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We study the numerical approximation to the solution of the steady convection—diffusion equation. The
diffusion term is discretized by using the hybrid mimetic method (HMM), which is the unified formula-
tion for the hybrid finite-volume (FV) method, the mixed FV method and the mimetic finite-difference
method recently proposed iDroniou et al. (2010, Math. Models Methods Appl. ScR0, 265-295).

In such a setting we discuss several techniques to discretize the convection term that are mainly adapted
from the literature on FV or FV schemes. For this family of schemes we provide a full proof of conver-
gence under very general regularity conditions of the solution field and derive an error estimate when
the scalar solution is im-lz(.Q). Finally, we compare the performance of these schemes on a set of test
cases selected from the literature in order to document the accuracy of the numerical approximation in
both diffusion- and convection-dominated regimes. Moreover, we numerically investigate the behaviour
of these methods in the approximation of solutions with boundary layers or internal regions with strong
gradients.

Keywords finite-volume methods; mimetic finite-difference methods; convection-diffusion equation;
convection-dominated flows; convergence analysis; error estimates.

1. Introduction

Many physical models of fluid flows involve partial differential equations (PDESs) with both convection
and diffusion terms, such as the Navier—Stokes equations, flows in porous media, etc. Analytical so-
lutions are not normally available for real applications and numerical approximations must be devised
in some way. For this purpose efficient numerical schemes based on finite and mixed finite element
and two-point finite volumes (FVs) have been developed for the numerical treatment of the diffusive
part of the equation. In such a framework a great amount of work has been done to investigate the
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connectiondetween the lowest order Raviart—Thomas mixed finite-elenfRiig & Pg) methods and

various cell-centred FV and finite-difference numerical formulations on meshes of simplexes and quadri-
laterals/hexahedrons. The relationship between the mixed finite-element method and the cell-centred
finite-difference method on rectangular meshes was first establishuassell & Wheelef1983) and

further developed in subsequent papers (see, for exaifdegastet al., 1998). Basically, it can be

shown that, by applying appropriate quadrature rules to the numerical formulation RTthepace

on rectangles, the vector variable (the velocity) is eliminated, thus reducing the method to a positive-
definite cell-centred finite-difference method for the scalar variable (the pressure). Using this approach,
classical cell-centred finite-difference methods on rectangular meshes are easily retrieved based on a
nine-point stencil for full tensor coefficients and a five-point stencil for a scalar (diagonal) tensor. Simi-
lar results are also obtainable on regular hexahedral meshes. These developments led to the formulation
of enhanced cell-centred finite differences @fbogastet al., 1998) that can handle general shape el-
ements (triangles, quadrilaterals and hexahedra) and are suitable for full tensor coefficients. A similar
relationship exists between thely— Py schemeand the two-point FV formulation on triangular meshes

using triangle circumcentres. This relationship was originally establish&hlgngeret al. (1996) for
two-dimensional diffusion problems with scalar coefficients. This approach has been further developed
in Youneset al.(2004), which investigates the case of a full diffusion tensor in two and three dimensions

on meshes of simplexes.

Nonetheless, practical situations, such as those encountered in petroleum engineering, require com-
putational grids that are not structured or simple enough to make use of the methods mentioned above.
Thus, alternative and more sophisticated techniques have been developed in the last decade to approx-
imate the solution to diffusive equations on general grids. In this framework we mention, for instance,
the discontinuous Galerkin methodrfold et al., 2002; Riviere, 2008, and references therein), the
multi-point flux approximation Aavatsmarket al., 1998a,b;Wheeler & Yotoy 2006), the mimetic
finite-difference (MFD) method (Berndt al.,2001;Hymanet al.,2002;Brezziet al.,2005a,b 2007,
2009;Kuznetsowet al.,2005;Beirao da Veiga2008;Beirao da Veiga & Manzini2008a,bCangiani &

Manzini, 2008;Beirdo da Veigeaet al.,2009b;Lipnikov et al.,2009, and references therein), the hybrid

FV method Eymardet al., 2009) and the mixed FV method{oniou & Eymard,2006; Chainais-
Hillairet & Droniou, 2007; Droniou & Eymard,2009). Strict correlations also exist among these nu-
merical approximations and with respect to the lowest order mixed finite-element method, and it is not
surprising that sometimes the lowest order schemes may belong to more than one of these families of
methods. For example, the first-order discontinuous Galerkin scheme can be easily reinterpreted as an
FV method. The lowest order Raviart—-Thomas scheme on grids of simplexes (triangles in two dimen-
sions and tetrahedrons in three dimensions) is a member of the family of MFD metho@sargiani

& Manzini, 2008). Note, however, that on meshes of quadrilaterals and hexahedrons no connection has
yet been established between the MFD method in mixed form and the mixed finite-element method. We
also mention the paper iphralik (2006) that outlined the relationship existing between the multi-point

flux approximation and the mixed finite-element method.

A remarkable fact has been recently discovereBianiou et al. (2010), which showed that after
some generalization, a unified formulation exists for three of the methods cited above, namely, the
hybrid FV method, the mixed FV method and the MFD method. Consequently, these three methods are
members of the same family of discretization techniques. FolloBimgiouet al. (2010), we will refer
to such a family of numerical methods fagbrid mimetic mixeanethods or use the abbreviation HMM.

Since the HMM method can be considered as the meeting of two different frameworks, namely,
the mimetic/finite-element and the FV ones, the convective term can be naturally discretized using quite
different techniques depending on the adopted point of view on the scheme. There are, indeed, two
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possible approaches: either the diffusive flux is approximated, and then some form of centred or upwind
approximation of the convection term is considered in the discretization of the divergence equation, or
the total flux, which includes both diffusive and convective terms, is approximated, which leads to a
centred-type approximation of the convection terms. The first approach is, perhaps, more popular in the
finite-difference and FV practitioner community (€hainais-Hillairet & Dronioy 2009; Droniou &
Eymard,2009), while the second approach seems to be more popular in the finite-element practitioner
community. Nevertheless, it is worth mentioning that both approaches have been considered in the
framework of mixed finite-element methods (deeuglas & Roberts1982,1985; Jaffre & Roberts,

1985).

In the MFD setting a numerical discretization of the full diffusion and convection fluxes has been
proposed byCangianiet al. (2009). A proper reformulation of the mimetic scheme as a conforming
method, using the finite-dimensional subspacélédliv, Q) given by the lifting of the degrees of free-
dom of the vector variable, makes it possible to perform the convergence analysis in a very similar way
to that presented iDouglas & Robert$1985).

From this overview we can conclude that several numerical discretizations of the convection—
diffusion equations that may fit in the HMM setting have been proposed in the literature. However, no
systematic study has been carried out so far on the possible ways, and related advantages and drawbac
in which a convective term can be treated numerically by using the more general HMM formulation. It
is our main goal in this work to perform such an investigation in order to assess the behaviour of such
methods both theoretically and numerically.

The plan of the paper is as follows. In Sect®mwe recall the principles of the HMM schemes for
the pure diffusion equation, and we discuss how to discretize the convection term, using some centred
upwind or exponential fitting-like choice in accordance with a two-point FV flux formula (or, from the
point of view of finite elements, sekaffre(1984) andDawson & Aizinger(1999)). We also show that
the numerical approximation proposedlangianiet al. (2009), possibly with a stabilization term, is an
HMM method to which the theoretical analysis of the present paper applies. In Sget@provide full
proofs of convergence under very general regularity conditions when the mesh size tends to zero an
derive error estimates in suitable mesh-dependent norms when the scalar solutldA(€in Sectiond
is devoted to the presentation and discussion of how various instances of the HMM discretizations
perform when applied to a set of standard test cases for the convection—diffusion equations, including
the approximation of solutions with boundary and internal layers. Finally, conclusions are given in
Sectionb.
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2. The HMM formulation for convection—diffusion problems

2.1 The mathematical model

¥T0C ‘6T JOqUBAON U0 3||

Let us consider the steady convection—diffusion equation
—div(4Vp)+div(Vp=f inQ, (2.2)
p=g° onoQ (2.2)
under the following hypotheses:

(H1) @ is a bounded, open, polygonal subseR8fwith d > 1;
(H2) 4 : Q — My(R) isabounded, measurable, symmetric and uniformly elliptic tensor;
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(H3) f e L4(Q);
(H4) V e C1(2)% is such that di¢V) > 0.

Moreover, let us introduce the diffusive flux and the total flux as follows:
F=—-4Vp and F=F+Vp. (2.3)

For simplicity, we will restrict the presentation of a the methods and the theoretical analysis to the case
of a homogeneous Dirichlet boundary condition by settifg= 0 in (2.2) and we will consider the
nonhomogeneous case in the numerical experiments of Section

Under assumptions (H1)-(H4), the existence and unigqueness of a weak solUﬂé(@) to (2.1)
and @.2) withg® = 0 is completely standard since the bilinear form associated with this problem is
continuous and coercive.

REMARK 2.1 TheC?! regularity assumption ol in (H4) can be weakened for the convergence study
(see Sectior8.1.3). We assume the smoothness of the convection field in order to simplify a little bit
some (already lengthy) technical arguments and also to prove error estimates.

2.2 Mesh notation and regularity
Let us begin with the definition of an admissible discretizatio®adind the related notation.

DEFINITION 2.2 (Admissible discretization). An admissible discretizationtis given by the triplet
Dh = (£n, &, Pn), where themesh size twill be defined in the following and where the following
conditions hold.

e Here @y is a finite family of nonempty open polygonal disjoint subsEt®f 2, the cells of the
mesh, suclthatQ = (Jg.q, E.

e Here&, is a finite family of nonempty open disjoint subsetsf Q, thefacesof the mesh, such that,
for all e e &, there exists an affine hyperplaseof RY anda cellE € @}, suchthate c (E\E)N.A.
We also assume that the following hold:

- forall E e Qp thereexists a subsetE of &, suchthatE\E = (Joc g &

- forall e € &, eitherwe have thae c 62 or we have thaé c E N E’ for some pair of elements
E, E' € Qn with E # E’.

e HerePy is a family of points ofQ indexed byE, that is,Ph = (Xg)eeq,, and such that each mesh
cell E is star shaped with respectxe.

REMARK 2.3 When all of the mesh cells are convex shaped a convenient choice for the(Eeifis o,
is given, for instance, by the centre of gravity of the cells.

The d-dimensional measure of each céllis denoted by E| and the cell size byg. As usual,
the mesh size is given by = sup:-., he. For consistency of notationg| and he denotethe (d —
1)-dimensional measure of fageand the face diameter. For each face &, we let X denotethe
barycentre ok andn its normal direction pointing out of. Moreover, with each facewe associate
the unit normal vecton®, whose orientation is arbitrarily chosen wheis an internal face, and assumed
to be pointing out of2 whene is a boundary face. We denote the set of the internal faces py, that
is, &hint = {e € Enfore ¢ 6Q}, and the set of the boundary faces fiyex, that is,Enext = {€ €
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&n fore c 0Q}. We will find it convenient to denote the two cells that share an internalddneE

and E’ and, where required, to fix the orientation@$o thatn - n® = 1. Finally, we introduce the
following geometric quantities that will be useful in the definition of the numerical convection flux in
Section2.4.1:

de.e is the= distance betweexg and the hyperplane containieg

and
dee +de e foranyinternal face e & jnt,

¢ de.e for any boundary face € &n ext.
Figurel illustrates some of this notation.
The proof of convergence fdr — 0 that we present in Sectid@requires the following very mild
geometrical assumptions on the meshe®f

(G1) Every mesh celE is star shaped with respect to the corresponding peint

(G2) For any internal face € & int let us introduceMe = {E, E’}, that is, the cells on the opposite
side ofe. Then the quantity

de he
regulDp) = max max € max , max Card(cE) ),
ec&h.int,(E,E")eMe dE’,e EeQpn,ecoE dE,e EeQy

which expresses the mesh regularityyisformly bounded from above fdr — 0.
In the mimetic framework a similar condition is often used, and we state this as follows.

(ME) [Star-shaped elemenfBhere exists a positive numbet such that each elemehtis star shaped
with respect tall the points of a ball of radius*hg centred akg.

Stronger conditions on the mesh regularity are required to derive an error estimate for the HMM ap-
proximations to the exact solution and flux. We formulate these mesh regularity conditiahs=f&.
The restriction to other dimensions is straightforward.

El

FiG. 1. Mesh notation.
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(HG) [Shape regularifyThere exist two positive real numbelg and ps, independent oh, such that
every meshy, of the sequence admits a subpartition into tetrahedfgrsichthat we have the
following.

(HG1) The decomposition of every polyhedrBine ©Qn, denoted bySh g, is formed by at most
Ns tetrahedronsand each vertex a®y, is a vertex ofSh.

(HG2) Every tetrahedron aof}, is shaperegularin the sense that the ratio betwagn the radius
of its inscribed sphere, ardr, its diameter, is bounded from below py. Formally, we
have that

.
VTesh:h—T>ps>o.
T

Fromthe above assumptions, several properties of the mesh that are useful in the error analysis of the
mimetic formulation can be derived. For the sake of the reader’s convenience, we list them below for
future reference in the paper.

(M1) There exist two positive integeidg and Ne thatare independent di, E € Qn ande € &,
andsuch that every elemeift has Card(&) < Ng faces, and every faeehas Card(&) < Ne
edges.

(M2) For any mesh elemerit € Qy, the quantities|E|, |e| for e € 0E and|l| for each edgé € de
properly scale with respect tte. In particular, there exists a positive constahisuchthat

a*hd"t <lel, a*he <he, a*hl2<i.

(M3) There exists a consta@t*? thatis independent dfie andsuch that Brezziet al.,2005a)

D 18172 < CRUNEIIF o) + NEIB 1) (2.4)
esoE

for any functiong € H1(E). We will refer to 2.4) as theAgmon inequality

(M4) For any functiory € H2(E) thereexists dinear polynomialC1(q) interpolatingg anda constant
C, independent ofig, such thatBrenner & Scott1994)

ld — L1l 2y +held — L1@)|p1e) < ChEldl L) (2.5)

2.3 Discretization of the diffusion term

To approximateZ.1) and 2.2) we introduce the space of thiscrete scalar fields Qandthe space of
thediscrete flux fields X The discrete scalag e Qp aredefined by taking one degree of freedom per
cell, denoted byg, that is,q = (de)eco,. Therefore the spac®, canbe identified with the space of
the piecewise constant polynomials defined@n Similarly, thediscrete fluxesre defined by taking
one degree of freedom per face per element, denotdefbyhat is,F = (FE)%EE"SW which represents
the normal flux across the faesin the directionni. We require that every fluf e X, satisfiesthe
following flux conservation propertgt any internal face:

Vee EnimeCOEUGE 1 FE+FE =0, (2.6)

sothat the elements ok, only possess one degree of freedom per face, and the sigf dépendon
the orientation of the facewith respect taE. The restriction of thé- to the cellE € Qy, is denoted by
Fe = (Fg)eeaE andrepresents the collection of the normal fluxes in the direcﬁ@w&)r ee 0E.The
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set of these vector fields forms the linear spXee Throughout the paper we will also make use of the
symbol X}, to denote the linear space of thescontinuous fluxes, that is, of the vectors having the same
formF = (Fg)geggh but that do not satisfy condition (2.6). Note thé is a linear subspace ofy,.

The next ingredient of the HMM formulation is thdiscrete divergence operatdivy, : ?h — Qn,
whichis defined as follows:

VGeXn VEeQn: (divi(G)e = E > lelG (2.7)
ecoE

With any sufficiently regular vector fiel& and scalar fieldy we associate the interpolated fields
G' € X andq' € Qp thatare given by

1 1
VeeEh:(G')e:E/G-ne and VEEQh:(qI)E:E/Eq' (2.8)
e

REMARK 2.4 The definition of the discrete divergence operatordrv) is consistent with the Gauss
divergence theorem for the interpolations 21§), so that the following commutation property holds:

(div(G))' = divh(G"). (2.9)

We endowQp with the usualL?(Q) scalar product for piecewise constant functions, that is,
[, 1on := [, -]L2. On the other handX, and Xy areequipped with the scalar product

[F.Glg, = > [Fe,Gele (2.10)
Ee®Qp

thatassembles the locally defined scalar productdd. The local scalar produci$:, -]g) satisfythe
following coercivity and consistency assumptions.

(S1) There exist two positive constaatsands *, independent of the mesh sikesuch that, for every
mesh cellg, we have

a.|E| D" (GE)* < [G.Gle <o*|E| D_(GE)* VG e Xn.
ecoE ecdE
(S2) For every elemenE we have that
[(1eVaY', Gle = —[diva(G), a5, + > G /q
eedE
for all G € Xy, andall linear polynomialgy®, where A g is the cell average off.

REMARK 2.5 Here A is actually an approximation of | g, the restriction of the diffusion tensot to
the cellE. To prove the convergence of the numerical solution in Se@&iadnwe only require that the

diffusion tensorA satisfy the regularity assumption (H2), while we need a stronger regularity condition

to derive the error estimates of Secti®:2. In this latter case we will find it convenient to assume (H2)
and also that1 be locally Lipschitz continuous of2y, that is, for allE € ©Qy, the components aff |g
areLipschitz continuous functions of. Consequently,d g canbe any constant approximation df g
suchthat the estimate

| rln_axd supl(4g)ij — 4ij(x)| = O(h)

holds.
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The construction of a family of scalar products satisfying the above assumptions xghenthe
centre of gravity ofE can be found irBrezzi et al. (2005b). Moreover, in this case it was proved
in Droniouet al. (2010) that (S1) and (S2) lead necessarily to the following form:

V(Fe, Gg) € Xg : [Fe, Gele = |E|4eVe(Fe) - Ve(GE) + Te(Ge) 'Be Te (Fg), (2.11)
where
1 4 ey
ve(Fg) = —EAE > lelFE(Xe — XE) (2.12)

ecdE

is a constant approximation &fp on the cellE, Te(Fg) = (Te.e(F®))ecsk is given by
Te,e(Fg) = FE + 4eVe(Fg) - ng, (2.13)

andBg is a symmetric positive-definite matrix of size Céré). More precisely, it turns out that the
matrix Bg satisfieghe following coercivity condition that is directly related to (S1).

(C) There exists a positive constantthat is independent of the mesh size such that, foEail Oy,
andGg € Xg, we have that

1
@ D lelde e(Te o(Ge))* < Te(Ge) 'BeTe(Ge) < — > lelde o(Te e(GE))*.
ecoE ecoE

If Xxg is not the barycentre dE, then the same constructio?.{1)—(2.13) still holds provided that (S2)
is modified by introducing a suitable integration weight (Beeniouet al.,2010).
The HMM discretization of problen®(1) and 2.2) withV = 0, which provides us with the desired
approximation of the diffusion operator, takes the following form:
find (pn, Fn) € Qn x Xp suchthat

VG e Xn: [Fn, G]gh = [divh(G), pnlgp, (2.14)
Vge Qn: [divh(Fn),dlo, =[f,dlqn- (2.15)

Hereph € Qn andFp € Xy, arethe approximations t@' andF', the interpolations of the exact scalar
solutionp and its fluxF = — AV p.

The HMM method can be easily hybridized through the introductioi ¢£},), the space of face
valuestg, = (Oe)ecs, € RCard€n) with ge = Ofore e &n,ext, and imposing explicitly the flux conserva-
tion property (2.6). The discrete variational forhX4) and (2.15) with [-]g satisfying(2.11)—(2.13)
is equivalent to the following:

find (pn, Fn, Pg,) € Qn x Xn x H (&) suchthat

VEe Qn VGeeXg: [Fe,Gele = > 1elGE(Pe — pe),  (2.16)
ecoE
VE € Qn: > lelFg :/ f, (2.17)
ecoE E

vee hint,: FEe + FE& =0, (2.18)

¥T0Z ‘6T JQLIBAON U0 8] [IeSRe N-X1v/,d S1SAIUN T /BI0'SeuInopiojxoeufewl//:diy wouy papeojumoq


http://imajna.oxfordjournals.org/

A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 90f45

whereE, E' € Qy arethe two elements such thatc 0E N 9E’ for everye € & int. Under suitable
assumptions on the regularity of the exact solufiothe additional unknownpg, = (Pe)ecs;, apProxi-
matethe face average of the exact solution over each mesh face. We will formalize this concept through
the introduction ofp’ e H (&), the face interpolation op, in Section3.2 (see equation (3.43)).

2.4 Discretization of the convective term

As discussed in Section 1, two different strategies can be considered for the numerical treatment of the
convection term in the HMM discretization of an elliptic problem. In the first strategy, which is reviewed
in Section2.4.1, we introduce some form of centred or upwind approximation of the convection term
in the discretization of the divergence equation provided by the HMM metho@efinais-Hillairet &
Droniou,2009; Droniou & Eymard,2009). In the second strategy, which is reviewed in Se@idr2,
the total flux, which includes both diffusive and convective terms, is approximated, thus leading to a
centred-type approximation of the convection terms Qefngianiet al.,2009). Both approaches were
considered for the mixed finite-element metho®wuglas & Robert$1982,1985) andlaffre & Roberts
(1985). It turns out that, in the new framework of HMM methods, a unified formulation is possible,
which is the topic of Sectio.4.3. We end this section with a discussion on an alternative hybridized
form of the numerical convection terms (Sectid.4).

In the rest of this section we assume that the velocity fi&ld a continuous function with a contin-
uous derivative, that i3/ € C1(Q)9. The cell restriction of its interpolation iXp, is given by the set of
real numbergVg)ecoe € Xg suchthat

1
Ve € 0E : vgzﬁ/v-ng (2.19)
e

2.4.1 FV-basedliscretizations. Several discretization schemes for the convection term are available
in the FV literature, for example, the second-order centred scheme, the first-order upwind schéme, the
scheme, the Scharfetter—Gummel scheme, etc. In these methods, the convection flux of the exact solutiors
field p is approximated through the numerical convection flux of the discrete scalapfieldQp. This
numerical convection flux is given by the collection of real numbey&y,) = (Fc(ph)eE)Eegh,eeaE
suchthat

1
VE e Qn VeedE: H/Vp-nfzw(Fc(ph))‘fz. (2.20)
e

We list below the schemes that we will explicitly consider in the section on numerical experiments. We
let E’ bethe cell on the other side &fif e € & int andassume for notational simplicity thag, = 0 if
ee gh’@(t.
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e Thesecond-ader centered schenig given by the approximation
1 “+ PE’
& [ veene ~ (Re(prg = ve P PE
lel Je 2

e Thefirst-order upwind schenis given by the approximation

1
= / Vp-ne & (Fe(p)E = (VE)* pe — (VE)™ pe
e

with sT = max@s, 0).
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e The0d-schemeis given by the approximation

1
el /VIO -ng ~ (Fe(pn))g = (VO (1= 0)pe + 0pe) — (VE)™((1 - 0) per + 0pE)

= (1-20)((VE) " pe — (VE) ™ pe) + OVE(PE + Pe),
with 8 € [0, 1/2]. This choice is clearly intermediate between the centred and the upwind schemes.

e TheScharfetter—-Gummel scherf&charfetter & Gummeltl 969) is given by the approximation

1 1
H/Vp : n|e5 ~ (Fc(ph))% = d_e(Asg(deVE) PE — Asg(—deVEe} PE’), (2.21)
e

with
—s
es—-1

Asy(s) = -1 (2.22)

Note that the first three approaches above can also be found in the finite-element literature (see, for
instance,Jaffre(1984) andawson & Aizinger(1999)). As pointed out ihainais-Hillairet & Droniou
(2009), the Scharfetter—Gummel schem&aharfetter & Gumme(1969) was written for an isotropic
homogeneous material, that i¢,= | . In the original formulation, diffusion and convection terms were
simultaneously treated to define the numerical flux. Removing the diffusive part in the numerical flux
formulation allows us to obtain the formula8.21) and 2.22). This definition of a pure convective

flux through the simple elimination of the diffusive part is somewhat basic in the generalicase

I, especially if some eigenvalues df are small. Although the above definition 8&g ensureshe

L 2-stability of the scheme, it can give quite bad solutions in convection-dominated cases. This fact
can be understood if one comes back to the two-point FV schemeddmp + div(Vp) = f. Then

the choice (2.22) ensures the maximum principle of the scheme oalyif1, while the maximum
principle is lost numerically iE < 1. When applying the Scharfetter—-Gummel method to compute the
numerical convective flux, a better choice is provided by locally scafiggin accordance with the
smallest eigenvalue of. If eis the face betweek andE’ and /¢ is the smallest eigenvalue ofg and

Ag/, then we use

Asg.e(S) = MIn(L, Ze) Asq (ﬁie)) (2.23)

insteadof Asg(S) in (2.21). In this way the numerical flux automatically and locally adjusts the upwind-

ing of the convection term depending on its strength with respect to the diffusive term without perturbing
the consistency property @sg. Note thatie — 0 implies thatieAsg(s/Ae) — sT. Therefore, if the

local diffusion is very small, then this implementation of the Scharfetter—-Gummel method allows the
flux to adjust to upwinding automatically, thus bringing enough numerical diffusion to ensure a better
stability.

Once an FV-based discretization of the convective term has been chosen, the divergence of the convec-
tion term in (2.1), that is, diV p), is approximated oft by

. 1 .
@iv(Vp)E ~ — > lel(Fe(pn)E = diva(Fe(pn))le

|E| ecoE
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and the HMM approximation to the model problethX) and 2.2) then reads as follows:
find (pn, Fn) € Qn x Xp suchthat

VGe Xn: [Fn, G])’gh = [divh(G), pnlQy» (2.24)

Vg e Qn: [divh(Fh+ Fe(pn)). qlo, =[f'.dla,. (2.25)

2.4.2 MFD-baseddiscretizations. From a theoretical standpoint, MFDs have only very recently ap-
proached problems that are different to the pure diffusion one (see, for insBeigy) da Veigaet al.,,
2009a2010;Beirao da Veiga2010). To our knowledge, the only paper considering the development and
error analysis of convection—diffusion equations directly in the framework of MFD is th@aogiani
et al. (2009). In this subsection we briefly review the formulation and the major convergence results of
the method considered in that paper, and we show how it can be reformulated as an HMM method.
Let H (div, ) be the space of vector fields all of whose components are square integrable functions
and that have square integrable divergence. Formally,

H (div, Q) = {v e (L%(Q))? suchthat div(v) € L2(Q)}

is a Hilbert space when equipped with the scalar product

[V, UlH@iv,0) =/ v~u+/ div(v) div(u)
Q Q
and the corresponding norm
VI @iv,2) = IVIE2 (g, + 1AV 2 -

In Cangianietal. (2009) a numerical approximation was considered tarithe@d variational formulation
of problem @.1) and 2.2), which reads as follow8(ezzi & Fortin,1991):
find (F, p) e (div, Q) x L%(Q) such that

vve Hdiv, 2): [471F,v] 2 —[p,div(v)] 2 — [47Vp,Vv],2 =0, (2.26)
vqe L?(Q): [div(F),ql.2=[f, 0]z, (2.27)

whereF is the total vector flux defined ir2(3).
To discretize the convection term we transform the corresponding variational term as follows:

vve H(div, Q) : [47Vp, V]2~ D / AE'Wp-v — VGeXn: > pe[V',Gle,
EeOp E Ee@p

wherethe components of the interpolated velocity fidd € Xp, that is,(V')eE forall E € Qp and
e € 0E, are given by (2.19), and the local scalar products are required to satisfy assumptions (S1) and
(S2). The mimetic variational formulation presentecCiangianiet al. (2009) reads as follows:

find (Fn, pn) € Xn x Qp suchthat

¥G € Xn: [Fn. Glg, — [pn. divn(G)lq, — . Pe[V',Gle =0, (2.28)
EeQy

Vg e Qn: [diva(Fn),qlo, =[f', dlq,. (2.29)
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The convergence analysis of this scheme was carried oGaimgianiet al. (2009) under assumptions
on the grid regularity that are substantially equivalent to (HG) and (ME). When the scalar sqiugion
in H2() the analysis provides the following error estimate:

1P — Flllg, + llpn — P'llQy < Chipluzg)- (2.30)
where|| - llg, and|l - liq, arethe norms induced by the inner products of the spa)?qesand Qn,

respectrely. It is worth mentioning that the approximation of the scalar variable is superconvergent
when the calculation is performed on a wide set of meshes. Superconvergence was also theoretically

proved under some stronger assumptions on the regularity of the domain shape, the source term and the

velocity field.

Despite convergence being proved for— 0 this scheme is expected to become unstable when
the model problem is dominated by convection. This fact usually manifests through spurious effects
like numerical undershoots, overshoots or oscillations that may appear in the approximate solution. To
improve stability we modify the divergence equation by introducing a stabilization term that depends
on the solution’s jumps at mesh faces. We use the synibalisd E’ to denote the two distinct cells that
share the face whene is internal and assume the orientatioreddb be such thani - n® = 1. Let us
now introduce thgump of the discrete scalar fielgh € Qp asfollows:

ge — gy foree &nint,
[an]le = " (2.31)
Qe for e € &h ext.

Equation(2.29) is substituted by
Vg e Qn : [divh(Fn) + Jn(pn). dlo, = [T, dloy. (2.32)

wherethe stabilization ternd, (pp) is given by

> 1ell(vHEILpnle. (2.33)

ecoE

a
Jn(pn)le = 2IE]
anda is a non-negative parameter that can be tuned to control the amount of numerical dissipation of
the scheme.

This approach formally differs from the method introduced in Section 2.4.1 for FV-based discretiza-
tions in that the convection term is numerically treated as part of the mimetic flux equation. However, it
is possible to ‘extract’ an explicit form of the numerical convection flux from the scheme given by equa-
tions 2.28) and 2.32) to reformulate it as an HMM method. For this purpose, we define the collection
of numbersFy = (F§)ecoy,ecok by

Fe = Fg— pe(viE. (2:39
Equation(2.28) shows thaFy, satisfies(2.14) and therefore plays the role of a purely diffusive flux.

Moreover, noting that the stabilization terdg(pp) is locally written as a balance of fluxes, that is, a
discrete divergence, allows us to identify the convective flux as

(Fe(pn)g = Pe(VE + S1(V)EI(Pe — Pe) (2.35)
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(we let pz = 0iif eis a boundary edge), so tha.82) is simply given by div(Fn + Fc(pn)) = f'.
Thestabilized MFD scheme2(28) and 2.32) can therefore be written as follows:
find pn € Qn andF € Xp, suchthat

VG e Xn: [Fn, Glg, = [diva(G), pnlqn, (2.36)
Vg e Qn: [divh(Fn+ Fe(pn), dlo, = [f',aloy (2.37)
Vee hint: (Fn+ (Fe(pn)E + (Fh+ (Fe(ph))g = 0. (2.38)

Notethat the diffusive fluxF, andthe convective flux-c(pn) arenot gonservative in the sense of (2.6)
when considered separately and therefore belong to the linear pa¢towever, their sum, that is,
Fn + Fc(pn), is conservative since it belongs Xg, in view of equation 2.38).

2.4.3 Unified setting. A unified formulation exists for the numerical discretization of the convec-
tion term. This formulation includes the FV-based discretizations, as was no®dhinais-Hillairet &
Droniou(2009), and the MFD-based discretizati@i36)—(2.38). This fact makes it possible to simplify
the software implementation and carry out a unified theoretical analysis.

Let us consider two functioné&, B : R — R and choose the numerical convection flux as the
collection of real numbers

Fe(pn) = (Fc(ph)%)Eth,eeaE (2.39)

suchthat

1
VE e Qn VeecdE: (Fe(pn)t = d—(A(deVE) Pe + B(deVE) pe/). (2.40)
e

sJoAIUN e /Blo'sfeulnolpioxoeufew i/ :dny woly papeojumoq

Sincein the MFD discretization of the convection term these flux components are not conservative, the «.

diffusive flux components cannot be conservative either and conservation must be imposed on the totalg
flux. The generic HMM approximation to the model probleznl{ and 2.2) is thus written as follows: ;
find pn € Qn andFy, € Xp, suchthat 5

¥G e Xn: [Fn,Glg, = [diva(G), Prlan. (2.41) =

o

. =}

Ve Qn: [divn(Fn+ Fe(pn), dlo, =[f'. dlqu, (2.42) z

<

vee&nint: (Fn+ (Fe(pn)g + (Fn + (Fe(pn))g = 0. (2.43) %

The schemes presented in Sections 2.4.1 and 2.4.2 can all be included in this general setting, with©

the following choices ofA andB:

o centred schemeA(s) = Ace(s) := 5 andB(s) = —Ace(—S) = 3;
upwindschemeA(s) = Ayp(s) := st andB(s) = —Ayp(—S) = —s~;

o O-scheme:A(s) = Ay(s) := (1 — 20) Aup(S) + 20 Ace(s) andB(s) = —Ay(—s);

o Sdarfetter—Gummel schemeéA(s) = Agqg(s) definedby (2.22) andB(s) = —Asg(—S), and the
locally scaled Scharfetter—-Gummel scheme is obtained by usifng e definedby (2.23) instead of
Asg;

o stabilizedMFD scheme A(s) = s + 5|s| andB(s) = —%]s|.

14104
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Thefirst four choices inZ.40) lead to a conservative definition of the numerical convection flux, whereas
the last one does not. However, in all of the cases mentioned above, total conservation is ensured
by (2.43). We note that all of these choicesfolnd B satisfy the following properties:

(AB1) A: R — RandB: R — R are Lipschitz-continuous functions a#d0) = B(0) = 0;
(AB2) A(s) + B(s) = sfor any real numbes;
(AB3) One of the following two alternatives holds:

(AB3-s) A(s) + B(—s) = 0 andA(s) — B(s) > 0 for any real numbes;
(AB3-w) the functions — A(s) + B(—s) is odd and there existS > 0 such thatA(s) — B(s) >
—C|s| for any real numbes.

We refer to (AB3-s) as thetrong (AB3) condition and to (AB3-w) as theveak (AB3) condition.
Assumption (AB3-s) is satisfied by all of the FV-based discretizations listed above, whereas the MFD-
based discretization satisfies (AB3-w). In fact, conditid¢s) + B(—s) = 0 in (AB3-s) is the one
ensuring the conservation of the numerical convection fRI%@). On the other hand, the numerical
convection flux extracted from the MFD-based formulation satisfies (AB3-w) and hence is not conser-
vative. We will see in SectioB that assumptions (AB1)—(AB3) are enough to carry out the theoretical
analysis of the scheme i2.39)—(2.43), with slightly different results depending on which alternative in
(AB3) is satisfied.

REMARK 2.6 It is worth noting that equatior2(42) can be rewritten in an FV form as the following
cell-based flux balance equation:

VEeOn 3 JelFE+ (Rep)t) = [ (2.44)

ecoE

REMARK 2.7 We could also choose, ir2{40), different functionsA = A® and B = B°® for each

edgee, provided that all these functions satisfy (AB1)—(AB3) and that their Lipschitz constants remain
uniformly bounded as the mesh size tends to 0. This setting would allow the scheme to make a finer
tuning of the numerical diffusion due to upwinding, thus better adapting the scheme behaviour to the
location inside the domain or the local geometry of the mesh.

2.4.4 An alternative hybrid discretization of the convection ternAn alternative discretization of the
convection term is possible by using the hybridized vadgé (2.40) instead opg/, an idea introduced

in Arnold & Brezzi(1985). In such a case we define the numerical convection flux of the discrete scalar
field described by ph, pg,) € Qn x H(&n) asthe collection of real numbers

FC,Sh(phs PSh) = ((FC,Sh(pha pSh))%)Eth,eeaE (245)

suchthat
1
VE € Qn,Vee dE : (Feg,(Ph, Psy))g = d—(A(deVE)pE + B(deVE) pe). (2.46)
e

Thesubstantial difference with the preceding choi2zetQ) is that no property of and B ensures that
the fluxesFc g, (pn, Pg,) areconservative (and they are not in general). However, this will not bring
any additional difficulty in the theoretical study provided that the following weaker form of (AB3) is
considered.
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(AB3h) One of the following strong or weak alternatives holds:

(AB3h-s) A(s) — B(s) > 0 for any real numbes;
(AB3h-w) there exist€ > 0 such thatA(s) — B(s) > —C]|s| for any real numbes.

The hybrid HMM formulation can then be written as follows:
find (pn, Fn, pg,) € Qn x Xn x H(&h) suchthat

VEeQn, VGeeXe: [Fe, Gele= > IelGE(Pe — pe), (2.47)
eeoE
VEeOn: > Iel(FE + (Fogy(Pn Pe)) = /E 2 (2.48)
ecoE

vee&hint:  (Fn+ (Feg(Ph, Pg)E + (Fr+ (Feg (Pn, Pg,)g =0, (2.49)

wherethe local scalar products used i8.47) satisfy (S1) and (S2) and may thus be given in the
form (2.11)—(2.13).

REMARK 2.8 An important advantage of discretizing the convective fluxes by using (2.452at) (n-

stead of 2.39) and (2.40) is that the unknowpg andFy, in the resulting numerical formulation (2.47)—
(2.49) can be eliminated bgtatic condensation, that is, through a local Gaussian elimination (this
classical technique is not directly applicable to (2.39) ahd()). This procedure, which is common

for hybrid mixed finite elements, provides a reduced linear system in the face unkpgyvidoreover,

when the discretization of the convection term increases significantly the numerical diffusion, as, for

Bi0°sfeulnopioxoeufew//:dny woiy papeoumoq

example, in the case of the upwind scheme, the hybrid version of the HMM method is likely to be less ﬁ
diffusive than that provided by2(39) and 2.40). g-
[}
3. Theoretical study %
In the present section we develop the theoretical analysis for the class of methods that we wish to investi-;g
gate in this work. In SectioB.1we prove the convergence of the numerical approximations to the exact E
solution and its gradient. The analysis is based on a compactness argument, which is common in theg
FV literature, under the weaker assumptions of mesh regularity (G1) and (G2) (see also Defi@jtion g
In Section3.2 we prove an®(h) convergence rate for the numerical approximation of both the scalar §
solution and the flux. The analysis involves stability and consistency arguments, which are in the MFD 2
(and finite-element method) literature, under the stronger mesh regularity assumptions (HG) and (ME). &
Let us introduce the mesh-dependent norms for the spdgeand Qy,. Let Dy be an admissible 5
mesh in accordance with Definitidh2 that satisfies (G1) and (G2) or, alternatively, (HG) and (ME). §
The scalar product iX, inducesthe norm &

IGI%, =[G, Glg, VG e Xn, (3.1)

andits local counterpart
IGIZ = [Ge. Gele VGE € Xe. (3.2)

Theelements ofQy, canbe identified with the2y-piecavise constant functions and the scalar prod-
uct in Qn is, in fact, theL2 scalarproduct for such functions. Therefore it is quite natural to consider
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the L2 norm.However, we will also find it useful to carry out the analysis by using the disd:i‘étb’ke
norm

12
lanl1.p, = (Z > lelde e(IqE qE/') ) Vah € Qn, (3.3)

Ee®n ecdE

where E’ is the cell on the other side & € 6E N &nint and, to ease notation, we talg: = O if
e € 0E N &h ext- We will also need the following discretd! normon Qp x H (&n):

1/2
1@h, dgy) 1Dy 6 = (Z > —|qE — Gl ) ¥(Gh, 9g,) € Qn x H(&n). (3.4)

Ee®p ee&E

It is easy to see that this norm is stronger tHaB), More precisely, i) > regulDy), then there exists
a constanC that is only dependent aghsuch that, for al{gn, qg,) € Qn x H(&r), we have that

lanll1, o < Cl(@h, dg,) 1Dy - (3.5)

In the following developments we will number all constants whose value may be zero depending on
which alternative is considered in (AB3), that is, the strong (AB3-s) or the weak (AB3-w) condition.
We will also use the symbaf to indicate an upper bound that holds up to a positive multiplicative
constant that is independentiofHowever, we will trace explicitly the constants where required by the
proofs or that may be zero depending on the choice of assumption (AB3).

LEMMA 3.1 Let us assume that (H1)—(H3) hold. LBt bean admissible discretization &f such that

6 > regukDy), and letF¢(q) bethe convective flux o] € Qn given by £.39) and 2.40) for the vector
fieldV e C1(@2)% with A andB satisfyingassumptions (AB1)—(AB3). Then there exists a non-negative
constantC; > Othat only depends ofh, V, A and Bsuch that

V(9. 0g,) € Qn x H(&h) :
3 [ ) < 3 elFe@)t@e — de) + Cihl@ G B gy (36)
Ee®n ecdE

andwhereC; = 0if (AB3-s) holds.

Proof. By gathering the sum by faces, we transform the term invol\#g() on the right-hand side
of (3.6) as follows:

> D lel(Fe@)g (e — de) = Y lel((Fe(@)E (e — Ge) + (Fe(@))E (der — de))

Ee®Q}, ecoE eeéh

= > lel(Fe(@)& (e — &) (3.7)

eeé‘h

+ D lel(Fe(@)g + (Fe(@)E) (e — Ge)-

ee&h
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To handle the first term on the right-hand side &f7 we note that, by usin@(40) and writing, due to
(AB2),

A(deVE) = 5(deVE + A(deVE) — B(deVE)),

(3.8)
B(deVE) = 3(deVE + B(deVE) — A(eVE)),
we have
1 1
(Fe@)g = EVE(QE +0e) + E(A(devé) — B(deVE)) (e — ge)-
Thereforewe infer that
1
D lel(Fe(@)g(@e — ge) =5 > IelVE(de + ge)(de — de)
ecéh eeéh
1 |e| e e 2
+5 2 g (A(deVE) — BAVE)(@e — gD (3.9)
ee&h e
Then,let us observe that
> lel@e —ge)* < D D lel(@e — o) S hl@. gg)lip, ¢, - (3.10)
ecéh EeQp ecoE

By using (AB3), the conservation dVg)ec oy, ecoE, the fact thatd o g lelVE = [gdiv(V), and
inequality (3.10), we obtain the following estimate:

1
lel(Fe(@)2(@e —ge) > 5 D [elVE(@E — a&) —C2 > lel(ge — ge)?
2

ecéh ecéh ecéh

1
>3 2 g D lelVE — Cshl@, sl p, g,
Ee®p ecoE

1 .
>3 /Q g?div(V) — Cshll(@. dg,)IZ p, ¢, - (3.11)

whereC, andC3 only depend o, V, A andB, andC,; = C3 = 0if (AB3-s) holds.
From 2.40) and sinc&¢ = —V§,, we have

1
(Fe@)g + (Fe@)g = d—e([A(deVE) + B(—deVE)Ide + [B(deVE) + A(—deVE)Ide).

If (AB3-s) holds, then this quantity is equal to zero (this is the conservation of the convective flux), and

if (AB3-w) holds, then we have, due to (AB1), that

1
[(Fe@)E + (Fe(@) g/l = —1(A(deVE) + B(—deVE))(de — ')l < CalVlsolde — el
de
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for someC,4 thatis only dependent oA andB. Writing |qe — qe/| < |ge — Qel + |ge — qe/| andagain
using inequality 8.10) allows us to estimate the last term 8f7) as follows:

> lel((Fe@)E + (Fe@)E) (@ —de)| < Cs > D [el(@e — de)* < Cshll(@. de)IZ p, ¢, -

ecéh EcQn ecoE
(3.12)
whereCs only depends oV, A andB, and we have thafs = 0 if (AB3-s) holds.
The proof terminates by gathering inequalities (3.11) anhi?) into @.7). d

3.1 Convergence of the method

3.1.1 Preliminary results. Proposition3.2 below is the key point in the study of the scheme (2.39)—
(2.43) since it gives the inequality leading to the basjariori estimates of the solution error. To state
this proposition, we first note that, due ®.41), we can introduce the set of face valygs € H (&n)
suchthat .47) holds even ifF, is not conservative. For this purpose, we simply defiipethrough
lel(pe — pe) = [Fe, GE(E, €)]g, whereGe(E, e)e = 1 andGg(E, e)¢ = Ofor e # €. Then, taking
the vectorG e X, thatvanishes on all mesh faces excegnd is such thaGt = 1 and GeE, = -1

in (2.41) allows us to show thate doesnot depend on the choice of the cEllsuch thate € 9E. This
definition also ensures thagt = 0 whenever e & ext.

PrROPOSITION 3.2 Let us assume that (H1)—-(H3) hold. LB} be an admissible discretization @?
such that) > regukDy,), and letF.(q) bethe convective flux off € Qn given by €.39) and 2.40) for
the vector fieldv e C1(Q)% with A andB satisfyingassumptions (AB1)—(AB3). Then, for all solutions
(pn, Fn) tothe HMM schemeZ.41)—(2.43) we have

1 .
S [Fe.Fele+ 5 [ dWOIBE< [ fpn+ Cahl(pn. Pl p, (3.13)
Eeoh Q Q

whereCy, which is the same constant as in Lem&a, is non-negative, only dependséarV, A andB,
and is zero when (AB3-s) holds.

Proof. Let us takeq = p in (2.42), use the flux conservation (2.43) and prope2t¢{) of face values
to obtain the following:

/Q fon= D" D" lel(FE + (Fe(pn)E) Pe

Ee®n ecoE
= D> D lel(Fg + (Fe(pn)E)(Pe — Pe)
Ee®n ecoE
= D> [Fe.Fele+ . D lel(Fe(pn)E(PE — Po)- (3.14)
Ee®p EeQp ecoE
Theproposition follows by applying Lemm&1with g = pn andqg, = pg,. O

CoROLLARY 3.3 Under the assumptions of Propositidr, if V satisfies (H4) then, for all solutions
(pn, Fn) tothe scheme (2.41)—(2.43), we have

1P, PeIEp, 6 S I FlLzco) I PrlLzoy + C1hI(Ph, Pe)IE D, £, (3.15)
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where Cq, which is the same constant as in Lem@4 and Propositior8.2, is non-negative, only
depends oW, V, AandB, and is zero when (AB3-s) holds.

In particular, for allh small enough (or any if (AB3-s) holds) the scheme2(41)—(2.43) has a
unique solution.

Proof. We apply Propositior3.2 and use (H4) and the forn2(11)—(2.13) of the local scalar products
([, 1e)Ecq, to write, due to (C),

D IEIVe(Fe)P+a D D lelde el Te e(Fe)l? / fpn + C1hl(ph, Pl p, 6, (3-16)

EeQp EeQn ecdE

From(2.47) and 2.11)—(2.13) we have

lel(pe — Pe) = |E|4eVe(Fe) - VE(GE(®) + Te(Ge () 'BeTe(Fe), (3.17)
whereGg(e) € Xg isequal to 1 on the faceand 0 on the other faces. But (Ge(e)) = Iél A‘1|e|
(Xe — Xg), and thus, by the bound on regD},), we havelve (Ge(€))| < 'e:‘::Ele, and for alle’ € 6E we
have |Tg ¢ (Ge(e)| S IGE(e)¥] + 'eldﬁ. In particular, by using the Cauchy—Schwarz inequality and
(C) sinced sk |€|de ¢ = d|E|, we obtain

1/2 1/2
I Te(Ge(®) 'BeTe(Fe)| 5( > |ef|dE,g|TE,e«(GE<e)>|2) ( > |ef|dE,g|TE,e/(FE)|2)

€edE eedE

|e|2d2 1/2 1/2
E
§(|e|dE,e+ |E|=e) (Z|ef|dE,ef|TE,g(FE)|2) :

eedE

Whensubstituted into (3.17), this estimate gt [ve (Ge(€))| < |e|ldg. e leadto

g a2 \12 172
E /
IPE — Pel < deelVE(FE)I +( Iele |E|e) ( > 1€ |dE,€|TE,e’(FE)|2) :

eeoE

We then obtain, from3.16), that

> > —|pE— Pl S D D lelde elve(Fe)l?

Ee®p EEOE Ee®n ecdE
|e|dE e o 2
+ > > 1 B > 1€lde.e|Tee (Fe)l
EeQn ecoE eedE

5/9 £pn + C1hl(Ph. P2 p, &, -

andthe proof of 8.15) is completed.

The existence and uniqueness of the numerical solution readily follow f8ctB). In fact, when the
right-hand sidef vanishes, this inequality implies that the mesh-dependent Woom pg,)l1.p;.c, 1S
zeroand thus thatpn, pg,) arezero at least for a sufficiently small mesh slzeln such a case, the
numerical fluxFy, is also zero by 2.47). O
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REMARK 3.4 (Estimates for the hybrid discretization of the convection). For the hybrid discretization
in (2.45)—(2.49) withA and B satisfying (AB1), (AB2) and (AB3h) a result holds that is similar to that
given in Propositior8.2 and Corollary3.3. However, the proof is simpler. In fact, by usigg), we
have that
1
> D lel(Fes, (@0 )E@E —de) =5 > > 1elVE(GE + Ge)(dE — Ge)

2
Ee®n ecoE Ee®n ecoE

132 Y Piadve) - Bavg)@e - w?
EeQn ecdE €
The right-hand side of this equation is similar to the right-hand side3d)(with ge insteadof qg
and,reasoning as in the proof of Lemn3al, can be bounded from below by the the right-hand side of
(3.11). The resulting estimate is then used3rlé) with F¢ g, (ph, Pg,) insteadof Fc(pp) in order to
prove Propositior.2.

We conclude this preliminary subsection by reporting two technical lemmas that we will use in
the analysis of the next subsection. The first lemma is a direct consequebgenafdet al. (2009,
Lemmas 5.2 and 5.3) and, for this reason, is given without proof.

LeEmMmMA 3.5 (Discrete Sobolev inequalities). L&, bean admissible discretization & in the sense
of Definition 2.2with > 0 and such that < S—EE;E <6 lforalee Enint. Letr = dz—_dz if d > 2and

r < 400 if d = 2. Then there exists a real positive const@rthat only depends o, # andr such
that, for allgy € Qp, we have|gn|Lr @) < Clanll1,py-

Let vh(Fn) denotethe piecewise constant function that is equaVgdFg) on E € Qy asdefined
in (2.12).

LeEMMA 3.6 (Discrete Rellich theorem). Letl: Q — Mg(R) be a diffusion tensor satisfying hy-
pothesis (H2). Let(Dp)n—o be a family of admissible discretizations @ in the sense of Defini-
tion 2.2 with mesh sizeh tending to 0 and satisfying the regularity assumptions (G1) and (G2). Let
(pPn, Pg,) € Qn x H(&n) bea numerical scalar field such thiptpn, pg,)l1p,.g, remainsbounded
ash — 0. LetFy = (F§)Eea,, ecoE bea collection of numbers that satisfy equatié4() for the
assigned pn, pg,), With the local scalar products defined according to (2.11)—(2.13).

Then there exists a scalar figide H(}(Q) such that, up to a subsequencéhas> 0, the following
hold:

: ; 2d .
() pp— pinL"(Q)forallr < £,
(i) vh(Fn) = Vpweakly inL2(Q)9.
Proof. Using Lemma 5.6 oEymardet al. (2009), Lemma3.5, Vitali’s theorem and the fact that the

quantity|(pn, Pg,)ll1.Dy.g, is uniformly bounded, ensures thigih)h—0 is relatively compact irL." (Q)
forallr < . After defining the discrete gradieWt(pn, pg,) : 2 — RY by

_ 1
VEeQn VxeE:V(m ps)00= g > lel(pe — pe)ng,
ecoE

we see from the bound of(pn, Pg,)l1.Dy.&, that V(pn, Pg,) remainsbounded inL2(2)9. The tech-
nique used to prove Lemma 5.7 dymardet al. (2009) ensures that, ifn — p in L2(Q) (up to a
subsequence), thembelongs toHI (2) and V(pn, ps,) is weakly convergent t&v p in L2(2)9. The
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lemma is therefore true since the argument discussBudadniouet al. (2010, Remark 2.7) implies that
V(pn, Pg,) = Vn(Fn) if (pn, Pg,, Fn) arelinked through 2.11)—(2.13) and2.47). O

3.1.2 Convergence without regularity assumptiorLet us consider the HMM method d®y)n—0, @

family of meshes that are admissible according to Defini#id) with mesh sizé tending to 0 and all of

which satisfy the regularity conditions (G1) and (G2). We also assume that all of the local scalar products
in the scheme formulation are defined 2y1(1)—(2.13) through a set of symmetric and positive-definite
matrices(Be)ecg, thatsatisfy the coercivity condition (C). Moreover, the numerical convection flux
Fe(pn) in (2.42) is constructed by using.B9) and 2.40) through some instance of the functighand

B that satisfy (AB1)—(AB3). Finally, we recall thai (Fr) : 2 — RY isthe piecewise constant function

that is equal torg (Fg) on E for all E € Q1. The convergence result of this subsection is stated in the
following theorem.

THEOREM3.7 Letp € Hol(Q) be the weak solution td2(1) and 2.2) under assumptions (H1)-(H4),
and let(pn, Fn) bethe numerical solution to problen2.41)—(2.43) constructed along the guidelines
summarized above. Then, for— 0, the following hold:

i i 2d
() ph— pinL'(Q)forallr < 25

-2

(i) vh(Fn) » Vpin L2(Q)%.

Proof. The proof of Theoren8.7 is based on compactness tools developed for mixed FV or hybrid
FV for the pure diffusion equatiorDfoniou & Eymard 2006;Eymardet al., 2009) and on techniques

from classical FV scheme&ymardet al.,2000;Chainais-Hillairet & Droniou2009) for handling the
numerical convection term. We report the full proof for the sake of completeness since none of these
methods has ever been formulated in the new HMM framework.

Step 1: Compactness of the approximate solutions. Using Cor8l&rwe havé (pn, pgh)"i’Dh,gh
S L2yl PnllL2co) (atleast forh small enough if (AB3-s) does not hold). In view of Lemi3& and
inequality (3.5), we obtain an upper bound|gph, pg,)l1,D,.&,- Then the result of Lemma.6implies
the existence of a functiop Hol(Q) such that, up to a subsequengg, — p in L' (Q) for all
r < 2% andvy(Fn) — Vp weaklyin L2(2)9.

Step2: The limit function p is the weak solution to (2.1) and (2.2). Since the exact solution is
unique, this step allows us to prove the convergengedbthe whole sequence of discrete solutigis
forh — 0. We takep € C°(RQ), definepnh € Qn by ph = ¢(Xg) on E € Qp andsubstituteq = ¢n
into (2.42). Sincer, + Fc(pr) is conservative, we obtain

/Q fon= > > IelFE((xe) — p(%))

EeQp ecoE

1
+ > 2 lellp(xe) = p(Xe)) 3 (A(deVE) pe + B(deVE) Per)
EcQp ecdE €

= > D lelFE(xe —%e) - Vo(xe)+ > > IelFERE o(0)

EeQn ecoE EeQn ecoE

1
+ Z Z lel(p(Xg) — cﬁ(ie))d—(A(deVS) + B(deVE)) PE
EcQp ecoE e
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1
+ O D lellp(xe) — ¢ (%e)) 5 B(deVE) (P = Pe)

EeQn ecdE

=T1+To+ T3+ Ty, (3.18)

wherethe residual ternRrE"e(go) in T2 is such tha{R2 (p)| < de.ehl V20 oo
By (2.12), we have that

Ti= 3 [Eleve(Fe) - Volxe) = | Avn(Fn)- (Vo
Eeln Q

where(Vo)n = Ve(Xg) on E € Q. The regularity ofp together with the weak convergencevgf Fr)
impliesthat

T1—>/ AVp-Vy ash — 0. (3.19)
Q

From (2.13) we havgFg| < |Tee(Fe)l + IVe(Fe)| and,since| pnll 2.0y and[(ph, Pg,)l1.Dy.&,
arebounded, inequality (3.16) implies that

1/2 12
DD leldeelFEI< [ D0 D leldee DD leldeelFEP| St
EeQp ecoE EeQn ecoE EeQp ecoE
(recallthatzeeaE lelde.e = d| E|). Therefore we obtain that

T2l < h[V2p]ee —> O ash —> 0. (3.20)

Assumption (AB2) makes it possible to show that

Ta= D> pe D lellp(xe) — p(%e))VE

EeQn ecoE

= > Pep(xe) D leIVE— D pe D lelp(Re)VE

EeQpn ecoE Ee®y ecoE
= [ mrondive) = 3 pe 3 [ovent+ > pe > [0 -0V n
Q EeQn ecoE”® EeQn ecoE”®

= [ mondivev) = [ pvioVy+ 3 pe 3 [0 - ooV .

EeQp ecoEV®

The regularity ofp and the convergence gy, ensurethat, ash — 0, the first two terms on this
right-hand side tend t¢,, ppdiv(V) and [, pdiv(pV). As for the last term, using the fact thaflyp —

9(Xe))V - nE vanishes for boundary faceg as a compact support) and is conservative for interior
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faces (i.e., by changing to E’, the cell on the other side &f only the sign is changed), we find that

> pe > [0tV nt|=| 3 3 (pe—po) [ —ole)V nt

EcQn ecoE”® EcOQp ecdE

ShiVeleo D D lellpe — pel.

Ee®n ecdE

But the Cauchy—Schwarz inequality and the bound @, pg,)l1,p;.&, Qive that

> > lellpe — pel < (@d12DY21(pn. Pe)lLDpe, S 1. (3.21)

Ee®Qy ecoE

andthus e o PE X ecok Jo(® — 9 (Xe))V - nE tendsto O with h. We deduce that

T3 ——>/ p(pdiv(V)—/ pdiv(pV) = —/ Vp-Vgp ash— 0. (3.22)
Q Q Q

To handleTy we start by noting that assumption (AB1) implies ttﬁ@tB(devgn < 1.Thus, writing
Per — PE = Per — Pe + Pe — PE @ndusing (3.21), we obtain

ITal ShIVeleo D D lel(per — Pel + |Pe — Pel)

EeQn ecoE

S2hVele D D lellpe — pel — 0 ash — 0. (3.23)
EeQy eedoE

Eventually, the convergence properti€sl@), 3.20), 3.22) and 8.23) allow us to obtain the limit
of (3.18) forh — 0 and show thap is the weak solution to2(1) and 2.2).

Step 3: Strong convergence of the gradient. Estin®af8] and relationd.11) imply that

1 .
[ AEn) (o + 5 [ B < [ fn Chion. pey)iE

Taking the upper limit of this inequality, recalling thiion, pg,)ll1.D,.&, Staysbounded and noting that
pn is strongly convergent tp in L2(Q2) and thatp is the weak solution to1) and 2.2) leads to

1 1
lim sup Avh(Fh)~vh(Fh)+—/ div(V)ng/ fp:/ AVp~Vp—|——/ div(V)p?,
h—o Jo 2 /o o) Q 2 /o

from which we deduce that

lim sup Avh(Fh)~vh(Fh)</ AVp-Vp. (3.24)
h—0 JQ Q

Sincew — ([, AW - w)1/2 is a norm inL2(22)¢ thatis equivalent to the usual norm, equation (3.24)
proves that the weak convergenggFn) — V pin L2(Q2)% s, in fact, strong. O

REMARK 3.8 Adjusting these same arguments makes it possible to prove a similar convergence result
for the hybrid HMM formulation (2.47)—(2.49) that is based on the numerical convection flux (2.45) and
(2.46) instead 0fZ.39) and 2.40).
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3.1.3 Aboutthe regularity assumption on V .Often, the velocity field/ is not given but comes from
the resolution of another problem (see, e@hainais-Hillairet & Droniou 2007). In this case it is
not obvious that it satisfies the regularity assumptibne C1(Q2)9. We can in general ensure that
V e H(div, ), but nothing more. How does this impact on the preceding convergence study?

We first of all have to be able to define the fluXé§ of the velocity. This is, in general, quite
straightforward either using (2.19) and the fact thabelongs toH (div, ) or even more directly by
looking at the discretization of the equation providivg(this discretization also usually provides the
fluxes of the velocity, as itChainais-Hillairet & Dronioy 2007). The minimal requirement on these
fluxes is their conservativity, namely

vee &hint - Vé +VE =0

(whereE, E’ € Qn arethe two elements such thatc 0E N oE’ for everye € &nint) and their
compatibility with the coercitivity assumption diV) > 0, namely

VE€Qh: > [eVE>0
ecoE

(usually > ceor leIVE playsthe role of an approximation of: div(V)). Under these two requirements
and the strong version of assumption (AB3) (i.e., (AB3s)), it is then easy to see thagttiogl estimates
still hold (see Lemma&.1, Propositior8.2and Corollary3.3).

As for the convergence (Theoredn7), we have to check ifs and T4 behare well. ForTs we need
that

VEeQn: > lelVE =/ div(V)
E

ecoE

(or at least thal "¢ |e|VE approximates|; div(V) as the size of the mesh tends th hich is
usually the case from the definition ¥ using(2.19) or an expression of these fluxes coming from
the resolution of another elliptic equation. Fog We also need that, for any smooth functignwith
compact support, denoting &, : Q — R thefunction defined by

VEeQn VYXeE:dh(x)= > o(Xe)lelVE,

ecoE

the function @y, weakly converges irL2(Q), ash — 0, to div(¢V). Since, for anyW e H(div, Q),

definingWg = % Jo W - ng (in the usual weak sense), we have

IWEI? < Ch=91IWi2, g, + Ch=2)jdiv(W)|1Z, ¢, (3.25)

(thisis the usual Agmon scaling of trace estimates), the estimates we provide in the proof of TBebrem

on the last part of3 indicatethat @, behaes as needed Wg comesfrom (2.19) withV e H (div, Q).

If these velocity fluxes come from the approximation of another elliptic equation, then the expected
behaviour of®y, is usually a straightforward consequence of the properties of the scheme used on this
other equation (see, e.@hainais-Hillairet & Dronioy2007).

For T4 we require that
> leldeelVER (3.26)
EeQy ecoE
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remains bounded as the size of the mesh tends to 0. Wfetcomesfrom the approximation of an
elliptic equation (i.e.Vg isthe ‘F£’ of this other equation), then this estimate is usually a basic one (for
HMM methods, for example, it is a direct consequence of (S1) or (CY)¢ lis constructed from3.19)
with V e H(div, ), then @.25) shows that3;26) also remains bounded independently of the mesh
size.

In other words, although the preceding study has been made, for the sake of simplicity, with regular
velocity fields, it is easy to adapt to more realistic fields, and the convergence results still hold for these
fields.

3.2 Error estimates

In the theoretical developments of this section we assume that (HG) and (ME) hold.
Now, we consider the bilinear form

BGh. th, As;; Gh, Gh- dg,) =[G, Ghlx, =D, D 1EI(GE(@E — Ge)

+ [divn(Gn+Fe(ah), dplon =2 c _, D, 161(GntFe(an) Ea
(3.27)

for all couples of triplet§Gh, gh, gg,,) and(Gy,, gy, q’gh) in Xi, x Qn x H(&n). Problem 2.41)—(2.43)
can be reformulated as Afollows:
find (Fn, pn, Pg,) € Xn x Qn x H (&) suchthat

B(Fh, Ph. Pey: Gh, Gh. dg,) = [f', anlqn  ¥(Gh, th, Gg,) € Xn x Qn x H(&h). (3.28)
In order to prove the convergence result we need the following stability lemma.

LEMMA 3.9 Assume (AB1)— (ABS) with eitheh small enough if (AB3-w) holds or aniy if (AB3-s)
holds. For any tripl€Gh, 0n, dg,,) € Xh x Qn x H(&h) thereexists a triple(Gy,, of,, qgh) e X x Qn x
H (&n) with

IGkHl%, + laplD, + 10, Gg ) 1Dp.8 < 1 (3.29)
for which the following holds:
B(Gh, 6h, Ag; Gh, Gh» g, ) 2 IGhllg, + lanllap, + 1(ah, Ag) 1Dy - (3.30)

Proof. A straightforward calculation shows that

B(Gh, th, Gey; Gh, th, g,) = IGnI5 + D> D Iel(Fe(tn)E (G — Ge)- (3.31)
Ee®n ecoE

Sincediv(V) > 0, applying Lemma&.1yields the inequality
B(Gh, th, g, ; Gh, Gh, Gg,) = IGhl% — C1hl(@h, dg)If p, g,- (3.32)

The non-negative real constaflt;, which is provided by Lemm&.1, is zero if assumption (AB3-s)
holds.
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Let us consider theonconservativeector fieldG, € Xi given by

VE e Qn VeecdE:(Gnt = 9
dE,e
Since(M2) implies that|[E| < |e|dg e, we have that
IG5, = D IGEIR <o™ > > —(qE—qe) < Cli@h, 9813 p, ¢, (3.33)

Ee®p Ec®Qp ecdE E e

whereC > 0'is independent oh and only depends on the constarit of assumption (S1) and on
the mesh regularity constants of (M2). We infer, from the Cauchy—Schwarz inequality and Young’s
inequality, that

N ~ C 1
I[Gn. Gnlg, | < IGnl, IGhl%, < 5 1Gnl%, + 1@ As)IE b, &,
By using the definitions3.27) and 8.4) we obtain that

B(Gh. th. g, ; G, 0,0) = [Gn, Gnlg, — > D 1el(Gh)E Qe — de)

Ee®n ecoE
=[Gh, Ghlg, + > D —(q — Ge)?
Ee®p eeOE
c 1
> =2 1GnI%, + 51, 4l py &, (3.34)

In the following development it is natural to use tHé-like norm for the elements @y, given by

lanlip = > lelhg* (Manle)?, (3.35)

ecéh

where[ gn]le is the jump ofqgy atthe edgee that is defined according t@ 31). Assumptions (HG) and
(ME) imply that the mesh-dependent nofmjy 1 in (3.35) isuniformlyequivalent to the norrfi- |1 p,,

in (3.3), that is, there exists two positive constanteandv* thatare independent of the mesh stze
such that we have

Vel o < - llh <71 - oy, (3.36)

for every instance of the admissible mesh fan{ih)n. As in Beirao da Veigaet al. (2009b), let us
consider theonservativevector fieldG, € Xy, given by

VE e Qn, Ve e 9E : (Gp)& = h;l(ge — ge).

Since(M2) implies that|E| < |elhe, we have that

IG5, = D" IGElE <o > > IEIhg®(@e — de)* < ClanlZy, (3.37)

Ee®p EeQy eedE
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whereC is independent oh and only depends om* andthe mesh regularity constants of (M2). We
then apply the Cauchy—Schwarz inequality and Young'’s inequality to obtain

1Gn. Gnlz, | < 1Gnlg, IGnlg, < S1Gnl%, + 5=1Gni% < S1GnI%, + Slaniip.

By using the definition o5y, andthe norm definition (3.4), we obtain that

> D 1elGnE@e —de) = D 1el(Gh)gde + (GnE.ae) + D 1el((Gh)g + (Gn)g)de

EeQp ecoE eeéh ecéh
-1 2 2
=— > lelhg*(@e — ge)* = —lanl{p.
ecéh

Thereforewe have that
= = 2 C 2 1 2
B(Gn. n. G, Gn. 0.0) = [Gn. Gnlg, + Ienlf > — 5 IGnIZ, + Slenlfn.  (3.38)

LetGj, = 6Gh + Gh + Gp, for some value of, g, = Oh andq’gh = Qg,. From 3.32), (3.34) and3.38)
the following holds:

B(Gn, th, Ag,; Gh, Ghs dg,)

= 0B(Gh, th, ds,; Gh, Gh, Gg,) + B(Gh, th, ds,; Gh, 0,0) + B(Gh, h, ds, ; Gh, 0,0)

c C 1 1
> (9 —3 = E) IGhl%, + EIIQhIIih + (E - HClh) 1@h, 91 g (3-39)

Now, we take = (1+ C + C)/2 and we obtain the inequality
IGhI%, + Ionl3 n + 1@, 9g)IE b, &, < B(Gh, th, dg,; Gh, dh O, ) (3.40)

which holds forh small enough under assumption (AB3-w) and for &nynder assumption (AB3-s)
becauseC; = 0in this case. Using inequalitie8.33) and 8.37) allows us to obtain

IGhIg, + IGhlLh + 10, G5 ) 1.Dp.é, < O1GhIg, + L+ VO)lanln

+ A+ VOl 98, 1.0y (3.41)

Theinequalities (3.29) and3(30) in Lemma 3.9 follow from (3.40) an®.41) by rescaling the three
discrete fieldsG},, g/, and q/gh by the positive factor max(@l + ,/C, 1 + 6)(||Gh||§h + lanllz,h +

” (Qh > dg;, ) " 1,Dn.En )

Thefollowing technical lemma provides us with an estimate for the interpolation of a vector field

that is locally in(H1(E))“.
LEMMA 3.10 Let G € (H1(E))Y andlet G' bethe interpolated field2.8). Then we have that

IG' e S IGIL2e) + helGlnie). (3.42)
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Proof. Using the stability condition of assumption (S1), the Agmon inequality from (M3), and the
scaling|E|/|e| < hg, which is a consequence of (M2), it readily follows that

IGHIE SIEI D" (GRS IEI D 617G 2 S hehE G2 g, + el Gl )
esoE ecoE

from which the lemma’s statement immediately follows. O

We can now prove the main result of this subsection, which is stated in the following theorem.
This theorem provides a bound on the approximation error that is defined by comparing the numerical
solution(ph, Fn, Pg,) € Qn x Xh x H(&n) with the interpolationg' andF' of the exact solution and
flux given by @.8), and with the interpolated fielo = {(p?)¢}e<¢h € H (&) given by

1
Vee & : (ph)e = H/p. (3.43)
e

THEOREM3.11 Let p be the solution of the continuous problek) and 2.2) under assumptions (H1)—
(H4) with 4 locally Lipschitz continuous oy, (cf. Remark2.5) andF given by .3). Let(Fn, pr) be
thesolution of problemZ.41) and 2.42) under assumptions (HG), (ME) and (AB1)-(AB3) with either
h small enough if (AB3-w) holds or arly if (AB3-s) holds. Then we have that

IFh — F'llg, 4+ 1ph = P Iy + 1(Ph = P', Py = P Dpen S NIPIH2g)- (3.44)

Proof. Let us consider the triplet of error field& — F', pn — p', pg, — p?) € Xh x Qn x H(&n).
Dueto Lemma3.9, there exists a tripl€Gh, 0h, 0g,) € Xn x Qn x H (&) with

IGhllz, + lanl1Dy + 19, 1.6, <1 (3.45)
such that
IFn = F'llg, 4+ 1ph = Py + 1(Ph = P, Pey = P)ILD.
SB(Fn—F', ph—p', pg, — p’; Gh, th, Ggy,).- (3.46)
By using equations3(28), a straightforward calculation gives
B(Fn—F',pn—p', pg, — P’; Gh, h, dg,) = Ti + T2 + T, (3.47)
where

T1=[p', diva(Gh)lq, — [F'. Gnlg, — D . lel(p?)°GE.
Ee®n ecdE

T, =[f', anlq, — [diva(F") + divh(Fe(p")), dhl ps

Ta= > > lel(F' + Fe(p')g0e.

EeQp ecoE
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For convenience, we will separately boufidand T, + T3. For this purpose, let us first introduce the
discontinuous2-piecavise linear functionp®, which is such thap?|g is the L2 orthogonabprojection
of p on the linear polynomials defined db € Q. Let us start by noting thdtp — pllle(E) <lp-

q1|||_z(E) for any linear polynomiat® definedin E. Hence, takingi® = £1(p), the linear interpolation

of p on E provided by (M4), allows us to use the estimate for the interpolation error. Moreover, adding

and subtracting’1(p), applying the triangular inequality, using (M4) and a standard inverse inequality
yields that

Ip—Pue) < 1P—L1(P)nie) +1£1(P) = PHnie) S helplyze +het1£1(p) — pllLzE). (3.48)

The second term in the last inequality of (3.48) is obtained by adding and subtraxteggplying the
triangular inequality and using the estimate for the interpolation error of (M4) as follows

1£2(p) — PHlLze) < 1£2(P) — Pllize) + 1P — Pz S hEIPlHeE)- (3.49)
Substituting(3.49) into 3.48) yields the final inequality

Ip — P2 + MElP — PHie) S DEIPIkzE)- (3.50)

We recall that, for convenience, we may identify the element®g@fwith the piecewise constant
functions whose restriction to each cEllis the degree of freedom of that cell. Therefore it is possible
to reformulate the first term o, asan L2 scalarproduct, so thatg' , divi(Gn)] Qn = [P, divh(Gh)] 2.
Thenwe splitTy into four subterms by recalling thé& = — 4V p, adding and subtractinglg V p)' and
(A4eVph)', using the local consistency assumption (S2), and notingéfat’ )¢ = Je P. We therefore
obtain the following:

Ty = [p = pL.divn(Gn)l,z + [P, dvn(GnlL ~ [F' Grlx, = > > 6% [ p
EcQp ecdE e

= Tua o [Pt dvn(Gnlie + {4V D) Grlg, = > > 62 [ p
EcQp ecdE e

= Tia+[ph diva(Gnl2 + D [(4eVP)', Ghle

Ee®Qn
+ D> (4= 4e)Vp), Ghle = D > G%/P
Ee®Qp EeQn ecoE e
=Tia+ Y (diva(Gn), PYize) + [(4eVPH'. Ghle) + D [(4eV(p— pY)'. Ghle
EeQp EeOp
+ D (4= 48)Vp)', Gnle — D ZG%/p
EeQp EeQp ecdE e
“Tiat 3 262 [(pr-p+ 3 (V- ). Grle
EcQpecdE e Ecp

+ D [((4 = 48)VP)'. Ghle =Tia+ T2+ Tiz+ Tia
Ee®p
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To estimateTy 1 let us first note that the definition of djythe scaling&% < |E| S h% andle| < h‘,’;l
from (M2) and assumption (S1) imply that

. . 1 _
Idiva(Gn) I 2 g, = IENI(@iv(Gh)El® S i > 1el*(GE)? S hE%IGhIIE - (3.51)
ecoE

Thus, using the Cauchy—Schwarz inequality for each scalar produizinerror estimate (3.50), in-
equality 3.51), the Cauchy-Schwarz inequality again and finally noting &146] implies thaj| Gnll g,
< 1,yields that

T11S D, 1P = Pz ldiva(Glize) S D (hEIPlkze) (g IGhIE)
EeQp Ee®y

1/2 12
5h<2 |p|ﬁ2(E)> (Z |||Gh|||2E) S hipluzo)- (3.52)

Ec®p Ee®p

Thesecond term is bounded using a scaling argument and inequHty)( We obtain that

T12 S hIPlHz)IGhIlz, < hIPlHz(g).- (3.53)

To get an upper bound fdf; 3 we use the Cauchy—Schwarz inequality for the local scalar product in
XEg, the result of Lemma&.10, an upper bound orig thateasily follows from the upper bound of

in (H2), the Cauchy—Schwarz inequality again, the estimate of the interpolation error giv8rbby (
that follows from (M4) and the fact th#Gnllz, < 1due to inequality .45). We obtain the following
chain of inequalities:

Tiz= > [(4eV(p—pY)', Ghle

EeQn

< D W AeV(p—p)'lle IGhle
EeQn

< D U4eV(P— PYlze) + hel 4V (P — PHIn1e) IGhlle
EeQn

< D (P = PHluye) + helpluze) IGhlE

EeQn
1/2 1/2
S (Z P =P e, + h2E|p|2H2(E)) (Z |||Gh|||2E>
EeQp Eefn

1/2
pS (Z h2E|p|i.2(E)) IGhlix,

Ee®pn

< hIplhz(g)- (3.54)

¥T0Z ‘6T JQLIBAON U0 8] [IeSRe N-X1v/,d S1SAIUN T /BI0'SeuInopiojxoeufewl//:diy wouy papeojumoq


http://imajna.oxfordjournals.org/

A UNIFIED APPROACH FOR HANDLING CONVECTION TERMS 310f45

Using the Cauchy—Schwarz inequality and inequality (3.42), we get

TiaS D 14— 48)VP) e IGhle
Ee®p

12
< ( > (4 - 4e)Vp) |||.2;)

Ee®Qn

12
S ( > I = AR)VPI o, + hEl(4 = 4E)V plel(E)> : (3.55)
EeQn

Dueto the definition of4 g andsince the restrictiont |g belonggo W (E) for all E € Qp, we obtain
that

14— AglieE) + hel4 — delwio@E) She VE € On.
Combiningthe above bound witt3(55) easily yields
T1a S hIPIH2)- (3.56)
Combining(3.52)—(3.54) and356) yields the following upper bound fd:
T1 S hiplyzo) - (3.57)

To get an upper bound fali, + T3 we note that the commuting property of the divergence opera-
tor (2.9) (cf. also RemarR.4), the flux definition given in (2.3), and the model’s equat@i) allow us
to write

diva(F") = (div(F))' = f' — (div(Vp))'. (3.58)

Equation(3.58) makes it possible to reformulakg asfollows:

T, = [(div(Vp)' — divh(Fe(p")), anlop- (3.59)

As before, we identify the elements Qf, with the space of2,-piecavise constant functions, and the
scalar product irQy, with the L? scalarproduct. Then we splil, into two subterms by applying the
divergence theorem to each cell’s contribution and adding and subtracting theggrro give

L= > Y [V g -VEp+ > Y g [(VEP- (Relp)E) = Taa+ Taz. (3.60)
Ee®n ecoE e Ee®n ecoE e
NotingthatVg + V¢E, = 0 andng + ng, = Ofor anye e & int, and using definition.31) for the

jump of gn, that is, [an]le, allows us to reformulatd; 1 asfollows:

Tax= > Larde [V g = VP,

eeéh
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whereE = E(e) is the unique cell for whicte belongs to the boundary and such th@t- n® = 1. Due
to the definition ofV¢, on each edge the quantity(V - n§ — V¢) is orthogonal to constants. Therefore
we can write

Toa= 3 lande [ (V- —VE)(p Do) (361)

ee&h

wherepg is the average op one. Applying the Hlder inequality to each face’s term, the interpolation
estimates for the face’s velocity, the Cauchy—Schwarz inequality and the equivalence between norms
I I1h and]l - 1,0, gives

d-1
To1 < D IlanTel he? IV -n& = VE)(P = Po)l 2o

ee&h

d—2 3
< D he? [anTlel hE IV Iwioo (o) IP = PelL2(e)

ee&h
1/2 1/2
< Vlwiesg) | D S 2Ilan]el? > hdlp = Pel?2

eeéh ecéh

1/2
S Wilweee@llanlip, | D hEIVPIE e | (3.62)

eeSh

wherein the last line we have also used a standard approximation result. Now, the Agmon inequality for
V p (cf. (M3) with ¢ = V p) and the fact that foe C 0E N 0E’ we have thahe < maxhg, hg/) imply
that

DNV S D D PRIV S D hR(hE P, + Nelple)-
eeéh EeQp ecoE Ee®p

Thebound forT; 1 readilyfollows by recalling (3.45), to give

T2a < M21Pluice) + WIPlkz) < MIPlkz) - (3.63)

wherewe have included the data factpr |1~ (o) in the inequality’s constant. As a byproduct, we
observe here that, fron363) and the estimat&.68), it becomes clear that the error coming from the
approximation of the datud is a higher-order term.

Now, let us search for an upper bound e+ Ts. First, note that, sinc¥! andF' areconservative
fields, we have

> > qe/vgpz qu(vg+ve,)/p=o and > > lel(F)Ege=0,
EcQnecoE 7€ ec&n e EcQp ecdE

andthus

Tzt Ta= 3 3 (G o) [ (VEP - (FelP ). (3.64)

EeQy ecdoE
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Moreover, assumption (A2) implies thef = ie(A(deVE) + B(deVg)) andtherefore, by using defini-
tion (2.40) and the triangle inequality, a straightforward calculation gives

2 2

A(deVE)
de

B(deVE)

. (3.65)

IVEp — (Fo(P )2z < H(p ~(p)e)

+ H(p - (pHe)

L2(e) L2(e)

From (A1) and the definition oW/¢ it easily follows that ma{@A(deVg)l, [B(deVE)|) < de. Then, by
using the Agmon inequality of (M3) and the standard first-order interpolation estimate for cell averages,
thatis,|p — (p")el 2 < helPlyE). we have that

AdeVE) ||

il
H(p (e —o

<lp-(PHEel?
L2(e) L<(e)

Shetlp = (Pelf g, +help — (PEIR g

S helplfye, - (3.66)

A similar inequality can be derived by repeating the same argument for the second term on the right-
hand side of §.65) whene € & jnt andnoting that the second term is zeroeifis a boundary face.
Finally, we obtain

IVEP — (Fe(P'NEIF 20y S TP e )

Thereforepy using a Hlder inequality on the faces and EnCaucly—Schwarz inequality, fron3(64)
we obtain

1/2
1 1 1
T22+ T3 ShZ D [de — Gellel2pluieuey S h2lahlLy.é, <Z he|p||2.|1(EUE/)> . (367)

ee&h ecéh
Recalling(3.45) yields
T224+ T3 S hiIplH1Q)- (3.68)

Combining (3.63) and 8.68), we have the bound fdr, + T3, and also considering3(46), @3.47)
and (3.57), we conclude the proof. |
From Theoren8.11we immediately get two corollaries that we state without proof.

COROLLARY 3.12 Under the same hypotheses as in TheoBeiid, the following holds:
IFn — F'lig, < hlpluzcg)- (3.69)

wherethe total fluxes are defined throu@ = —(AVp+Vp) andF, = Fn + Fe(pn).

COROLLARY 3.13 Under the same hypotheses as in Theoffrl (and applying Lemma.5) the
following holds:

Ip' = prlir @) < hIPlhzco),
)

wherer = 24 if d > 2andr < +ooif d = 2.
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REMARK 3.14 Repeating the same arguments makes it possible to prove a similar error estimate for the
hybrid HMM formulation (2.47)—(2.49) that is based on the numerical convectionZld%) and 2.46).

REMARK 3.15 It must be noted that the proofs in this paper are not uniform with respect teethetP
number, that is, the estimates degenerate when the convection becomes dominant. On the other hand,
uniform estimates cannot be derived under the general framework considered here since it also includes
methods that are not stable in the limit. Nevertheless, the general approach used here can be followed in
order to develop uniform error estimates for certain methods. For example, we believe that a uniform er-
ror bound can be developed for the upwind scheme starting from a uniform version of the stability results

in Proposition3.2 and Corollary3.3. A deeper theoretical investigation of the convection-dominated
case will be the objective of future communications.

4. Numerical experiments

In this section we present a number of examples of probd) @nd 2.2), whose solutions are com-
puted over uniform and nonuniform meshes. The performance of these discretization methods is in-
vestigated by evaluating the rate of convergence when the meshes are refined and the shock-capturing
capability when strong layers develop in the convection-dominated regime.

For this purpose, we consider the sequence of meshes of the meshAdtibyn @ =10, 1[ x ]0, 1].
These meshes are built by remapping the positiiny) of the nodes of am x n uniform grid of
guadrilaterals into final position, y) through

X=<¢+ 1—10sin(27r5) sin@r #), 4.1)

y=n+ 1—10 sin@z¢) sin@x ). (4.2)

Then we split each quadrilateral-shaped cell into two triangles, which theegrimal mesh, and then
we connect the barycentres of adjacent triangular cells by a straight segment. We complete the mesh
construction at the domain bounda@$ by connecting the barycentres of triangular cells clos&2do
the midpoints of boundary edges and connecting these latter points to the boundary vertices of the primal
mesh. For this mesh family, the base mesh of the refinement process is obtained bynsettihg.
Refined meshes are generated by doubling this parameter and repeating the construction procedure.
The plots of Fig.2 illustrate the base mesh and the first refined meshdf. Details about the mesh
characteristics are reported in Talile

The numerical implementation is partially based on P2MEBe&ttplazzi & Manzini,2002), aC++
public domain library designed to manage data structures of unstructured meshes in the implementation
of solvers of PDEs. For convenience, we will use the labels listed below to refer to the different instances
of the HMM family of schemes considered in our numerical experiments. In each one of these schemes
the diffusion term is discretized along the lines described in Se2ti®nwhile the numerical treatment
of the convection term differs as specified in the following descriptions of the schemes:

e HMM-Cnt, two-point centred flux formula;

e HMM-Upw, two-point upwind flux formula;

e HMM-SG, two-point Scharfetter—Gummel formula with local adjustm@r23);

e HMM-(no stabilization), central mimetic method without any form of stabilization;

e HMM-Imp, central mimetic method with jump stabilizatich 32).
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FiG. 2. (a) The base mesh and (b) its first refinement for the mesh faiily The mesh construction parameteis initially
taken equal to 10 and doubled at each refinement step.

TABLE 1 Mesh parameters of the mesh sequefndt

r Ne NV h

0 121 400 280 9477 x 1072
1 441 1400 960 4843 x 1072
2 1681 5200 3520 A45x 1072
3 6561 20000 13440 225 x 1072
4 25921 78400 52480 .B30x 1073
5 103041 310400 207360 @B6x 1073

Herer is the refinement level (O refers to the base mehlg),is the number of cells\e is the

number of mesh edges ahy, is the number of mesh vertices.

4.1 Accuracy

In this test case the forcing terrh in (2.1) and the boundary condition functig? in (2.2) are set
according to the exact solution

p(X,y) = (

2(x—1)
X—e v

) (v

3(y=1
—e v

)

(4.3)

andV = (2,3)". We assume that the diffusion tensdris given by the identity matrix scaled by
the positive real factor. By takingv = 10~4, the problem is strongly convection dominated and the
solution is characterized by an exponential boundary layer near the top and right sé@les of

We are mainly interested in showing that the shock-capturing capability does not significantly
deteriorate the convergence behaviour where the solution is smooth enough, that is, away from the
boundaries where the layer develops. As pointed olédrtolazzi & Manzini(2004), Rapin & Lube
(2004) (to which we also refer the reader interested in the comparison with performance of the mixed
hybrid finite element and different kind of FV schemes on this test delsgizini & Russo(2008)
and Coudire & Manzini(2010), the errors due to the approximation of the solution gradient in the
narrow strip around the boundary where the layer develops are so large that including them in the
error measurements would prevent any convergence at all. For this reason, we restrict the error
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measurementbd the subdomain [0.95] x [0, 0.95]. Convergence rates are measured by the relative

errors | e

P — pnllqn IF" — Fnllx,

n="gu - and Ex,=—=—"
el Qn IIF! I,

where,in the second error definition, we use the total flukésandF, thatare defined in Corollarg.12.
Practically speaking, the quanti, is a measure of the approximation error of cell averages and is
calculated by using a mesh-dependefike norm. In turn, the errafy, compareshe edge-based flux

F! with the numerical flux, throughthe mesh-dependent norm inducedXin by the mimetic scalar
product.

In Fig. 3 we present the log—log plots of the errdfg, (onthe left) andfx, (on the right) versus
the characteristic mesh sike Herein, we compare the convergence behaviour of the various imple-
mentations of the HMM schemes considered in this paper. The actual order of accuracy shown by these
methods is reflected by the slopes of the experimental error curves and can be approximately evaluated
by comparison with the ‘theoretical’ slopes represented in the bottom-left corner of each plot (see also
the caption’s comment). These plots documentdpimal convergence behaviour of all the numerical
approximations in the diffusive regime (see the upper plots). When the problem becomes convection
dominated, that is, for the smallest value of the diffusion coefficient, convergence is still provided for
both scalar and flux unknowns by all methods except HMM-(no stabilization).

When we use HMM-SG, HMM-Cnt and HMM-(no stabilization) in the diffusive regime a super-
convergence effect is visible for the approximation of the scalar and the flux variables. The numerical
approximation of the scalar unknown is second-order accurate, while w&haié) for the flux vari-
able. In contrast, both HMM-Upw and HMM-Jmp provide a first-order accurate approximation for both
p and F. It is also worth noting that the error curves of HMM-SG and HMM-Cnt almost coincide.
Moreover, the errors from HMM-(no stabilization) are a little bit smaller than those obtained by the
centred schemes of FV type. Instead, in this test case the scheme HMM-Upw gives better results than
HMM-Jmp.

In the convection-dominated case, that is,ifee 104, the central approximation HMM-(no stabi-
lization) is not at all convergent on the meshes consideretiy In contrast, HMM-Cnt is convergent,
but the numerical solution (not shown in the paper) is affected by large amplitude oscillations that al-
most completely destroy the solution’s profile. This fact is consistent with the error curves displayed in
Fig. 3. The numerical approximation of the scalar and flux variables provided by the methods HMM-
Upw and HMM-SG is linearly convergent, while the one provided by HMM-Jmp seems to converge at
a rate proportional t@(h'/2), even if this last effect might be due to an insufficient mesh resolution.

(4.4)

REMARK 4.1 As noted at the end of Secti@.1, in the convection-dominated regime the functton

given by .23) is numerically nearly indistinguishable from the upwind functiégs Figures3 and4

confirm this. On the other hand, in the diffusion regime the modified Scharfetter—Gummel scheme has
better convergence properties than the upwind scheme. This behaviour is a very interesting characteristic
of the choice (2.23) when the convection term is discretized?b§0). The scheme then automatically
adjusts to provide either a good order of convergence in the diffusive regime or enough numerical
diffusion to stabilize the calculation in the convection-dominated regime. Note that, if oneAakes

B to satisfy, (AB1), (AB2) and (AB3-s) and to be such thfs) ~ s ass — +oo, A(S) has a finite
limitass — —oo and A(s) is regular around = 0, then a scheme using such functions modified in the
same way as (2.23) is expected to show the same kind of behaviour (this has been numerically tested
on several choices of such functions). Note also that this approach does not hold for the upwind scheme
since Ayp(s) is notregular ats = 0.
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Relative Q,-norm error

Relative Qp-norm error

FiG. 3. Test case 1: error curves for the numerical approximation of an exact solution that is smooth in the diffusive regime (top)
and shows an exponential boundary layer on the right and top sides of the computational domain in the convection-dominated
regime (bottom). The approximation errors are measured on the reduced dop@f5]0« [0, 0.95], that is, away from the
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critical region where the layer may develop. All calculations are performed on the mesh seddénce

4.2 Shock-capturing behaviour

Shock-capturing behaviour is investigated by solvibg ) and 2.2) in the convection-dominated regime.
The exact solution may be characterized by boundary layers of exponential and parabolic type and is
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25 7

y 070
(C) HMM-(no stabilization) (d) HMM-Jmp

FIG. 4. Shock-capturing test case: the exact solution has an exponential boundary layer on the right and top sides of the computa-
tional domain. The calculations are performed on the second mesh of the meshdriby taking the constant velocity field

V = (2, 3)T andv = 10~4. The numerical solution is displayed at the mesh vertices through linear interpolation. Severe oscil-
lations are visible in plot (c) when we use the scheme HMM-(no stabilization), that is, the central mimetic discretization without
any stabilization (note the different scale along hexis). This phenomenon disappears in plot (d) when jump stabilization is
turned on using the scheme HMM-Jmp.

approximated on the sequence of meshed . The numerical solution is plotted at mesh vertices.
Vertex values are obtained by interpolating the approximate cell averages provided by the scheme.

4.2.1 Exponential boundary layers.We experimentally investigate how these methods approximate

a solution with an exponential boundary layer that forms on those sides of the domain boundary where
V points outward. For this purpose, we solve probl@ii) and 2.2) with the same data that was used

for the accuracy benchmark test in the convection-dominated regime, thatis=fa0—.
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In Fig. 4 we compare the numerical solutions produced by the following implementations: HMM-
SG, HMM-Upw, HMM-(no stabilization) and HMM-Jmp.

In plots (a) and (b) the nonoscillatory solutions produced by the schemes HMM-SG and HMM-Upw,
respectively, are displayed. In contrast, from plot (c) it is evident that, when the calculation is performed
using the HMM-(no stabilization) scheme without any stabilization, the numerical solution suffers from
severe oscillations. These oscillations disappear when we introduce a stabilizing term in the divergence
equation that is based on the solution’s jump at the mesh edges. However, a great numerical diffusion
is introduced by this form of upwinding and the resolution of the boundary layer is poor and generally
worse than that obtained through the other HMM implementations.

4.2.2 Exponential and parabolic boundary layersOn Q =10, 1[ x ]0, 1[ we numerically solveZ.1)
and (2.2) with the Dirichlet boundary conditions

p(x,00=(1-x)° px,1)=1-x?2 pOy) =1 ply) =0,

andV = (1,0)7 in the convection-dominated regime for= 10~4. The solution has an exponential
boundary layer at the side= 1 and two parabolic boundary layersyat 0 andy = 1. Figure5 shows

the numerical results obtained from calculations using HMM-SG, HMM-Upw, HMM-(no stabilization)
and HMM-Jmp. The behaviour is similar to the behaviour documented in Section 4.2.1 for the case of a
single exponential layer.

4.3 Strongly anisotropic heterogeneous and convection-dominated case

In this third example we consider the test case proposgdiet al. (2009) where the problen2(1) and

(2.2) is solved for a strongly anisotropic and heterogeneous diffusion tensor and a rotating convection
field. A zeroth-order term proportional fis also present in the model’s equations, and its discretization

is straightforward (see, e.gCangianiet al.,2009). The domaif2 = ]0, 1] x ]0, 1] is split into four
subdomaing2; =10, 2/3[ x 10,2/3[, Q2 =10,2/3[ x ]12/3,1[, 22 =12/3,1[ x ]12/3,1[ and Q4 =

12/3,1[ x ]0, 2/3[. The diffusion tensor is diagonal in each subdomain and is characterized by a very
small value along one principal direction as follows:

106 0 :
A:( 0 1) in Q1 and Q3

and

1 0 .
A:(O 10_6) in 2, and Q4.
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Notethat the directions along which diffusion is small are interchanged for adjacent subdomains. Con-
vection is given by the clockwise rotating solenoidal fisléx, y) = 40(x(2y — 1)(x — 1), —y(2x —

1)(y — 1)) and the right-hand side is a gaussian bump positioned at a distan@bdfdm the domain

centre, given byf (x, y) = 10~2 exp(—(r —0.35)2/0.005)with r2 = (x —0.5)?+ (y —0.5)2. This prob-

lem is convection dominated, thus requiring some sort of upwinding in the numerical treatment of the
convection term. Moreover, the exact solution is continuous, but internal layers form near the interfaces
that separate the subdomains due to the small diffusion value in the switching directions. The strong
solution gradients cannot be resolved by the attainable grid sizes and the numerical approximations are
expected to be discontinuous at the internal interfaces.
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\ﬁ

7.383

1

(C)HMM-(no stabilization) (d) HMM-Jmp

FIG. 5. Shock-capturing test case: the exact solution has an exponential boundary layer on the right side and two parabolic layers
on the top and bottom sides of the computational domain. The calculations are performed on the second mesh of the mesh family
M1 by taking the constant velocity fieM = (1,O)T andv = 10~%. The numerical solution is displayed at the mesh vertices
through linear interpolation. Severe oscillations are visible in plot (c) when we use the scheme HMM-(no stabilization), that is, the
central mimetic discretization without any stabilization (note the different scale alorzgaxis). This phenomenon disappears in

plot (d) when jump stabilization is turned on using the scheme HMM-Jmp.
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In the test cases presented in Sections 4.2.1 and 4.2.2 there was no significant difference between the
numerical approximations provided by the cell-based version of the upwind scheme HMM-Upw (see
(2.41) and (2.42)), and its edge-based version (see (2.47)—(2.49)). This is no longer the case herein, as
illustrated in Fig.6. The calculations, which use the two alternative versions of the HMM-Upw scheme,
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(a) Grid pattern (b) Exact solution

(C) Cell-based upwind HMM-Upw (d) Edge-based upwind HMM-Upw

FIG. 6. Strongly anisotropic heterogeneous and convection-dominated test case: on a coarse mesh the cell-based upwinding of th
convection provokes spurious oscillations that are completely absent in the edge-based upwinding discretization.
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are performed on a grid obtained by a 8@O0 periodic reproduction of the pattern shown in F¢).
Since theexactsolution of this problem is unknown, a reference solution is calculated, for comparison’s
sake, on a very fine cartesian grid. The reference solution is displayed i6(B)g. The numerical
solution provided by the cell-based upwind scheme is shown in&m.and is clearly affected by
spurious oscillations. In contrast, this undesirable effect is almost completely absent in the numerical
solution provided by the edge-based upwind scheme, which is shown i (Elyg.

Itis also worth mentioning the behaviour of these two different implementations of the HMM-Upw
scheme as far as minimum and maximum principles are concerned. For this purpose, we recall that
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thenumerical solutions obtained by first-order upwind two-point FV schemes in convection-dominated
problems are characterized by numerical properties such as positivity, monotonicity, etc. A thorough
inspection of our numerical results reveals that both cell-based and edge-based schemes respect the
minimum value, which is zero for the reference solution, and proviéex610~* and6.9 x 1074,
respectiely, for the maximum value against a reference value of approxima@k/®—*. Nonetheless,

we noted a minimum value of approximatehl .1 x 10-°, which corresponds to a numerical undershoot

of around 16%, when we applied the cell-based scheme on a different mesh given by splitting every
other rectangular cell of a 120 60 regular partition of2 into two subtriangles. On this latter mesh,

the edge-based upwind scheme was still seen to respect the zero minimum value. We do not show
the other solution plots for these latter calculations because their behaviours are very similar to those
of the solutions shown in Figs. From these qualitative comparisons we deduce that the edge-based
upwind scheme may be more stable and accurate than the cell-based upwind scheme. We also remark
that the edge-based upwind scheme has the advantage of being fully hybridizable, thus leading to a
linear system in the edge unknowns through local variable eliminations such as, for example, in the
static condensation of mixed finite elements. For these reasons, the edge-based upwind scheme may be
preferable when dealing with stiff problems on coarse meshes.

REMARK 4.2 As a final comment, we observe that, in all of the developed tests, the schemes HMM-(no
stabilization) and HMM-Jmp, which satisfy only (AB3-w), do not show particular pathologies for coarse
meshes. Therefore, at least on the basis of the presented tedissrittadl-enough condition appearing

in Theorem3.11does not seem to pose a true limitation in practice.

5. Conclusions

We have presented a new family of methods for the numerical approximation to the solution of the
steady convection—diffusion equation. These methods, which are referred to as HMM methods, are
based on a unified formulation for the hybrid FV method, the mixed FV method and the MFD method,
and differ mainly in the approximation of the convection term. In particular, we considered centred,
upwind, weighted and locally scaled Scharfetter—Gummel-type discretizations for which we provided a
full proof of convergence under very general regularity conditions of the solution field and derived an
error estimate when the scalar solution iHA(Q).

In the last part of the paper we numerically compared the performance of these schemes on a set of
test cases selected from the literature in both diffusion- and convection-dominated regimes. As expected,
the methods, including a centred-type discretization of the convective term, showed a better behaviour
in the test cases dominated by diffusion, exhibiting a superconvergence in the approximation of both
scalar and vector variables. On the other hand, such schemes showed a strong loss of convergence rate
in the convection-dominated tests, while on those same tests the methods with upwinding or stabiliza-
tion exhibited a better behaviour. Finally, we showed a test with strong anisotropy and jumps in the
coefficients. The results seem to suggest that the hybridized formulation gives more stable results for
this kind of problem.
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