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Abstract

We present finite volume schemes for Stokes and Navier-Stokes equations. These schemes are
based on the mixed finite volume introduced in [6], and can be applied to any type of grid
(without “orthogonality” assumptions as for classical finite volume methods) and in any space
dimension. We present numerical results on some irregular grids, and we prove, for both Stokes
and Navier-Stokes equations, the convergence of the scheme toward a solution of the continuous
problem.
Keywords. Mixed finite volume scheme, Stokes problem, Navier-Stokes problem, general grids,
numerical results.

1 Introduction

Finding an approximate solution of the Navier-Stokes equations can be done by a large range of
numerical methods: finite element methods, mostly used by the mathematician community (see
for example [10, 11, 12] and references therein), spectral methods and finite volume methods,
largely used by the engineering and physicists community (one can first refer to [15] for finite
volume methods on staggered grids, and for example to [2, 13, 8, 9] for collocated finite volume
schemes). One reason for this difference of practice is that an advantage of finite volume methods
on finite element ones lies on its easy physical interpretation and on simpler implementations.
However, on domains with complex shapes, it remains difficult to account for constraints pro-
vided by finite volume schemes on the meshes: the well-known Patankar scheme on staggered
grids can hardly be extended to unstructured meshes, and the implementation of collocated
finite volume schemes is complex on general meshes, demanding a stabilization procedure for
the pressure.
These constraints on the grids are due to the simultaneous discretization of the viscous term in
the momentum balance equation and of the mass conservation equation. On the other hand,
a mixed finite volume scheme has recently been shown to be well suited for the resolution of
diffusion problems on any type of 2D or 3D grid, structured or not, admissible or not in the sense
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of finite element or classical finite volume methods. Hence one could expect that this scheme
would provide new gridding possibilities in the case of Stokes and Navier-Stokes equations. This
is the point that we focus on in this paper. Let us first recall the continuous problems that are
to be approximated.

We first consider the Stokes problem and we therefore search for an approximation of ū and p̄,
weak solution to

−∆ū+∇p̄ = f in Ω,

divū = 0 in Ω,

ū = 0 on ∂Ω,∫
Ω
p̄(x) dx = 0,

(1)

under the following assumptions:

Ω is an open bounded connected polygonal subset of Rd, d = 2 or 3, (2)

and
f ∈ L2(Ω)d. (3)

Thanks to Lax-Milgram theorem, there exists a unique weak solution to (1) in the following
sense.

Definition 1.1 [Weak solution to the Stokes equation] Assume that (2) and (3) hold. A
weak solution to (1) is ū such that ū ∈ E(Ω),∫

Ω
∇ū(x) : ∇ϕ(x) dx =

∫
Ω
f(x) ·ϕ(x) dx , ∀ϕ ∈ E(Ω), (4)

where E(Ω) = {ϕ ∈ H1
0 (Ω)d , div(ϕ) = 0}.

Remark 1.1 If ϕ = (ϕ1, . . . , ϕd) is a function Ω → Rd, we denote by ∇ϕ the second order
tensor ((∂jϕi))(i,j)∈[1,d]2. If v = ((vi,j))(i,j)∈[1,d]2 and w = ((wi,j))(i,j)∈[1,d]2 are two second order
tensors, we let v : w =

∑d
i,j=1 vi,jwi,j (note that this definition of the doubly contracted product

of tensors differs from the usual one in which one of the tensors is transposed).

We also consider the incompressible transient Navier-Stokes problem:

∂tū+ (ū · ∇)ū−∆ū+∇p̄ = f in ]0, T [×Ω,

div(ū) = 0 in ]0, T [×Ω,

ū = 0 on ]0, T [×∂Ω,

ū(0, ·) = u0 in Ω∫
Ω
p̄(·,x) dx = 0 on ]0, T [ ,

(5)

under the assumption
f ∈ L2(]0, T [×Ω)d , u0 ∈ L2(Ω)d. (6)
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Remark 1.2 [Renormalization] If we replace the first equation of (5) by ∂tū + (ū · ∇)ū −
µ∆ū +∇p̄ = f for some µ > 0, then any solution (ū(t,x), p̄(t,x)) of the system of equations
thus obtained is such that (ū(t/µ,x)/µ, p̄(t/µ,x)/µ2) is a solution of (5), replacing u0(x) by
u0(x)/µ, f(t,x) by f(t/µ,x)/µ2 and T by µT . We can therefore let µ = 1 without loss of
generality.

It is known [17, 3] that there exists a weak solution to (5) in the following sense (notice however
that we do not use, in the following, the existence of such a solution).

Definition 1.2 [Weak solution to the Navier-Stokes equation] Assume that (2) and (6)
hold. A weak solution to (5) is ū ∈ L2(0, T ;H1

0 (Ω))d such that div(ū) = 0 a.e. on ]0, T [×Ω and,
for all ϕ ∈ C∞c ([0, T [×Ω)d such that div(ϕ) = 0,

−
∫ T

0

∫
Ω
ū(t,x) · ∂tϕ(t,x) dt dx+

∫ T

0

∫
Ω

[(ū(t,x) · ∇)ū(t,x)] ·ϕ(t,x) dtdx

+
∫ T

0

∫
Ω
∇ū(t,x) : ∇ϕ(t,x) dt dx

=
∫

Ω
u0(x) ·ϕ(0,x) dx+

∫ T

0

∫
Ω
f(t,x) ·ϕ(t,x) dt dx. (7)

The principle of our scheme, described in Section 2, is the following. We simultaneously look for
approximations uK ∈ Rd, vK ∈ Rd×d of ū, ∇ū in each control volume K and for approximation
Fσ ∈ Rd of

∫
σ∇ū(x)nσ dγ(x) at each edge σ of the mesh, where nσ is a unit vector normal to σ.

The values Fσ must then satisfy the balance equation in each control volume, and consistency
relations are imposed on uK , vK and Fσ. We present some numerical examples in Section 3,
which demonstrate the aptitude of the mixed finite volume scheme to provide accurate results
on meshes including refinements, vertices inside internal edges and general quadrangular control
volumes. In Sections 4 and 5, we study the mixed finite volume approximation respectively
for Stokes and Navier-Stokes equations: we show that this method leads to systems (linear in
the case of Stokes problem, non-linear in the case of Navier-Stokes problem) which, in general,
have at least one approximate solution u, v and F (this solution is unique in the case of Stokes
problem), and we prove the convergence of these approximate solutions toward a solution of
the continuous equations. An appendix (Section 6) concludes the paper by providing various
lemmas involved in the analysis of the schemes.

2 The mixed finite volume schemes

2.1 Admissible discretization of Ω

We present the notion of admissible discretization of the domain Ω, which is necessary to give
the expression of the finite volume scheme.

Definition 2.1 [Admissible discretization] Let Ω be an open bounded polygonal subset of
Rd (d ≥ 1), and ∂Ω = Ω \ Ω its boundary. An admissible discretization of Ω is given by
D = (M, E ,P), where:
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• M is a finite family of non empty open polygonal disjoint subsets of Ω (the “control vol-
umes”) such that Ω = ∪K∈MK. For all K ∈ M, we denote by K? the set of all point
x ∈ K such that K is star-shaped with respect to x (i.e., for all x′ ∈ K, the segment
between x and x′ is a subset of K), and we assume that K? has a nonempty interior.

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all
σ ∈ E, there exists an affine hyperplane E of Rd and K ∈ M with σ ⊂ ∂K ∩ E and σ
is a non empty open subset of E. We assume that, for all K ∈ M, there exists a subset
EK of E such that ∂K = ∪σ∈EKσ. We also assume that, for all σ ∈ E, either σ ⊂ ∂Ω or
σ ⊂ K ∩ L for some (K,L) ∈M2 (K 6= L).

• P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M and such that, for
all K ∈M, xK ∈ K.

Remark 2.1 Though the elements of EK may not be the real edges of the control volume K
(each σ ∈ EK may be only the part of a full edge, especially in the case of locally refined grids),
we will in the following call “edges of K” the elements of EK . Notice also that the control
volumes can be non-convex, so that two neighboring control volumes can share multiple edges.

Notations. The measure of a control volume K is denoted by m(K) and the (d−1)-dimensional
measure of an edge σ by m(σ). If σ is a given edge, we sometimes write it σK|L to indicate that
the control volumes on each side of σ are K and L; if σ is a boundary edge, σK|∂ indicates that
the control volume whose boundary contains σ is K. For all σ ∈ E , xσ is the barycenter of σ.
The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), that is Eint = {σ ∈ E ;
σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}). For all K ∈ M, we denote by NK the subset of M
of the neighboring control volumes (that is, the L 6= K such that K ∩L contains an edge of the
discretization), and we denote by EK,ext = EK ∩ Eext and EK,int = EK ∩ Eint.

To study the convergence of the schemes, we need the following two quantities: the size of the
discretization

size(D) = sup{diam(K) ; K ∈M}

and the regularity of the discretization

regul(D) = sup
{

max
(

diam(K)d

ρdK
,Card(EK)

)
; K ∈M

}
+ sup

{
diam(K)
diam(L)

; K ∈M , L ∈ NK
}

where, for K ∈M, ρK is defined by

ρK = sup{r > 0 | ∃x ∈ K?, B(x, r) ⊂ K?} (8)

(see the meaning of K? in Definition 2.1). Notice in particular that, for all K ∈M, diam(K)d ≤
regul(D)ρdK ≤

regul(D)
ωd

m(K) (with ωd the volume of the unit ball in Rd); hence, since Card(EK) ≤
regul(D) and m(σ) ≤ ωd−1diam(K)d−1 if σ ∈ EK , we have∑

σ∈EK

m(σ)diam(K) ≤ ωd−1regul(D)2

ωd
m(K). (9)
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2.2 A mixed finite volume scheme for Stokes problem

If D is an admissible discretization of Ω, we denote by HD the set of functions w : Ω → R
which are piecewise constant on each control volume K ∈M, and we identify w ∈ HD with the
family of its values (wK)K∈M on the control volumes. FD is the set of families of real numbers
(FK,σ)K∈M , σ∈EK .
Taking ν > 0, the numerical scheme for the Stokes problem is the following: find (p,u,v,F ) ∈
HD×Hd

D×H
d×d
D ×FdD which satisfies the following equations. The first relation states that the

second order tensor v is the gradient of u (we penalize by F , which plays the role of the fluxes
of v, in order to estimate these fluxes later on):

vK(xσ − xK) + vL(xL − xσ) + ν
diam(K)

m(σ)
FK,σ − ν

diam(L)
m(σ)

FL,σ = uL − uK ,

∀σK|L ∈ Eint ,

vK(xσ − xK) + ν
diam(K)

m(σ)
FK,σ = −uK , ∀σK|∂ ∈ Eext .

(10)

We then impose that the fluxes of momentum, involved in the first P.D.E. of (1), respect an
exact conservation across each internal edge of the mesh:

(FK,σ − pKm(σ)nK,σ) + (FL,σ − pLm(σ)nL,σ) = 0 , ∀σK|L ∈ Eint . (11)

The tensor v and its fluxes F are linked through the fact that the latter allows to reconstruct
the former (see Lemma 6.1):

m(K)vK =
∑
σ∈EK

FK,σ ⊗ (xσ − xK) , ∀K ∈M . (12)

The following equation translates the incompressibility condition, taking into account the pe-
nalization introduced in (10):

m(K)Tr(vK) + νdiam(K)
∑
σ∈EK

FK,σ · nK,σ = 0 , ∀K ∈M (13)

(where Tr(w) = w : Id =
∑d

i=1 wi,i is the trace — or contraction — of a second order tensor w =
((wi,j))(i,j)∈[1,d]2). We then write the balance of fluxes, that is to say the discrete counterpart
of the integration of the first P.D.E. in (1) on each control volume:

−
∑
σ∈EK

(FK,σ − pKm(σ)nK,σ) = −
∑
σ∈EK

FK,σ =
∫
K
f(x) dx , ∀K ∈M (14)

(notice that
∑

σ∈EK m(σ)nK,σ = 0 thanks to Stokes’ formula), and we normalize the choice of
the pressure: ∑

K∈M
m(K)pK = 0. (15)

Remark 2.2 [Square system and implementation] A close examination of the preceding
scheme shows that it is over-determined. Indeed, by (11) there is in fact only one unknown flux
vector Fσ for each edge of the mesh — since the knowledge of FK,σ gives back FL,σ using pK
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and pL — and (10) precisely provides d equations per edge; (12) and (14) respectively give as
many equations as there are unknowns vK and uK , and (13) gives as many equations as the
unknowns pK . With (15), we therefore have written one more equation than we have unknowns.
However, these equations are not independent: take the scalar product of each equation (10) with
m(σ)nK,σ and sum on σ ∈ E. Gathering by control volumes, the general formula vK(xσ−xK) ·
nK,σ = vK : (nK,σ ⊗ (xσ − xK)) and Lemma 6.1 give∑

K∈M
m(K)Tr(vK) +

∑
K∈M

νdiam(K)
∑
σ∈EK

FK,σ · nK,σ = −
∑
K∈M

uK ·
∑
σ∈EK

m(σ)nK,σ.

Since
∑

σ∈EK m(σ)nK,σ = 0, the right-hand side of this equation is zero, and (13) shows that the
left-hand side is also zero. Hence, equations (10) and (13) are linked in a non-trivial fashion,
and, removing one of the equations (13), we obtain a square system equivalent to (10)—(15).
Instead of imposing a zero mean value for the pressure (see (15)), we can also impose a zero
value for the pressure in a particular control volume (for example the one corresponding to the
removed equation (13)); the resulting system is equivalent to (10)—(15) up to the addition of a
constant value to the pressure, and this is the system we implement to compute the solution of
the scheme (we will see in Section 4 that these square systems are invertible).

Remark 2.3 [Exact incompressibility] The equations (10) allow to define uσ by

vK(xσ − xK) + ν
diam(K)

m(σ)
FK,σ = uσ − uK , ∀K ∈M, ∀σ ∈ EK

(and uσ indeed only depends on σ, not on K such that σ ∈ EK). Taking the scalar product of
these equations by m(σ)nK,σ and summing on σ ∈ EK , we obtain, thanks to Lemma 6.1 and
since

∑
σ∈EK m(σ)nK,σ = 0,

m(K)Tr(vK) + νdiam(K)
∑
σ∈EK

FK,σ · nK,σ =
∑
σ∈EK

m(σ)uσ · nK,σ.

Using (13) leads to ∑
σ∈EK

m(σ)uσ · nK,σ = 0,

which provides the conservation property expected from the finite volume methods.

2.3 A mixed finite volume scheme for transient Navier-Stokes problem

Let T > 0, N ≥ 1 be an integer, and define δt = T/N . If D is an admissible discretiza-
tion of Ω in the sense of Definition 2.1, we denote by HD,δt the families of real numbers
w = (wn+1/2

K )K∈M , n=0,...,N−1, and we identify w ∈ HD,δt with the piecewise constant func-
tion w : ] 0, T [×Ω→ R which is equal to wn+1/2

K on ]nδt, (n+ 1)δt[×K (for n = 0, . . . , N − 1 and
K ∈M). If w ∈ HD,δt, we let wn+1/2 = (wn+1/2

K )K∈M ∈ HD.

Defining FD,δt = {(Gn+1/2)n=0,...,N−1 ; ∀n = 0, . . . , N − 1 , Gn+1/2 ∈ FD}, the mixed finite
volume scheme for the transient Navier-Stokes problem is a natural generalization of the scheme
for the Stokes problem, using a Crank-Nicolson discretization of the time derivative (hence the
natural exponent n + 1/2, since this time discretization involves quantities at half time steps).
We search for (p,u,v,F ) ∈ HD,δt ×Hd

D,δt ×H
d×d
D,δt ×F

d
D,δt such that, for all n = 0, . . . , N − 1,
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• v plays the role of a gradient of u:

vn+1/2
K (xσ − xK) + vn+1/2

L (xL − xσ) + ν
diam(K)

m(σ)
F
n+1/2
K,σ − ν diam(L)

m(σ)
F
n+1/2
L,σ

= u
n+1/2
L − un+1/2

K , ∀σK|L ∈ Eint ,

vn+1/2
K (xσ − xK) + ν

diam(K)
m(σ)

F
n+1/2
K,σ = −un+1/2

K , ∀σK|∂ ∈ Eext ,

(16)

• the fluxes of momentum, involving the pressure, are conservative:(
F
n+1/2
K,σ − pn+1/2

K m(σ)nK,σ
)

+
(
F
n+1/2
L,σ − pn+1/2

L m(σ)nL,σ
)

= 0 ,

∀σK|L ∈ Eint ,
(17)

• v can be reconstructed from its fluxes:

m(K)vn+1/2
K =

∑
σ∈EK

F
n+1/2
K,σ ⊗ (xσ − xK) , ∀K ∈M , (18)

• the incompressibility condition holds:

m(K)Tr(vn+1/2
K ) + νdiam(K)

∑
σ∈EK

F
n+1/2
K,σ · nK,σ = 0 , ∀K ∈M , (19)

• the PDE is satisfied on the discrete level (1):

m(K)
un+1
K − unK

δt
+
∑
σ∈EK

m(σ)u n+1/2
σ · nK,σ

(
u
n+1/2
K + un+1/2

L

2

)

−
∑
σ∈EK

(F n+1/2
K,σ − pn+1/2

K m(σ)nK,σ) =
1
δt

∫ (n+1)δt

nδt

∫
K
f(t,x) dtdx , ∀K ∈M ,

(20)

where the values at full time steps and half time steps are linked together by the following
relation:

u
n+1/2
K =

un+1
K + unK

2
, ∀K ∈M , (21)

and where, as in Remark 2.3, we define u n+1/2
σ by (2)

vn+1/2
K (xσ − xK) + ν

diam(K)
m(σ)

F
n+1/2
K,σ = un+1/2

σ − un+1/2
K ,

∀K ∈M , ∀σ ∈ EK ,
(22)

• the discretization of the initial condition is defined by:

u0
K =

1
m(K)

∫
K
u0(x) dx , ∀K ∈M , (23)

1In the first sum on the edges, we let L be the neighboring control volume of K on the other side of σ, if
σ ∈ EK,int, or we let u

n+1/2
L = 0, if σ ∈ EK,ext.

2This definition makes sense thanks to (16).
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• and the choice of the pressure is normalized:∑
K∈M

m(K)pn+1/2
K = 0. (24)

It will be useful to notice that, thanks to (22), (19) and as in Remark 2.3, we have∑
σ∈EK

m(σ)u n+1/2
σ · nK,σ = 0 , ∀K ∈M , ∀n = 0, . . . , N − 1. (25)

Remark 2.4 [Scheme for the steady problem] A scheme for the steady problem can be
obtained by suppressing all the time indices n + 1/2 in equations (16), (17), (18), (19), (22),
(24), and replacing (20) with∑

σ∈EK

m(σ)uσ · nK,σ
(
uK + uL

2

)
−
∑
σ∈EK

(FK,σ − pKm(σ)nK,σ) =
∫
K
f(x) dx , ∀K ∈M .

The scheme thus obtained can be studied in the same way as the transient scheme (see Section
5), which leads to similar convergence results.

Remark 2.5 [Implicit discretization] All the mathematical results presented in this paper
hold for the θ-scheme, which consists in replacing (21) by un+1/2

K = θun+1
K + (1 − θ)unK with

θ ∈ [1/2, 1] (the implicit discretization is obtained with θ = 1, the Crank-Nicolson discretization
with θ = 1/2). The crucial point is that, in the course of the proof of Proposition 5.1, the new
term (θ− 1

2)
∑N−1

n=0

∑
K∈Mm(K)

∣∣un+1
K − unK

∣∣2 appearing in T2 is non-negative for θ ∈ [1/2, 1].

3 Numerical results

Since this paper is focused on the presentation of the scheme and on the proof of its convergence,
we have no room to develop here a thorough comparison between its results and the ones of
other schemes. We therefore limit the presentation of numerical results to the illustration of the
aptitude of the scheme for handling various types of grids, in the case of steady and transient
Navier-Stokes problems, while preserving good qualitative properties on the solution. The reso-
lution of equations (16)—(24) has been implemented in a prototype code written in FORTRAN,
and the resolution procedure at each time step is based on under-relaxed Newtonian iterations
coupling all the equations (after eliminating v thanks to (18)). The resulting linear systems are
solved by a direct method (Gaussian elimination) or an iterative method (BICGSTAB solver
with an ILU preconditioner, see for example [16]). The implementation of the steady problem
is done with the modifications presented in Remark 2.4, and the steady solution is therefore
directly obtained (there is no need to approximate this solution by a transient one).

3.1 Lid driven cavity

We first focus on the classical lid driven cavity example with Re = 1000. Figure 1 shows the
results obtained thanks to the scheme (16)—(24) (using nonhomogeneous boundary conditions
instead of homogeneous ones) on different grids which are not admissible for classical finite
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Figure 1: Lid driven cavity on unstructured and irregular grids: grids (top pictures), pressure
field (middle pictures) and streamlines (bottom pictures).

element or finite volume schemes. The accuracy of these results on those coarse grids appear
to be acceptable. We also notice that the quality of the numerical streamlines is mainly linked
with the size of the control volumes (the streamlines are deformed in regions with large control
volumes, and good in regions with small control volumes), and not with the fact that different
regions are discretized with grids which are connected in “non-admissible” ways (in the sense of
finite element methods); such a situation can occur, for instance, during a refinement procedure.
We present in Figure 2 the effect of the value of the stabilization parameter ν, in the case of the
lid driven cavity with Re = 1000 on a 30 × 30 square grid; these results show that, in order to
obtain a good approximate pressure field in this case, the stabilization parameter must be chosen
not too small. We however want to emphasize that the choice of ν has no perceptible influence
on the quality of the velocity: we have noticed that, on the same 30 × 30 grid, the results for
the streamlines and the velocity field with ν in the range [10−3, 10−7] are indistinguishable from
the case ν = 10−7 presented in Figure 3.
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Figure 2: Lid driven cavity on a 30×30 square grid, pressure fields for: ν = 10−7 (left), ν = 10−5

(middle), ν = 10−3 (right).

Figure 3: Lid driven cavity on a 30× 30 square grid for ν = 10−7: streamlines (left), horizontal
velocity (middle) and vertical velocity (right).
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3.2 Backward facing step

We then study the behavior of the scheme in the case of the flow into a pipe whose di-
mensions vary discontinuously (the backward facing step problem, included in the domain
] − 2, 30[×]0, 1.94[, the step being at x = 0; see for example [1]). We let Re = 800 and we
use a quite coarse mesh, made of 5625 rectangles and triangles and deliberately chosen to be
non admissible in the sense of classical finite element or finite volume schemes (some edges are
cut in two, see Figure 4). The results we obtain show a good accuracy: the reattachment length
for the bottom vortex is obtained at x = 10.5, the detachment position for the top vortex is
obtained at x = 9.0 and its reattachment position is given by x = 17.5, which is in the order
of magnitude of the values supplied in literature, to within 10% (see Figure 5). Let us also
observe that in this case, where we impose the pressure at the right vertical boundary, nearly
no stabilization is necessary: we chose ν = 10−7 for this calculation and we obtained a good
pressure field (see Figure 6). Notice finally that, as for the lid driven cavity, the quality of the
numerical results is not deteriorated in the region where the grid is not admissible (in the sense
of classical finite element or finite volume schemes).

Figure 4: Backward facing step, mesh: in the full pipe (top), and zoom on a neighborhood of
the step (bottom).

3.3 Green-Taylor analytical example

We take Ω =]0, 1[×]0, 1[ and T = 0.02. Let µ > 0 be given and let the pair of functions (ū, p̄)
be defined on ]0, T [×Ω by

ū1(t,x) = − 1
µ cos(2π(x1 + 1

4)) sin(2π(x2 + 1
2)) exp(−8π2t)

ū2(t,x) = 1
µ sin(2π(x1 + 1

4)) cos(2π(x2 + 1
2)) exp(−8π2t)

p̄(t,x) = − 1
4 µ2

(
cos(4π(x1 + 1

4)) + cos(4π(x2 + 1
2))
)

exp(−16π2t).
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Figure 5: Backward facing step, streamlines: full pipe (top) and zooms on the first (middle) and
second (bottom) vortices.

Figure 6: Backward facing step, pressure field.

Then (ū, p̄) is the unique solution of the transient Navier-Stokes equations with f = 0, the
initial condition and nonhomogeneous boundary conditions being respectively given by ū(0, ·)
and ū(t,x) for all (t,x) ∈]0, T [×∂Ω (a small time T = 0.02 has been selected in order to take into
account the exponential decay of the solution: for larger times, the solution nearly vanishes).
We denote by (u, p) the approximate velocity and pressure fields resulting from the time implicit
version of (16)—(24) (see Remark 2.5; the results given by the Crank-Nicolson scheme have
led in this case to lower convergence properties) with f = 0 and the initial condition and the
nonhomogeneous boundary conditions satisfied by the continuous solution. The obtained results
are given in Table 1 (in which the regular grids and the time steps we used are precised), assuming
µ = 0.01 and setting ν = 10−7 for all calculations. These results show that the convergence

grid δt
‖ū1(T,·)−u1(T,·)‖L2

‖ū1(T,·)‖L2

‖ū2(T,·)−u2(T,·)‖L2

‖ū2(T,·)‖L2

‖p̄(T,·)−p(T,·)‖L2

‖p̄(T,·)‖L2

10× 10 0.004 0.14 0.15 0.38
20× 20 0.001 0.038 0.043 0.086
40× 40 0.00025 0.011 0.012 0.023
80× 80 0.0000625 0.0029 0.0035 0.0064

Table 1: Green-Taylor analytical example, relative errors of the different fields of unknowns at
time T = 0.02.

properties of the method are compatible with space order not far from 2 and time order not far

12



from 1 for the velocity and the pressure, although ν remains constant.

3.4 Conservation of kinetic energy

In order to obtain a stable and dissipation-free numerical method, one of the important behaviors
of the scheme must be the conservation, at very high Reynolds numbers and without source
terms, of the kinetic energy (see [14]). In other words, for Reynolds number equal to 1 and
small times (see the renormalization in Remark 1.2), the decay of kinetic energy should only
come from the viscous term, not the convective nonlinear term. Let us check the behavior of
the mixed finite volume method on the kinetic energy.
We consider (5) with Ω =]0, 1[×]0, 1[, T = 10−5, f = 0 and u0 given by

u0(x) =
(
−∂2Ψ(x)
∂1Ψ(x)

)
with Ψ(x1, x2) = 0.0001× (x1(1− x1)x2(1− x2))2 .

Denoting by ū the solution to (5) and by u the solution to (16)—(24), we define the exact kinetic
energy by Ēc(t) = 1

2

∫
Ω |ū(t,x)|2 dx and the approximate one by Ec(t) = 1

2

∫
Ω |u(t,x)|2 dx. The

exact kinetic energy follows the equation

Ēc(t) = Ēc(0)− t
(∫

Ω
∇u0(x) : ∇u0(x) dx+ ε(t)

)
, ∀t ∈]0, T [,

with ε(t) → 0 as t → 0 (this relation states that the infinitesimal decay of Ēc only comes from
the viscous term). Let us check that this is approximately verified by the discrete solution, using
a mesh with 20× 20 control volumes and a time step equal to δt = 10−7 (hence T corresponds
to a hundred time steps) and letting ν = 10−7. We have Ēc(0) = 4

1323 × 106 ' 3023.43 and∫
Ω∇u0(x) : ∇u0(x) dx = 16

49 × 106 ' 3.27× 105, and the computation of the numerical solution
gives Ec(0) ' 3023.74 and Ec(T ) ' 3020.44; this shows a decrease rate (Ec(0)− Ec(T ))/T equal
to 3.3× 105, very close to the theoretical value 3.27× 105. This example shows that the mixed
finite volume scheme does not introduce any significant artificial energy decay: the only decay
is due to the diffusion term, and the discretization of the convective nonlinear term induces no
additional diffusion phenomenon (as we will prove during the analysis of the scheme — see (35)).

4 Mathematical study of the scheme for Stokes problem

Here are the results we prove on the scheme for Stokes problem.

Theorem 4.1 [Existence of a unique solution to the scheme for Stokes problem]
Assume that (2) and (3) hold. Let D be an admissible discretization of Ω in the sense of
Definition 2.1 and let ν > 0. Then there exists a unique (p,u,v,F ) ∈ HD ×Hd

D ×H
d×d
D × FdD

solution to (10)—(15).

Theorem 4.2 [Convergence of the scheme for Stokes problem] Assume that (2) and (3)
hold. Let (Dm)m≥1 be a sequence of admissible discretizations of Ω in the sense of Definition 2.1,
such that size(Dm) → 0 as m → ∞ and (regul(Dm))m≥1 is bounded. Let λ > 0 and α ∈]0, 2[,
and define νm = λsize(Dm)α. Let (pm,um,vm,Fm) be the solution to (10)—(15) with D = Dm
and ν = νm. Let ū be the unique solution to (4).
Then, as m→∞, um → ū strongly in Lq(Ω)d for all q < 2d

d−2 (and weakly in L6(Ω)3 if d = 3)
and vm → ∇ū strongly in L2(Ω)d×d.
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4.1 A priori estimates

As is usual in finite volume schemes, the proof of convergence relies on a priori estimates on the
solution to the scheme.

Proposition 4.1 [A priori estimates on v and F ] Assume that (2) and (3) hold. Let D be
an admissible discretization of Ω in the sense of Definition 2.1 and θ ≥ regul(D). Let ν0 > 0
and assume that 0 ≤ ν ≤ ν0. If (p,u,v,F ) ∈ HD×Hd

D×H
d×d
D ×FdD is a solution to (10)—(15),

then
‖v‖2L2(Ω)d×d +

∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)
|FK,σ|2 ≤ C1‖f‖2L2(Ω)d ,

where ‖v‖2
L2(Ω)d×d

=
∫

Ω |v(x)|2 dx =
∫

Ω v(x) : v(x) dx and C1 only depends on d, Ω, θ and ν0.

Proof of Proposition 4.1
Take the scalar product of (14) and uK and sum on the control volumes K. Using the conser-
vation property (11), we can gather by edges to find∑

σK|L∈Eint

(FK,σ − pKm(σ)nK,σ) · (uL − uK)

+
∑

σK|∂∈Eext

(FK,σ − pKm(σ)nK,σ) · (−uK) =
∫

Ω
f(x) · u(x) dx.

Thanks to (10) and using again (11), we deduce, gathering by control volumes,∑
K∈M

∑
σ∈EK

(vK(xσ − xK)) · (FK,σ − pKm(σ)nK,σ)

+
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)
(FK,σ − pKm(σ)nK,σ) · FK,σ =

∫
Ω
f(x) · u(x) dx.

(26)

We then use

(vK(xσ − xK)) · (FK,σ − pKm(σ)nK,σ) = vK : ((FK,σ − pKm(σ)nK,σ)⊗ (xσ − xK))

and Lemma 6.1 with a = Id to obtain, thanks to (12) and (13),∑
K∈M

∑
σ∈EK

(vK(xσ − xK)) · (FK,σ − pKm(σ)nK,σ)

= ‖v‖2L2(Ω)d×d −
∑
K∈M

m(K)pKTr(vK)

= ‖v‖2L2(Ω)d×d +
∑
K∈M

νdiam(K)pK
∑
σ∈EK

FK,σ · nK,σ. (27)

Plugging (27) into (26), we notice that the pressure terms disappear, which leads to

‖v‖2L2(Ω)d×d +
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)
|FK,σ|2 =

∫
Ω
f(x) · u(x) dx. (28)

14



Using Young’s inequality and Lemma 6.2, we have, for all ε > 0,∫
Ω
f(x) · u(x) dx ≤ 1

2ε
‖f‖2L2(Ω)d +

ε

2
‖u‖2L2(Ω)d

≤ 1
2ε
‖f‖2L2(Ω)d + εC2‖v‖2L2(Ω)d×d + εC2

∑
K∈M

∑
σ∈EK

ν2 diam(K)
m(σ)

|FK,σ|2

≤ 1
2ε
‖f‖2L2(Ω)d + εC2‖v‖2L2(Ω)d×d + εC2ν0

∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)
|FK,σ|2 ,

where C2 only depends on d, Ω and θ. The proof is concluded by taking ε = inf( 1
2C2

, 1
2ν0C2

) and
plugging the result into (28). �

4.2 Proof of the theorems

Using the preceding estimates, we can now prove the existence of a unique solution to (10)—(15).

Proof of Theorem 4.1
As explained in Remark 2.2, (10)—(15) can in fact be considered as a square system (as many
equations as unknowns). Since this system is linear, Proposition 4.1 shows that if the terms∫
K f(x) dx in the right-hand side of (10)—(15) are equal to zero, then so is (v,F ), which in

turn implies (thanks to (10)) that u vanishes. From (11), we deduce pK = pL for all neighboring
control volumes K and L; since Ω is connected this means that p is constant and, by (15), that
it vanishes. Hence, the square system (10)—(15) is well-posed and has a unique solution. �

Let us now see that the approximate solution converges to the weak solution of (1).

Proof of Theorem 4.2
To simplify the notations, we drop the index m in Dm, pm, um, vm and Fm. As is usual, since
the solution to (4) is unique, it is enough to prove the convergence of a subsequence of (u,v)
toward the solution of this problem.
Proposition 4.1 gives estimates on (v,F ) which are uniform with respect to D, since regul(D)
and ν = λsize(D)α are bounded. We can therefore write,∑

K∈M

∑
σ∈EK

ν2 diam(K)
m(σ)

|FK,σ|2 ≤ C3ν = C3λsize(D)α (29)

with C3 not depending on D. This last quantity tends to 0 as size(D) → 0 and by Lemma 6.4
we deduce that there exists ū ∈ H1

0 (Ω)d such that, up to a subsequence as size(D)→ 0, u→ ū
strongly in Lq(Ω)d for all q < 2d

d−2 (and weakly in L6(Ω)d if d = 3) and v → ∇ū weakly in
L2(Ω)d×d.

Step 1: ū belongs to E(Ω).
Let Γ : Ω→ R be the piecewise function equal to νdiam(K)

m(K)

∑
σ∈EK FK,σ ·nK,σ on K ∈M. From

Cauchy-Schwarz inequality, we have

‖Γ‖L1(Ω) =
∑
K∈M

∣∣∣∣∣∣
∑
σ∈EK

νdiam(K)FK,σ · nK,σ

∣∣∣∣∣∣
15



≤

 ∑
K∈M

∑
σ∈EK

ν2 diam(K)
m(σ)

|FK,σ|2
1/2 ∑

K∈M

∑
σ∈EK

diam(K)m(σ)

1/2

.

Hence, using (9) and (29), we have Γ → 0 in L1(Ω) as size(D) → 0. Since Tr(v) + Γ = 0
on Ω (this is (13) divided by m(K)), we deduce from the weak convergence of v to ∇ū that
Tr(∇ū) = div(ū) = 0 and thus that ū ∈ E(Ω).

Step 2: ū satisfies (4).
By the density of {ϕ ∈ C∞c (Ω)d , div(ϕ) = 0} in E(Ω) (see [17]), it is sufficient to prove (4) for
ϕ regular with compact support. Let ϕ be such a function; we take the scalar product of (14)
and ϕ(xK) and we sum on K:

−
∑
K∈M

∑
σ∈EK

(FK,σ − pKm(σ)nK,σ) ·ϕ(xK) =
∑
K∈M

∫
K
ϕ(xK) · f(x) dx. (30)

Let ϕσ = 1
m(σ)

∫
σ ϕ(x) dγ(x). By (11) and since ϕσ = 0 for σ ∈ Eext, we have∑
K∈M

∑
σ∈EK

(FK,σ − pKm(σ)nK,σ) ·ϕσ =∑
σK|L∈Eint

[(FK,σ − pKm(σ)nK,σ) + (FL,σ − pLm(σ)nL,σ)] ·ϕσ = 0.

Equation (30) can therefore be written, with ϕD equal to ϕ(xK) on each mesh K,∑
K∈M

∑
σ∈EK

(FK,σ − pKm(σ)nK,σ) · (ϕσ −ϕ(xK)) =
∫

Ω
ϕD(x) · f(x) dx. (31)

We have, since
∑

σ∈EK m(σ)nK,σ = 0 and div(ϕ) = 0,∑
K∈M

pK
∑
σ∈EK

m(σ)nK,σ · (ϕσ −ϕ(xK))

=
∑
K∈M

pK
∑
σ∈EK

∫
σ
ϕ(x) · nK,σ dγ(x) =

∑
K∈M

pK

∫
K

div(ϕ)(x) dx = 0

and therefore (31) leads to∑
K∈M

∑
σ∈EK

FK,σ · (ϕσ −ϕ(xK)) =
∫

Ω
ϕD(x) · f(x) dx. (32)

Since xσ is the barycenter of σ and ϕσ is the mean value on σ of the regular function ϕ, we
have ϕσ − ϕ(xK) = 1

m(K)

∫
K ∇ϕ(x) dx (xσ − xK) +RK,σ with |RK,σ| ≤ Cϕdiam(K)2 (where

Cϕ only depends on ϕ). From (32), we deduce∑
K∈M

1
m(K)

∫
K
∇ϕ(x) dx :

∑
σ∈EK

FK,σ ⊗ (xσ − xK) =
∫

Ω
f(x) ·ϕD(x) dx+ T1 ,
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where |T1| ≤ Cϕ
∑

K∈M
∑

σ∈EK |FK,σ|diam(K)2. Using then (12), this gives∫
Ω

v(x) : ∇ϕ(x) dx =
∫

Ω
f(x) ·ϕD(x) dx+ T1. (33)

By the weak convergence of v to ∇ū and the regularity of ϕ, the first two terms of this equality
respectively converge to

∫
Ω∇ū(x) : ∇ϕ(x) dx and

∫
Ω f(x) · ϕ(x) dx as size(D)→ 0. Hence, it

remains to prove that T1 → 0 to conclude the proof that ū satisfies (4).
The convergence of T1 is quite easy to establish thanks to Proposition 4.1. Indeed, from the
estimates in this proposition and using (9), we have

|T1| ≤ C4

 ∑
K∈M

∑
σ∈EK

diam(K)4 m(σ)
νdiam(K)

1/2

≤ C4

 ∑
K∈M

∑
σ∈EK

size(D)2

λsize(D)α
m(σ)diam(K)

1/2

≤ C5size(D)
2−α

2

where C4 and C5 do not depend on D. Since α < 2, this last term tends to 0 as size(D) → 0,
which concludes the proof that ū is the weak solution to the Stokes equation.

Step 3: it remains to prove that the convergence of v to ∇ū is strong.
In order to do so, we recall (28), which implies

‖v‖2L2(Ω)d×d ≤
∫

Ω
f(x) · u(x) dx.

By convergence of u to ū, and since ū is a solution to (4), we deduce

lim sup
size(D)→0

‖v‖2L2(Ω)d×d ≤
∫

Ω
f(x) · ū(x) dx =

∫
Ω
|∇ū(x)|2 dx.

On the other hand, since v→ ∇ū weakly in L2(Ω)d×d,∫
Ω
|∇ū(x)|2 dx = ‖∇ū‖2L2(Ω)d×d ≤ lim inf

size(D)→0
‖v‖2L2(Ω)d×d

and therefore ‖v‖2
L2(Ω)d×d

→ ‖∇ū‖2
L2(Ω)d×d

as size(D) → 0. The weak convergence of v to ∇ū
and the convergence of the norm of v toward the norm of ∇ū imply the strong convergence of
v in L2(Ω)d×d. �

5 Mathematical study of the scheme for Navier-Stokes problem

Here are the two results we prove on the scheme (16)—(24).

Theorem 5.1 [Existence of a solution to the scheme for Navier-Stokes problem] Let
T > 0, N ≥ 1 be an integer and δt = T/N . Assume that (2) and (6) hold. Let D be an admissible
discretization of Ω in the sense of Definition 2.1 and let ν > 0. Then there exists at least one
(p,u,v,F ) ∈ HD,δt ×Hd

D,δt ×H
d×d
D,δt ×F

d
D,δt solution to (16)—(24).
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Theorem 5.2 [Convergence of the scheme for Navier-Stokes problem] Let T > 0 and
assume that (2) and (6) hold. Let Nm → +∞ be a sequence of integers and define δtm = T/Nm.
Let (Dm)m≥1 be a sequence of admissible discretizations of Ω in the sense of Definition 2.1,
such that size(Dm) → 0 as m → ∞ and (regul(Dm))m≥1 is bounded. Let λ > 0 and α ∈]0, 2[,
and define νm = λsize(Dm)α. Let (pm,um,vm,Fm) be the solution to (16)—(24) with δt = δtm,
D = Dm and ν = νm.
Then there exists a weak solution ū to (5) such that, up to a subsequence as m→∞, um → ū
strongly in L2(]0, T [×Ω)d and vm → ∇ū weakly in L2(]0, T [×Ω)d×d.

Remark 5.1 In dimension d = 2, the solution ū is unique and is regular enough to be used as a
test function in (7) (see [17]). Hence, in this case, the whole sequence of approximate solutions
converges toward the weak solution and we can mimic the method used in [6], [4] or the proof of
Theorem 4.2 to see that the convergence of vm is in fact strong in L2(]0, T [×Ω)d×d.

5.1 A priori estimates and existence of an approximate solution

We begin with a priori estimates, similar to the ones obtained for the scheme on Stokes problem.

Proposition 5.1 Let T > 0, N ≥ 1 be an integer and δt = T/N . Assume that (2) and (6) hold.
Let D be an admissible discretization of Ω in the sense of Definition 2.1 and take θ ≥ regul(D).
Let ν0 > 0 and assume that 0 ≤ ν ≤ ν0. If (p,u,v,F ) ∈ HD,δt × Hd

D,δt × H
d×d
D,δt × F

d
D,δt is a

solution to (16)—(24) then

‖u‖2L∞(0,T ;L2(Ω)d) + ‖v‖2L2(]0,T [×Ω)d×d ≤ C6(‖f‖2L2(]0,T [×Ω)d + ‖u0‖2L2(Ω)d)

and
N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2 ≤ C6(‖f‖2L2(]0,T [×Ω)d + ‖u0‖2L2(Ω)d)

where C6 only depends on d, Ω, T , θ and ν0.

Proof of Proposition 5.1

Take the scalar product of (20) with δtun+1/2
K = δt

un+1
K +unK

2 , sum on K ∈M and n = 0, . . . , I−1
(with 1 ≤ I ≤ N). This gives T2 + T3 + T4 = T5 with

T2 =
1
2

I−1∑
n=0

∑
K∈M

m(K)
(∣∣un+1

K

∣∣2 − |unK |2) ,
T3 =

I−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

m(σ)u n+1/2
σ · nK,σ

(
u
n+1/2
K + un+1/2

L

2

)
· un+1/2

K ,

T4 = −
I−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

(F n+1/2
K,σ − pn+1/2

K m(σ)nK,σ) · un+1/2
K ,

T5 =
∫ Iδt

0

∫
Ω
f(t,x) · u(t,x) dt dx
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(in T3, recall that L is the neighboring control volume of K on the other side of σ, if σ ∈ EK,int,
or that un+1/2

L = 0 if σ ∈ EK,ext). We clearly have, denoting uI ∈ Hd
D the function equal to uIK

on K ∈M,

T2 =
1
2

(
‖uI‖2L2(Ω)d − ‖u

0‖2L2(Ω)d

)
. (34)

Gathering by edges and denoting σ = σK|L if σ ∈ Eint, or un+1/2
L = 0 if σ = σK|∂ ∈ Eext, we can

write

T3 =
I−1∑
n=0

δt
∑
σ∈E

m(σ)u n+1/2
σ · nK,σ

(
u
n+1/2
K + un+1/2

L

2

)
·
(
u
n+1/2
K − un+1/2

L

)

=
1
2

I−1∑
n=0

δt
∑
σ∈E

m(σ)u n+1/2
σ · nK,σ

(∣∣∣un+1/2
K

∣∣∣2 − ∣∣∣un+1/2
L

∣∣∣2) .
We now gather back by control volumes and we find, thanks to (25),

T3 =
1
2

I−1∑
n=0

δt
∑
K∈M

∣∣∣un+1/2
K

∣∣∣2 ∑
σ∈EK

m(σ)u n+1/2
σ · nK,σ = 0. (35)

The term T4 is handled exactly as in the Stokes equation (see the proof of Proposition 4.1) and
gives the transient equivalent of the left-hand side (28)

T4 =
I−1∑
n=0

δt‖vn+1/2‖2L2(Ω)d×d +
I−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2
= ‖v‖2L2(]0,Iδt[×Ω)d×d +

I−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2 . (36)

We also have the following bound, independent on I:

T5 ≤ ‖f‖L2(]0,T [×Ω)d‖u‖L2(]0,T [×Ω)d . (37)

We now gather (34), (35), (36) and (37) in T2 + T3 + T4 = T5; since this relation is valid for any
I = 1, . . . , N and since ‖u0‖L2(Ω)d ≤ ‖u0‖L2(Ω)d (see (23)), we deduce that

1
2

sup
I=0,...,N

(
‖uI‖2L2(Ω)d

)
+ ‖v‖2L2(]0,T [×Ω)d×d +

N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2
≤ 1

2
‖u0‖2L2(Ω)d + ‖f‖L2(]0,T [×Ω)d‖u‖L2(]0,T [×Ω)d . (38)

For all t ∈]0, T [, u(t, ·) is equal, for some n = 0, . . . , N − 1, to un+1/2 = un+1+un

2 . Hence,
‖u‖2

L2(]0,T [×Ω)d
≤ T‖u‖2

L∞(0,T ;L2(Ω)d)
≤ T supI=0,...,N ‖uI‖2L2(Ω)d

and Young’s inequality con-
cludes the proof. �

We can now prove the existence of at least one solution to the scheme for Navier-Stokes problem.

Proof of Theorem 5.1
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Notice first that the a priori estimates of Proposition 5.1 still hold (with exactly the same
C6) if we multiply the second term of (20) (the only non-linear term of the scheme) by some
β ∈ [0, 1]. Moreover, from the estimates on F and (17), we have, for all K and L neighboring
control volumes, |pn+1/2

K − pn+1/2
L | ≤ 1

m(σ) |F
n+1/2
K,σ + F

n+1/2
L,σ | ≤ C7 where C7 depends on the

mesh and time step (but not on the aforementioned β); thus, for any control volumes K and
M (not necessarily neighbors), we have |pn+1/2

K − pn+1/2
M | ≤ Card(M)C7 and therefore, by (24),

|pn+1/2
M | = 1

m(Ω) |
∑

K∈Mm(K)(pn+1/2
M − pn+1/2

K )| ≤ Card(M)C7 for any control volume M ; this
gives a rough estimate, not depending on β, on the pressure (this estimate however strongly
depends on the mesh and the time step).
By the same reasoning as in Remark 2.2, the non-linear system (16)—(24) can be considered
square. The properties of the topological degree (see [5]) and the preceding estimates then
imply that the degree of the function defining this system is equal to the degree of the same
function without the non-linear term in (20). The resulting system is square and linear and
the estimates above, which imply that any solution to this system is bounded, show that it is
invertible. Hence, the topological degree of the linear function defining this system differs from
zero, and so does the topological degree of the function defining (16)—(24). This shows that
there exists at least one solution to the scheme. �

5.2 Translations estimates

In order to pass to the limit in the nonlinear term of the equation, we need to obtain enough
compactness on the approximate solution u, which demands some estimates on its translations
in time (the translations in space are estimated thanks to Lemma 6.3). To prove those estimates,
we introduce, for D an admissible discretization of Ω and ν ≥ 0, the space LD,ν of the functions
û ∈ Hd

D for which there exists (v̂, F̂ ) ∈ Hd×d
D × FdD such that (û, v̂, F̂ ) satisfies (10) and (13).

We call such (v̂, F̂ ) “compatible” with û and we endow LD,ν with the norm

‖û‖2LD,ν = inf

{
‖v̂‖2L2(Ω)d×d +

∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)
|F̂K,σ|2 ; (v̂, F̂ ) is compatible with û

}

(notice that this infimum is in fact a minimum). Defining, for ŵ ∈ Hd
D, the semi-norm

‖ŵ‖L∗D,ν = sup

{ ∑
K∈M

m(K)ŵK · ûK ; û ∈ LD,ν , ‖û‖LD,ν = 1

}
,

we notice that, if û ∈ LD,ν ,
‖û‖2L2(Ω)d ≤ ‖û‖LD,ν‖û‖L∗D,ν . (39)

These tools will allow us to prove the following estimate.

Proposition 5.2 Let T > 0, N ≥ 1 be an integer and δt = T/N . Assume that (2) and (6) hold.
Let D be an admissible discretization of Ω in the sense of Definition 2.1 and take θ ≥ regul(D).
Let ν0 > and assume that 0 ≤ ν ≤ ν0. If (p,u,v,F ) ∈ HD,δt×Hd

D,δt×H
d×d
D,δt ×F

d
D,δt is a solution

to (16)—(24) then, for all τ ∈]0, T [,∫ T−τ

0
‖u(t+ τ, ·)− u(t, ·)‖L2(Ω)d dt ≤ C8

√
τ
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where C8 only depends on d, Ω, T , θ and ν0.

Proof of Proposition 5.2
In this proof, Ci are constants which only depend on d, Ω, T , θ and ν0.

Step 1: we estimate the L∗D,ν norm of un+1 − un.
Let û ∈ LD,ν such that ‖û‖LD,ν = 1, and take (v̂, F̂ ) compatible with û such that

‖v̂‖2L2(Ω)d×d +
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)
|F̂K,σ|2 = 1. (40)

Define ûσ as in Remark 2.3 with (u,v,F ) = (û, v̂, F̂ ) (which satisfies (10) and (13)); we have∑
σ∈EK m(σ)ûσ · nK,σ = 0.

By (25), we can write

∑
σ∈EK

m(σ)u n+1/2
σ · nK,σ

(
u
n+1/2
K + un+1/2

L

2

)

=
∑
σ∈EK

m(σ)u n+1/2
σ · nK,σ

(
u
n+1/2
L − un+1/2

K

2

)
. (41)

Plugging this into (20), taking the scalar product of the resulting equation with δtûK and
summing on K ∈M, we obtain T6 = −T7 + T8 + T9 with

T6 =
∑
K∈M

m(K)
(
un+1
K − unK

)
· ûK

T7 = δt
∑
K∈M

∑
σ∈EK

m(σ)u n+1/2
σ · nK,σ

(
u
n+1/2
L − un+1/2

K

2

)
· ûK

T8 = δt
∑
K∈M

∑
σ∈EK

(F n+1/2
K,σ − pn+1/2

K m(σ)nK,σ) · ûK

T9 =
∫ (n+1)δt

nδt

∫
Ω
f(t,x) · û(x) dt dx.

Let us estimate T7. We have

2T7 = δt
∑
K∈M

∑
σ∈EK

m(σ)
(
u n+1/2
σ − u n+1/2

K

)
· nK,σ

(
u
n+1/2
L − un+1/2

K

)
· ûK

+δt
∑
K∈M

∑
σ∈EK

m(σ)u n+1/2
K · nK,σ

(
u
n+1/2
L − un+1/2

K

)
· ûK

= δt T a7 + δt T b7 .

Using Hölder’s inequality with exponents 2, 4 and 4, we have

|T a7 | ≤
∑
K∈M

∑
σ∈EK

m(σ)diam(K)

∣∣∣u n+1/2
σ − u n+1/2

K

∣∣∣
diam(K)

∣∣∣un+1/2
L − un+1/2

K

∣∣∣ |ûK |
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≤

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)

∣∣∣u n+1/2
σ − u n+1/2

K

∣∣∣2
diam(K)2


1/2

×

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)
(∣∣∣un+1/2

L

∣∣∣+
∣∣∣un+1/2
K

∣∣∣)4

1/4

×

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K) |ûK |4
1/4

.

The same way we estimate the discrete H1-norm in Lemma 6.2, it is easy to see from the
definition of u n+1/2

σ that∑
K∈M

∑
σ∈EK

m(σ)
diam(K)

∣∣∣u n+1/2
σ − u n+1/2

K

∣∣∣2

≤ C9

‖vn+1/2‖2L2(Ω)d×d +
∑
K∈M

∑
σ∈EK

ν2 diam(K)
m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2
 (42)

and therefore, thanks to (9) and to the definition of regul(D),

|T a7 | ≤ C10

‖vn+1/2‖2L2(Ω)d×d +
∑
K∈M

∑
σ∈EK

ν2 diam(K)
m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2
 1

2

‖un+1/2‖L4(Ω)d ‖û‖L4(Ω)d .

Using Lemma 6.2 for un+1/2 and û with q = 4, and recalling (40), we obtain

|T a7 | ≤ C11

‖vn+1/2‖2L2(Ω)d×d +
∑
K∈M

∑
σ∈EK

ν2 diam(K)
m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2
 .

For T b7 , we write

|T b7 | ≤
∑
K∈M

∑
σ∈EK

m(σ)diam(K)
∣∣∣u n+1/2
K

∣∣∣ ∣∣∣∣∣u
n+1/2
L − un+1/2

K

diam(K)

∣∣∣∣∣ |ûK |
≤

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)
∣∣∣u n+1/2
K

∣∣∣4
1/4

×

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)

∣∣∣un+1/2
L − un+1/2

K

∣∣∣2
diam(K)2


1/2

×

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K) |ûK |4
1/4
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and, thanks to the estimates on the discrete H1-norm and the L4 norm in Lemma 6.2, T b7 is
estimated the same way as T a7 . This finally gives, since ν ≤ ν0,

|T7| ≤ C12δt

‖vn+1/2‖2L2(Ω)d×d +
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2
 . (43)

We now turn to T8. Noting that ûσ = 0 if σ ∈ Eext, we have, thanks to (17),∑
K∈M

∑
σ∈EK

(F n+1/2
K,σ − pn+1/2

K m(σ)nK,σ) · ûσ =∑
σK|L∈Eint

[
(F n+1/2

K,σ − pn+1/2
K m(σ)nK,σ) + (F n+1/2

L,σ − pn+1/2
L m(σ)nL,σ)

]
· ûσ = 0

and therefore

−T8 = δt
∑
K∈M

∑
σ∈EK

(
F
n+1/2
K,σ − pn+1/2

K m(σ)nK,σ
)
· (ûσ − ûK).

Since
∑

σ∈EK m(σ)ûσ · nK,σ and
∑

σ∈EK m(σ)nK,σ are zero, we infer from the definition of ûσ
that

−T8 = δt
∑
K∈M

∑
σ∈EK

F
n+1/2
K,σ · (ûσ − ûK)

= δt
∑
K∈M

v̂K :
∑
σ∈EK

F
n+1/2
K,σ ⊗ (xσ − xK) + δt

∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)
F
n+1/2
K,σ · F̂K,σ

= δt
∑
K∈M

m(K)v̂K : vn+1/2
K + δt

∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)
F
n+1/2
K,σ · F̂K,σ.

The choice (40) then implies

|T8| ≤ δt‖vn+1/2‖L2(Ω)d×d + δt

 ∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2
1/2

. (44)

We apply Lemma 6.2 to (û, v̂, F̂ ) to estimate ‖û‖L2(Ω)d and, since ν ≤ ν0, the equation (40)
gives

|T9| ≤ C13

∫ (n+1)δt

nδt
‖f(t, ·)‖L2(Ω)d dt. (45)

Gathering (43), (44) and (45) in T6 = −T7 + T8 + T9, and since the resulting estimate is valid
for all û ∈ LD,ν with norm 1, we conclude, from Young’s inequality, that

∣∣∣∣un+1 − un
∣∣∣∣
L∗D,ν

≤ C14

∫ (n+1)δt

nδt
‖f(t, ·)‖L2(Ω)d dt+ C14δt‖vn+1/2‖2L2(Ω)d×d

+C14δt
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2 + C14δt. (46)
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Step 2: conclusion.
For all t ∈]0, T [, u(t, ·) belongs to LD,ν (since u(t, ·) = un+1/2 for some n = 0, . . . , N − 1).
Hence, we can apply (39) and we have, by Young’s inequality,∫ T−τ

0
‖u(t+ τ, ·)− u(t, ·)‖L2(Ω)d dt ≤ 1

2
√
τ

∫ T−τ

0
‖u(t+ τ, ·)− u(t, ·)‖L∗D,ν dt

+
√
τ

2

∫ T−τ

0
‖u(t+ τ, ·)− u(t, ·)‖LD,ν dt. (47)

But, for a.e. t ∈]0, T [, denoting by n the integer such that t ∈]nδt, (n + 1)δt[ (so that u(t, ·) =
un+1/2), we have by definition of the norm in LD,ν ,

‖u(t, ·)‖2LD,ν ≤ ‖v
n+1/2‖2L2(Ω)d×d +

∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2 .
Hence, from the estimates in Proposition 5.1,∫ T

0
‖u(t, ·)‖2LD,ν ≤

N−1∑
n=0

δt‖vn+1/2‖2L2(Ω)d×d +
N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2 ≤ C15

and (47) leads to∫ T−τ

0
‖u(t+ τ, ·)− u(t, ·)‖L2(Ω)d dt ≤ 1

2
√
τ

∫ T−τ

0
‖u(t+ τ, ·)− u(t, ·)‖L∗D,ν + C16

√
τ . (48)

For t ∈]0, T − τ [, let n0(t) and n1(t) be the integer parts of t/δt and (t + τ)/δt (these integers
belong to {0, . . . , N − 1}). We have ‖u(t+ τ, ·)−u(t, ·)‖L∗D,ν ≤

∑n1(t)−1
n=n0(t) ‖u

n+3/2−un+1/2‖L∗D,ν .

By (21), un+3/2−un+1/2 = un+2+un+1

2 − un+1+un

2 = un+2−un+1

2 + un+1−un

2 so that, using Fubini’s
theorem,∫ T−τ

0
‖u(t+ τ, ·)− u(t, ·)‖L∗D,ν dt

≤
∫ T−τ

0

n1(t)−1∑
n=n0(t)

‖un+2 − un+1‖L∗D,ν
2

+
‖un+1 − un‖L∗D,ν

2
dt

≤
N−2∑
n=0

(
‖un+2 − un+1‖L∗D,ν

2
+
‖un+1 − un‖L∗D,ν

2

)∫ T−τ

0
χ(n, t) dt

where χ(n, t) = 1 if n0(t) ≤ n ≤ n1(t) − 1, and χ(n, t) = 0 otherwise. We have χ(n, t) = 1
if and only if n > (t/δt) − 1 and n + 1 ≤ (t + τ)/δt, i.e. t ∈ [(n + 1)δt − τ, (n + 1)δt[, so that∫ T−τ

0 χ(n, t) dt ≤ τ . By (46) and the estimates of Proposition 5.1, we obtain∫ T−τ

0
‖u(t+ τ, ·)− u(t, ·)‖L∗D,ν dt

≤ C17τ

(
‖f‖L1(0,T ;L2(Ω))d + ‖v‖2L2(]0,T [×Ω)d×d +

N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

ν
diam(K)

m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2 + T

)
≤ C18τ

and the proof is concluded by using this estimate in (48). �
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5.3 Proof of the convergence

We now prove Theorem 5.2. To simplify the notations, we drop the index m and we study the
convergence of u and v as size(D)→ 0 and δt→ 0 while regul(D) remains bounded.
Proposition 5.1 gives estimates, independent on D or δt, on (u,v,F ). Using the definition of N2

from Lemma 6.2, these estimates show that

N−1∑
n=0

δtN2(D, ν,F n+1/2)2 =
N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

ν2 diam(K)
m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2 → 0 (49)

as size(D)→ 0 (recall that ν = λsize(D)α with α ∈]0, 2[). In particular, applying Lemma 6.2 to
(un+1/2,vn+1/2,F n+1/2), taking the square of the resulting Lq estimate, multiplying by δt and
summing on n = 0, . . . , N − 1, we see that u is bounded in L2(0, T ;Lq(Ω)d) for all q < +∞ if
d = 2 and all q ≤ 6 if d = 3. Since u is also bounded in L∞(0, T ;L2(Ω)d) (Proposition 5.1), we
deduce by interpolation that it is bounded in L2+ε(]0, T [×Ω)d for some ε > 0.
By Cauchy-Schwarz inequality, (9) and (49), we have

N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

νdiam(K)
∣∣∣F n+1/2

K,σ

∣∣∣
≤ C19

N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

ν2 diam(K)
m(σ)

∣∣∣F n+1/2
K,σ

∣∣∣2
1/2

→ 0 as size(D)→ 0 (50)

(C19 does not depend on D or δt). Applying Lemma 6.3 to (un+1/2,vn+1/2,F n+1/2), multiplying
the resulting estimate by δt and summing on n = 0, . . . , N − 1, we deduce that ‖u(·, · + ξ) −
u‖L1(]0,T [×Rd)d → 0 as |ξ| → 0, independently on D or δt (we have extended u in space by 0
outside Ω). In conjunction with the estimates on the time translates from Proposition 5.2, this
proves that u is relatively compact in L1

loc(]0, T [×Ω)d. Since it is bounded in L2+ε(]0, T [×Ω)d

for some ε > 0, u is also relatively compact in L2(]0, T [×Ω)d. Up to a subsequence, we can thus
assume that u→ ū strongly in L2(]0, T [×Ω)d and that v weakly converges in L2(]0, T [×Ω)d×d.
It is then easy to deduce from (49) that the weak limit of v is ∇ū and that ū ∈ L2(0, T ;H1

0 (Ω))d

(this is similar to Lemma 6.4; see the proof of [6, Lemma 3.3] or the proof of [4, Lemma 7.4] for
an example in a transient case).

Step 1: we prove that div(ū) = 0.
Let Γ : ] 0, T [×Ω→ R be the piecewise constant function equal to νdiam(K)

m(K)

∑
σ∈EK F

n+1/2
K,σ ·nK,σ

on ]nδt, (n + 1)δt[×K. Thanks to (50), we have Γ → 0 in L1(]0, T [×Ω) as size(D) → 0. Since
Tr(v)+Γ = 0 (this is (19) divided by m(K)), we deduce from the weak convergence of v toward
∇ū that Tr(∇ū) = div(ū) = 0.

Step 2: we prove that ū satisfies (7).
Let ϕ ∈ C∞c ([0, T [×Ω)d such that div(ϕ) = 0. We use (41) to transform the second term of
(20), take the scalar product of the resulting equation and δtϕ(nδt,xK) and sum on K and n.
This gives T10 + T11 + T12 = T13 with

T10 =
N−1∑
n=0

∑
K∈M

m(K)
(
un+1
K − unK

)
·ϕ(nδt,xK) ,
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T11 =
N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

m(σ)u n+1/2
σ · nK,σ

(
u
n+1/2
L − un+1/2

K

2

)
·ϕ(nδt,xK) ,

T12 = −
N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

(F n+1/2
K,σ − pn+1/2

K m(σ)nK,σ) ·ϕ(nδt,xK) ,

T13 =
N−1∑
n=0

∫ (n+1)δt

nδt

∫
K
f(t,x) dtdx ·ϕ(nδt,xK).

We now study the convergence of each of these terms as size(D)→ 0 and δt→ 0.

Since ϕ = 0 on a neighborhood of t = T , for δt small enough we have

T10 =
N−1∑
n=1

δt
∑
K∈M

m(K)unK ·
ϕ((n− 1)δt,xK)−ϕ(nδt,xK)

δt
−
∑
K∈M

m(K)u0
K ·ϕ(0,xK).

By (23) and regularity of ϕ, the second term of this right-hand side tends to −
∫

Ω u0(x) ·
ϕ(0,x) dx as size(D) → 0. Let Π : ] 0, T [×Ω → Rd and U : ] 0, T [×Ω → Rd be the piecewise
functions respectively equal to ϕ((n−1)δt,xK)−ϕ(nδt,xK)

δt and unK on ]nδt, (n + 1)δt[×K for all n =
0, . . . , N − 1 and all K ∈M. We have

T10 =
∫ T

0

∫
Ω
U(t,x) ·Π(t,x) dt dx−

∫
Ω
u0(x) ·ϕ(0,x) dx+ ζ(D) (51)

where ζ(D) → 0 as size(D) → 0. The regularity of ϕ ensures that Π → −∂tϕ uniformly on
]0, T [×Ω. The estimate (38) shows that U is bounded in L∞(0, T ;L2(Ω)d) and therefore that,
up to a subsequence, it converges to some Ū weakly-∗ in this space. But, on ]0, T − δt[×Ω, (21)
states that u(t,x) = U(t+δt,x)+U(t,x)

2 and u therefore also converges weakly-∗ in L∞(0, T ;L2(Ω)d)
to Ū ; hence, Ū = ū and we can pass to the limit in (51) to find

T10 → −
∫ T

0

∫
Ω
ū(t,x)·∂tϕ(t,x) dtdx−

∫
Ω
u0(x)·ϕ(0,x) dx as size(D)→ 0 and δt→ 0. (52)

Gathering T11 by edges, we have, for size(D) small enough (so that ϕ = 0 on the boundary
control volumes),

T11 =
N−1∑
n=0

δt
∑

σK|L∈Eint

m(σ)u n+1/2
σ · nK,σ

(
u
n+1/2
L − un+1/2

K

)
· ϕ(nδt,xK) +ϕ(nδt,xL)

2
.

Let ♦ be a D-adapted diamond partition of Ω according to Definition 6.1. We have

T11 =
N−1∑
n=0

δt
∑

σK|L∈Eint

m(♦σ)u n+1/2
σ

·
(

m(σ)
m(♦σ)

[
nK,σ ⊗

(
u
n+1/2
L − un+1/2

K

)] ϕ(nδt,xK) +ϕ(nδt,xL)
2

)
.
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Denoting by Ψ, u♦ and V♦ the functions respectively equal to ϕ(nδt,xK)+ϕ(nδt,xL)
2 , u n+1/2

σ and
m(σ)

m(♦σ)nK,σ ⊗
(
u
n+1/2
L − un+1/2

K

)
on ]nδt, (n+ 1)δt[×♦σ, we can write

T11 =
∫ T

0

∫
Ω
u♦(t,x) · (V♦(t,x)Ψ(t,x)) dt dx. (53)

We clearly have, by regularity of ϕ, Ψ → ϕ uniformly on ]0, T [×Ω as size(D) → 0 and δt → 0.
From the estimates in Proposition 5.1 and Lemma 6.2, we see that

∑N−1
n=0 δt‖un+1/2‖21,D remains

bounded and Lemma 6.5 therefore shows that V♦ → (∇ū)∗ weakly in L2(]0, T [×Ω)d×d (we
denote by (∇ū)∗ the transpose of ∇ū). It is not very difficult to see that u♦ → ū strongly in
L2(]0, T [×Ω)d; indeed, we have

‖u♦ − u‖2L2(]0,T [×Ω)d =
N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

m(4K,σ)
∣∣∣u n+1/2
σ − u n+1/2

K

∣∣∣2
where 4K,σ = co({pK} ∪ σ) (co denotes the convex hull and pK is the point chosen during
the construction of ♦; see Definition 6.1). But m(4K,σ) ≤ m(σ)diam(K) so that, by (42) and
the estimates in Proposition 5.1, ‖u♦ −u‖2L2(]0,T [×Ω)d

is bounded by C20size(D)2 (with C20 not

depending on D or δt), and tends to 0 as size(D)→ 0. Since u→ ū strongly in L2(]0, T [×Ω)d,
so does u♦. We can thus pass to the limit in (53) and, since ū(t,x) · ((∇ū(t,x))∗ϕ(t,x)) =
[(ū(t,x) · ∇)ū(t,x)] ·ϕ(t,x), we find

T11 →
∫ T

0

∫
Ω

[(ū(t,x) · ∇)ū(t,x)] ·ϕ(t,x) dtdx as size(D)→ 0 and δt→ 0. (54)

To handle T12, we use the same technique as for the Stokes equation. Introducing (ϕσ)n =
1

m(σ)

∫
σ ϕ(nδt,x) dγ(x) and using the fact that div(ϕ) = 0, we see (the same way we arrived at

(33)) that

T12 =
∫ T

0

∫
Ω

v(t,x) : (∇ϕ)δt(t,x) dtdx+ T14

where (∇ϕ)δt(·,x) = ∇ϕ(nδt,x) on ]nδt, (n+ 1)δt[ and

|T14| ≤ Cϕ

N−1∑
n=0

δt
∑
K∈M

∑
σ∈EK

|F n+1/2
K,σ |diam(K)2.

Using Proposition 5.1, we can show (as we did for T1) that T14 → 0 and therefore, by weak
convergence of v to ∇ū and uniform convergence of (∇ϕ)δt to ∇ϕ,

T12 →
∫ T

0

∫
Ω
∇ū(t,x) : ∇ϕ(t,x) dt dx as size(D)→ 0 and δt→ 0. (55)

The convergence T13 →
∫ T

0

∫
Ω f(t,x) ·ϕ(t,x) dtdx is obvious and we conclude, from T10 +T11 +

T12 = T13 and using (52), (54) and (55), that ū satisfies (7).
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6 Appendix

6.1 A key relation

The following lemma is a simple application of Stokes’ formula. Its proof in the vector case can
be found in [6] (in the case of convex control volumes and convex edges, but the proof does not
use these convexity assumptions), and the tensor case follows from the vector case.

Lemma 6.1 Let K be a non empty open polygonal set in Rd. For σ ∈ EK (the edges of K, in
the sense given in Definition 2.1), we let xσ be the barycenter of σ; we also denote by nK,σ the
unit normal to σ outward to K.
Then, for any vector e ∈ Rd and any xK ∈ Rd, we have

m(K)e =
∑
σ∈EK

m(σ)e · nK,σ(xσ − xK).

Similarly, for any second order tensor a ∈ Rd×d and any xK ∈ Rd, we have

m(K)a =
∑
σ∈EK

m(σ) (anK,σ)⊗ (xσ − xK).

6.2 The discretization space

Assume (2) and let D be an admissible discretization of Ω in the sense of Definition 2.1. Let
ν ≥ 0. We give here some properties on the (u,v, F ) ∈ HD ×Hd

D ×FD which satisfy

vK · (xσ − xK) + vL · (xL − xσ) + ν
diam(K)

m(σ)
FK,σ − ν

diam(L)
m(σ)

FL,σ = uL − uK ,

∀σK|L ∈ Eint ,

vK · (xσ − xK) + ν
diam(K)

m(σ)
FK,σ = −uK , ∀σK|∂ ∈ Eext.

(56)

In order to state these properties, we need to introduce (and in fact estimate) the following
discrete H1-norm, defined for all u ∈ HD by

‖u‖1,D =

 ∑
σK|L∈Eint

(
m(σ)

diam(K)
+

m(σ)
diam(L)

)
|uK − uL|2 +

∑
σK|∂∈Eext

m(σ)
diam(K)

|uK |2
1/2

. (57)

Lemma 6.2 [Estimate on the discrete H1 norm and Sobolev inequalities] Assume that
(2) holds. Let D be an admissible discretization of Ω in the sense of Definition 2.1 and let
θ ≥ regul(D). Then there exists C21 only depending on d, Ω and θ such that, for all ν ≥ 0 and

all (u,v, F ) satisfying (56), denoting N2(D, ν, F ) =
(∑

K∈M
∑

σ∈EK ν
2 diam(K)

m(σ) |FK,σ|
2
)1/2

, we
have

‖u‖1,D ≤ C21

(
‖v‖L2(Ω)d +N2(D, ν, F )

)
(58)

and, for all q < 2d
d−2 = +∞ if d = 2 and all q ≤ 2d

d−2 = 6 if d = 3,

‖u‖Lq(Ω) ≤ C21q
(
‖v‖L2(Ω)d +N2(D, ν, F )

)
. (59)
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Proof of Lemma 6.2
The relations (56) show that

‖u‖21,D ≤ 4
∑

σK|L∈Eint

(
m(σ)

diam(K)
+

m(σ)
diam(L)

)(
diam(K)2|vK |2 + diam(L)2|vL|2

)
+4

∑
σK|L∈Eint

(
m(σ)

diam(K)
+

m(σ)
diam(L)

)
ν2

(
diam(K)2

m(σ)2
|FK,σ|2 +

diam(L)2

m(σ)2
|FL,σ|2

)

+2
∑

σK|∂∈Eext

m(σ)
diam(K)

diam(K)2|vK |2 + 2
∑

σK|∂∈Eext

m(σ)
diam(K)

ν2 diam(K)2

m(σ)2
|FK,σ|2.

The definition of regul(D) and its bound by θ ensure that, if K and L are neighboring control
volumes, diam(K) ≤ θdiam(L) (and vice-versa). Hence, gathering by control volumes,

‖u‖21,D ≤ 4
∑
K∈M

|vK |2
∑
σ∈EK

m(σ)diam(K)(1 + θ) + 4
∑
K∈M

∑
σ∈EK

ν2|FK,σ|2
diam(K)

m(σ)
(1 + θ).

By (9), the proof of (58) is complete.

Let us prove (59) in the case d = 2. It is shown, in the proof of Lemma 9.5 in [7, p. 792] (using
no assumption on the discretization of Ω), that, for all α > 1,(∫

Ω
|u(x)|2α dx

) 1
2

≤ α
∑
K∈M

∑
σ∈EK

m(σ)|uK |α−1Dσu

where Dσu = |uK − uL| if σK|L ∈ Eint and Dσu = |uK | if σK|∂ ∈ Eext. Hölder’s inequality with
p = 2α

α−1 > 2 and p′ = p
p−1 then gives

(∫
Ω
|u(x)|2α dx

) 1
2

≤ α

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)|uK |p(α−1)

 1
p

×

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)
|Dσu|p

′

diam(K)p′

 1
p′

.

Since p(α− 1) = 2α, (9) shows that(∫
Ω
|u(x)|2α dx

) 1
2

≤ C22α

(∫
Ω
|u(x)|2α dx

) 1
2
− 1

2α

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)
|Dσu|p

′

diam(K)p′

 1
p′

where C22 only depends on d and θ. Since p′ < 2, we can apply Hölder’s inequality with exponent
2/p′ to find, thanks again to (9),

‖u‖L2α(Ω) ≤ C22α

 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)


2−p′
2p′
 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)
|Dσu|2

diam(K)2

 1
2

≤ C22α

(
ωd−1θ

2

ωd
m(Ω)

) 2−p′
2p′

 ∑
K∈M

∑
σ∈EK

m(σ)
diam(K)

|Dσu|2
 1

2

.
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Gathering the last sum by edges, we recognize the discrete H1-norm ‖u‖1,D of u and (59) for
q = 2α > 2 is therefore a consequence of (58); the case 1 ≤ q ≤ 2 is immediate from the case
q > 2 using Hölder’s inequality.

To prove (59) in the case d = 3, we still use an inequality from the proof of Lemma 9.5 in [7, p.
792]: ∫

Ω
|u(x)|6 dx ≤

4
∑
K∈M

∑
σ∈EK

m(σ)|uK |3Dσu

3/2

.

Using Cauchy-Schwarz inequality and (9), we deduce

∫
Ω
|u(x)|6 dx ≤ C23

(∫
Ω
|u(x)|6 dx

)3/4
 ∑
K∈M

∑
σ∈EK

m(σ)diam(K)
|Dσu|2

diam(K)2

3/4

with C23 only depending on d and θ. Since the last term (involvingDσu) is ‖u‖3/21,D, (58) concludes
the proof of (59) for d = 3 and q = 6; the case 1 ≤ q ≤ 6 can be deduced from the case q = 6
thanks to Hölder’s inequality.

Although the cases d = 1 and d ≥ 4 are not useful to us, we can notice that the Sobolev
injections (59) are also valid for d = 1 (with q = +∞) and d ≥ 4 (with q ≤ 2d

d−2); the proof is
done by induction on d (see the technique in [7, Lemma 9.5] for d = 2 and d = 3). �

The two following lemmas are similar to [6, Lemmas 3.2 and 3.3], the only differences being
that, in [6], the fluxes are not penalized the same way as in (56) and that we use the result of
Lemma 6.2 to improve the convergence of um in Lemma 6.4. We let the reader check that the
proofs of these lemmas are straightforward adaptations of the proofs in [6].

Lemma 6.3 [Equicontinuity of the translations] Assume that (2) holds. Let D be an
admissible discretization of Ω in the sense of Definition 2.1 and let θ ≥ regul(D). Let ν ≥ 0.
Then there exists C24 only depending on d, Ω and θ such that, for all (u,v, F ) satisfying (56)
and all ξ ∈ Rd,

‖u(·+ ξ)− u‖L1(Rd) ≤ C24

(
‖v‖L1(Ω)d +N1(D, ν, F )

)
|ξ| , (60)

where N1(D, ν, F ) =
∑

K∈M
∑

σ∈EK νdiam(K)|FK,σ| and u has been extended by 0 outside Ω.

Lemma 6.4 [Compactness property] Assume that (2) holds. Let (Dm)m≥1 be admissible
discretizations of Ω in the sense of Definition 2.1, such that size(Dm) → 0 as m → ∞ and
(regul(Dm))m≥1 is bounded. Let (νm)m≥1 be a sequence of nonnegative real numbers and, for all
m ≥ 1, let (um,vm, Fm)m≥1 satisfy (56) with D = Dm and ν = νm. Assume that the sequence
(vm)m≥1 is bounded in L2(Ω)d and that N2(Dm, νm, Fm) → 0 as m → ∞ (N2 has been defined
in Lemma 6.2).
Then there exists a subsequence of (Dm)m≥1 (still denoted by (Dm)m≥1) and ū ∈ H1

0 (Ω) such
that the corresponding sequence (um)m≥1 converges to ū strongly in Lq(Ω) for all q < 2d

d−2 (and
weakly in L6(Ω) if d = 3), and such that (vm)m≥1 converges to ∇ū weakly in L2(Ω)d.
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6.3 Tools for the convergence of the nonlinear term

To prove the convergence of the nonlinear term in the scheme for Navier-Stokes problem, it is
convenient to introduce partitions of Ω adapted to the edges of the discretization, and to study
the convergence of some special functions defined on such partitions.

Definition 6.1 Assume that (2) holds and let D be an admissible discretization of Ω in the
sense of Definition 2.1. An D-adapted diamond partition of Ω is any partition (up to sets
of zero measure) ♦ of Ω defined in the following way: for all K ∈ M, take pK ∈ K such
that B(pK , ρK) ⊂ K? (see Definition 2.1 and (8) for the meaning of K? and ρK) and define
♦ = (♦σ)σ∈E by ♦σ = co({pK} ∪ σ) ∪ co({pL} ∪ σ) if σK|L ∈ Eint and ♦σ = co({pK} ∪ σ) if
σK|∂ ∈ Eext (where co(A) is the convex hull of A).
If w = (wσ)σ∈E is a given family of values and ♦ is a D-adapted diamond partition of Ω, the
diamond-adapted function defined by w is the piecewise function w♦ : Ω→ R which is equal, on
each ♦σ, to wσ.

Lemma 6.5 Let T > 0 and assume that (2) holds. Let (Dm)m≥1 be a sequence of admissible
discretizations of Ω in the sense of Definition 2.1 such that (regul(Dm))m≥1 is bounded and
size(Dm) → 0 as m → ∞. We assume that, for all m ≥ 1 and all integer N ≥ 1, defining
δt = T/N , we have um,δt ∈ HDm,δt (see Section 2.3) such that

∑N−1
n=0 δt‖(um,δt)n+1/2‖21,Dm remains

bounded as m→∞ and δt→ 0 (‖ · ‖1,Dm is given by (57) with D = Dm).
For each m ≥ 1, we choose a Dm-adapted diamond partition ♦m. We let, for n ∈ {0, . . . , N −1}
and t ∈]nδt, (n+ 1)δt[, (vm,δt)♦(t, ·) be the (vector-valued) diamond-adapted function defined by
the family of (vector) values

m(σ)
m(♦σ)

((um,δt)
n+1/2
L − (um,δt)

n+1/2
K )nK,σ if σK|L ∈ Em,int

m(σ)
m(♦σ)

(0− (um,δt)
n+1/2
K )nK,σ if σK|∂ ∈ Em,ext.

We also assume that um,δt converges to some ū weakly in L2(]0, T [×Ω) as m→∞ and δt→ 0.
Then (vm,δt)♦ converges to ∇ū weakly in L2(]0, T [×Ω)d as m→∞ and δt→ 0.

Proof of Lemma 6.5
To simplify the notations, we drop the indices m and δt, and we study the convergence of v♦ as
size(D)→ 0 and δt→ 0 while regul(D) stays bounded. Let us first show that v♦ is bounded in
L2(]0, T [×Ω)d. By definition of v♦, we have

‖v♦‖2L2(]0,T [×Ω)d =
N−1∑
n=0

δt
∑
σ∈E

m(♦σ)
∣∣∣∣ m(σ)
m(♦σ)

(un+1/2
L − un+1/2

K )nK,σ

∣∣∣∣2

=
N−1∑
n=0

δt
∑
σ∈E

m(σ)
m(♦σ)

m(σ)
∣∣∣un+1/2
L − un+1/2

K

∣∣∣2 (61)

(we have written σ = σK|L if σ ∈ Eint and u
n+1/2
L = 0 if σ = σK|∂ ∈ Eext). If dK,σ is the

distance between the pK chosen to define ♦ and the hyperplane containing σ ∈ EK , we have
m(co({pK} ∪ σ)) = m(σ)dK,σ/d and therefore m(♦σ) = m(σ)(dK,σ + dL,σ)/d (with dL,σ = 0 if
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σ = σK|∂ ∈ Eext); hence, m(σ)
m(♦σ) = d

dK,σ+dL,σ
. However, since K is star-shaped with respect to

all the points in B(pK , ρK), it is possible to show that dK,σ ≥ ρK (see the proof of (67) in the
second step of the proof of Lemma 6.6); since regul(D) is bounded, we deduce that there exists
C25 not depending on D or δt such that

m(σ)
m(♦σ)

≤ C25

diam(K) + diam(L)

(where diam(L) = 0 if σ = σK|∂ ∈ Eext) and, coming back to (61),

‖v♦‖2L2(]0,T [×Ω)d ≤ C25

N−1∑
n=0

δt
∑
σ∈E

m(σ)
diam(K) + diam(L)

∣∣∣un+1/2
L − un+1/2

K

∣∣∣2 .
As 1

diam(K)+diam(L) ≤
1

diam(K) + 1
diam(L) , we obtain ‖v♦‖2L2(]0,T [×Ω)d

≤ C25
∑N−1

n=0 δt‖un+1/2‖21,D
and, by assumption, v♦ is therefore bounded in L2(]0, T [×Ω)d.

We now prove that v♦ → ∇ū in the distribution sense on ]0, T [×Ω as size(D)→ 0 and δt→ 0,
which will conclude the proof of the lemma. Let ϕ ∈ C∞c (]0, T [×Ω)d and ψ(t, ·) be the function
equal to 1

m(σ)

∫
σ ϕ(t,x) dγ(x) on ♦σ; since ϕ is regular, we have ‖ϕ−ψ‖∞ ≤ Cϕsize(D). Hence,

as size(D)→ 0 and δt→ 0, v♦ being bounded in L2(]0, T [×Ω)d,∣∣∣∣∫ T

0

∫
Ω
v♦(t,x) ·ϕ(t,x) dtdx−

∫ T

0

∫
Ω
v♦(t,x) ·ψ(t,x) dtdx

∣∣∣∣→ 0. (62)

On the other hand, gathering by control volumes,∫ T

0

∫
Ω
v♦(t,x) ·ψ(t,x) dt dx

=
N−1∑
n=0

∑
σK|L∈Eint

(un+1/2
L − un+1/2

K )nK,σ ·
∫ (n+1)δt

nδt

∫
σ
ϕ(t,x) dt dγ(x)

= −
N−1∑
n=0

∑
K∈M

u
n+1/2
K

∫ (n+1)δt

nδt

∑
σ∈EK

∫
σ
ϕ(t,x) · nK,σ dtdγ(x)

= −
N−1∑
n=0

∑
K∈M

u
n+1/2
K

∫ (n+1)δt

nδt

∫
K

div(ϕ)(t,x) dt dx

= −
∫ T

0

∫
Ω
u(t,x)div(ϕ)(t,x) dtdx

which converges, by assumption on u, to −
∫ T

0

∫
Ω ū(t,x)div(ϕ)(t,x) dtdx. Together with (62),

this shows that v♦ → ∇ū in the distribution sense, and the proof is concluded. �

6.4 A technical result

The following lemma is the generalization of Lemma 6.3 in [6] to the case of non-convex control
volumes.
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Lemma 6.6 Let α > 0 and d ≥ 1. Assume that K is a polygonal open subset of Rd such that
K is star-shaped with respect to all the points in a ball of radius αdiam(K). Let E be an affine
hyperplane of Rd and σ be a non-empty open subset of E ∩ ∂K. Then there exists C26 only
depending on d and α such that, for all v ∈ H1(K),(

1
m(σ)

∫
σ
v(x) dγ(x)− 1

m(K)

∫
K
v(x) dx

)2

≤ C26diam(K)
m(σ)

∫
K
|∇v(x)|2 dx.

Proof of Lemma 6.6
In the special case d = 1, K is convex and the result is a consequence of Lemma 6.3 in [6]. We
therefore assume hereafter that d ≥ 2.

Step 1: a preliminary inequality.
Let v be a regular function and U , V , A be sets in Rd of non-zero Lebesgue measure such that,
for all x ∈ U and all y ∈ V , [x,y] ⊂ A. We prove in this step that there exists C27 only
depending on d such that(

1
m(U)

∫
U
v(x) dx− 1

m(V )

∫
V
v(x) dx

)2

≤ C27diam(A)d+2

m(U)m(V )

∫
A
|∇v(x)|2 dx. (63)

Since v is regular we can write, for all x ∈ U and all y ∈ V , v(x) − v(y) =
∫ 1

0 ∇v(tx + (1 −
t)y) · (x− y) dt. As [x,y] ⊂ A, we have |x− y| ≤ diam(A) and Jensen’s inequality thus implies(

1
m(U)

∫
U
v(x) dx− 1

m(V )

∫
V
v(x) dx

)2

≤ diam(A)2

m(U)m(V )

∫
U

∫
V

∫ 1

0
|∇v(tx+ (1− t)y)|2 dtdy dx. (64)

Let y ∈ V . Using the change of variable x ∈ U → z = tx+ (1− t)y ∈ A and Fubini’s theorem,
we find ∫

U

∫
V

∫ 1

0
|∇v(tx+ (1− t)y)|2 dtdxdy ≤

∫
A
|∇v(z)|2

∫
V

∫
I(z,y)

t−d dt dy dz (65)

where I(z,y) = {t ∈ [0, 1] | ∃x ∈ U , tx + (1 − t)y = z}. If z ∈ A, y ∈ V and t ∈ I(z,y),
then t(x − y) = z − y for some x ∈ U , and therefore diam(A)t ≥ t|x − y| = |z − y|. Hence
I(z,y) ⊂ [ |z−y|

diam(A) , 1] and we deduce that∫
I(z,y)

t−d dt ≤
∫ 1

|z−y|
diam(A)

t−d dt ≤ 1
d− 1

diam(A)d−1

|z − y|d−1
.

Thus, for all z ∈ A,∫
V

∫
I(z,y)

t−d dtdy ≤ diam(A)d−1

d− 1

∫
V

1
|z − y|d−1

dy =
diam(A)d−1

d− 1

∫
z−V

1
|ξ|d−1

dξ.
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Since V ⊂ A, for all z ∈ A the set z − V is contained in B(0,diam(A)) and, using polar
coordinates, we deduce∫

V

∫
I(z,y)

t−d dtdy ≤ diam(A)d−1

d− 1
C28

∫ diam(A)

0

1
ρd−1

ρd−1 dρ =
C28

d− 1
diam(A)d

where C28 is the surface of the unit sphere in Rd. Substituting this last inequality into (65) and
coming back to (64), we conclude the proof of (63).

Step 2: proof of the lemma.
Since the regular functions are dense in H1(K) (because K is star-shaped), it is sufficient to
prove the lemma for v ∈ C1(K). Let p ∈ K be such that K is star-shaped with respect to all
the points in B(p, αdiam(K)).

Let 4 be the convex hull of p and σ (notice that 4 ⊂ K). Under the assumption that K is
convex and that B(p, αdiam(K)) ⊂ K, Lemma 6.2 in [6] states that(

1
m(σ)

∫
σ
v(x) dγ(x)− 1

m(4)

∫
4
v(x) dx

)2

≤ C29dist(p, E)2

m(4)

∫
4
|∇v(x)|2 dx (66)

with C29 only depending on d and α. In fact, in the proof of [6, Lemma 6.2], the convexity
assumption on K is only used to ensure that

dist(p, E) ≥ αdiam(K) , (67)

which is a consequence of the fact that B(p, αdiam(K)) entirely lies on one side of E; it is quite
easy to see that this property still holds if K is only star-shaped with respect to all the points
in B(p, αdiam(K)).
Indeed, by translation we can assume that 0 is in the relative interior of σ. The definition of
“polygonal subset” implies that K is, on a neighborhood of 0, on one side of its edge σ; denoting
by n the outer normal to K on σ, this means that z ·n < 0 for all z ∈ K in a neighborhood of
0. Assume now that B(p, αdiam(K)) has points on the two sides of E: we can then find y in
this ball such that y · n > 0. Since K is star-shaped with respect to y we have, for all x ∈ K
and all λ ∈]0, 1[, z(λ,x) = x + λ(y − x) ∈ K. If x is close to 0 (it is possible to take such
a x in K since 0 ∈ σ ⊂ ∂K) and λ is close to 0, we see that z(λ,x) is close to 0; moreover,
z(λ,x) · n = (1− λ)x · n+ λy · n and, since y · n > 0, it is possible to choose x close to 0 and
then λ close to 0 such that z(λ,x) ·n > 0, which is a contradiction since z(λ,x) is a point of K
close to 0. Hence, B(p, αdiam(K)) lies on only one side of E, and (67) and (66) are therefore
valid under our assumptions.

We apply (63) with U = 4\σ ⊂ K, V = B(p, αdiam(K)) and A = K (since K is star-shaped
with respect to all the points in V and since U ⊂ K, we indeed have [x,y] ∈ A for all x ∈ U
and all y ∈ V ); the set σ = 4\U having a zero d-dimensional Lebesgue measure, we obtain

(
1

m(4)

∫
4
v(x) dx− 1

m(B(p, αdiam(K)))

∫
B(p,αdiam(K))

v(x) dx

)2

≤ C27diam(K)d+2

m(4)m(B(p, αdiam(K)))

∫
K
|∇v(x)|2 dx. (68)

34



Applying once again (63), with U = B(p, αdiam(K)), V = K and A = K, we also have(
1

m(B(p, αdiam(K)))

∫
B(p,αdiam(K))

v(x) dx− 1
m(K)

∫
K
v(x) dx

)2

≤ C27diam(K)d+2

m(B(p, αdiam(K)))m(K)

∫
K
|∇v(x)|2 dx. (69)

Gathering (66), (68) and (69), we get C30 only depending on d and α such that(
1

m(σ)

∫
σ
v(x) dγ(x)− 1

m(K)

∫
K
v(x) dx

)2

≤ C30

(
dist(p, E)2

m(4)
+

diam(K)2

m(4)
+

diam(K)2

m(K)

)∫
K
|∇v(x)|2 dx.

But m(K) ≥ m(4) = dist(p,E)m(σ)
d and dist(p, E) ≤ dist(p, σ) ≤ diam(K), so that (67) concludes

the proof. �
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