce

λ‖∇Dmum‖2
L2(Ω)d ≤ ‖ f‖(‖ΠDmum‖L2(Ω)+‖ΠDmvm‖L2(Ω))

+λ‖∇Dmvm‖L2(Ω)d‖∇Dmum‖L2(Ω)d .
(12)

Since ‖vm‖Dm is bounded, (12) can be written as

‖∇Dmum‖L2(Ω)d ≤C

in which C > 0 is constant. Using Lemma 1.13 in [2] (see also the proof of Theorem
3.5 in [3]), there exists a subsequence, still denoted by (Dm)m∈N, and ū ∈ H1

0 (Ω),
such that ΠDmum converges weakly to ū in L2(Ω) and ∇Dmum converges weakly to
∇ū in L2(Ω)d . Since um ∈ KDm , passing to the limit in ΠDmum shows that ū is in
K. Using the compactness hypothesis, we see that the convergence of ΠDmum to ū
is actually strong L2(Ω). Up to another subsequence, we can therefore assume that
this convergence is also true almost everywhere. To complete the proof, it remains
to prove the strong convergence of ∇Dmum and that ū is the solution to (3).
It is classical that if Um→U in L2(Ω)d , then ‖U‖L2(Ω)d ≤ liminf

m−→∞
‖Um‖L2(Ω)d . Using

the positiveness of Λ, the strong convergence of ΠDmum to ū and the weak conver-
gence of ∇Dmum to ∇ū, we can adapt the proof of this classical result to see that∫

Ω

Λ(x, ū)∇ū ·∇ūdx≤ liminf
m−→∞

∫
Ω

Λ(x,ΠDmum)∇Dmum ·∇Dmumdx. (13)

Thanks to the consistency of the gradient discretisations, ΠDm(PDmϕ)−→ϕ strongly
in L2(Ω) and ∇Dm(PDmϕ)−→ ∇ϕ strongly in L2(Ω)d . This later convergence and
the a.e. convergence of Λ(.,ΠDmum) show that Λ(·,ΠDmum)∇Dm(PDmϕ) converges
to Λ(·, ū)∇ϕ in L2(Ω). Using (13) and the fact that um is a solution to (4), we get∫

Ω

Λ(x, ū)∇ū ·∇ūdx ≤ liminf
m−→∞

[∫
Ω

f ΠDm(um−PDmϕ)dx

+
∫

Ω

Λ(x,ΠDmum)∇Dmum ·∇Dm(PDmϕ)dx
]

=
∫

Ω

f (ū(x)−ϕ(x))+
∫

Ω

Λ(x)∇ū(x) ·∇ϕ(x)dx.

This shows that ū is a weak solution to (3). Now, we prove the strong convergence
of the discrete gradients. For a given vm ∈ KDm , we have
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0 ≤ limsup
m−→∞

λ‖∇Dmum(x)−∇ū(x)‖2
L2(Ω)d

≤ limsup
m−→∞

∫
Ω

Λ(x,ΠDmum)(∇Dmum(x)−∇ū(x))(∇Dmum(x)−∇ū(x))dx

≤ limsup
m−→∞

[∫
Ω

f ΠDm(um(x)− vm(x))dx+
∫

Ω

Λ(x,ΠDmum)∇ū(x) ·∇ū(x)dx

−2
∫

Ω

Λ(x,ΠDmum)∇Dmum(x) ·∇ū(x)dx+
∫

Ω

Λ(x)∇Dmum(x) ·∇Dmvm(x)dx
]

since um is a solution to (4). Choosing vm = PDm ū in this inequality and passing to
the limit leads to limsupm−→∞ ‖L2(Ω)d ∇Dmum−∇ū‖ ≤ 0 and concludes the proof.

ut
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