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We study the numerical approximation to the solution of the steady convection–diffusion equation. The
diffusion term is discretized by using the hybrid mimetic method (HMM), which is the unified formula-
tion for the hybrid finite-volume (FV) method, the mixed FV method and the mimetic finite-difference
method recently proposed inDroniou et al. (2010, Math. Models Methods Appl. Sci., 20, 265–295).
In such a setting we discuss several techniques to discretize the convection term that are mainly adapted
from the literature on FV or FV schemes. For this family of schemes we provide a full proof of conver-
gence under very general regularity conditions of the solution field and derive an error estimate when
the scalar solution is inH2(Ω). Finally, we compare the performance of these schemes on a set of test
cases selected from the literature in order to document the accuracy of the numerical approximation in
both diffusion- and convection-dominated regimes. Moreover, we numerically investigate the behaviour
of these methods in the approximation of solutions with boundary layers or internal regions with strong
gradients.

Keywords: finite-volume methods; mimetic finite-difference methods; convection-diffusion equation;
convection-dominated flows; convergence analysis; error estimates.

1. Introduction

Many physical models of fluid flows involve partial differential equations (PDEs) with both convection
and diffusion terms, such as the Navier–Stokes equations, flows in porous media, etc. Analytical so-
lutions are not normally available for real applications and numerical approximations must be devised
in some way. For this purpose efficient numerical schemes based on finite and mixed finite element
and two-point finite volumes (FVs) have been developed for the numerical treatment of the diffusive
part of the equation. In such a framework a great amount of work has been done to investigate the
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connectionsbetween the lowest order Raviart–Thomas mixed finite-element (RT0 − P0) methods and
various cell-centred FV and finite-difference numerical formulations on meshes of simplexes and quadri-
laterals/hexahedrons. The relationship between the mixed finite-element method and the cell-centred
finite-difference method on rectangular meshes was first established inRussell & Wheeler(1983) and
further developed in subsequent papers (see, for example,Arbogastet al., 1998). Basically, it can be
shown that, by applying appropriate quadrature rules to the numerical formulation in theRT0 space
on rectangles, the vector variable (the velocity) is eliminated, thus reducing the method to a positive-
definite cell-centred finite-difference method for the scalar variable (the pressure). Using this approach,
classical cell-centred finite-difference methods on rectangular meshes are easily retrieved based on a
nine-point stencil for full tensor coefficients and a five-point stencil for a scalar (diagonal) tensor. Simi-
lar results are also obtainable on regular hexahedral meshes. These developments led to the formulation
of enhanced cell-centred finite differences (cf.Arbogastet al.,1998) that can handle general shape el-
ements (triangles, quadrilaterals and hexahedra) and are suitable for full tensor coefficients. A similar
relationship exists between theRT0−P0 schemeand the two-point FV formulation on triangular meshes
using triangle circumcentres. This relationship was originally established byBarangeret al. (1996) for
two-dimensional diffusion problems with scalar coefficients. This approach has been further developed
in Youneset al.(2004), which investigates the case of a full diffusion tensor in two and three dimensions
on meshes of simplexes.

Nonetheless, practical situations, such as those encountered in petroleum engineering, require com-
putational grids that are not structured or simple enough to make use of the methods mentioned above.
Thus, alternative and more sophisticated techniques have been developed in the last decade to approx-
imate the solution to diffusive equations on general grids. In this framework we mention, for instance,
the discontinuous Galerkin method (Arnold et al., 2002; Riviere, 2008, and references therein), the
multi-point flux approximation (Aavatsmarket al., 1998a,b;Wheeler & Yotov, 2006), the mimetic
finite-difference (MFD) method (Berndtet al.,2001;Hymanet al.,2002;Brezziet al.,2005a,b,2007,
2009;Kuznetsovet al.,2005;Beirão da Veiga, 2008;Beirão da Veiga & Manzini,2008a,b;Cangiani &
Manzini,2008;Beirão da Veigaet al.,2009b;Lipnikov et al.,2009, and references therein), the hybrid
FV method (Eymardet al., 2009) and the mixed FV method (Droniou & Eymard,2006; Chainais-
Hillairet & Droniou, 2007;Droniou & Eymard,2009). Strict correlations also exist among these nu-
merical approximations and with respect to the lowest order mixed finite-element method, and it is not
surprising that sometimes the lowest order schemes may belong to more than one of these families of
methods. For example, the first-order discontinuous Galerkin scheme can be easily reinterpreted as an
FV method. The lowest order Raviart–Thomas scheme on grids of simplexes (triangles in two dimen-
sions and tetrahedrons in three dimensions) is a member of the family of MFD methods (cf.Cangiani
& Manzini, 2008). Note, however, that on meshes of quadrilaterals and hexahedrons no connection has
yet been established between the MFD method in mixed form and the mixed finite-element method. We
also mention the paper byVohralik (2006) that outlined the relationship existing between the multi-point
flux approximation and the mixed finite-element method.

A remarkable fact has been recently discovered inDroniou et al. (2010), which showed that after
some generalization, a unified formulation exists for three of the methods cited above, namely, the
hybrid FV method, the mixed FV method and the MFD method. Consequently, these three methods are
members of the same family of discretization techniques. FollowingDroniouet al.(2010), we will refer
to such a family of numerical methods ashybrid mimetic mixedmethods or use the abbreviation HMM.

Since the HMM method can be considered as the meeting of two different frameworks, namely,
the mimetic/finite-element and the FV ones, the convective term can be naturally discretized using quite
different techniques depending on the adopted point of view on the scheme. There are, indeed, two

 at U
niversite D

'A
ix-M

arseille on N
ovem

ber 19, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 3 of 45

possible approaches: either the diffusive flux is approximated, and then some form of centred or upwind
approximation of the convection term is considered in the discretization of the divergence equation, or
the total flux, which includes both diffusive and convective terms, is approximated, which leads to a
centred-type approximation of the convection terms. The first approach is, perhaps, more popular in the
finite-difference and FV practitioner community (cf.Chainais-Hillairet & Droniou, 2009;Droniou &
Eymard,2009), while the second approach seems to be more popular in the finite-element practitioner
community. Nevertheless, it is worth mentioning that both approaches have been considered in the
framework of mixed finite-element methods (seeDouglas & Roberts,1982,1985;Jaffre & Roberts,
1985).

In the MFD setting a numerical discretization of the full diffusion and convection fluxes has been
proposed byCangianiet al. (2009). A proper reformulation of the mimetic scheme as a conforming
method, using the finite-dimensional subspace ofH(div,Ω) given by the lifting of the degrees of free-
dom of the vector variable, makes it possible to perform the convergence analysis in a very similar way
to that presented inDouglas & Roberts(1985).

From this overview we can conclude that several numerical discretizations of the convection–
diffusion equations that may fit in the HMM setting have been proposed in the literature. However, no
systematic study has been carried out so far on the possible ways, and related advantages and drawbacks,
in which a convective term can be treated numerically by using the more general HMM formulation. It
is our main goal in this work to perform such an investigation in order to assess the behaviour of such
methods both theoretically and numerically.

The plan of the paper is as follows. In Section2 we recall the principles of the HMM schemes for
the pure diffusion equation, and we discuss how to discretize the convection term, using some centred,
upwind or exponential fitting-like choice in accordance with a two-point FV flux formula (or, from the
point of view of finite elements, seeJaffre(1984) andDawson & Aizinger(1999)). We also show that
the numerical approximation proposed inCangianiet al.(2009), possibly with a stabilization term, is an
HMM method to which the theoretical analysis of the present paper applies. In Section3 we provide full
proofs of convergence under very general regularity conditions when the mesh size tends to zero and
derive error estimates in suitable mesh-dependent norms when the scalar solution is inH2(Ω). Section4
is devoted to the presentation and discussion of how various instances of the HMM discretizations
perform when applied to a set of standard test cases for the convection–diffusion equations, including
the approximation of solutions with boundary and internal layers. Finally, conclusions are given in
Section5.

2. The HMM formulation for convection–diffusion problems

2.1 The mathematical model

Let us consider the steady convection–diffusion equation

−div(Λ∇ p) + div(V p) = f in Ω, (2.1)

p = gD on ∂Ω (2.2)

under the following hypotheses:

(H1) Ω is a bounded, open, polygonal subset ofRd with d > 1;

(H2) Λ : Ω → Md(R) is a bounded, measurable, symmetric and uniformly elliptic tensor;
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4 of 45 B. DA VEIGA ET AL.

(H3) f ∈ L2(Ω);

(H4) V ∈ C1(Ω)d is such that div(V) > 0.

Moreover, let us introduce the diffusive flux and the total flux as follows:

F = −Λ∇ p and F̃ = F + V p. (2.3)

For simplicity, we will restrict the presentation of a the methods and the theoretical analysis to the case
of a homogeneous Dirichlet boundary condition by settinggD = 0 in (2.2) and we will consider the
nonhomogeneous case in the numerical experiments of Section4.

Under assumptions (H1)–(H4), the existence and uniqueness of a weak solution inH1
0 (Ω) to (2.1)

and (2.2) with gD = 0 is completely standard since the bilinear form associated with this problem is
continuous and coercive.

REMARK 2.1 TheC1 regularity assumption onV in (H4) can be weakened for the convergence study
(see Section3.1.3). We assume the smoothness of the convection field in order to simplify a little bit
some (already lengthy) technical arguments and also to prove error estimates.

2.2 Mesh notation and regularity

Let us begin with the definition of an admissible discretization ofΩ and the related notation.

DEFINITION 2.2 (Admissible discretization). An admissible discretization ofΩ is given by the triplet
Dh = (Ωh, Eh,Ph), where themesh size hwill be defined in the following and where the following
conditions hold.

• HereΩh is a finite family of nonempty open polygonal disjoint subsetsE of Ω, the cells of the
mesh, suchthatΩ =

⋃
E∈Ωh

E.

• HereEh is a finite family of nonempty open disjoint subsetse of Ω, thefacesof the mesh, such that,
for all e ∈ Eh, there exists an affine hyperplaneA of Rd anda cellE ∈ Ωh suchthate ⊂ (E\E)∩A.
We also assume that the following hold:

- for all E ∈ Ωh thereexists a subset∂E of Eh suchthat E\E =
⋃

e∈∂E e;

- for all e ∈ Eh eitherwe have thate ⊂ ∂Ω or we have thate ⊂ E ∩ E′ for some pair of elements
E, E′ ∈ Ωh with E 6= E′.

• HerePh is a family of points ofΩ indexed byE, that is,Ph = (xE)E∈Ωh , and such that each mesh
cell E is star shaped with respect toxE.

REMARK 2.3 When all of the mesh cells are convex shaped a convenient choice for the points(xE)E∈Ωh

is given, for instance, by the centre of gravity of the cells.

The d-dimensional measure of each cellE is denoted by|E| and the cell size byhE. As usual,
the mesh size is given byh = supE∈Ωh

hE. For consistency of notation,|e| andhe denotethe (d −
1)-dimensional measure of facee and the face diameter. For each facee ∈ Eh we let x̄e denotethe
barycentre ofe andne

E its normal direction pointing out ofE. Moreover, with each facee we associate
the unit normal vectorne, whose orientation is arbitrarily chosen whene is an internal face, and assumed
to be pointing out ofΩ whene is a boundary face. We denote the set of the internal faces byEh,int, that
is, Eh,int = {e ∈ Eh for e 6⊂ ∂Ω}, and the set of the boundary faces byEh,ext, that is,Eh,ext = {e ∈
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 5 of 45

Eh for e ⊂ ∂Ω}. We will find it convenient to denote the two cells that share an internal facee by E
and E′ and, where required, to fix the orientation ofe so thatne

E ∙ ne = 1. Finally, we introduce the
following geometric quantities that will be useful in the definition of the numerical convection flux in
Section2.4.1:

dE,e is the= distance betweenxE and the hyperplane containinge

and

de =

{
dE,e + dE′,e for any internal facee ∈ Eh,int,

dE,e for any boundary facee ∈ Eh,ext.

Figure1 illustrates some of this notation.
The proof of convergence forh → 0 that we present in Section3 requires the following very mild

geometrical assumptions on the meshes ofDh.

(G1) Every mesh cellE is star shaped with respect to the corresponding pointxE.

(G2) For any internal facee ∈ Eh,int let us introduceMe = {E, E′}, that is, the cells on the opposite
side ofe. Then the quantity

regul(Dh) = max

(
max

e∈Eh,int,(E,E′)∈Me

dE,e

dE′,e
, max

E∈Ωh,e∈∂E

hE

dE,e
, max

E∈Ωh
Card(∂E)

)
,

which expresses the mesh regularity, isuniformlybounded from above forh → 0.

In the mimetic framework a similar condition is often used, and we state this as follows.

(ME) [Star-shaped elements] There exists a positive numberτ ∗ such that each elementE is star shaped
with respect toall the points of a ball of radiusτ ∗hE centred atxE.

Stronger conditions on the mesh regularity are required to derive an error estimate for the HMM ap-
proximations to the exact solution and flux. We formulate these mesh regularity conditions ford = 3.
The restriction to other dimensions is straightforward.

FIG. 1. Mesh notation.
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(HG) [Shape regularity] There exist two positive real numbersNs andρs, independent ofh, such that
every meshΩh of the sequence admits a subpartition into tetrahedronsSh suchthat we have the
following.

(HG1) The decomposition of every polyhedronE ∈ Ωh, denoted bySh|E, is formed by at most
Ns tetrahedrons,and each vertex ofΩh is a vertex ofSh.

(HG2) Every tetrahedron ofSh is shaperegular in the sense that the ratio betweenrT , the radius
of its inscribed sphere, andhT , its diameter, is bounded from below byρs. Formally, we
have that

∀ T ∈ Sh :
rT

hT
> ρs > 0.

Fromthe above assumptions, several properties of the mesh that are useful in the error analysis of the
mimetic formulation can be derived. For the sake of the reader’s convenience, we list them below for
future reference in the paper.

(M1) There exist two positive integersNE and Ne that are independent ofh, E ∈ Ωh ande ∈ Eh

andsuch that every elementE has Card(∂E) 6 NE faces, and every facee has Card(∂e) 6 Ne

edges.

(M2) For any mesh elementE ∈ Ωh the quantities|E|, |e| for e ∈ ∂E and|l| for each edgel ∈ ∂e
properly scale with respect tohE. In particular, there exists a positive constanta∗ suchthat

a∗hd−1
E 6 |e|, a∗hE 6 he, a∗hd−2

E 6 |l|.

(M3) There exists a constantCAg thatis independent ofhE andsuch that (Brezziet al.,2005a)
∑

e∈∂E

||φ||2L2(e) 6 CAg(h−1
E ||φ||2L2(E)

+ hE|φ|2H1(E)
) (2.4)

for any functionφ ∈ H1(E). We will refer to (2.4) as theAgmon inequality.

(M4) For any functionq ∈ H2(E) thereexists alinear polynomialL1(q) interpolatingq anda constant
C, independent ofhE, such that (Brenner & Scott,1994)

||q − L1(q)||L2(E)+hE|q − L1(q)|H1(E)6Ch2
E|q|H2(E). (2.5)

2.3 Discretization of the diffusion term

To approximate (2.1) and (2.2) we introduce the space of thediscrete scalar fields Qh andthe space of
thediscrete flux fields Xh. The discrete scalarsq ∈ Qh aredefined by taking one degree of freedom per
cell, denoted byqE, that is,q = (qE)E∈Ωh . Therefore the spaceQh canbe identified with the space of
the piecewise constant polynomials defined onΩh. Similarly, thediscrete fluxesare defined by taking
one degree of freedom per face per element, denoted byFe

E, that is,F = (Fe
E)e∈∂E

E∈Ωh
, which represents

the normal flux across the facee in the directionne
E. We require that every fluxF ∈ Xh satisfiesthe

following flux conservation propertyat any internal face:

∀ e ∈ Eh,int, e ⊂ ∂E ∪ ∂E′ : Fe
E + Fe

E′ = 0, (2.6)

sothat the elements ofXh only possess one degree of freedom per face, and the sign ofFe
E dependson

the orientation of the facee with respect toE. The restriction of theF to the cellE ∈ Ωh is denoted by
FE = (Fe

E)e∈∂E andrepresents the collection of the normal fluxes in the directionsne
E for e ∈ ∂E. The
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 7 of 45

set of these vector fields forms the linear spaceXE. Throughout the paper we will also make use of the
symbol X̂h to denote the linear space of thediscontinuous fluxes, that is, of the vectors having the same
form F = (Fe

E)e∈∂E
E∈Ωh

but that do not satisfy condition (2.6). Note thatXh is a linear subspace of̂Xh.

Thenext ingredient of the HMM formulation is thediscrete divergence operatordivh : X̂h → Qh,
which is defined as follows:

∀ G ∈ X̂h, ∀E ∈ Ωh : (divh(G))E =
1

|E|

∑

e∈∂E

|e|Ge
E. (2.7)

With any sufficiently regular vector fieldG and scalar fieldq we associate the interpolated fields
GI ∈ Xh andqI ∈ Qh thatare given by

∀ e ∈ Eh : (GI )e =
1

|e|

∫

e
G ∙ ne and ∀ E ∈ Ωh : (qI )E =

1

|E|

∫

E
q. (2.8)

REMARK 2.4 The definition of the discrete divergence operator in (2.7) is consistent with the Gauss
divergence theorem for the interpolations of (2.8), so that the following commutation property holds:

(div(G))I = divh(G
I ). (2.9)

We endowQh with the usualL2(Ω) scalar product for piecewise constant functions, that is,
[∙, ∙]Qh := [∙, ∙]L2. On the other hand,Xh and X̂h areequipped with the scalar product

[F, G] X̂h
=

∑

E∈Ωh

[FE, GE]E (2.10)

thatassembles the locally defined scalar products [∙, ∙]E. The local scalar products([∙, ∙]E) satisfythe
following coercivity and consistency assumptions.

(S1) There exist two positive constantsσ∗ andσ ∗, independent of the mesh sizeh, such that, for every
mesh cellE, we have

σ∗|E|
∑

e∈∂E

(Ge
E)2 6 [G, G]E 6 σ ∗|E|

∑

e∈∂E

(Ge
E)2 ∀ G ∈ Xh .

(S2) For every elementE we have that

[(ΛE∇q1)I , G]E = −[divh(G), q1]L2(E) +
∑

e∈∂E

Ge
E

∫

e
q1

for all G ∈ Xh andall linear polynomialsq1, whereΛE is the cell average ofΛ.

REMARK 2.5 HereΛE is actually an approximation ofΛ|E, the restriction of the diffusion tensorΛ to
the cellE. To prove the convergence of the numerical solution in Section3.1, we only require that the
diffusion tensorΛ satisfy the regularity assumption (H2), while we need a stronger regularity condition
to derive the error estimates of Section3.2. In this latter case we will find it convenient to assume (H2)
and also thatΛ be locally Lipschitz continuous onΩh, that is, for allE ∈ Ωh, the components ofΛ|E
areLipschitz continuous functions onE. Consequently,ΛE canbe any constant approximation ofΛ|E
suchthat the estimate

max
i, j =1,d

sup
x∈E

|(ΛE)i j − Λi j (x)| = O(h)

holds.
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The construction of a family of scalar products satisfying the above assumptions whenxE is the
centre of gravity ofE can be found inBrezzi et al. (2005b). Moreover, in this case it was proved
in Droniouet al. (2010) that (S1) and (S2) lead necessarily to the following form:

∀(FE, GE) ∈ XE : [FE, GE]E = |E|ΛEvE(FE) ∙ vE(GE) + TE(GE)TBETE(FE), (2.11)

where

vE(FE) = −
1

|E|
Λ−1

E

∑

e∈∂E

|e|Fe
E(x̄e − xE) (2.12)

is a constant approximation of∇ p on the cellE, TE(FE) = (TE,e(Fe))e∈∂E is given by

TE,e(FE) = Fe
E + ΛEvE(FE) ∙ ne

E, (2.13)

andBE is a symmetric positive-definite matrix of size Card(∂E). More precisely, it turns out that the
matrixBE satisfiesthe following coercivity condition that is directly related to (S1).

(C) There exists a positive constantα, that is independent of the mesh size such that, for allE ∈ Ωh

andGE ∈ XE, we have that

α
∑

e∈∂E

|e|dE,e(TE,e(GE))2 6 TE(GE)TBETE(GE) 6
1

α

∑

e∈∂E

|e|dE,e(TE,e(GE))2.

If xE is not the barycentre ofE, then the same construction (2.11)–(2.13) still holds provided that (S2)
is modified by introducing a suitable integration weight (seeDroniouet al.,2010).

The HMM discretization of problem (2.1) and (2.2) withV = 0, which provides us with the desired
approximation of the diffusion operator, takes the following form:

find (ph, Fh) ∈ Qh × Xh suchthat

∀ G ∈ Xh : [Fh, G] X̂h
= [divh(G), ph]Qh, (2.14)

∀ q ∈ Qh : [divh(Fh), q]Qh = [ f, q]Qh . (2.15)

Here ph ∈ Qh andFh ∈ Xh arethe approximations topI andF I , the interpolations of the exact scalar
solution p and its fluxF = −Λ∇ p.

The HMM method can be easily hybridized through the introduction ofH(Eh), the space of face
valuesqEh = (qe)e∈Eh ∈ RCard(Eh) with qe = 0 for e ∈ Eh,ext, and imposing explicitly the flux conserva-
tion property (2.6). The discrete variational form (2.14) and (2.15) with [∙, ∙]E satisfying(2.11)–(2.13)
is equivalent to the following:

find (ph, Fh, pEh) ∈ Qh × X̂h × H(Eh) suchthat

∀ E ∈ Ωh, ∀ GE ∈ XE : [FE, GE]E =
∑

e∈∂E

|e|Ge
E(pE − pe), (2.16)

∀ E ∈ Ωh :
∑

e∈∂E

|e|Fe
E =

∫

E
f, (2.17)

∀ e ∈ Eh,int, : Fe
E + Fe

E′ = 0, (2.18)
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 9 of 45

whereE, E′ ∈ Ωh arethe two elements such thate ⊂ ∂E ∩ ∂E′ for everye ∈ Eh,int. Under suitable
assumptions on the regularity of the exact solutionp, the additional unknownspEh = (pe)e∈Eh approxi-
matethe face average of the exact solution over each mesh face. We will formalize this concept through
the introduction ofpJ ∈ H(Eh), the face interpolation ofp, in Section3.2(see equation (3.43)).

2.4 Discretization of the convective term

As discussed in Section 1, two different strategies can be considered for the numerical treatment of the
convection term in the HMM discretization of an elliptic problem. In the first strategy, which is reviewed
in Section2.4.1, we introduce some form of centred or upwind approximation of the convection term
in the discretization of the divergence equation provided by the HMM method (cf.Chainais-Hillairet &
Droniou,2009;Droniou & Eymard,2009). In the second strategy, which is reviewed in Section2.4.2,
the total flux, which includes both diffusive and convective terms, is approximated, thus leading to a
centred-type approximation of the convection terms (cf.Cangianiet al., 2009). Both approaches were
considered for the mixed finite-element method inDouglas & Roberts(1982,1985) andJaffre & Roberts
(1985). It turns out that, in the new framework of HMM methods, a unified formulation is possible,
which is the topic of Section2.4.3. We end this section with a discussion on an alternative hybridized
form of the numerical convection terms (Section2.4.4).

In the rest of this section we assume that the velocity fieldV is a continuous function with a contin-
uous derivative, that is,V ∈ C1(Ω)d. The cell restriction of its interpolation inXh is given by the set of
real numbers(Ve

E)e∈∂E ∈ XE suchthat

∀e ∈ ∂E : Ve
E =

1

|e|

∫

e
V ∙ ne

E. (2.19)

2.4.1 FV-baseddiscretizations. Several discretization schemes for the convection term are available
in the FV literature, for example, the second-order centred scheme, the first-order upwind scheme, theθ -
scheme, the Scharfetter–Gummel scheme, etc. In these methods, the convection flux of the exact solution
field p is approximated through the numerical convection flux of the discrete scalar fieldph ∈ Qh. This
numerical convection flux is given by the collection of real numbersFc(ph) = (Fc(ph)e

E)E∈Ωh,e∈∂E

suchthat

∀ E ∈ Ωh, ∀ e ∈ ∂E :
1

|e|

∫

e
Vp ∙ ne

E ≈ (Fc(ph))
e
E. (2.20)

We list below the schemes that we will explicitly consider in the section on numerical experiments. We
let E′ bethe cell on the other side ofe if e ∈ Eh,int andassume for notational simplicity thatpE′ = 0 if
e ∈ Eh,ext.

• Thesecond-order centered schemeis given by the approximation

1

|e|

∫

e
Vp ∙ ne

E ≈ (Fc(ph))
e
E = Ve

E
pE + pE′

2
.

• Thefirst-order upwind schemeis given by the approximation

1

|e|

∫

e
Vp ∙ ne

E ≈ (Fc(ph))e
E = (Ve

E)+ pE − (Ve
E)− pE′ ,

with s± = max(±s, 0).
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10of 45 B. DA VEIGA ET AL.

• Theθ -schemeis given by the approximation

1

|e|

∫

e
Vp ∙ ne

E ≈ (Fc(ph))e
E = (Ve

E)+((1 − θ)pE + θpE′) − (Ve
E)−((1 − θ)pE′ + θpE)

= (1 − 2θ)((Ve
E)+ pE − (Ve

E)− pE′) + θVe
E(pE + pE′),

with θ ∈ [0, 1/2]. This choice is clearly intermediate between the centred and the upwind schemes.

• TheScharfetter–Gummel scheme(Scharfetter & Gummel,1969) is given by the approximation

1

|e|

∫

e
Vp ∙ ne

E ≈ (Fc(ph))
e
E =

1

de
(Asg(deVe

E)pE − Asg(−deVe
E)pE′), (2.21)

with

Asg(s) =
−s

e−s − 1
− 1. (2.22)

Note that the first three approaches above can also be found in the finite-element literature (see, for
instance,Jaffre(1984) andDawson & Aizinger(1999)). As pointed out inChainais-Hillairet & Droniou
(2009), the Scharfetter–Gummel scheme inScharfetter & Gummel(1969) was written for an isotropic
homogeneous material, that is,Λ = I . In the original formulation, diffusion and convection terms were
simultaneously treated to define the numerical flux. Removing the diffusive part in the numerical flux
formulation allows us to obtain the formulas (2.21) and (2.22). This definition of a pure convective
flux through the simple elimination of the diffusive part is somewhat basic in the general caseΛ 6=
I , especially if some eigenvalues ofΛ are small. Although the above definition ofAsg ensuresthe
L2-stability of the scheme, it can give quite bad solutions in convection-dominated cases. This fact
can be understood if one comes back to the two-point FV scheme for−εΔp + div(V p) = f . Then
the choice (2.22) ensures the maximum principle of the scheme only ifε > 1, while the maximum
principle is lost numerically ifε < 1. When applying the Scharfetter–Gummel method to compute the
numerical convective flux, a better choice is provided by locally scalingAsg in accordance with the
smallest eigenvalue ofΛ. If e is the face betweenE andE′ andλe is the smallest eigenvalue ofΛE and
ΛE′ , then we use

Asg,Λ,e(s) = min(1,λe)Asg

(
s

min(1,λe)

)
(2.23)

insteadof Asg(s) in (2.21). In this way the numerical flux automatically and locally adjusts the upwind-
ing of the convection term depending on its strength with respect to the diffusive term without perturbing
the consistency property ofAsg. Note thatλe → 0 implies thatλeAsg(s/λe) → s+. Therefore, if the
local diffusion is very small, then this implementation of the Scharfetter–Gummel method allows the
flux to adjust to upwinding automatically, thus bringing enough numerical diffusion to ensure a better
stability.
Once an FV-based discretization of the convective term has been chosen, the divergence of the convec-
tion term in (2.1), that is, div(V p), is approximated onE by

(div(V p))I
E ≈

1

|E|

∑

e∈∂E

|e|(Fc(ph))e
E = divh(Fc(ph))|E
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 11of 45

and the HMM approximation to the model problem (2.1) and (2.2) then reads as follows:
find (ph, Fh) ∈ Qh × Xh suchthat

∀ G ∈ Xh : [Fh, G] X̂h
= [divh(G), ph]Qh, (2.24)

∀ q ∈ Qh : [divh(Fh + Fc(ph)), q]Qh = [ f I , q]Qh . (2.25)

2.4.2 MFD-baseddiscretizations. From a theoretical standpoint, MFDs have only very recently ap-
proached problems that are different to the pure diffusion one (see, for instance,Beirão da Veigaet al.,
2009a,2010;Beirão da Veiga,2010). To our knowledge, the only paper considering the development and
error analysis of convection–diffusion equations directly in the framework of MFD is that ofCangiani
et al. (2009). In this subsection we briefly review the formulation and the major convergence results of
the method considered in that paper, and we show how it can be reformulated as an HMM method.

Let H(div,Ω) be the space of vector fields all of whose components are square integrable functions
and that have square integrable divergence. Formally,

H(div,Ω) = {v ∈ (L2(Ω))d suchthat div(v) ∈ L2(Ω)}

is a Hilbert space when equipped with the scalar product

[v, u]H(div,Ω) =
∫

Ω
v ∙ u +

∫

Ω
div(v) div(u)

and the corresponding norm

||v||2H(div,Ω) = ||v||2L2(Ω)
+ ||div(v)||2L2(Ω)

.

In Cangianietal. (2009) a numerical approximation was considered to themixed variational formulation
of problem (2.1) and (2.2), which reads as follows (Brezzi & Fortin,1991):

find (F̃, p) ∈ (div,Ω) × L2(Ω) such that

∀ v ∈ H(div,Ω) : [Λ−1F̃, v]L2 − [ p, div(v)]L2 − [Λ−1Vp, v]L2 = 0, (2.26)

∀ q ∈ L2(Ω) : [div(F̃), q]L2 = [ f, q]L2, (2.27)

whereF̃ is the total vector flux defined in (2.3).
To discretize the convection term we transform the corresponding variational term as follows:

∀ v ∈ H(div,Ω) : [Λ−1Vp, v]L2 ≈
∑

E∈Ωh

∫

E
Λ−1

E Vp ∙ v −→ ∀ G ∈ Xh :
∑

E∈Ωh

pE[V I , G]E,

wherethe components of the interpolated velocity fieldV I ∈ Xh, that is,(V I )e
E for all E ∈ Ωh and

e ∈ ∂E, are given by (2.19), and the local scalar products are required to satisfy assumptions (S1) and
(S2). The mimetic variational formulation presented inCangianiet al. (2009) reads as follows:

find (F̃h, ph) ∈ Xh × Qh suchthat

∀G ∈ Xh : [ F̃h, G] X̂h
− [ ph, divh(G)]Qh −

∑

E∈Ωh

pE[V I , G]E = 0, (2.28)

∀q ∈ Qh : [divh(F̃h), q]Qh = [ f I , q]Qh . (2.29)
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12of 45 B. DA VEIGA ET AL.

Theconvergence analysis of this scheme was carried out inCangianiet al. (2009) under assumptions
on the grid regularity that are substantially equivalent to (HG) and (ME). When the scalar solutionp is
in H2(Ω) the analysis provides the following error estimate:

|||F̃h − F̃ I |||X̂h
+ |||ph − pI |||Qh 6 Ch||p||H2(Ω), (2.30)

where ||| ∙ |||X̂h
and ||| ∙ |||Qh are the norms induced by the inner products of the spacesX̂h and Qh,

respectively. It is worth mentioning that the approximation of the scalar variable is superconvergent
when the calculation is performed on a wide set of meshes. Superconvergence was also theoretically
proved under some stronger assumptions on the regularity of the domain shape, the source term and the
velocity field.

Despite convergence being proved forh → 0 this scheme is expected to become unstable when
the model problem is dominated by convection. This fact usually manifests through spurious effects
like numerical undershoots, overshoots or oscillations that may appear in the approximate solution. To
improve stability we modify the divergence equation by introducing a stabilization term that depends
on the solution’s jumps at mesh faces. We use the symbolsE andE′ to denote the two distinct cells that
share the facee whene is internal and assume the orientation ofe to be such thatne

E ∙ ne = 1. Let us
now introduce thejumpof the discrete scalar fieldqh ∈ Qh asfollows:

[[qh]]e =

{
qE − qE′ for e ∈ Eh,int,

qE for e ∈ Eh,ext.
(2.31)

Equation(2.29) is substituted by

∀ q ∈ Qh : [divh(F̃h) + Jh(ph), q]Qh = [ f I , q]Qh, (2.32)

wherethe stabilization termJh(ph) is given by

Jh(ph)|E =
α

2|E|

∑

e∈∂E

|e||(V I )e
E|[[ ph]]e, (2.33)

andα is a non-negative parameter that can be tuned to control the amount of numerical dissipation of
the scheme.

This approach formally differs from the method introduced in Section 2.4.1 for FV-based discretiza-
tions in that the convection term is numerically treated as part of the mimetic flux equation. However, it
is possible to ‘extract’ an explicit form of the numerical convection flux from the scheme given by equa-
tions (2.28) and (2.32) to reformulate it as an HMM method. For this purpose, we define the collection
of numbersFh = (Fe

E)E∈Ωh,e∈∂E by

Fe
E = F̃e

E − pE(V I )e
E. (2.34)

Equation(2.28) shows thatFh satisfies(2.14) and therefore plays the role of a purely diffusive flux.
Moreover, noting that the stabilization termJh(ph) is locally written as a balance of fluxes, that is, a
discrete divergence, allows us to identify the convective flux as

(Fc(ph))e
E = pE(V I )e

E +
α

2
|(V I )e

E|(pE − pE′) (2.35)
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 13of 45

(we let pE′ = 0 if e is a boundary edge), so that (2.32) is simply given by divh(Fh + Fc(ph)) = f I .
Thestabilized MFD scheme (2.28) and (2.32) can therefore be written as follows:

find ph ∈ Qh andFh ∈ X̂h suchthat

∀ G ∈ Xh : [Fh, G] X̂h
= [divh(G), ph]Qh, (2.36)

∀ q ∈ Qh : [divh(Fh + Fc(ph)), q]Qh = [ f I , q]Qh, (2.37)

∀ e ∈ Eh,int : (Fh + (Fc(ph))e
E + (Fh + (Fc(ph))

e
E′ = 0. (2.38)

Notethat the diffusive fluxFh andthe convective fluxFc(ph) arenot conservative in the sense of (2.6)
when considered separately and therefore belong to the linear spaceX̂h. However, their sum, that is,
Fh + Fc(ph), is conservative since it belongs toXh in view of equation (2.38).

2.4.3 Unified setting. A unified formulation exists for the numerical discretization of the convec-
tion term. This formulation includes the FV-based discretizations, as was noted inChainais-Hillairet &
Droniou(2009), and the MFD-based discretization (2.36)–(2.38). This fact makes it possible to simplify
the software implementation and carry out a unified theoretical analysis.

Let us consider two functionsA, B : R → R and choose the numerical convection flux as the
collection of real numbers

Fc(ph) = (Fc(ph)e
E)E∈Ωh,e∈∂E (2.39)

suchthat

∀ E ∈ Ωh, ∀ e ∈ ∂E : (Fc(ph))e
E :=

1

de
(A(deVe

E)pE + B(deVe
E)pE′). (2.40)

Sincein the MFD discretization of the convection term these flux components are not conservative, the
diffusive flux components cannot be conservative either and conservation must be imposed on the total
flux. The generic HMM approximation to the model problem (2.1) and (2.2) is thus written as follows:

find ph ∈ Qh andFh ∈ X̂h suchthat

∀ G ∈ Xh : [Fh, G] X̂h
= [divh(G), ph]Qh, (2.41)

∀ q ∈ Qh : [divh(Fh + Fc(ph)), q]Qh = [ f I , q]Qh, (2.42)

∀ e ∈ Eh,int : (Fh + (Fc(ph))e
E + (Fh + (Fc(ph))

e
E′ = 0. (2.43)

Theschemes presented in Sections 2.4.1 and 2.4.2 can all be included in this general setting, with
the following choices ofA andB:

• centred scheme: A(s) = Ace(s) := s
2 andB(s) = −Ace(−s) = s

2;

• upwindscheme:A(s) = Aup(s) := s+ andB(s) = −Aup(−s) = −s−;

• θ -scheme:A(s) = Aθ (s) := (1 − 2θ)Aup(s) + 2θAce(s) andB(s) = −Aθ (−s);

• Scharfetter–Gummel scheme: A(s) = Asg(s) definedby (2.22) andB(s) = −Asg(−s), and the
locally scaled Scharfetter–Gummel scheme is obtained by usingAsg,Λ,e definedby (2.23) instead of
Asg;

• stabilizedMFD scheme: A(s) = s + α
2 |s| andB(s) = −α

2 |s|.

 at U
niversite D

'A
ix-M

arseille on N
ovem

ber 19, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


14of 45 B. DA VEIGA ET AL.

Thefirst four choices in (2.40) lead to a conservative definition of the numerical convection flux, whereas
the last one does not. However, in all of the cases mentioned above, total conservation is ensured
by (2.43). We note that all of these choices ofA andB satisfy the following properties:

(AB1) A : R → R andB : R → R are Lipschitz-continuous functions andA(0) = B(0) = 0;

(AB2) A(s) + B(s) = s for any real numbers;

(AB3) One of the following two alternatives holds:

(AB3-s) A(s) + B(−s) = 0 andA(s) − B(s) > 0 for any real numbers;

(AB3-w) the functions → A(s) + B(−s) is odd and there existsC > 0 such thatA(s) − B(s) >
−C|s| for any real numbers.

We refer to (AB3-s) as thestrong (AB3) condition and to (AB3-w) as theweak (AB3) condition.
Assumption (AB3-s) is satisfied by all of the FV-based discretizations listed above, whereas the MFD-
based discretization satisfies (AB3-w). In fact, conditionA(s) + B(−s) = 0 in (AB3-s) is the one
ensuring the conservation of the numerical convection flux (2.40). On the other hand, the numerical
convection flux extracted from the MFD-based formulation satisfies (AB3-w) and hence is not conser-
vative. We will see in Section3 that assumptions (AB1)–(AB3) are enough to carry out the theoretical
analysis of the scheme in (2.39)–(2.43), with slightly different results depending on which alternative in
(AB3) is satisfied.

REMARK 2.6 It is worth noting that equation (2.42) can be rewritten in an FV form as the following
cell-based flux balance equation:

∀ E ∈ Ωh :
∑

e∈∂E

|e|(Fe
E + (Fc(ph))e

E) =
∫

E
f. (2.44)

REMARK 2.7 We could also choose, in (2.40), different functionsA = Ae and B = Be for each
edgee, provided that all these functions satisfy (AB1)–(AB3) and that their Lipschitz constants remain
uniformly bounded as the mesh size tends to 0. This setting would allow the scheme to make a finer
tuning of the numerical diffusion due to upwinding, thus better adapting the scheme behaviour to the
location inside the domain or the local geometry of the mesh.

2.4.4 An alternative hybrid discretization of the convection term.An alternative discretization of the
convection term is possible by using the hybridized valuepe in (2.40) instead ofpE′ , an idea introduced
in Arnold & Brezzi (1985). In such a case we define the numerical convection flux of the discrete scalar
field described by(ph, pEh) ∈ Qh × H(Eh) asthe collection of real numbers

Fc,Eh(ph, pEh) = ((Fc,Eh(ph, pEh))
e
E)E∈Ωh,e∈∂E (2.45)

suchthat

∀ E ∈ Ωh, ∀ e ∈ ∂E : (Fc,Eh(ph, pEh))
e
E =

1

de
(A(deVe

E)pE + B(deVe
E)pe). (2.46)

Thesubstantial difference with the preceding choice (2.40) is that no property ofA andB ensures that
the fluxesFc,Eh(ph, pEh) areconservative (and they are not in general). However, this will not bring
any additional difficulty in the theoretical study provided that the following weaker form of (AB3) is
considered.
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 15of 45

(AB3h) One of the following strong or weak alternatives holds:

(AB3h-s) A(s) − B(s) > 0 for any real numbers;

(AB3h-w) there existsC > 0 such thatA(s) − B(s) > −C|s| for any real numbers.

The hybrid HMM formulation can then be written as follows:
find (ph, Fh, pEh) ∈ Qh × X̂h × H(Eh) suchthat

∀ E ∈ Ωh, ∀ GE ∈ XE : [FE, GE]E =
∑

e∈∂E

|e|Ge
E(pE − pe), (2.47)

∀ E ∈ Ωh :
∑

e∈∂E

|e|(Fe
E + (Fc,Eh(ph, pEh))

e
E) =

∫

E
f, (2.48)

∀ e ∈ Eh,int : (Fh + (Fc,Eh(ph, pEh))
e
E + (Fh + (Fc,Eh(ph, pEh))

e
E′ = 0, (2.49)

where the local scalar products used in (2.47) satisfy (S1) and (S2) and may thus be given in the
form (2.11)–(2.13).

REMARK 2.8 An important advantage of discretizing the convective fluxes by using (2.45) and (2.46) in-
stead of (2.39) and (2.40) is that the unknownsph andFh in the resulting numerical formulation (2.47)–
(2.49) can be eliminated bystatic condensation, that is, through a local Gaussian elimination (this
classical technique is not directly applicable to (2.39) and (2.40)). This procedure, which is common
for hybrid mixed finite elements, provides a reduced linear system in the face unknownspEh . Moreover,
when the discretization of the convection term increases significantly the numerical diffusion, as, for
example, in the case of the upwind scheme, the hybrid version of the HMM method is likely to be less
diffusive than that provided by (2.39) and (2.40).

3. Theoretical study

In the present section we develop the theoretical analysis for the class of methods that we wish to investi-
gate in this work. In Section3.1we prove the convergence of the numerical approximations to the exact
solution and its gradient. The analysis is based on a compactness argument, which is common in the
FV literature, under the weaker assumptions of mesh regularity (G1) and (G2) (see also Definition2.2).
In Section3.2 we prove anO(h) convergence rate for the numerical approximation of both the scalar
solution and the flux. The analysis involves stability and consistency arguments, which are in the MFD
(and finite-element method) literature, under the stronger mesh regularity assumptions (HG) and (ME).

Let us introduce the mesh-dependent norms for the spacesXh and Qh. Let Dh be an admissible
mesh in accordance with Definition2.2 that satisfies (G1) and (G2) or, alternatively, (HG) and (ME).
The scalar product in̂Xh inducesthe norm

|||G|||2
X̂h

= [G, G] X̂h
∀ G ∈ X̂h, (3.1)

andits local counterpart

|||G|||2E = [GE, GE]E ∀ GE ∈ XE. (3.2)

Theelements ofQh canbe identified with theΩh-piecewise constant functions and the scalar prod-
uct in Qh is, in fact, theL2 scalarproduct for such functions. Therefore it is quite natural to consider
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16of 45 B. DA VEIGA ET AL.

theL2 norm.However, we will also find it useful to carry out the analysis by using the discreteH1
0 -like

norm

||qh||1,Dh =




∑

E∈Ωh

∑

e∈∂E

|e|dE,e

(
|qE − qE′ |

de

)2




1/2

∀ qh ∈ Qh, (3.3)

where E′ is the cell on the other side ofe ∈ ∂E ∩ Eh,int and, to ease notation, we takeqE′ = 0 if
e ∈ ∂E ∩ Eh,ext. We will also need the following discreteH1 normon Qh × H(Eh):

||(qh, qEh)||1,Dh,Eh =




∑

E∈Ωh

∑

e∈∂E

|e|

dE,e
|qE − qe|

2





1/2

∀(qh, qEh) ∈ Qh × H(Eh). (3.4)

It is easy to see that this norm is stronger than (3.3). More precisely, ifθ > regul(Dh), then there exists
a constantC that is only dependent onθ such that, for all(qh, qEh) ∈ Qh × H(Eh), we have that

||qh||1,Dh 6 C||(qh, qEh)||1,Dh,Eh . (3.5)

In the following developments we will number all constants whose value may be zero depending on
which alternative is considered in (AB3), that is, the strong (AB3-s) or the weak (AB3-w) condition.
We will also use the symbol. to indicate an upper bound that holds up to a positive multiplicative
constant that is independent ofh. However, we will trace explicitly the constants where required by the
proofs or that may be zero depending on the choice of assumption (AB3).

LEMMA 3.1 Let us assume that (H1)–(H3) hold. LetDh bean admissible discretization ofΩ such that
θ > regul(Dh), and letFc(q) bethe convective flux ofq ∈ Qh given by (2.39) and (2.40) for the vector
field V ∈ C1(Ω)d with A andB satisfyingassumptions (AB1)–(AB3). Then there exists a non-negative
constantC1 > 0 that only depends onθ, V, A and Bsuch that

∀(q, qEh) ∈ Qh × H(Eh) :

1

2

∫

Ω
q2div(V) 6

∑

E∈Ωh

∑

e∈∂E

|e|(Fc(q))e
E(qE − qe) + C1h||(q, qEh)||

2
1,Dh,Eh

, (3.6)

andwhereC1 = 0 if (AB3-s) holds.

Proof. By gathering the sum by faces, we transform the term involvingFc(q) on the right-hand side
of (3.6) as follows:

∑

E∈Ωh

∑

e∈∂E

|e|(Fc(q))e
E(qE − qe) =

∑

e∈Eh

|e|((Fc(q))e
E(qE − qe) + (Fc(q))e

E′(qE′ − qe))

=
∑

e∈Eh

|e|(Fc(q))e
E(qE − qE′) (3.7)

+
∑

e∈Eh

|e|((Fc(q))e
E + (Fc(q))e

E′)(qE′ − qe).
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 17of 45

To handle the first term on the right-hand side of (3.7) we note that, by using (2.40) and writing, due to
(AB2),

A(deVe
E) = 1

2(deVe
E + A(deVe

E) − B(deVe
E)),

B(deVe
E) = 1

2(deVe
E + B(deVe

E) − A(deVe
E)),

(3.8)

wehave

(Fc(q))e
E =

1

2
Ve

E(qE + qE′) +
1

2de
(A(deVe

E) − B(deVe
E))(qE − qE′).

Thereforewe infer that

∑

e∈Eh

|e|(Fc(q))e
E(qE − qE′) =

1

2

∑

e∈Eh

|e|Ve
E(qE + qE′)(qE − qE′)

+
1

2

∑

e∈Eh

|e|

de
(A(deVe

E) − B(deVe
E))(qE − qE′)2. (3.9)

Then,let us observe that
∑

e∈Eh

|e|(qE − qE′)2 .
∑

E∈Ωh

∑

e∈∂E

|e|(qE − qe)
2 . h||(q, qEh)||

2
1,Dh,Eh

. (3.10)

By using (AB3), the conservation of(Ve
E)E∈Ωh,e∈∂E, the fact that

∑
e∈∂E |e|Ve

E =
∫

E div(V), and
inequality (3.10), we obtain the following estimate:

∑

e∈Eh

|e|(Fc(q))e
E(qE − qE′) >

1

2

∑

e∈Eh

|e|Ve
E(q2

E − q2
E′) − C2

∑

e∈Eh

|e|(qE − qE′)2

>
1

2

∑

E∈Ωh

q2
E

∑

e∈∂E

|e|Ve
E − C3h||(q, qEh)||

2
1,Dh,Eh

>
1

2

∫

Ω
q2div(V) − C3h||(q, qEh)||

2
1,Dh,Eh

, (3.11)

whereC2 andC3 only depend onθ, V, A andB, andC2 = C3 = 0 if (AB3-s) holds.
From (2.40) and sinceVe

E = −Ve
E′ , we have

(Fc(q))e
E + (Fc(q))e

E′ =
1

de
([ A(deVe

E) + B(−deVe
E)]qE + [B(deVe

E) + A(−deVe
E)]qE′).

If (AB3-s) holds, then this quantity is equal to zero (this is the conservation of the convective flux), and
if (AB3-w) holds, then we have, due to (AB1), that

|(Fc(q))e
E + (Fc(q))e

E′ | =
1

de
|(A(deVe

E) + B(−deVe
E))(qE − qE′)| 6 C4||V ||∞|qE − qE′ |
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18of 45 B. DA VEIGA ET AL.

for someC4 thatis only dependent onA andB. Writing |qE − qE′ | 6 |qE − qe| + |qe − qE′ | andagain
using inequality (3.10) allows us to estimate the last term of (3.7) as follows:
∣
∣
∣
∣
∣
∣

∑

e∈Eh

|e|((Fc(q))e
E + (Fc(q))e

E′)(qE′ − qe)

∣
∣
∣
∣
∣
∣
6 C5

∑

E∈Ωh

∑

e∈∂E

|e|(qE − qe)
2 6 C5h||(q, qEh)||

2
1,Dh,Eh

,

(3.12)
whereC5 only depends onV , A andB, and we have thatC5 = 0 if (AB3-s) holds.

The proof terminates by gathering inequalities (3.11) and (3.12) into (3.7). �

3.1 Convergence of the method

3.1.1 Preliminary results. Proposition3.2below is the key point in the study of the scheme (2.39)–
(2.43) since it gives the inequality leading to the basica priori estimates of the solution error. To state
this proposition, we first note that, due to (2.41), we can introduce the set of face valuespEh ∈ H(Eh)
suchthat (2.47) holds even ifFh is not conservative. For this purpose, we simply definepe through
|e|(pE − pe) = [FE, GE(E, e)]E, whereGE(E, e)e = 1 andGE(E, e)e′ = 0 for e 6= e′. Then, taking
the vectorG ∈ Xh that vanishes on all mesh faces excepte and is such thatGe

E = 1 andGe
E′ = −1

in (2.41) allows us to show thatpe doesnot depend on the choice of the cellE such thate ∈ ∂E. This
definition also ensures thatpe = 0 whenevere ∈ Eh,ext.

PROPOSITION 3.2 Let us assume that (H1)–(H3) hold. LetDh be an admissible discretization ofΩ
such thatθ > regul(Dh), and letFc(q) bethe convective flux ofq ∈ Qh given by (2.39) and (2.40) for
the vector fieldV ∈ C1(Ω)d with A andB satisfyingassumptions (AB1)–(AB3). Then, for all solutions
(ph, Fh) to the HMM scheme (2.41)–(2.43) we have

∑

E∈Ωh

[FE, FE]E +
1

2

∫

Ω
div(V)p2

h 6
∫

Ω
f ph + C1h||(ph, pEh)||

2
1,Dh,Eh

, (3.13)

whereC1, which is the same constant as in Lemma3.1, is non-negative, only depends onθ, V, A andB,
and is zero when (AB3-s) holds.

Proof. Let us takeq = ph in (2.42), use the flux conservation (2.43) and property (2.47) of face values
to obtain the following:

∫

Ω
f ph =

∑

E∈Ωh

∑

e∈∂E

|e|(Fe
E + (Fc(ph))

e
E)pE

=
∑

E∈Ωh

∑

e∈∂E

|e|(Fe
E + (Fc(ph))

e
E)(pE − pe)

=
∑

E∈Ωh

[FE, FE]E +
∑

E∈Ωh

∑

e∈∂E

|e|(Fc(ph))e
E(pE − pe). (3.14)

Theproposition follows by applying Lemma3.1with q = ph andqEh = pEh . �

COROLLARY 3.3 Under the assumptions of Proposition3.2, if V satisfies (H4) then, for all solutions
(ph, Fh) to the scheme (2.41)–(2.43), we have

||(ph, pEh)||
2
1,Dh,Eh

. || f ||L2(Ω)||ph||L2(Ω) + C1h||(ph, pEh)||
2
1,Dh,Eh

, (3.15)
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whereC1, which is the same constant as in Lemma3.1 and Proposition3.2, is non-negative, only
depends onθ, V, A andB, and is zero when (AB3-s) holds.

In particular, for allh small enough (or anyh if (AB3-s) holds) the scheme (2.41)–(2.43) has a
unique solution.

Proof. We apply Proposition3.2 and use (H4) and the form (2.11)–(2.13) of the local scalar products
([∙, ∙]E)E∈Ωh to write, due to (C),

∑

E∈Ωh

|E| |vE(FE)|2 + α
∑

E∈Ωh

∑

e∈∂E

|e|dE,e|TE,e(FE)|2 6
∫

Ω
f ph + C1h||(ph, pEh)||

2
1,Dh,Eh

. (3.16)

From(2.47) and (2.11)–(2.13) we have

|e|(pE − pe) = |E|ΛEvE(FE) ∙ vE(GE(e)) + TE(GE(e))TBETE(FE), (3.17)

whereGE(e) ∈ XE is equal to 1 on the facee and 0 on the other faces. ButvE(GE(e)) = − 1
|E|Λ

−1
E |e|

(x̄e − xE), and thus, by the bound on regul(Dh), we have|vE(GE(e))| . |e|dE,e
|E| , and for alle′ ∈ ∂E we

have |TE,e′(GE(e))| . |GE(e)e′
| + |e|dE,e

|E| . In particular, by using the Cauchy–Schwarz inequality and
(C) since

∑
e′∈∂E |e′|dE,e′ = d|E|, we obtain

|TE(GE(e))TBETE(FE)| .

(
∑

e′∈∂E

|e′|dE,e′ |TE,e′(GE(e))|2
)1/2( ∑

e′∈∂E

|e′|dE,e′ |TE,e′(FE)|2
)1/2

.

(

|e|dE,e +
|e|2d2

E,e

|E|

)1/2(∑

e′∈∂E

|e′|dE,e′ |TE,e′(FE)|2
)1/2

.

Whensubstituted into (3.17), this estimate and|E| |vE(GE(e))| . |e|dE,e leadto

|pE − pe| . dE,e|vE(FE)| +

(
dE,e

|e|
+

d2
E,e

|E|

)1/2(∑

e′∈∂E

|e′|dE,e′ |TE,e′(FE)|2
)1/2

.

We then obtain, from (3.16), that

∑

E∈Ωh

∑

e∈∂E

|e|

dE,e
|pE − pe|

2 .
∑

E∈Ωh

∑

e∈∂E

|e|dE,e|vE(FE)|2

+
∑

E∈Ωh

∑

e∈∂E

(
1 +

|e|dE,e

|E|

)(∑

e′∈∂E

|e′|dE,e′ |TE,e′(FE)|2
)

.
∫

Ω
f ph + C1h||(ph, pEh)||

2
1,Dh,Eh

,

andthe proof of (3.15) is completed.
The existence and uniqueness of the numerical solution readily follow from (3.15). In fact, when the

right-hand sidef vanishes, this inequality implies that the mesh-dependent norm||(ph, pEh)||1,Dh,Eh is
zeroand thus that(ph, pEh) arezero at least for a sufficiently small mesh sizeh. In such a case, the
numerical fluxFh is also zero by (2.47). �
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20of 45 B. DA VEIGA ET AL.

REMARK 3.4 (Estimates for the hybrid discretization of the convection). For the hybrid discretization
in (2.45)–(2.49) withA andB satisfying (AB1), (AB2) and (AB3h) a result holds that is similar to that
given in Proposition3.2 and Corollary3.3. However, the proof is simpler. In fact, by using (3.8), we
have that

∑

E∈Ωh

∑

e∈∂E

|e|(Fc,Eh(q, qEh))
e
E(qE − qe) =

1

2

∑

E∈Ωh

∑

e∈∂E

|e|Ve
E(qE + qe)(qE − qe)

+
1

2

∑

E∈Ωh

∑

e∈∂E

|e|

de
(A(deVe

E) − B(deVe
E))(qE − qe)

2.

The right-hand side of this equation is similar to the right-hand side of (3.9) with qe insteadof qE′

and,reasoning as in the proof of Lemma3.1, can be bounded from below by the the right-hand side of
(3.11). The resulting estimate is then used in (3.14) with Fc,Eh(ph, pEh) insteadof Fc(ph) in order to
prove Proposition3.2.

We conclude this preliminary subsection by reporting two technical lemmas that we will use in
the analysis of the next subsection. The first lemma is a direct consequence ofEymardet al. (2009,
Lemmas 5.2 and 5.3) and, for this reason, is given without proof.

LEMMA 3.5 (Discrete Sobolev inequalities). LetDh bean admissible discretization ofΩ in the sense
of Definition 2.2with θ > 0 and such thatθ 6 dE,e

dE′,e
6 θ−1 for all e ∈ Eh,int. Let r = 2d

d−2 if d > 2 and

r < +∞ if d = 2. Then there exists a real positive constantC that only depends onΩ, θ andr such
that, for allqh ∈ Qh, we have||qh||Lr (Ω) 6 C||qh||1,Dh .

Let vh(Fh) denotethe piecewise constant function that is equal tovE(FE) on E ∈ Ωh asdefined
in (2.12).

LEMMA 3.6 (Discrete Rellich theorem). LetΛ: Ω → Md(R) be a diffusion tensor satisfying hy-
pothesis (H2). Let(Dh)h→0 be a family of admissible discretizations ofΩ in the sense of Defini-
tion 2.2 with mesh sizeh tending to 0 and satisfying the regularity assumptions (G1) and (G2). Let
(ph, pEh) ∈ Qh × H(Eh) be a numerical scalar field such that||(ph, pEh)||1,Dh,Eh remainsbounded
ash → 0. Let Fh = (Fe

E)E∈Ωh , e∈∂E be a collection of numbers that satisfy equation (2.47) for the
assigned(ph, pEh), with the local scalar products defined according to (2.11)–(2.13).

Then there exists a scalar fieldp ∈ H1
0 (Ω) such that, up to a subsequence ash → 0, the following

hold:

(i) ph → p in Lr (Ω) for all r < 2d
d−2;

(ii) vh(Fh) → ∇ p weakly inL2(Ω)d.

Proof. Using Lemma 5.6 ofEymardet al. (2009), Lemma3.5, Vitali’s theorem and the fact that the
quantity||(ph, pEh)||1,Dh,Eh is uniformly bounded, ensures that(ph)h→0 is relatively compact inLr (Ω)

for all r < 2d
d−2. After defining the discrete gradient̃∇(ph, pEh) : Ω → Rd by

∀ E ∈ Ωh, ∀ x ∈ E : ∇̃(ph, pEh)(x) =
1

|E|

∑

e∈∂E

|e|(pe − pE)ne
E,

we see from the bound on||(ph, pEh)||1,Dh,Eh that ∇̃(ph, pEh) remainsbounded inL2(Ω)d. The tech-
nique used to prove Lemma 5.7 ofEymardet al. (2009) ensures that, ifph → p in L2(Ω) (up to a
subsequence), thenp belongs toH1

0 (Ω) and∇̃(ph, pEh) is weakly convergent to∇ p in L2(Ω)d. The
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lemma is therefore true since the argument discussed inDroniouet al. (2010, Remark 2.7) implies that
∇̃(ph, pEh) = vh(Fh) if (ph, pEh, Fh) arelinked through (2.11)–(2.13) and (2.47). �

3.1.2 Convergence without regularity assumption.Let us consider the HMM method on(Dh)h→0, a
family of meshes that are admissible according to Definition2.2, with mesh sizeh tending to 0 and all of
which satisfy the regularity conditions (G1) and (G2). We also assume that all of the local scalar products
in the scheme formulation are defined by (2.11)–(2.13) through a set of symmetric and positive-definite
matrices(BE)E∈Ωh that satisfy the coercivity condition (C). Moreover, the numerical convection flux
Fc(ph) in (2.42) is constructed by using (2.39) and (2.40) through some instance of the functionsA and
B that satisfy (AB1)–(AB3). Finally, we recall thatvh(Fh) : Ω → Rd is the piecewise constant function
that is equal tovE(FE) on E for all E ∈ Ωh. The convergence result of this subsection is stated in the
following theorem.

THEOREM 3.7 Let p ∈ H1
0 (Ω) be the weak solution to (2.1) and (2.2) under assumptions (H1)–(H4),

and let(ph, Fh) be the numerical solution to problem (2.41)–(2.43) constructed along the guidelines
summarized above. Then, forh → 0, the following hold:

(i) ph → p in Lr (Ω) for all r < 2d
d−2;

(ii) vh(Fh) → ∇ p in L2(Ω)d.

Proof. The proof of Theorem3.7 is based on compactness tools developed for mixed FV or hybrid
FV for the pure diffusion equation (Droniou & Eymard, 2006;Eymardet al., 2009) and on techniques
from classical FV schemes (Eymardet al.,2000;Chainais-Hillairet & Droniou,2009) for handling the
numerical convection term. We report the full proof for the sake of completeness since none of these
methods has ever been formulated in the new HMM framework.

Step 1: Compactness of the approximate solutions. Using Corollary3.3, we have||(ph, pEh)||
2
1,Dh,Eh

. || f ||L2(Ω)||ph||L2(Ω) (at least forh small enough if (AB3-s) does not hold). In view of Lemma3.5and
inequality (3.5), we obtain an upper bound on||(ph, pEh)||1,Dh,Eh . Then the result of Lemma3.6implies
the existence of a functionp ∈ H1

0 (Ω) such that, up to a subsequence,ph → p in Lr (Ω) for all
r < 2d

d−2 andvh(Fh) → ∇ p weaklyin L2(Ω)d.

Step2: The limit function p is the weak solution to (2.1) and (2.2). Since the exact solution is
unique, this step allows us to prove the convergence top of the whole sequence of discrete solutionsph

for h → 0. We takeϕ ∈ C∞
c (Ω), defineϕh ∈ Qh by ϕh = ϕ(xE) on E ∈ Ωh andsubstituteq = ϕh

into (2.42). SinceFh + Fc(ph) is conservative, we obtain
∫

Ω
f ϕh =

∑

E∈Ωh

∑

e∈∂E

|e|Fe
E(ϕ(xE) − ϕ(x̄e))

+
∑

E∈Ωh

∑

e∈∂E

|e|(ϕ(xE) − ϕ(x̄e))
1

de
(A(deVe

E)pE + B(deVe
E)pE′)

=
∑

E∈Ωh

∑

e∈∂E

|e|Fe
E(xE − x̄e) ∙ ∇ϕ(xE) +

∑

E∈Ωh

∑

e∈∂E

|e|Fe
E Rh

E,e(ϕ)

+
∑

E∈Ωh

∑

e∈∂E

|e|(ϕ(xE) − ϕ(x̄e))
1

de
(A(deVe

E) + B(deVe
E))pE
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+
∑

E∈Ωh

∑

e∈∂E

|e|(ϕ(xE) − ϕ(x̄e))
1

de
B(deVe

E)(pE′ − pE)

= T1 + T2 + T3 + T4, (3.18)

wherethe residual termRh
E,e(ϕ) in T2 is such that|Rh

E,e(ϕ)| . dE,eh||∇2ϕ||∞.
By (2.12), we have that

T1 =
∑

E∈Ωh

|E|ΛEvE(FE) ∙ ∇ϕ(xE) =
∫

Ω
Λvh(Fh) ∙ (∇ϕ)h,

where(∇ϕ)h = ∇ϕ(xE) on E ∈ Ωh. The regularity ofϕ together with the weak convergence ofvh(Fh)
impliesthat

T1 −→
∫

Ω
Λ∇ p ∙ ∇ϕ ash −→ 0. (3.19)

From (2.13) we have|Fe
E| . |TE,e(FE)| + |vE(FE)| and,since||ph||L2(Ω) and||(ph, pEh)||1,Dh,Eh

arebounded, inequality (3.16) implies that

∑

E∈Ωh

∑

e∈∂E

|e|dE,e|F
e
E| 6




∑

E∈Ωh

∑

e∈∂E

|e|dE,e





1/2


∑

E∈Ωh

∑

e∈∂E

|e|dE,e|F
e
E|2





1/2

. 1

(
recallthat

∑
e∈∂E |e|dE,e = d|E|

)
. Therefore we obtain that

|T2| . h||∇2ϕ||∞ −→ 0 ash −→ 0. (3.20)

Assumption (AB2) makes it possible to show that

T3 =
∑

E∈Ωh

pE

∑

e∈∂E

|e|(ϕ(xE) − ϕ(x̄e))V
e
E

=
∑

E∈Ωh

pEϕ(xE)
∑

e∈∂E

|e|Ve
E −

∑

E∈Ωh

pE

∑

e∈∂E

|e|ϕ(x̄e)V
e
E

=
∫

Ω
phϕhdiv(V) −

∑

E∈Ωh

pE

∑

e∈∂E

∫

e
ϕV ∙ ne

E +
∑

E∈Ωh

pE

∑

e∈∂E

∫

e
(ϕ − ϕ(x̄e))V ∙ ne

E

=
∫

Ω
phϕhdiv(V) −

∫

Ω
phdiv(ϕV) +

∑

E∈Ωh

pE

∑

e∈∂E

∫

e
(ϕ − ϕ(x̄e))V ∙ ne

E.

The regularity of ϕ and the convergence ofph ensurethat, ash → 0, the first two terms on this
right-hand side tend to

∫
Ω pϕdiv(V) and

∫
Ω pdiv(ϕV). As for the last term, using the fact that

∫
e(ϕ −

ϕ(x̄e))V ∙ ne
E vanishes for boundary faces (ϕ has a compact support) and is conservative for interior
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faces (i.e., by changingE to E′, the cell on the other side ofe, only the sign is changed), we find that
∣
∣
∣
∣
∣
∣

∑

E∈Ωh

pE

∑

e∈∂E

∫

e
(ϕ − ϕ(x̄e))V ∙ ne

E

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

E∈Ωh

∑

e∈∂E

(pE − pe)

∫

e
(ϕ − ϕ(x̄e))V ∙ ne

E

∣
∣
∣
∣
∣
∣

. h||∇ϕ||∞
∑

E∈Ωh

∑

e∈∂E

|e||pE − pe|.

But the Cauchy–Schwarz inequality and the bound on||(ph, pEh)||1,Dh,Eh give that
∑

E∈Ωh

∑

e∈∂E

|e||pE − pe| 6 (d|Ω|)1/2||(ph, pEh)||1,Dh,Eh . 1, (3.21)

andthus
∑

E∈Ωh
pE
∑

e∈∂E

∫
e(ϕ − ϕ(x̄e))V ∙ ne

E tendsto 0 with h. We deduce that

T3 −→
∫

Ω
pϕdiv(V) −

∫

Ω
pdiv(ϕV) = −

∫

Ω
Vp ∙ ∇ϕ ash −→ 0. (3.22)

To handleT4 westart by noting that assumption (AB1) implies that1
de

|B(deVe
E)| . 1. Thus, writing

pE′ − pE = pE′ − pe + pe − pE andusing (3.21), we obtain

|T4| . h||∇ϕ||∞
∑

E∈Ωh

∑

e∈∂E

|e|(|pE′ − pe| + |pe − pE|)

. 2h||∇ϕ||∞
∑

E∈Ωh

∑

e∈∂E

|e||pE − pe| −→ 0 ash −→ 0. (3.23)

Eventually, the convergence properties (3.19), (3.20), (3.22) and (3.23) allow us to obtain the limit
of (3.18) forh → 0 and show thatp is the weak solution to (2.1) and (2.2).

Step 3: Strong convergence of the gradient. Estimate (3.13) and relation (2.11) imply that
∫

Ω
Λvh(Fh) ∙ vh(Fh) +

1

2

∫

Ω
div(V)p2

h 6
∫

Ω
f ph + Ch||(ph, pEh)||

2
1,Dh,Eh

.

Taking the upper limit of this inequality, recalling that||(ph, pEh)||1,Dh,Eh staysbounded and noting that
ph is strongly convergent top in L2(Ω) and thatp is the weak solution to (2.1) and (2.2) leads to

lim sup
h→0

∫

Ω
Λvh(Fh) ∙ vh(Fh) +

1

2

∫

Ω
div(V)p2 6

∫

Ω
f p =

∫

Ω
Λ∇ p ∙ ∇ p +

1

2

∫

Ω
div(V)p2,

from which we deduce that

lim sup
h→0

∫

Ω
Λvh(Fh) ∙ vh(Fh) 6

∫

Ω
Λ∇ p ∙ ∇ p. (3.24)

Sincew → (
∫
Ω Λw ∙ w)1/2 is a norm inL2(Ω)d that is equivalent to the usual norm, equation (3.24)

proves that the weak convergencevh(Fh) → ∇ p in L2(Ω)d is, in fact, strong. �

REMARK 3.8 Adjusting these same arguments makes it possible to prove a similar convergence result
for the hybrid HMM formulation (2.47)–(2.49) that is based on the numerical convection flux (2.45) and
(2.46) instead of (2.39) and (2.40).
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3.1.3 Aboutthe regularity assumption on V .Often, the velocity fieldV is not given but comes from
the resolution of another problem (see, e.g.,Chainais-Hillairet & Droniou, 2007). In this case it is
not obvious that it satisfies the regularity assumptionV ∈ C1(Ω)d. We can in general ensure that
V ∈ H(div,Ω), but nothing more. How does this impact on the preceding convergence study?

We first of all have to be able to define the fluxesVe
E of the velocity. This is, in general, quite

straightforward either using (2.19) and the fact thatV belongs toH(div,Ω) or even more directly by
looking at the discretization of the equation providingV (this discretization also usually provides the
fluxes of the velocity, as inChainais-Hillairet & Droniou, 2007). The minimal requirement on these
fluxes is their conservativity, namely

∀ e ∈ Eh,int, : Ve
E + Ve

E′ = 0

(where E, E′ ∈ Ωh are the two elements such thate ⊂ ∂E ∩ ∂E′ for every e ∈ Eh,int) and their
compatibility with the coercitivity assumption div(V) > 0, namely

∀ E ∈ Ωh, :
∑

e∈∂E

|e|Ve
E > 0

(
usually,

∑
e∈∂E |e|Ve

E playsthe role of an approximation of
∫

E div(V)
)
. Under these two requirements

and the strong version of assumption (AB3) (i.e., (AB3s)), it is then easy to see that thea priori estimates
still hold (see Lemma3.1, Proposition3.2and Corollary3.3).

As for the convergence (Theorem3.7), we have to check ifT3 andT4 behave well. ForT3 we need
that

∀ E ∈ Ωh, :
∑

e∈∂E

|e|Ve
E =

∫

E
div(V)

(
or at least that

∑
e∈∂E |e|Ve

E approximates
∫

E div(V) as the size of the mesh tends to 0
)
, which is

usually the case from the definition ofVe
E using(2.19) or an expression of these fluxes coming from

the resolution of another elliptic equation. For T3 we also need that, for any smooth functionϕ with
compact support, denoting byΦh : Ω → R thefunction defined by

∀ E ∈ Ωh, ∀x ∈ E : Φh(x) =
∑

e∈∂E

ϕ(x̄e)|e|V
e
E,

the functionΦh weaklyconverges inL2(Ω), ash → 0, to div(ϕV). Since, for anyW ∈ H(div,Ω),
definingWe

E = 1
|e|

∫
e W ∙ ne

E (in the usual weak sense), we have

|We
E|2 6 Ch−d||W||2L2(E)

+ Ch−d+2||div(W)||2L2(E)
(3.25)

(thisis the usual Agmon scaling of trace estimates), the estimates we provide in the proof of Theorem3.7
on the last part ofT3 indicatethatΦh behaves as needed ifVe

E comesfrom (2.19) withV ∈ H(div,Ω).
If these velocity fluxes come from the approximation of another elliptic equation, then the expected
behaviour ofΦh is usually a straightforward consequence of the properties of the scheme used on this
other equation (see, e.g.,Chainais-Hillairet & Droniou, 2007).

For T4 we require that
∑

E∈Ωh

∑

e∈∂E

|e|dE,e|V
e
E|2 (3.26)
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 25of 45

remains bounded as the size of the mesh tends to 0. WhenVe
E comesfrom the approximation of an

elliptic equation (i.e.,Ve
E is the ‘Fe

E ’ of this other equation), then this estimate is usually a basic one (for
HMM methods, for example, it is a direct consequence of (S1) or (C)). IfVe

E is constructed from (2.19)
with V ∈ H(div,Ω), then (3.25) shows that (3.26) also remains bounded independently of the mesh
size.

In other words, although the preceding study has been made, for the sake of simplicity, with regular
velocity fields, it is easy to adapt to more realistic fields, and the convergence results still hold for these
fields.

3.2 Error estimates

In the theoretical developments of this section we assume that (HG) and (ME) hold.
Now, we consider the bilinear form

B(Gh, qh, qEh; G′
h, q′

h, q′
Eh

) = [Gh, G′
h] X̂h

−
∑

E∈Ωh

∑

e∈∂E
|e|(G′

h)e
E(qE − qe)

+ [divh(Gh+Fc(qh)), q′
h]Qh−

∑

E∈Ωh

∑

e∈∂E
|e|(Gh+Fc(qh))e

Eq′
e

(3.27)

for all couples of triplets(Gh, qh, qEh) and(G′
h, q′

h, q′
Eh

) in X̂h × Qh × H(Eh). Problem (2.41)–(2.43)
can be reformulated as follows:

find (Fh, ph, pEh) ∈ X̂h × Qh × H(Eh) suchthat

B(Fh, ph, pEh; Gh, qh, qEh) = [ f I , qh]Qh ∀(Gh, qh, qEh) ∈ X̂h × Qh × H(Eh). (3.28)

In order to prove the convergence result we need the following stability lemma.

LEMMA 3.9 Assume (AB1)–(AB3) with eitherh small enough if (AB3-w) holds or anyh if (AB3-s)
holds. For any triple(Gh, qh, qEh) ∈ X̂h × Qh × H(Eh) thereexists a triple(G′

h, q′
h, q′
Eh

) ∈ X̂h × Qh ×
H(Eh) with

|||G′
h|||X̂h

+ ||q′
h||1,Dh + ||(q′

h, q′
Eh

)||1,Dh,Eh 6 1 (3.29)

for which the following holds:

B(Gh, qh, qEh; G′
h, q′

h, q′
Eh

) & |||Gh|||X̂h
+ ||qh||1,Dh + ||(qh, qEh)||1,Dh,Eh . (3.30)

Proof. A straightforward calculation shows that

B(Gh, qh, qEh; Gh, qh, qEh) = ||Gh||2
X̂h

+
∑

E∈Ωh

∑

e∈∂E

|e|(Fc(qh))
e
E(qE − qe). (3.31)

Sincediv(V) > 0, applying Lemma3.1yields the inequality

B(Gh, qh, qEh; Gh, qh, qEh) > ||Gh||2
X̂h

− C1h||(qh, qEh)||
2
1,Dh,Eh

. (3.32)

The non-negative real constantC1, which is provided by Lemma3.1, is zero if assumption (AB3-s)
holds.

 at U
niversite D

'A
ix-M

arseille on N
ovem

ber 19, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


26of 45 B. DA VEIGA ET AL.

Let us consider thenonconservativevector fieldĜh ∈ X̂h given by

∀ E ∈ Ωh, ∀ e ∈ ∂E : (Ĝh)e
E =

qe − qE

dE,e
.

Since(M2) implies that|E| . |e|dE,e, we have that

||Ĝh||2
X̂h

=
∑

E∈Ωh

||ĜE||2E 6 σ ∗
∑

E∈Ωh

∑

e∈∂E

|E|

d2
E,e

(qE − qe)
2 6 Ĉ||(qh, qEh)||

2
1,Dh,Eh

, (3.33)

whereĈ > 0 is independent ofh and only depends on the constantσ ∗ of assumption (S1) and on
the mesh regularity constants of (M2). We infer, from the Cauchy–Schwarz inequality and Young’s
inequality, that

|[Gh, Ĝh] X̂h
| 6 ||Gh||X̂h

||Ĝh||X̂h
6

Ĉ

2
||Gh||2

X̂h
+

1

2
||(qh, qEh)||

2
1,Dh,Eh

.

By using the definitions (3.27) and (3.4) we obtain that

B(Gh, qh, qEh; Ĝh, 0,0) = [Gh, Ĝh] X̂h
−
∑

E∈Ωh

∑

e∈∂E

|e|(Ĝh)e
E(qE − qe)

= [Gh, Ĝh] X̂h
+
∑

E∈Ωh

∑

e∈∂E

|e|

dE,e
(qE − qe)

2

> −
Ĉ

2
||Gh||

2
X̂h

+
1

2
||(qh, qEh)||

2
1,Dh,Eh

. (3.34)

In the following development it is natural to use theH1-like norm for the elements ofQh given by

||qh||
2
1,h =

∑

e∈Eh

|e|h−1
e ([[qh]]e)

2, (3.35)

where[[qh]]e is the jump ofqh at the edgee that is defined according to (2.31). Assumptions (HG) and
(ME) imply that the mesh-dependent norm|| ∙ ||1,h in (3.35) isuniformlyequivalent to the norm|| ∙ ||1,Dh

in (3.3), that is, there exists two positive constantsν∗ andν∗ that are independent of the mesh sizeh
such that we have

ν∗|| ∙ ||1,Dh 6 || ∙ ||1,h 6 ν∗|| ∙ ||1,Dh (3.36)

for every instance of the admissible mesh family(Dh)h. As in Beirão da Veigaet al. (2009b), let us
consider theconservativevector fieldG̃h ∈ Xh given by

∀ E ∈ Ωh, ∀e ∈ ∂E : (G̃h)e
E = h−1

e (qE′ − qE).

Since(M2) implies that|E| . |e|he, we have that

||G̃h||2
X̂h

=
∑

E∈Ωh

||G̃E||2E 6 σ ∗
∑

E∈Ωh

∑

e∈∂E

|E|h−2
e (qE′ − qE)2 6 C̃||qh||21,h, (3.37)
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whereC̃ is independent ofh and only depends onσ ∗ andthe mesh regularity constants of (M2). We
then apply the Cauchy–Schwarz inequality and Young’s inequality to obtain

|[Gh, G̃h] X̂h
| 6 ||Gh||X̂h

||G̃h||X̂h
6

C̃

2
||Gh||2

X̂h
+

1

2C̃
||G̃h||2

X̂h
6

C̃

2
||Gh||2

X̂h
+

1

2
||qh||

2
1,h.

By using the definition of̃Gh andthe norm definition (3.4), we obtain that
∑

E∈Ωh

∑

e∈∂E

|e|(G̃h)e
E(qE − qe) =

∑

e∈Eh

|e|((G̃h)e
EqE + (G̃h)e

E′qE′) +
∑

e∈Eh

|e|((G̃h)
e
E + (G̃h)

e
E′)qe

= −
∑

e∈Eh

|e|h−1
e (qE′ − qE)2 = −||qh||21,h.

Thereforewe have that

B(Gh, qh, qEh; G̃h, 0,0) = [Gh, G̃h] X̂h
+ ||qh||21,h > −

C̃

2
||Gh||2

X̂h
+

1

2
||qh||21,h. (3.38)

Let G′
h = θGh + Ĝh + G̃h for some value ofθ , q′

h = qh andq′
Eh

= qEh . From (3.32), (3.34) and (3.38)
the following holds:

B(Gh, qh, qEh; G′
h, q′

h, q′
Eh

)

= θB(Gh, qh, qEh; Gh, qh, qEh) + B(Gh, qh, qEh; Ĝh, 0,0) + B(Gh, qh, qEh; G̃h, 0,0)

>
(

θ −
Ĉ

2
−

C̃

2

)
||Gh||2

X̂h
+

1

2
||qh||21,h +

(
1

2
− θC1h

)
||(qh, qEh)||

2
1,Dh,Eh

. (3.39)

Now, we takeθ = (1 + Ĉ + C̃)/2 and we obtain the inequality

||Gh||2
X̂h

+ ||qh||
2
1,h + ||(qh, qEh)||

2
1,Dh,Eh

. B(Gh, qh, qEh; G′
h, q′

h, q′
Eh

), (3.40)

which holds forh small enough under assumption (AB3-w) and for anyh under assumption (AB3-s)
becauseC1 = 0 in this case. Using inequalities (3.33) and (3.37) allows us to obtain

||G′
h||X̂h

+ ||q′
h||1,h + ||(q′

h, q′
Eh

)||1,Dh,Eh 6 θ ||Gh||X̂h
+ (1 +

√
Ĉ)||qh||1,h

+ (1 +
√

C̃)||(qh, qEh)||1,Dh,Eh . (3.41)

The inequalities (3.29) and (3.30) in Lemma 3.9 follow from (3.40) and (3.41) by rescaling the three
discrete fieldsG′

h, q′
h andq′

Eh
by the positive factor max(θ,1 +

√
Ĉ, 1 +

√
C̃)(||Gh||X̂h

+ ||qh||1,h +
||(qh, qEh)||1,Dh,Eh). �

The following technical lemma provides us with an estimate for the interpolation of a vector field
that is locally in(H1(E))d.

LEMMA 3.10 Let G ∈ (H1(E))d andlet GI bethe interpolated field (2.8). Then we have that

|||GI |||E . ||G||L2(E) + hE|G|H1(E). (3.42)
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28of 45 B. DA VEIGA ET AL.

Proof. Using the stability condition of assumption (S1), the Agmon inequality from (M3), and the
scaling|E|/|e| . hE, which is a consequence of (M2), it readily follows that

|||(GI )|||2E . |E|
∑

e∈∂E

(Ge
E)2 . |E|

∑

e∈∂E

|e|−1||G||2L2(e) . hE(h−1
E ||G||2L2(E)

+ hE|G|2H1(E)
)

. ||G||2L2(E)
+ h2

E|G|2H1(E)
,

from which the lemma’s statement immediately follows. �
We can now prove the main result of this subsection, which is stated in the following theorem.

This theorem provides a bound on the approximation error that is defined by comparing the numerical
solution(ph, Fh, pEh) ∈ Qh × X̂h × H(Eh) with the interpolationspI andF I of the exact solution and
flux given by (2.8), and with the interpolated fieldpJ = {(pJ)e}e∈Eh ∈ H(Eh) given by

∀ e ∈ Eh : (pJ)e =
1

|e|

∫

e
p. (3.43)

THEOREM3.11 Let p be the solution of the continuous problem (2.1) and (2.2) under assumptions (H1)–
(H4) with Λ locally Lipschitz continuous onΩh (cf. Remark2.5) andF given by (2.3). Let(Fh, ph) be
thesolution of problem (2.41) and (2.42) under assumptions (HG), (ME) and (AB1)–(AB3) with either
h small enough if (AB3-w) holds or anyh if (AB3-s) holds. Then we have that

|||Fh − F I |||X̂h
+ ||ph − pI ||1,Dh + ||(ph − pI , pEh − pJ)||1,Dh,Eh . h||p||H2(Ω). (3.44)

Proof. Let us consider the triplet of error fields(Fh − F I , ph − pI , pEh − pJ) ∈ X̂h × Qh × H(Eh).
Dueto Lemma3.9, there exists a triplet(Gh, qh, qEh) ∈ X̂h × Qh × H(Eh) with

|||Gh|||X̂h
+ ||qh||1,Dh + ||qEh ||1,Dh,Eh 6 1 (3.45)

such that

|||Fh − F I |||X̂h
+ ||ph − pI ||1,Dh + ||(ph − pI , pEh − pJ)||1,Dh,Eh

. B(Fh − F I , ph − pI , pEh − pJ; Gh, qh, qEh). (3.46)

By using equations (3.28), a straightforward calculation gives

B(Fh − F I , ph − pI , pEh − pJ; Gh, qh, qEh) = T1 + T2 + T3, (3.47)

where

T1 = [ pI , divh(Gh)]Qh − [F I , Gh] X̂h
−
∑

E∈Ωh

∑

e∈∂E

|e|(pJ)eGe
E,

T2 = [ f I , qh]Qh − [divh(F I ) + divh(Fc(pI )), qh]Qh,

T3 =
∑

E∈Ωh

∑

e∈∂E

|e|(F I + Fc(pI ))e
Eqe.
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For convenience, we will separately boundT1 andT2 + T3. For this purpose, let us first introduce the
discontinuousΩh-piecewise linear functionp1, which is such thatp1|E is theL2 orthogonalprojection
of p on the linear polynomials defined onE ∈ Ωh. Let us start by noting that||p − p1||L2(E) 6 ||p −
q1||L2(E) for any linear polynomialq1 definedin E. Hence, takingq1 = L1(p), the linear interpolation
of p on E provided by (M4), allows us to use the estimate for the interpolation error. Moreover, adding
and subtractingL1(p), applying the triangular inequality, using (M4) and a standard inverse inequality
yields that

|p− p1|H1(E) 6 |p−L1(p)|H1(E)+|L1(p)− p1|H1(E) . hE|p|H2(E)+h−1
E ||L1(p)− p1||L2(E). (3.48)

Thesecond term in the last inequality of (3.48) is obtained by adding and subtractingp, applying the
triangular inequality and using the estimate for the interpolation error of (M4) as follows

||L1(p) − p1||L2(E) 6 ||L1(p) − p||L2(E) + ||p − p1||L2(E) . h2
E|p|H2(E). (3.49)

Substituting(3.49) into (3.48) yields the final inequality

||p − p1||L2(E) + hE|p − p1|H1(E) . h2
E||p||H2(E). (3.50)

We recall that, for convenience, we may identify the elements ofQh with the piecewise constant
functions whose restriction to each cellE is the degree of freedom of that cell. Therefore it is possible
to reformulate the first term ofT1 asanL2 scalarproduct, so that [pI , divh(Gh)]Qh = [ p, divh(Gh)]L2.
Thenwe splitT1 into four subterms by recalling thatF = −Λ∇ p, adding and subtracting(ΛE∇ p)I and
(ΛE∇ p1)I , using the local consistency assumption (S2), and noting that|e|(pJ)e =

∫
e p. We therefore

obtain the following:

T1 = [ p − p1, divh(Gh)]L2 + [ p1, divh(Gh)]L2 − [F I , Gh] X̂h
−
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e
p

= T1,1 + [ p1, divh(Gh)]L2 + [(Λ∇ p)I , Gh] X̂h
−
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e
p

= T1,1 + [ p1, divh(Gh)]L2 +
∑

E∈Ωh

[(ΛE∇ p)I , Gh]E

+
∑

E∈Ωh

[((Λ − ΛE)∇ p)I , Gh]E −
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e
p

= T1,1 +
∑

E∈Ωh

([divh(Gh), p1]L2(E) + [(ΛE∇ p1)I , Gh]E) +
∑

E∈Ωh

[(ΛE∇(p − p1))I , Gh]E

+
∑

E∈Ωh

[((Λ − ΛE)∇ p)I , Gh]E −
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e
p

= T1,1 +
∑

E∈Ωh

∑

e∈∂E

Ge
E

∫

e
(p1 − p) +

∑

E∈Ωh

[(ΛE∇(p − p1))I , Gh]E

+
∑

E∈Ωh

[((Λ − ΛE)∇ p)I , Gh]E = T1,1 + T1,2 + T1,3 + T1,4.
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To estimateT1,1 let us first note that the definition of divh, the scalingshd
E 6 |E| . hd

E and|e| . hd−1
E

from (M2) and assumption (S1) imply that

||divh(Gh)||2L2(E)
= |E||(divh(Gh))E|2 .

1

|E|

∑

e∈∂E

|e|2(Ge
E)2 . h−2

E |||Gh|||2E . (3.51)

Thus,using the Cauchy–Schwarz inequality for each scalar product inXE, error estimate (3.50), in-
equality (3.51), the Cauchy–Schwarz inequality again and finally noting that (3.45) implies that|||Gh|||X̂h
6 1, yields that

T1,1 .
∑

E∈Ωh

||p − p1||L2(E)||divh(Gh)||L2(E) .
∑

E∈Ωh

(h2
E|p|H2(E))(h

−1
E |||Gh|||E)

. h




∑

E∈Ωh

|p|2H2(E)





1/2


∑

E∈Ωh

|||Gh|||
2
E





1/2

. h|p|H2(Ω). (3.52)

Thesecond term is bounded using a scaling argument and inequality (3.45). We obtain that

T1,2 . h||p||H2(Ω)|||Gh|||X̂h
. h||p||H2(Ω). (3.53)

To get an upper bound forT1,3 we use the Cauchy–Schwarz inequality for the local scalar product in
XE, the result of Lemma3.10, an upper bound onΛE thateasily follows from the upper bound ofΛ
in (H2), the Cauchy–Schwarz inequality again, the estimate of the interpolation error given by (3.50)
that follows from (M4) and the fact that|||Gh|||X̂h

6 1 due to inequality (3.45). We obtain the following
chain of inequalities:

T1,3 =
∑

E∈Ωh

[(ΛE∇(p − p1))I , Gh]E

6
∑

E∈Ωh

|||(ΛE∇(p − p1))I |||E |||Gh|||E

.
∑

E∈Ωh

(||ΛE∇(p − p1)||L2(E) + hE|ΛE∇(p − p1)|H1(E))|||Gh|||E

.
∑

E∈Ωh

(|p − p1|H1(E) + hE|p|H2(E))|||Gh|||E

.




∑

E∈Ωh

|p − p1|2H1(E)
+ h2

E|p|2H2(E)





1/2 


∑

E∈Ωh

|||Gh|||
2
E





1/2

.




∑

E∈Ωh

h2
E|p|2H2(E)





1/2

|||Gh|||X̂h

. h|p|H2(Ω). (3.54)
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Using the Cauchy–Schwarz inequality and inequality (3.42), we get

T1,4 .
∑

E∈Ωh

|||((Λ − ΛE)∇ p)I |||E |||Gh|||E

.




∑

E∈Ωh

|||((Λ − ΛE)∇ p)I |||2E





1/2

.




∑

E∈Ωh

||(Λ − ΛE)∇ p||2L2(E)
+ h2

E|(Λ − ΛE)∇ p|2H1(E)





1/2

. (3.55)

Dueto the definition ofΛE andsince the restrictionΛ|E belongsto W1,∞(E) for all E ∈ Ωh, we obtain
that

||Λ − ΛE||L∞(E) + hE|Λ − ΛE|W1,∞(E) . hE ∀ E ∈ Ωh.

Combiningthe above bound with (3.55) easily yields

T1,4 . h||p||H2(Ω). (3.56)

Combining(3.52)–(3.54) and (3.56) yields the following upper bound forT1:

T1 . h||p||H2(Ω) . (3.57)

To get an upper bound forT2 + T3 we note that the commuting property of the divergence opera-
tor (2.9) (cf. also Remark2.4), the flux definition given in (2.3), and the model’s equation (2.1) allow us
to write

divh(F I ) = (div(F))I = f I − (div(V p))I . (3.58)

Equation(3.58) makes it possible to reformulateT2 asfollows:

T2 = [(div(V p))I − divh(Fc(pI )), qh]Qh . (3.59)

As before, we identify the elements ofQh with the space ofΩh-piecewise constant functions, and the
scalar product inQh with the L2 scalarproduct. Then we splitT2 into two subterms by applying the
divergence theorem to each cell’s contribution and adding and subtracting the termVe

E p, to give

T2 =
∑

E∈Ωh

∑

e∈∂E

qE

∫

e
(V ∙ ne

E − Ve
E)p +

∑

E∈Ωh

∑

e∈∂E

qE

∫

e
(Ve

E p − (Fc(pI ))e
E) = T2,1 + T2,2 . (3.60)

Noting thatVe
E + Ve

E′ = 0 andne
E + ne

E′ = 0 for anye ∈ Eh,int, and using definition (2.31) for the
jump ofqh, that is, [[qh]]e, allows us to reformulateT2,1 asfollows:

T2,1 =
∑

e∈Eh

[[qh]]e

∫

e
(V ∙ ne

E − Ve
E)p,
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whereE = E(e) is the unique cell for whiche belongs to the boundary and such thatne
E ∙ ne = 1. Due

to the definition ofVe
E, on each edgee the quantity(V ∙ ne

E − Ve
E) is orthogonal to constants. Therefore

we can write

T2,1 =
∑

e∈Eh

[[qh]]e

∫

e
(V ∙ ne

E − Ve
E)(p − pe), (3.61)

wherepe is the average ofp one. Applying the Ḧolder inequality to each face’s term, the interpolation
estimates for the face’s velocity, the Cauchy–Schwarz inequality and the equivalence between norms
|| ∙ ||1,h and|| ∙ ||1,Dh gives

T2,1 .
∑

e∈Eh

|[[qh]]e| h
d−1

2
e ||(V ∙ ne

E − Ve
E)(p − pe)||L2(e)

.
∑

e∈Eh

h
d−2

2
e |[[qh]]e| h

3
2
e |V |W1,∞(Ω)||p − pe||L2(e)

. |V |W1,∞(Ω)




∑

e∈Eh

hd−2
e |[[qh]]e|

2





1/2


∑

e∈Eh

h3
e||p − pe||

2
L2(e)





1/2

. |V |W1,∞(Ω)||qh||1,Dh




∑

e∈Eh

h5
e||∇ p||2L2(e)





1/2

, (3.62)

wherein the last line we have also used a standard approximation result. Now, the Agmon inequality for
∇ p (cf. (M3) with φ = ∇ p) and the fact that fore ⊆ ∂E ∩ ∂E′ wehave thathe 6 max(hE, hE′) imply
that

∑

e∈Eh

h5
e||∇ p||2L2(e) .

∑

E∈Ωh

∑

e∈∂E

h5
E||∇ p||2L2(e) .

∑

E∈Ωh

h5
E(h−1

E |p|2H1(E)
+ hE|p|2H2(E)

).

Thebound forT2,1 readilyfollows by recalling (3.45), to give

T2,1 . h2||p||H1(Ω) + h3||p||H2(Ω) . h2||p||H2(Ω) , (3.63)

wherewe have included the data factor|V |W1,∞(Ω) in the inequality’s constant. As a byproduct, we
observe here that, from (3.63) and the estimate (3.68), it becomes clear that the error coming from the
approximation of the datumV is a higher-order term.

Now, let us search for an upper bound forT2,2+T3. First, note that, sinceV I andF I areconservative
fields, we have

∑

E∈Ωh

∑

e∈∂E

qe

∫

e
Ve

E p =
∑

e∈Eh

qe(V
e
E + Ve

E′)

∫

e
p = 0 and

∑

E∈Ωh

∑

e∈∂E

|e|(F I )e
Eqe = 0,

andthus

T2,2 + T3 =
∑

E∈Ωh

∑

e∈∂E

(qE − qe)

∫

e
(Ve

E p − (Fc(pI ))e
E). (3.64)
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Moreover, assumption (A2) implies thatVe
E = 1

de
(A(deVe

E) + B(deVe
E)) andtherefore, by using defini-

tion (2.40) and the triangle inequality, a straightforward calculation gives

||Ve
E p − (Fc(pI ))e

E||2L2(e) 6

∥
∥
∥
∥(p − (pI )E)

A(deVe
E)

de

∥
∥
∥
∥

2

L2(e)
+

∥
∥
∥
∥(p − (pI )E′)

B(deVe
E)

de

∥
∥
∥
∥

2

L2(e)
. (3.65)

From(A1) and the definition ofVe
E it easily follows that max(|A(deVe

E)|, |B(deVe
E)|) . de. Then, by

using the Agmon inequality of (M3) and the standard first-order interpolation estimate for cell averages,
that is,||p − (pI )E||L2(E) . hE|p|H1(E), we have that

∥
∥
∥
∥(p − (pI )E)

A(deVe
E)

de

∥
∥
∥
∥

2

L2(e)
. ||p − (pI )E||2L2(e)

. h−1
E ||p − (pI )E||2L2(E)

+ hE|p − (pI )E|2H1(E)

. hE|p|2H1(E)
. (3.66)

A similar inequality can be derived by repeating the same argument for the second term on the right-
hand side of (3.65) whene ∈ Eh,int andnoting that the second term is zero ife is a boundary face.
Finally, we obtain

||Ve
E p − (Fc(pI ))e

E||2L2(e) . h|p|2H1(E∪E′)
.

Therefore,by using a Ḧolder inequality on the faces and anl 2 Cauchy–Schwarz inequality, from (3.64)
we obtain

T2,2 + T3 . h
1
2
∑

e∈Eh

|qE − qe||e|
1
2 |p|H1(E∪E′) . h

1
2 ||qh||1,Dh,Eh




∑

e∈Eh

he|p|2H1(E∪E′)





1/2

. (3.67)

Recalling(3.45) yields

T2,2 + T3 . h||p||H1(Ω). (3.68)

Combining (3.63) and (3.68), we have the bound forT2 + T3, and also considering (3.46), (3.47)
and (3.57), we conclude the proof. �

From Theorem3.11we immediately get two corollaries that we state without proof.

COROLLARY 3.12 Under the same hypotheses as in Theorem3.11, the following holds:

|||F̃h − F̃ I |||X̂h
. h||p||H2(Ω), (3.69)

wherethe total fluxes are defined through̃F I = −(Λ∇ p + V p)I and F̃h = Fh + Fc(ph).

COROLLARY 3.13 Under the same hypotheses as in Theorem3.11 (and applying Lemma3.5) the
following holds:

||pI − ph||Lr (Ω) . h||p||H2(Ω),

wherer = 2d
d−2 if d > 2 andr < +∞ if d = 2.
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34of 45 B. DA VEIGA ET AL.

REMARK 3.14 Repeating the same arguments makes it possible to prove a similar error estimate for the
hybrid HMM formulation (2.47)–(2.49) that is based on the numerical convection flux (2.45) and (2.46).

REMARK 3.15 It must be noted that the proofs in this paper are not uniform with respect to the Péclet
number, that is, the estimates degenerate when the convection becomes dominant. On the other hand,
uniform estimates cannot be derived under the general framework considered here since it also includes
methods that are not stable in the limit. Nevertheless, the general approach used here can be followed in
order to develop uniform error estimates for certain methods. For example, we believe that a uniform er-
ror bound can be developed for the upwind scheme starting from a uniform version of the stability results
in Proposition3.2 and Corollary3.3. A deeper theoretical investigation of the convection-dominated
case will be the objective of future communications.

4. Numerical experiments

In this section we present a number of examples of problem (2.1) and (2.2), whose solutions are com-
puted over uniform and nonuniform meshes. The performance of these discretization methods is in-
vestigated by evaluating the rate of convergence when the meshes are refined and the shock-capturing
capability when strong layers develop in the convection-dominated regime.

For this purpose, we consider the sequence of meshes of the mesh familyM1 onΩ = ]0, 1[ × ]0, 1[.
These meshes are built by remapping the position(ξ, η) of the nodes of ann × n uniform grid of
quadrilaterals into final positions(x, y) through

x = ξ +
1

10
sin(2πξ) sin(2πη), (4.1)

y = η +
1

10
sin(2πξ) sin(2πη). (4.2)

Then we split each quadrilateral-shaped cell into two triangles, which givesthe primal mesh, and then
we connect the barycentres of adjacent triangular cells by a straight segment. We complete the mesh
construction at the domain boundary∂Ω by connecting the barycentres of triangular cells close to∂Ω to
the midpoints of boundary edges and connecting these latter points to the boundary vertices of the primal
mesh. For this mesh family, the base mesh of the refinement process is obtained by settingn = 10.
Refined meshes are generated by doubling this parameter and repeating the construction procedure.
The plots of Fig.2 illustrate the base mesh and the first refined mesh ofM1. Details about the mesh
characteristics are reported in Table1.

The numerical implementation is partially based on P2MESH (Bertolazzi & Manzini,2002), aC++
public domain library designed to manage data structures of unstructured meshes in the implementation
of solvers of PDEs. For convenience, we will use the labels listed below to refer to the different instances
of the HMM family of schemes considered in our numerical experiments. In each one of these schemes
the diffusion term is discretized along the lines described in Section2.3, while the numerical treatment
of the convection term differs as specified in the following descriptions of the schemes:

• HMM-Cnt, two-point centred flux formula;

• HMM-Upw, two-point upwind flux formula;

• HMM-SG, two-point Scharfetter–Gummel formula with local adjustment (2.23);

• HMM-(no stabilization), central mimetic method without any form of stabilization;

• HMM-Jmp, central mimetic method with jump stabilization (2.32).
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 35 of 45

FIG. 2. (a) The base mesh and (b) its first refinement for the mesh familyM1. The mesh construction parametern is initially
taken equal to 10 and doubled at each refinement step.

TABLE 1 Mesh parameters of the mesh sequenceM1

r NE Ne NV h

0 121 400 280 9.477× 10−2

1 441 1400 960 4.843× 10−2

2 1681 5200 3520 2.445× 10−2

3 6561 20000 13440 1.225× 10−2

4 25921 78400 52480 6.130× 10−3

5 103041 310400 207360 3.066× 10−3

Herer is the refinement level (0 refers to the base mesh),NE is the number of cells,Ne is the
number of mesh edges andNV is the number of mesh vertices.

4.1 Accuracy

In this test case the forcing termf in (2.1) and the boundary condition functiongD in (2.2) are set
according to the exact solution

p(x, y) =
(

x − e
2(x−1)

ν

) (
y2 − e

3(y−1)
ν

)
(4.3)

and V = (2,3)T . We assume that the diffusion tensorΛ is given by the identity matrix scaled by
the positive real factorν. By takingν = 10−4, the problem is strongly convection dominated and the
solution is characterized by an exponential boundary layer near the top and right sides ofΩ.

We are mainly interested in showing that the shock-capturing capability does not significantly
deteriorate the convergence behaviour where the solution is smooth enough, that is, away from the
boundaries where the layer develops. As pointed out inBertolazzi & Manzini(2004),Rapin & Lube
(2004) (to which we also refer the reader interested in the comparison with performance of the mixed
hybrid finite element and different kind of FV schemes on this test case)Manzini & Russo(2008)
andCoudìere & Manzini (2010), the errors due to the approximation of the solution gradient in the
narrow strip around the boundary where the layer develops are so large that including them in the
error measurements would prevent any convergence at all. For this reason, we restrict the error

 at U
niversite D

'A
ix-M

arseille on N
ovem

ber 19, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


36of 45 B. DA VEIGA ET AL.

measurementto the subdomain [0, 0.95] × [0, 0.95]. Convergence rates are measured by the relative
errors

EQh =
|||pI − ph|||Qh

|||pI |||Qh

and EXh =
|||F̃ I − F̃h|||X̂h

|||F̃ I |||X̂h

, (4.4)

where,in the second error definition, we use the total fluxesF̃ I andF̃h thatare defined in Corollary3.12.
Practically speaking, the quantityEQh is a measure of the approximation error of cell averages and is
calculated by using a mesh-dependentL2-like norm. In turn, the errorEXh comparesthe edge-based flux
F̃ I with the numerical flux̃Fh throughthe mesh-dependent norm induced inXh by the mimetic scalar
product.

In Fig. 3 we present the log–log plots of the errorsEQh (on the left) andEXh (on the right) versus
the characteristic mesh sizeh. Herein, we compare the convergence behaviour of the various imple-
mentations of the HMM schemes considered in this paper. The actual order of accuracy shown by these
methods is reflected by the slopes of the experimental error curves and can be approximately evaluated
by comparison with the ‘theoretical’ slopes represented in the bottom-left corner of each plot (see also
the caption’s comment). These plots document theoptimalconvergence behaviour of all the numerical
approximations in the diffusive regime (see the upper plots). When the problem becomes convection
dominated, that is, for the smallest value of the diffusion coefficient, convergence is still provided for
both scalar and flux unknowns by all methods except HMM-(no stabilization).

When we use HMM-SG, HMM-Cnt and HMM-(no stabilization) in the diffusive regime a super-
convergence effect is visible for the approximation of the scalar and the flux variables. The numerical
approximation of the scalar unknown is second-order accurate, while we haveO(h3/2) for the flux vari-
able. In contrast, both HMM-Upw and HMM-Jmp provide a first-order accurate approximation for both
p and F . It is also worth noting that the error curves of HMM-SG and HMM-Cnt almost coincide.
Moreover, the errors from HMM-(no stabilization) are a little bit smaller than those obtained by the
centred schemes of FV type. Instead, in this test case the scheme HMM-Upw gives better results than
HMM-Jmp.

In the convection-dominated case, that is, forν = 10−4, the central approximation HMM-(no stabi-
lization) is not at all convergent on the meshes considered byM1. In contrast, HMM-Cnt is convergent,
but the numerical solution (not shown in the paper) is affected by large amplitude oscillations that al-
most completely destroy the solution’s profile. This fact is consistent with the error curves displayed in
Fig. 3. The numerical approximation of the scalar and flux variables provided by the methods HMM-
Upw and HMM-SG is linearly convergent, while the one provided by HMM-Jmp seems to converge at
a rate proportional toO(h1/2), even if this last effect might be due to an insufficient mesh resolution.

REMARK 4.1 As noted at the end of Section2.4.1, in the convection-dominated regime the functionA
given by (2.23) is numerically nearly indistinguishable from the upwind functionsAup. Figures3 and4
confirm this. On the other hand, in the diffusion regime the modified Scharfetter–Gummel scheme has
better convergence properties than the upwind scheme. This behaviour is a very interesting characteristic
of the choice (2.23) when the convection term is discretized by (2.40). The scheme then automatically
adjusts to provide either a good order of convergence in the diffusive regime or enough numerical
diffusion to stabilize the calculation in the convection-dominated regime. Note that, if one takesA and
B to satisfy, (AB1), (AB2) and (AB3-s) and to be such thatA(s) ∼ s ass → +∞, A(s) has a finite
limit ass → −∞ andA(s) is regular arounds = 0, then a scheme using such functions modified in the
same way as (2.23) is expected to show the same kind of behaviour (this has been numerically tested
on several choices of such functions). Note also that this approach does not hold for the upwind scheme
sinceAup(s) is not regular ats = 0.
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A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 37 of 45

FIG. 3. Test case 1: error curves for the numerical approximation of an exact solution that is smooth in the diffusive regime (top)
and shows an exponential boundary layer on the right and top sides of the computational domain in the convection-dominated
regime (bottom). The approximation errors are measured on the reduced domain [0, 0.95] × [0, 0.95], that is, away from the
critical region where the layer may develop. All calculations are performed on the mesh sequenceM1.

4.2 Shock-capturing behaviour

Shock-capturing behaviour is investigated by solving (2.1) and (2.2) in the convection-dominated regime.
The exact solution may be characterized by boundary layers of exponential and parabolic type and is
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FIG. 4. Shock-capturing test case: the exact solution has an exponential boundary layer on the right and top sides of the computa-
tional domain. The calculations are performed on the second mesh of the mesh familyM1 by taking the constant velocity field
V = (2,3)T andν = 10−4. The numerical solution is displayed at the mesh vertices through linear interpolation. Severe oscil-
lations are visible in plot (c) when we use the scheme HMM-(no stabilization), that is, the central mimetic discretization without
any stabilization (note the different scale along thez-axis). This phenomenon disappears in plot (d) when jump stabilization is
turned on using the scheme HMM-Jmp.

approximated on the sequence of meshes ofM1. The numerical solution is plotted at mesh vertices.
Vertex values are obtained by interpolating the approximate cell averages provided by the scheme.

4.2.1 Exponential boundary layers.We experimentally investigate how these methods approximate
a solution with an exponential boundary layer that forms on those sides of the domain boundary where
V points outward. For this purpose, we solve problem (2.1) and (2.2) with the same data that was used
for the accuracy benchmark test in the convection-dominated regime, that is, forν = 10−4.
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In Fig. 4 we compare the numerical solutions produced by the following implementations: HMM-
SG, HMM-Upw, HMM-(no stabilization) and HMM-Jmp.

In plots (a) and (b) the nonoscillatory solutions produced by the schemes HMM-SG and HMM-Upw,
respectively, are displayed. In contrast, from plot (c) it is evident that, when the calculation is performed
using the HMM-(no stabilization) scheme without any stabilization, the numerical solution suffers from
severe oscillations. These oscillations disappear when we introduce a stabilizing term in the divergence
equation that is based on the solution’s jump at the mesh edges. However, a great numerical diffusion
is introduced by this form of upwinding and the resolution of the boundary layer is poor and generally
worse than that obtained through the other HMM implementations.

4.2.2 Exponential and parabolic boundary layers.OnΩ = ]0, 1[ × ]0, 1[ we numerically solve (2.1)
and (2.2) with the Dirichlet boundary conditions

p(x, 0) = (1 − x)3, p(x, 1) = (1 − x)2, p(0, y) = 1, p(1, y) = 0,

andV = (1,0)T in the convection-dominated regime forν = 10−4. The solution has an exponential
boundary layer at the sidex = 1 and two parabolic boundary layers aty = 0 andy = 1. Figure5 shows
the numerical results obtained from calculations using HMM-SG, HMM-Upw, HMM-(no stabilization)
and HMM-Jmp. The behaviour is similar to the behaviour documented in Section 4.2.1 for the case of a
single exponential layer.

4.3 Strongly anisotropic heterogeneous and convection-dominated case

In this third example we consider the test case proposed inErnet al.(2009) where the problem (2.1) and
(2.2) is solved for a strongly anisotropic and heterogeneous diffusion tensor and a rotating convection
field. A zeroth-order term proportional top is also present in the model’s equations, and its discretization
is straightforward (see, e.g.,Cangianiet al., 2009). The domainΩ = ]0, 1] × ]0, 1[ is split into four
subdomainsΩ1 = ]0, 2/3[ × ]0, 2/3[, Ω2 = ]0, 2/3[ × ]2/3,1[, Ω2 = ]2/3,1[ × ]2/3,1[ andΩ4 =
]2/3,1[ × ]0, 2/3[. The diffusion tensor is diagonal in each subdomain and is characterized by a very
small value along one principal direction as follows:

Λ =
(

10−6 0
0 1

)
in Ω1 andΩ3

and

Λ =
(

1 0
0 10−6

)
in Ω2 andΩ4.

Notethat the directions along which diffusion is small are interchanged for adjacent subdomains. Con-
vection is given by the clockwise rotating solenoidal fieldV(x, y) = 40(x(2y − 1)(x − 1),−y(2x −
1)(y − 1)) and the right-hand side is a gaussian bump positioned at a distance of 0.35 from the domain
centre, given byf (x, y) = 10−2 exp(−(r −0.35)2/0.005)with r 2 = (x−0.5)2+(y−0.5)2. This prob-
lem is convection dominated, thus requiring some sort of upwinding in the numerical treatment of the
convection term. Moreover, the exact solution is continuous, but internal layers form near the interfaces
that separate the subdomains due to the small diffusion value in the switching directions. The strong
solution gradients cannot be resolved by the attainable grid sizes and the numerical approximations are
expected to be discontinuous at the internal interfaces.
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FIG. 5. Shock-capturing test case: the exact solution has an exponential boundary layer on the right side and two parabolic layers
on the top and bottom sides of the computational domain. The calculations are performed on the second mesh of the mesh family
M1 by taking the constant velocity fieldV = (1,0)T andν = 10−4. The numerical solution is displayed at the mesh vertices
through linear interpolation. Severe oscillations are visible in plot (c) when we use the scheme HMM-(no stabilization), that is, the
central mimetic discretization without any stabilization (note the different scale along thez-axis). This phenomenon disappears in
plot (d) when jump stabilization is turned on using the scheme HMM-Jmp.

In the test cases presented in Sections 4.2.1 and 4.2.2 there was no significant difference between the
numerical approximations provided by the cell-based version of the upwind scheme HMM-Upw (see
(2.41) and (2.42)), and its edge-based version (see (2.47)–(2.49)). This is no longer the case herein, as
illustrated in Fig.6. The calculations, which use the two alternative versions of the HMM-Upw scheme,
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FIG. 6. Strongly anisotropic heterogeneous and convection-dominated test case: on a coarse mesh the cell-based upwinding of the
convection provokes spurious oscillations that are completely absent in the edge-based upwinding discretization.

are performed on a grid obtained by a 30× 30 periodic reproduction of the pattern shown in Fig.6(a).
Since theexactsolution of this problem is unknown, a reference solution is calculated, for comparison’s
sake, on a very fine cartesian grid. The reference solution is displayed in Fig.6(b). The numerical
solution provided by the cell-based upwind scheme is shown in Fig.6(c) and is clearly affected by
spurious oscillations. In contrast, this undesirable effect is almost completely absent in the numerical
solution provided by the edge-based upwind scheme, which is shown in Fig.6(d).

It is also worth mentioning the behaviour of these two different implementations of the HMM-Upw
scheme as far as minimum and maximum principles are concerned. For this purpose, we recall that
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thenumerical solutions obtained by first-order upwind two-point FV schemes in convection-dominated
problems are characterized by numerical properties such as positivity, monotonicity, etc. A thorough
inspection of our numerical results reveals that both cell-based and edge-based schemes respect the
minimum value, which is zero for the reference solution, and provide 6.6 × 10−4 and 6.9 × 10−4,
respectively, for the maximum value against a reference value of approximately 6.7×10−4. Nonetheless,
we noted a minimum value of approximately−1.1×10−5, which corresponds to a numerical undershoot
of around 1.6%, when we applied the cell-based scheme on a different mesh given by splitting every
other rectangular cell of a 120× 60 regular partition ofΩ into two subtriangles. On this latter mesh,
the edge-based upwind scheme was still seen to respect the zero minimum value. We do not show
the other solution plots for these latter calculations because their behaviours are very similar to those
of the solutions shown in Fig.6. From these qualitative comparisons we deduce that the edge-based
upwind scheme may be more stable and accurate than the cell-based upwind scheme. We also remark
that the edge-based upwind scheme has the advantage of being fully hybridizable, thus leading to a
linear system in the edge unknowns through local variable eliminations such as, for example, in the
static condensation of mixed finite elements. For these reasons, the edge-based upwind scheme may be
preferable when dealing with stiff problems on coarse meshes.

REMARK 4.2 As a final comment, we observe that, in all of the developed tests, the schemes HMM-(no
stabilization) and HMM-Jmp, which satisfy only (AB3-w), do not show particular pathologies for coarse
meshes. Therefore, at least on the basis of the presented tests, theh-small-enough condition appearing
in Theorem3.11does not seem to pose a true limitation in practice.

5. Conclusions

We have presented a new family of methods for the numerical approximation to the solution of the
steady convection–diffusion equation. These methods, which are referred to as HMM methods, are
based on a unified formulation for the hybrid FV method, the mixed FV method and the MFD method,
and differ mainly in the approximation of the convection term. In particular, we considered centred,
upwind, weighted and locally scaled Scharfetter–Gummel-type discretizations for which we provided a
full proof of convergence under very general regularity conditions of the solution field and derived an
error estimate when the scalar solution is inH2(Ω).

In the last part of the paper we numerically compared the performance of these schemes on a set of
test cases selected from the literature in both diffusion- and convection-dominated regimes. As expected,
the methods, including a centred-type discretization of the convective term, showed a better behaviour
in the test cases dominated by diffusion, exhibiting a superconvergence in the approximation of both
scalar and vector variables. On the other hand, such schemes showed a strong loss of convergence rate
in the convection-dominated tests, while on those same tests the methods with upwinding or stabiliza-
tion exhibited a better behaviour. Finally, we showed a test with strong anisotropy and jumps in the
coefficients. The results seem to suggest that the hybridized formulation gives more stable results for
this kind of problem.
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ARNOLD, D. N., BREZZI, F., COCKBURN, B. & M ARINI , L. D. (2002) Unified analysis of discontinuous
Galerkin methods for elliptic problems.SIAM J. Numer. Anal.,39, 1749–1779.

BARANGER, J., MAITRE, J.-F. & OUDIN, F. (1996) Connection between finite volume and mixed finite element
methods.RAIRO Mod́el. Math. Anal. Nuḿer.,30, 445–465.

BEIRÃO DA VEIGA, L. (2008) A residual based error estimator for the mimetic finite difference method.Numer.
Math.,108, 387–406.
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