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Abstract

We present a new finite volume scheme for anisotropic heterogeneous diffusion problems on
unstructured irregular grids, which simultaneously gives an approximation of the solution and
of its gradient. The approximate solution is shown to converge to the continuous one as the size
of the mesh tends to 0, and an error estimate is given. An easy implementation method is then
proposed, and the efficiency of the scheme is shown on various types of grids and for various
diffusion matrices.

Keywords. Finite volume scheme, unstructured grids, irregular grids, anisotropic heteroge-
neous diffusion problems.

1 Introduction

The computation of an approximate solution for equations involving a second order elliptic
operator is needed in so many physical and engineering areas, where the efficiency of some
discretization methods, such as finite difference, finite element or finite volume methods, has
been proved The use of finite volume methods is particularly popular in the oil engineering field,
since it allows for coupled physical phenomena in the same grids, for which the conservation of
various extensive quantities appears to be a main feature. However, it is more challenging to
define convergent finite volume schemes for second-order elliptic operators on refined, distorted
or irregular grids, designed for the purpose of another problem.

For example, in the framework of geological basin simulation, the grids are initially fitted on the
geological layers boundaries, which is a first reason for the loss of orthogonality. Then, these
grids are modified during the simulation, following the compaction of these layers (see [15]), thus
leading to irregular grids, as those proposed by [17]. As a consequence, it is no longer possible
to compute the fluxes resulting from a finite volume scheme for a second order operator by a
simple two-point difference across each interface between two neighboring control volumes. Such
a two-point scheme is consistent only in the case of an isotropic operator, using a grid such that
the lines connecting the centers of the control volumes are orthogonal to the edges of the mesh.
The problem of finding a consistent expression using only a small number of points, for the finite
volume fluxes in the general case of any grid and any anisotropic second order operator, has led
to many works (see [1], [2], [3], [15] and references therein; see also [21]). A recent finite volume
scheme has been proposed [12, 13|, permitting to obtain a convergence property in the case of an
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anisotropic heterogeneous diffusion problem on unstructured grids, which all the same satisfy the
above orthogonality condition. In the case where such an orthogonality condition is not satisfied,
a classical method is the mixed finite element method which also gives an approximation of the
fluxes and of the gradient of the unknown (see [4], [5], [6], [24] for example, among a very large
literature). Note that, although the Raviart-Thomas basis is not directly available on control
volumes which are not simplices or regular polyhedra, such a basis can be built on more general
irregular grids. In [18], such a construction is completed using decomposition into simplices and
a local elimination of the unknowns at the internal edges. In [10] and [14], such basis functions
are obtained from the resolution of a Neumann elliptic problem in each grid block. However,
it has been observed that the use of mixed finite element method could demand high refined
grids on some highly heterogeneous and anisotropic cases (see [20] and the numerical results
provided in the present paper). An improvement of the mixed finite element scheme is the
expanded mixed finite element scheme [7], where different discrete approximations are proposed
for the unknown, its gradient and the product of the diffusion matrix by the gradient of the
unknown; however, this last scheme seems to present the same restrictions on the meshes as the
mixed finite element scheme. [19] gives a review of different “mixed” methods, albeit mostly on
structured (or not very general) grids.

We thus propose in this paper an original finite volume method, called the mixed finite volume
method, which can be applied on any type of grids in any space dimension, with very few
restrictions on the control volumes. The implementation of this scheme is proved to be easy,
and no geometric complex shape function has to be computed. Accurate results are obtained on
coarse irregular grids in the case of highly heterogeneous anisotropic problems. In order to show
the mathematical and numerical properties of this scheme, we study here the following problem:
find an approximation of @, weak solution to the following problem:

—div(AVa) = f in Q, (1)
u = 0 on 012,

under the following assumptions:
Q) is an open bounded connected polygonal subset of RY, d > 1, (2)

A Q — My(R) is a bounded measurable function such that
there exists ag > 0 satisfying A(x)¢ - € > aglé]? for a.e. € Q and all £ € R?,

(where My(R) stands for the space of d x d real matrices) and
fe L) (4)

Thanks to Lax-Milgram theorem, there exists a unique weak solution to (1) in the sense that
u € HE(Q) and the equation is satisfied in the sense of distributions on 2.

The principle of the mixed finite volume scheme, described in Section 2, is the following. We
simultaneously look for approximations ux and v of @ and Vu in each control volume K, and
for approximations F, of [ A(x)Viu(z)-n, dy(z) at each edge o of the mesh, where n, is a unit
vector normal to . The values F, must then satisfy the conservation equation in each control
volume, and consistency relations are imposed on ug, v and F,. After having investigated
in Section 3 the properties of a space associated with the scheme, we show in Section 4 that it



leads to a linear system which has one and only one approximate solution u, v and F', and we
provide the mathematical analysis of its convergence and give an error estimate. In Section 5,
we propose an easy implementation procedure for the scheme, and we use it for the study of
some numerical examples. We thus obtain acceptable results on some grids for which it would
be complex to use other methods, or to which empirical methods apply but no mathematical
result of convergence nor stability has yet been obtained.

2 Definition of the mixed finite volume scheme and main results

We first present the notion of admissible discretization of the domain {2, which is necessary to
give the expression of the mixed finite volume scheme.

Definition 2.1 [Admissible discretization] Let Q be an open bounded polygonal subset of R?
(d>1), and 90 = Q\ Q its boundary. An admissible finite volume discretization of Q is given
by D = (M,E,P), where:

e M is a finite family of non empty open polygonal convex disjoint subsets of Q0 (the “control
volumes”) such that Q@ = Ugepm K.

o & is a finite family of disjoint subsets of Q (the “edges” of the mesh), such that, for all
o € &, there exists an affine hyperplane E of R® and K € M with o C 0K NE and o is a
non empty open conver subset of E. We assume that, for all K € M, there exists a subset
Ex of € such that 0K = Ugcg, 0. We also assume that, for all o € £, either o C 02 or
&= KnNL for some (K,L) € M x M.

e P is a family of points of Q indexed by M, denoted by P = (Xx)xem and such that, for
all K e M, xi € K.

Some examples of admissible meshes in the sense of the above definition are shown in Figures 1
and 2 in Section 5.

Remark 2.1 Though the elements of Ex may not be the real edges of a control volume K (each
o € Ex may be only a part of a full edge, see figure 2), we will in the following call “edges of K”
the elements of Ex. Notice that we could also cut each intersection K N L into more than one
edge without changing neither our study nor our results.

Remark 2.2 The whole mathematical study done in this paper applies whatever the choice of
the point xg in each K € M. In particular, we do not impose any orthogonality condition
connecting the edges and the points xi. However, the magnitude of the numerical error (and,
for some reqular or structured types of mesh, its order) does depend on this choice.

We could also extend our definition to mnon-planar edges, under some curvature condition. In
this case, it remains possible to use the mized finite volume scheme and to prove its convergence.

The following notations are used. The measure of a control volume K is denoted by m(K); the
(d—1)-dimensional measure of an edge ¢ is m(c). In the case where o € £ is such that @ = KNL
for (K,L) € M x M, we denote 0 = K|L. For all 0 € £, x, is the barycenter of 0. If o € Ex
then ng , is the unit normal to o outward to K. The set of interior (resp. boundary) edges is



denoted by &yt (resp. Eext), that is &y, = {0 € E; 0 ¢ 0N} (resp. Eext = {0 € &; 0 C IN}). For
all K € M, we denote by N the subset of M of the neighboring control volumes (that is, the
L such that K N'L is an edge of the discretization).

To study the convergence of the scheme, we will need the following two quantities: the size of
the discretization

size(D) = sup{diam(K); K € M}
and the regularity of the discretization

regul(D) = sup {max (dl%éf()d card(sK)) K e M} (5)

where, for K € M, pg is the supremum of the radius of the balls contained in K. Notice that,
for all K € M,

diam(K)? < regul(D)pl < m(K) (6)

Wd

where wy is the volume of the unit ball in RY. Note also that regul(D) does not increase in a
local refinement procedure, which will allow the scheme to handle such procedures.

We now define the mixed finite volume scheme. Let D be an admissible discretization of €2 in
the sense of Definition 2.1. Denote by Hp the set of real functions on €2 which are constant on
each control volume K € M (if h € Hp, we let hi be its value on K).

As said in the introduction, the idea is to consider three sets of unknowns, namely v € Hp
which approximates u, v € H% which approximates Vu and a family of real numbers F' =
(FK,o)KeMm ocex (we denote by Fp the set of such families) which approximates ([ A(z)Vu(x)-
ng . dY(T))Kem ocey -

Taking v = (vg)kem a family of nonnegative numbers, we define L,(D) as the space of
(u,v,F) € Hp x H% x Fp such that

VK - (X —XK) + VL - (X — X5) + vem(K)Fg o —vpm(L)Fr o = up, — ug,
VK € M, VL € Nk, with 0 = K|L, (7)

Vi - (X0 —xK) +vgkm(K)Fg o = —ug, VK €M, Yo € Ex N Eext

and we define the mixed finite volume scheme as: find (u, v, F') € L, (D) such that

FK,0+FL,U :07 v0—:[(|L€€in‘w (8)
m(K)AKVK = Z FK,O’(XU — XK), VK e M (9)
oe€K

(where Ag = ﬁ S5 A(z)dz) and

=) Fro= /Kf(x) dz, VK € M. (10)

oefi

The origin of each of these equations is quite easy to understand. Since v and v stand for
approximate values of @ and Vu, equation (7) simply states, if we assume vg = 0, that v is
a discrete gradient of u: it is the discrete counterpart of u(xr) — u(xx) = u(xr) — u(xy) +



u(xy) —u(xg) = Vu(xr) - (x — %) + Vu(xg) - (X0 — xx). This equation is slightly penalized
with the fluxes to ensure existence and estimates on the said fluxes (to study the convergence
of the scheme, we will assume vx > 0; see the theorems below). Notice that the boundary
condition @ = 0 is contained in the second line of (7). As Fi , stands for an approximate value
of [ AV(z)u(z) - ng o dy(x), it is natural to ask for the conservation property (8), and the
balance (10) simply comes from the integration of (1) on a control volume. Last, the link (9)
between Av and its fluxes is justified by Lemma 6.1 in the appendix, which shows that one can
reconstruct a vector from its fluxes through the edges of a control volume.

Our main results on the mixed finite volume scheme are the following. The first one states
that there exists a unique solution to the scheme. The second one gives the convergence of this
solution to the solution of the continuous problem, as the size of the mesh tends to 0, and the
third one provides an error estimate in the case of smooth data.

Theorem 2.1 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of
in the sense of Definition 2.1. Let (vi)xem be a family of positive real numbers. Then there
exists one and only one (u,v, F) solution to ((7),(8),(9),(10)).

Theorem 2.2 Let us assume Assumptions (2)-(4). Let (Dp)m>1 be admissible discretizations
of Q1 in the sense of Definition 2.1, such that size(Dy,) — 0 as m — oo and (regul(Dy,))m>1
is bounded. Let vy > 0 and 8 € (2 — 2d,4 — 2d) be fized. For all m > 1, let (up,, Vi, Fin) be
the solution to ((7),(8),(9),(10)) for the discretization D,y,, setting v = vodiam(K)? for all
K € M,,. Let u be the weak solution to (1).

Then, as m — 00, Vp, — Va strongly in L*(Q)% and u,, — @ weakly in L*(Q) and strongly in
L) for all g < 2.

Theorem 2.3 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of §)
in the sense of Definition 2.1, such that size(D) < 1 and regul(D) < 6 for some 6§ > 0. We
take vy > 0 and B € (2 — 2d,4 — 2d) and, for all K € M, we let vy = vodiam(K)?. Let
(u,v, F) be the solution to ((7),(8),(9),(10)). Let u be the weak solution to (1). We assume that
A € CHQ; My(R)) and u € C?(Q).

Then there exists C1 only depending on d, Q, u, A, 6 and vy such that

1

||V _ vaHLQ(Q)d < ClSiZQ(D) 5 min(8+2d—2,4—2d—[3) (11)

and
ot = @l 2 < Chsize(D) 2 min(+20-24-24-5) (12)

(note that the mazimum value of 3 min(B + 2d — 2,4 — 2d — j3) is &, obtained for 3 = 3 —2d).

27
Remark 2.3 These error estimates are not sharp, and the numerical results in Section 5 show
a much better order of convergence.

3 The discretization space

We investigate here some properties of the space L, (D), which will be useful to study the mixed
finite volume scheme. Recall that L, (D) is the space of (u, v, F') which satisfy (7).



Lemma 3.1 [Poincaré’s Inequality] Let us assume Assumption (2). Let D be an admissible
discretization of Q in the sense of Definition 2.1, such that regul(D) < 0 for some 6 > 0. Let

(Vi) kem be a family of nonnegative real numbers. Then there exists Co only depending on d,
Q and 0 such that, for all (u,v,F) € L,(D),

lullz2(ey < Cz (V] 2@y + Na(D, v, F)) | (13)

1/2
where we have noted No(D,v, F) = (ZKEM Y octn diam(K)Qd*QV%(FIQQUm(K))

PROOF.

Let R > 0 and xg € Q be such that Q C B(xzg, R) (the open ball of center xy and radius R).
We extend u by the value 0 in B(zg, R) \ Q, and we consider w € H} (B(xo, R)) N H*(B(z¢, R))
such that —Aw(x) = u(x) for a.e. x € B(zo, R). We multiply each equation of (7) by [ Vw(z)-
ng , dvy(z), and we sum on o € &; since ng , = —nr, whenever ¢ = K|L, we find

Z Vi - (Xo — XK) / Vw(z) -ngqedy(z)+ vy - (xo — X1) / Vuw(z) - ng, o dy(z)
0€Eint ,0=K|L g o

s i G —xi) [ Vule) ng da (o)

Uegext 7U€€K

+ Z vim(K)Fg » / Vw(z) -ng,dy(z) +vim(L)Fr » / Vw(z) -ng, , dy(z)
0€Ein; ,0=K|L g o

+ Z vem(K)Fg o / Vuw(z) - ng,dy(x)

0€Eext ,0EEK

= - Z uK/Vw(a;) ‘ng, dy(x) —i—uL/ Vuw(z) - nr, o dy(z)

c€&€ns ,o=K|L

- Z uK/Vw(x) ‘g dy(x).

Uegext 7U€€K

Gathering by control volumes, we find

S vk > (%o —xk) / Vuw(z) - ng o dy(z)

KeM o€l
+ Z Z me(K)FK,U/Vw(a:)-nK,U dy(z) = - Z UK Z Vw(x) - nk , dy(z)
KeMoe€k g KeM o€€k 7
KeM K
= Y m(K)uk = |[ullf2q). (14)
KeM

Let 17 and 75 be the two terms in the left-hand side of this equation.
Define T3 = [, v(z) - Vw(x) dz; we have

T3] < [[Vllz2@allwll o) (15)

6



and we want to compare 77 with 73. In order to do so, we apply Lemma 6.1 in the appendix to
the vector G = ﬁ Jx Vw(x) dz, which gives

/K Vuw(z)dr = m(K)Gg = Y m(0)Gxg - ng (X, — Xx)

oefi

and therefore

Ty= > vi- Y m(0)Gg ngq(xe —Xg).

KeM o€EK
Hence, setting G, = m(g) [, Vw(z) dy(x), we get
TV =T/ < Y vk > m(o) |Gk — G| diam(K).
KeM o€k

Thanks to the Cauchy-Schwarz inequality, we find

(M =T3) < | > Ivel? DY m(o)diam(K) | | > > m(o)diam(K)|Gg — G,|*

KeM o€l KeMoelgk
We now apply Lemma 6.3 in the appendix, which gives C3 only depending on d and 6 such that
diam(K)
2 2
Gk — Go|” < C3TO_)HMHH2(K) (16)

(notice that « := %9*1/d < regul(D)~V4 < pg/diam(K) is valid in Lemma 6.3). We also
have, for 0 € Ex, m(0) < wg_1diam(K)?1, where wy_; is the volume of the unit ball in R4,
Therefore, according to (6) and since regul(D) > card(Ek) for all K € M,

(T =T5)° < | Y [vkl* Y m(o) diam(K) | | > Y Csdiam(K)?||w]|Fr g
KeM o€l KeMoelgk
< (wdlregul(D) Z |vK\2diam(K)d> (Cgsize(D)Qregul(D)||w||§{2(m)
KeM
- wq_1regul(D)? |

V112 e Codinmn (@) regl(D) . (17)

Turning to 75, we have Tp = Y e g ZUGgK vem(K)Fg ,m(0)G, - ng », which we compare
with Ty = 3 g D ves, VEM(K) Fi om(0)Gr - 0 o thanks to (16):

(Tp=Ty)?
< : 2 2 2 2
< Z Z diam(K)m(o)vg F ,m(K) Z Z dlam |GK Gol
KeMoelyk KeMoelyk
<

waawg Y, Y, diam(K)* i FE ;m(K) | regul(D)Cs[wl[32 o
KeMoelk

IN

wg_1wadiam(Q)? No(D, v, F)*regul(D)Cs||w| |%{2(Q). (18)

7



On the other hand, we can write

> > me) vk Fiom(K) | [ Y Y m(K)|Gkl?

KeMoelk KeMoelk

w2 | Ny(D,v, F)? (regul(D) > m(K)\GK\Z)

KeM
< w?lleQ(,D> v, F)2regul(D)HwH%{1(Q)' (19)

3
A

IN

Thanks to (15), (17), (18) and (19), we can come back in (14) to find

lullfz) = Ti+Ty
< Ty = T + T3] + [Ta — Ta| + [Ty

Wd— 0393 .
\/i}iddlam( NVlizz@allwllz2 @) + [Vl @allwll 2@

+v/wi—1waCs0 diam(Q)No (D, v, F)||w]| g2 (0 + wa—1V0 No(D, v, F) |w| g1 (g

Since there exists C4 only depending on d and B(zg, R) (the ball chosen at the beginning of the
proof) such that [|w[|g2q) < Cullul[12(q), this concludes the proof. [J

IN

Lemma 3.2 [Equicontinuity of the translations] Let us assume Assumption (2). Let D
be an admissible discretization of Q0 in the sense of Definition 2.1, such that regul(D) < 6 for
some 0 > 0. Let (vi)xem be a family of nonnegative real numbers. Then there exists Cy only
depending on d, Q and 0 such that, for all (u,v,F) € L,(D) and all £ € R?,

(- +€) = ull 1 ey < Cs (VI e + Ni (D, F)) e, (20)

where N1(D,v, F) = 3 g D veey diam(K)? vy |Fg |m(K) (and u has been extended by 0
outside Q).

PROOF.

For all o € &, let us define Dyu = |up, — ug| if 0 = K|L and Dyu = |ug| if 0 € Ex N Eext. For
(z,6) € REx R? and o € &, we define x(z,£,0) by 1if o N [z, 2 + €] # 0 and by 0 otherwise.
We then have, for all £ € R? and a.e. # € R? (the 2’s such that = and = 4 ¢ do not belong to
UrkemOK, and [z,z + £] does not intersect the relative boundary of any edge),

[u(z + &) —u(x)| <Y x(x,& 0)Dou.

oe€

Applying (7), we get [u(x + &) — u(x)| < T(x) + Ty(x) with

T5(x) = Z X(:Cagaa—)(‘VKHXU_XK|+‘VLHXL_XU|)
UGSint,a:K|L

+ Z X(xaéao-)‘VKHXU_XK‘

0EEext,0EEK

> x(@, & o)diam(K)|vi]

KeMoe€g

IN



and

To(x) = > X(@,&0) (vkm(K)|Fio| +vim(L)|Frq|)
Uegim,O‘:K|L

+ Z X(xvévo-)VKm(K”FK,U‘

0E€Eext,0EEK

= > ) x(@.&o)vgm(K)| Frol.

KeMoe€k

In order that x(z,£,0) # 0, x must lie in the set ¢ — [0,1]¢ which has measure m(o)n, - ¢|
(where n, is a unit normal to o). Hence,

/ x(z, €, 0)de <m(o)|n, - €| < wg_idiam(K)?1¢| if o € &k.
Rd

Since Card(Ex) < regul(D), this gives

/d 5(x) dx < wg_qregul(D)[¢| Z diam(K)?|v|
R

KeM
and
/ 6(x)dr < wgql¢] Z Z diam (K) v | Fi o lm(K),
KeMoelgk
which concludes the proof thanks to (6). [J

Remark 3.1 We could prove that |ju(- + &) — UH%Q(Rd) < C’(||VHL2(Q ¢+ No(D,yv, F)?) €] (1] +
size(D)) by assuming that max{diam(K)/pr,, (K,L) € M x M} remains bounded. This would
give in Theorem 2.2 the strong convergence of w,, in L*(S2), but this would also prevent from
considering locally refined mesh, so we prefer not to add this assumption. Notice however that
Theorem 2.3 states a strong convergence in L*(Q)) of the approzimate solution u.

Lemma 3.3 [Compactness property| Let us assume Assumption (2). Let (Dp)m>1 be
admissible discretizations of 0 in the sense of Definition 2.1, such that size(Dy,) — 0 as
m — oo and (regul(Dp,))m>1 is bounded. Let (U, Vi, Fin, Um)m>1 be such that (U, Vi, i) €
Ly, (D), (Vin)m>1 is bounded in L*(Q)¢ and No(Dy,Vm, Fyn) — 0 as m — oo (Na has been
defined in Lemma 3.1).

Then there exists a subsequence of (Dy,)m>1 (still denoted by (Dp)m>1) and 4 € HL(Q) such
that the corresponding sequence (U, )m>1 converges to 4 weakly in L*(Q) and strongly in L(Q)
for all ¢ < 2, and such that (Vy,)m>1 converges to Vu weakly in L?(9).

PROOF.
Notice first that, for all discretization D, for all v = (Vi) kesm nonnegative numbers and for all

F = (Fro)KeM, octx

Ni(D,v,F) = > Y diam(K)* vk|From(K)
KeMoelk
1/2 1/2
< [ DD D diam(K)* v FR m(K) > m(K
KeMoelk KeMoelk
< Nyo(D, v, F)regul(D)"/?m(Q)"/2. (21)



Hence, if No(D, v, F') and regul(D) are bounded, so is N1 (D, v, F'). Owing to this, the hypotheses,
Lemmas 3.1, 3.2 and Kolmogorov’s compactness theorem allow to extract a subsequence such
that v,,, — v weakly in L?(Q)? and u,, — @ weakly in L?(Q) and strongly in L'(Q) (which
implies the strong convergence in L9(f2) for all ¢ < 2). We now extend u,, @, v, and v by 0
outside 2 and we prove that v = V4 in the distributional sense on R?. This will conclude that
u € HY(RY) and, since % = 0 outside €, that u € H} ().

Let e € R? and ¢ € C’OO(]Rd). For simplicity, we drop the index m for D,,, v,, and u,,. We
multiply each equation of (7) by f z)dy(x)e-ng ,, we sum all these equations and we gather
by control volumes, getting T7 + 13 = Tg with

7= Y vice Y [ ela)drta) e oo = x),

KeM €K
To= > > viem(K)Fico / o(z) d(w)e - nico
KeMoe€lgk o

and

Y we Y / ) e nxy = — /Q w(@)div(p(x)e) dz.

KeM o€EK
We want to compare T with 179 defined by
Ty = Z VK - Z / z)dz m(o) e ng (X — XK).
KeM €€k
Since there exists Cg only depending on ¢ such that, for all o € £,

5 [0 - [ ele)aa

|T7 — Tio| < Celefsize(D) > |vi| > m(o)x, — xk|.
KeM o€k

But m(o)|x, — Xx| < wg_1diam(K)? < %dgul(mm(l() and, since card(Ex) < regul(D), we
obtain

< Cﬁsize(D),

we get that

. wy_regul(D)?
177 Tiol < Colelsize(D) X EU Py o

and thus limg;,ep)_o [77 —Ti0| = 0. Moreover, thanks to Lemma 6.1, we get T19 = Joe(z)v(z)-
edx and so limgj,epy_o T10 = [ 9(2)V(7) -edz = [pa p(2)V(2) - edw (v has been extended by
0 outside ). This proves that

~ lim T7:/ o(z)v(z) - eda. (22)
s1ze(D)—0 Rd

Since ¢ is bounded, by (21) we find C7 only depending on ¢ and e such that

Ts] < C7 Y. > m(o)vk|Fiom(K)

KeMoelk
S C7wd71N1(D>V7F)
< Crwgregul(D)’m(Q)*Ny(D, v, F)

10



and therefore, by the assumptions,

Clim Ty = 0. (23)
size(D)—0

We clearly have

Ll 7= /Q () div(p(z)e) dz = — /R a(a)div(p(e)e) dr

(recall that u has been extended by 0 outside €2). Gathering this limit with (22) and (23) in
T7 + Ts = Ty, we obtain

/]Rd p(2)v(2) - edr = - /Rd u(z)div(p(r)e) dx,

which concludes the proof that v = V& in the distributional sense on R%. O

4 Study of the mixed finite volume scheme

We first prove an a priori estimate on the solution to the scheme. This estimate shows in
particular that, if f = 0, then FF = 0 and v = 0, and thus v = 0 by Lemma 3.1; since
((7),(8),(9),(10)) is square and linear in (u, v, F'), the existence and uniqueness of the solution to
the mixed finite volume scheme (i.e. Theorem 2.1) is an immediate consequence of this lemma.

Lemma 4.1 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of €
in the sense of Definition 2.1. Let (vi)xem be a family of positive real numbers and (u, v, F')

be a solution of ((7),(8),(9),(10)). Then, for all vy > 0 and all By > [ > 2 — 2d such that
vk < ypdiam(K)? (VK € M), and for all 6 > regul(D), this solution satisfies

IVIF2@pe + D Y veFir m(K) < Csllf]72(q) (24)
KeMoelk

where Cy only depends on d, 2, ag, 6, vy and .

ProoF.
Multiply (10) by ug, sum on the control volumes and gather by edges using (8):

Z Fro(ur, —ug) + Z —Froug = /Qf(a;)u(a:) dx.

o€&int 7C)':I:(|L 0€Eext ,0€EK

Using (7) and (8), and gathering by control volumes, this gives

/Q f(@)u(z) do

= Y Frovi (%o —%Xk)+ Frove (%o —x0)+ Y FroVi - (Xo — Xk)

0€&int ,o=K|L 0€Eext ,0€EK
+ Z VKm(K)FIQ(,U+VLm(L)Fg,U+ Z VKm(K)FIZ(,a
0€&nt ,0o=K|L 0E€Eext ,0EEK
Y e X Bt X3 (05
KeM oelK KeMo€elk
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Applying (9), we obtain

/Q (@) A de+ 3 S vFR m(K) = /Q F@)u(z) dz (25)

KeMoelk
< 2@ llullzz @)

Using Young’s inequality and Lemma 3.1, we deduce that, for all € > 0,

1
OZOHV‘&z(Q)d + Z Z VKFIQ(,am(K) < 2_6Hf”%2(9) + 6022Hv‘|%2(ﬂ)d
KeMoelk

+eC3 > Y diam(K)* v Fi ,m(K). (26)
KeMoelk
Since vi < vpdiam(K)?, we have vgdiam(K)?*~2 < yydiam(K)PH21-2 < yydiam(Q)5F+24-2 <
v sup(1, diam(Q)%+24=2) (recall that §+ 2d — 2 > 0). Hence, (26) gives

1
ollvlZayi + 3 S vk FRom(E) < 1120y + C3IVI (s
KeMoelk

+evgsup(1, diam(Q)0 )05 N N v R m(K).
KeMoelgk

[ 1 )
2C3 "’ 2ug sup(1,diam(Q)Po+2d=2)C2

Taking ¢ = min( concludes the proof of the lemma. [J

We now prove the convergence of the approximate solution toward the weak solution of (1).
PROOF OF THEOREM 2.2.

For the simplicity of the notations, we omit the index m as in the proof of Lemma 3.3. We first
note that, thanks to Estimate (24) and since vg = vodiam(K)?,

No(D,w, F)? = Y Y diam(K)*PviFf m(K)
KeMoelk

= 1 Z Z diam(K)ﬁ‘FQd_QVKFIQ(,Um(K)
KeMoelgk

< wpsize(D)P2420,

where Cy does not depend on the discretization D (recall that regul(D) is bounded). Since
B+2d—2 > 0, this last quantity tends to 0, and so does No(D, v, F'), as size(D) — 0. Hence, still
using (24), we see that the assumptions of Lemma 3.3 are satisfied; there exists thus u € H&(Q)
such that, up to a subsequence and as size(D) — 0, v — Va weakly in L2(Q)? and u — @
weakly in L?(2) and strongly in L4(Q) for ¢ < 2.

We now prove that the limit function @ is the weak solution to (1). Since any subsequence of
(u,v) has a subsequence which converges as above, and since the reasoning we are going to
make proves that any such limit of a subsequence is the (unique) weak solution to (1), this will
conclude the proof, except for the strong convergence of v.

Let ¢ € C°(£2). We multiply (10) by ¢(xx) and we sum on K. Gathering by edges thanks to
(8), we get

S Prolelen) —ebxr)) = Y [ olx)f(@)dr

0€&nt,0=K|L KeM
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as long as size(D) is small enough (so that ¢ = 0 on the control volumes K such that 0K NoQ #
0). We set, for o = K|L,

1 1
Plx1) = ploc) = o /K Vip(o) do - (x; = k) + /L Vo(x)dz - (x1 - X,) + RiL

and we have | R | < C,(diam(K)? +diam(L)?). We then obtain, gathering by control volumes
and using (9) (and the fact that ¢ = 0 on the control volumes on the boundary of €2),

/ Apv(z) - Vy(x)dr = / f(@)pp(z)dz + Ty, (27)
Q Q
where Ap and pp are constant respectively equal to Ax and ¢(xx) on each mesh K, and
Tu|<Cp ). |Frol(diam(K)? +diam(L)®) < Cp Y Y diam(K)?|Fi .
O'Ggint,a':K‘L KeMoelk
Let us estimate this term. We have

2 2 2 diam (K )*
Tl < C2L Y > vk FrmE) || Y. D (T

KeMoelgk KeMoelgk
dlamK
< Ci Yy, Y, ———=m(K) (28)
KeMo€e€g

where, according to (24), C1p does not depend on the mesh since regul(D) stays bounded. But
vk = vpdiam(K)? and diam(K)?¢ < %m(ff), so that

diam (K)* - regul(D)?diam(K)*%  regul(D)?
vim(K)?2 —  wiydiam(K)2 Wiy

Since 4 — 2d — 3 > 0, we deduce from (28) that

diam (K )45,

3
T2 < C OregUI(D) i7e(D)27 3 Y m(K) < Cioregul(D) m(Q)Size(D)4—2d—,8

2 2
14 W5
wao KeMocEx a”o

and this quantity tends to 0 as size(D) — 0. Hence, we can pass to the limit in (27) to see that

/ AVa(z) - Vol(z) de = / f(@)p()dz,
Q Q

which proves that @ is the weak solution to (1).

The strong convergence of v to Vu is a consequence of (25) From this equation, and defining

= Jo A(z)w(z) - w(z) dz, we have N (v)? < [, f(z)u(z) dz and thus
limsup N(v)* <  lim f x)u(z)de = / f(x = N(Va)? (29)
size(D)—0 size(D)—0

(we use the fact that u — # weakly in L?(f2) and that @ is the weak solution to (1)). But
N is a norm on L?(Q)%, equivalent to the usual norm and coming from the scalar product
(w,z) = [, Mw(x) - z(x)dz; since v — Va weakly in L2(Q)¢ as size(D) — 0, we
therefore also have N(Va) < liminfg,eopy_o NV (v). We conclude with (29) that N(v) — N(Vu)

d

as size(D) — 0, and thus that the weak convergence of v to Vi in L?(Q)? is in fact strong. [J
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Remark 4.1 As a consequence of (25) and the strong convergence of v to Vu, we see that
DoKeM Doctx v FE m(K) — 0 as size(D) — 0. This strengthens Lemma 4.1 which only
states that this quantity is bounded.

To conclude this section, we prove the error estimates. Note that these estimates could be
extended, for d < 3, to the case u € H?(Q) following some arguments of [16].

PROOF OF THEOREM 2.3.

In this proof, we denote by C; (for all integer i) various real numbers which can depend on d,
Q, @, A and 6, but not on size(D). We also denote, for all K € M and o € £k, ux = u(xg),
Uy = U(Xg),

Fg,= / A(z)Viu(z) - ng o dvy(z),

_ I —
Vi = MAK Z Fk o(x6 — XK)
o€€K
(notice that Ak is indeed invertible since, from (3), Ax > aold). Thanks to Lemma 6.1, we

have
vk — Vau(x)| < Cpydiam(K), Vee K, VK € M, (30)

which implies
VK - (X0 —XK) = Uy —Ug + Rxo, VK € M, Vo € &k,

with |Rk »| < Cradiam(K)? for all K € M and o € k. Since 4 is a classical solution to (1),
we have

=Y Fro :/ f(z)dz, VK e M.
K

oefk

Denoting, for all K € M and all o € k., U = ug — g, Vi = Vi — Vg and ﬁK,a = Fro—Fk o,
we see that

— Y Fro=0, VKeM, (31)
oefi
Fro+Fps=0, Vo=K|L¢E &, (32)
m(K)AkVi = Y Frolxs —xx), VK €M, (33)
oefk

Vi - (Xo —XK) + VL - (X1, — X5) + VKm(AK)ﬁK,a + VKIIE(K)FK,O' + Rk o
—vym(L)Fy, » —vim(L)Fr , — Rp o = Uf, — UK,

VK € M, VL € Nk, with 0 = K|L, (34)

Vi - (XU — XK) + Z/Km(K)ﬁK,U + VKIH(K)FK,U + RKJ = —’I/EK,
VK € M, Vo € Eg N Eext-

We then get, multiplying (31) by ug, (34) by ﬁK,U and using (32), (33),

Z m(K)AgVg -V + Z Z VKIH(K)EQ(,U = Tio + T3, (35)
KeM KeMo€elk
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where

Tip = — Z Z VKm(K)FK,aﬁK,m

KeMoe€gk

T13 = - Z Z RK,UF\K,U‘

KeMoelk

Using Young’s inequality and the fact that |Ff | < Cigdiam(K )41, we have

1 _ 1 ~
ol < LY S w0+ TS st
KeMoelk KeMo€elk
. _ 1 ~
< Cysize(D) 2 2—1—5 Z Z l/Km(K)FIQQU.
KeMoe€k

Similarly, since |Rf | < Crodiam(K)?,

RKO’
T < 5
v K;AUEZFJ VKm ) K;AUEZ&( VKm
< CIQKZ 3 ijig (K)+% S 3 vkm(K)F
EMoeli KeMoelk
<

Cl5size(D)4_2d_ﬁ+ 3 Z Z VKm(K)Z/:’\[%J.
KeMoelgk

Gathering these two estimates in (35), the terms involving F K o in the left-hand side and the
right-hand side compensate and we obtain

ao|[¥[72gye < Crs (size(p)ﬁ+2d—2 + size(D)4_2d_ﬁ> . (36)

Estimate (11) follows, using the fact that size(D) < 1 and that |[V — V[ e (qye < Crisize(D).
We now set ]?’Kp = ﬁK,U +FK,U + %RmL&Q =Fgo+ VRm(K) for all K € M and ¢ € £k, and we
estimate No(D, v, F) the following way:

No(D,v, F? = Y N diam(K)*2vi Ff m(K)
KeMoek
< 2) ) diam(K)* v Fi ,m(K)
KeMoelk
] B C?ydiam (K )*
+2 Z Z dlam(K)2d QV%(IH(K)(IVQIHW
KeMoelk K
< Cir(size(D)PH2=2 4 size(D)?) (37)

(we have used (24)). Since (34) implies that (@, v, F') € L, (D), Lemma 3.1 gives
lillz2@) < Ca (I9llpa@ye + Na(D,v, F))

and (12) follows from (36), (37) and an easy estimate between ux and the values of w on K. [
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5 Implementation

We present the practical implementation in the case where A(x) is symmetric for a.e. = € €,
though it is valid for any A (notice that, in the physical problems given in the introduction of
this paper, the diffusion tensor is always symmetric).

5.1 Resolution procedure

The size of System ((7),(8),(9),(10)) is equal to (d + 1)Card(M) + 2Card(Eiyt) + Card(Eext)-
However, it is possible to proceed to an algebraic elimination which leads to a symmetric positive
definite sparse linear system with Card (&) unknowns, following the same principles as in the
hybrid resolution of a mixed finite element problem (see for example [23]). Indeed, for all
(u, v, F) such that (7) and (9) hold, we define (u,)yee by

VK - (X6 — XK ) + vk Fr om(K) = u, —ug, VK €M, Yo e Ek.

We thus have u, = 0 for all o € . We can then express (v, F') as a function of (uy),ee and
of u, since we have

1 —
m(K) Z FK’U/AKJ(XU’_XK)’(XU_XK)+VKFK,UIH(K):UU—UK7
o'e€fk

VK e M, Vo € &k,

which is, for all K € M, an invertible linear system with unknown (Fi »)scg) , under the form
Bi(Fk.o)ocex = (Uo — UK )ocg, Where B is a symmetric positive definite matrix (thanks to
the condition vk > 0). We can then write

Fro= Z (B;(l)aa’(ua/ —ug), VK€M, Vo€ k. (38)

o' €€k

We then obtain from (10), denoting by o = ZUESK(BI_(I)UU' and by = Za'e&( bi,o, that ug
satisfies the relation

— Z bK,U/uU/—I—bKUK:/Kf(x)dl‘. (39)

o/ €€k

We have (bx o/)ocere = Bgl(l)a/egK and therefore we get b = (1),7egx 'B;(l(l)a/egK > 0 since
B;(l is symmetric positive definite. Reporting the previous linear relations in (8), we find

bk obK o B br.obr o
S (BiNoor = T N g+ 3 ((BE o — 55T ) g =
, br , b,
o' €€k a'e€y, (40)

b s br.o
K, / f(a:)dac—l—i/f(a:)dx, Vo = K|L € &y,
br JK br JL

which is a symmetric linear system, whose unknowns are (uy)scg,,,. Let us show that its matrix
M is positive. We can write, for all family of real numbers (uy)see

int?

_ (Za bK,UU0)2
(Ug)oetin - M (Uo)oes, = Z Z Z (BKI)UU’UUUU/ - 2

b
KeM \oex o' e K
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Thanks to the fact that B[_(1 is symmetric positive definite, we get, using the Cauchy-Schwarz
inequality,

((1)065K . sz'l(ucr)UGSK)Q < ((1)0651( : sz'l(l)UGSK) ((UU)UEEK . szl(uU)UGSK) 5

which is exactly

2
Z bK,aua < bk Z Z (B]_(l)crcr’uo'ucr’~

UESK U’ESK O"GgK

In order to show that M is definite, we simply remark that the preceding reasoning shows that
the systems ((7),(8),(9),(10)) and (40) are equivalent. Hence, since ((7),(8),(9),(10)) has a unique
solution, so must (40), which means that M is invertible.

Hence, we can first solve (us)qeg,,, from (40), and then compute (u, F') thanks to relations (39)
and (38) and finally v by (9).

5.2 Numerical results

Taking v = 0 for all K € M, we could prove in the symmetric case, via a minimization
technique, that there exists at least one (u,v, F) € L,(D) solution of ((7),(8),(9),(10)). In this
case, (u,Vv) is unique, but this is no longer true for F' in the general case (see however section
6.2). Within such a choice, the proof of convergence of (u,v) to the continuous solution remains
an open problem. Nevertheless, this gives an indication that very small values of (Vi)xem
can be considered. Hence we take vx = 107?/m(K) in all the following computations. The
inversion of matrices B arising in (38) and the solving of System (40) are then realized using
direct methods.

5.2.1 Case of a homogeneous isotropic problem

We consider here the case d =2, 2 = (0,1) x (0,1), A =1; and u(x) = z1(1 — z1)z2(1 — 22) for
all z = (x1,22) € Q.

We first present in Figure 1 two different triangular discretizations D;; and Do used for the
computation of an approximate solution for the problem. We also show in Figure 1 the error
ep, defined by

_ |uk —u(xk)|

e = — , VK e M,
1l oo ()

using discretizations Dy and Dys. Note that these discretizations do not respect the Delaunay
condition on a sub-domain of €2, and that the 4-point finite volume scheme (see [11]) cannot be
used on these grids. The grids Dy and Dy3 (which is not represented here) have been obtained
from Dy (containing 400 control volumes) by the respective divisions by 2 and 4 of each edge
(there are 1600 control volumes in Do and 6400 in D,3). For all these discretizations, the points
x have been located at the center of gravity of the control volumes. The errors in L? norm
obtained with these grids are given in Table 1.

We observe that the numerical orders of convergence for |[u — @|[12(q) and [|[v — V| f2(gye both
seem to be near 1, and therefore no super-convergence property can reasonably be expected in
this case.
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Figure 1: Non-Delaunay triangular grids and error ep.
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Grid ‘|u—ﬂ||L2(Q) ||V—VfLHL2(Q)d

Dn 5.1 107 1.81072

Dio 19107 9.0 1073

Dys 8.2107° 451073
order of convergence 1.3 1

Table 1: Errors on non-Delaunay triangular grids.

We then present in Figure 2 discretizations D, and Dy and error ep using these grids. Such grids
could be obtained using a refinement procedure: for example, in the case of coupled systems, the
grid might have been refined in order to improve the convergence on another equation (thanks
to some a posteriori estimates maybe) and must then be used to solve (1) which is the second
part of the system. The grid Dy has been obtained from Dy by a uniform division of each
edge by 2, and Dgz (not represented here) has been obtained from Dyy in the same way. The
respective errors in L? norm obtained with these grids are given in Table 2.

Grid lu—all2@) | V= Villgzqu

Dy 871071 5.8 1073

Dyo 1.7 107" 1.3 1073

Dys3 3.910°° 4.0 1071
order of convergence 2.2 1.8

Table 2: Errors on rectangular locally refined grids.

We then observe that the numerical order convergence is better than 2 for ||u — |12 (), which
corresponds to a case of a mainly structured grid (there is no significant additional error located
at the internal boundaries between the differently gridded subdomains, see Figure 2).

Finally, in Figure 3, we represent grids D, and Dy and the error ep thus obtained. These meshes
(which have the same number of control volumes) could correspond to the case of moving meshes
(for example, due to a phenomenon of compaction, see [15]). The respective errors in L? norm
obtained with these grids are given in Table 3.

Grid | [ju — fLHLz(Q) v — VfLHLz(Q)d
D, 2.0 10°% 6.7107%
Dy 4.6 1071 1.810°3

Table 3: Errors on “compacted” grids.

We observe that the error is mainly connected to the size of the control volumes, and maybe to
some effect of loss of regularity of the mesh.
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Figure 2: Rectangular locally refined grids and error ep.
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5.2.2 Case of a heterogeneous anisotropic problem, comparison with mixed finite
element schemes

Let us now give some numerical results in a highly heterogeneous and anisotropic case, inspired
by [20]. With © = (0,1) x (0,1), let us define z = (—0.1,—0.1) and ¢ = 10~*, and let us set

(.1‘2 —i‘g)Q—i—E(l‘l —51)2 —(1—5)(1‘1 —.Tl)(l‘g —.i‘g)
Az) = , Vo € Q.
—(1—5)(1‘1 —i‘l)(l‘g—i‘g) (l‘l —j1)2+6(1‘2—i‘2)2

The eigenvalues of A(z) are equal to A\(z) = |z —Z|? and A\(z) = |z —Z|?: the anisotropy ratio is
therefore 1/e = 10* in the whole domain. Note that, thanks to the choice Z = (—0.1, —0.1), we
have inf,cq A(x) = |Z|%e = 0.02¢ and sup,cq A(x) = |7 — Z|%c = 2.42¢ with 7 = (1,1). Therefore
M) /A(y) and X(z)/A(y) are in the range [1/121,121] for all z,y € Q (note that in [20], these
ratios are in the range (0, +00) since the author takes z = (0,0), but then (3) does not hold).
Since the directions of anisotropy are not constant, one cannot solve this problem by a classical
finite volume method on a tilted rectangular mesh. We assume that the solution of Problem (1)
is given by u(x) = sin(7x1) sin(7z2); in this case, |[i[/12(q) = 1/2 and the function f satisfies:

f(z) = 72(1+¢)sin(rz)sin(mzs)|x — z/?
+7(1 — 3¢e) cos(may) sin(mwas)(r1 — T1)
+m(1 — 3¢) sin(mzy) cos(mxe)(xe — T2)
+272(1 — ¢) cos(ma1) cos(mas)(x1 — Z1) (w2 — T2), Vo € Q.

We then compare on this problem the numerical solution given by the mixed finite volume
scheme (denoted by MFV below) with the one obtained using the low degree mixed finite element
scheme (denoted by MFE below) in the case of triangles or rectangles. We compute the solutions
with both schemes on the following grids: Dy, including 5600 acute triangles, D;s, including
4 %5600 = 22400 acute triangles, Dyg, including 16 x 5600 = 89600 acute triangles, D4, including
1600 rectangles (in fact, squares), Dgys, including 4 x 1600 = 6400 rectangles, Dgyg, including
25 x 1600 = 40000 rectangles. For the triangular grids D,4, D;5 and Dy, the points xx have
been located at the circumcenter of the triangles.

Remark 5.1 Choosing for xi the circumcenter of the triangle instead of the center of gravity
leads to an error about ten percent lower on the grids Dy, Dis and Dyg.

For the rectangular grids, the points xx have been located at the center of gravity of the
control volumes. We provide in Table 4 the error |[u — @l|;2(q), as well as the minimum value
Umin = Mingep ui and the maximum value upmax = maxgeym ux of the approximate solution
(note that the exact solution @ varies between 0 at the edges of Q and 1 at its center), using
both schemes.

These results show a surprisingly bad performance for the MFE and MFV schemes on triangular
grids (this was pointed out for the MFE scheme in [20]). An order of convergence close to 2
is nevertheless observed for the L?(2) norm, with a very high multiplicative constant. But
this similarity between both schemes does no longer hold on the other grids: on the regular
rectangular grids (on which the MFE solution can be computed using the classical RT basis),
the MFV method provides accurate results where the MFE scheme is far from the exact solution.
Moreover, in the case of the MFV scheme, the bounds on the approximate solution are close to
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Crid MFE MFE MFE MFV MFV MFV
Hu - EHL2(Q) Umin Umax Hu — aHLQ(Q) Umin Umax
Dy 1.53 21.32 6.35 1.20 22.46 4.68
Dis 0.397 -0.344 2.20 0.315 -0.633 1.99
Dis 0.101 -0.0867 | 1.20 0.0807 -0.163 1.25
order of 1.96 - - 1.95 -
convergence
Dy 0.795 -1.03 2.62 0.000912 0.000566 | 0.997
Dys 0.200 -0.259 1.38 0.000162 0.000141 | 0.999
Dy 0.0320 -0.0415 | 1.06 0.0000202 0.0000229 | 1.00
order of 2.3 — — 2.75 —
vergence

Table 4: Comparison between the mixed finite element and mixed finite volume schemes on

triangular and rectangular grids for Le Potier’s test case.

MFE Dy

MFE D,

MFE Dy

MFV Dy

MFV D,y

MFV Dy

Figure 4: Solutions of mixed finite element and mixed finite volume schemes for Le Potier’s test
case (black = Umin, red = Umax)-
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MFV D, MFV D, MFV D;

Figure 5: Solutions of the mixed finite volume scheme for Le Potier’s test case on irregular grids
(black = upin, red = Upax).

that of the exact solution. These results are confirmed by Figure 4, where some of the numerical
solutions considered are plotted.

We give in Table 5 the values ||u — ull [2(Q)s Umin and Umax in the case where the MFV scheme
is used on three irregular grids: the grid D, which is a Voronoi tessellation with 105 control
volumes, the grid Dy, already considered above, including 16 + 144 + 49 + 25 = 234 rectangles
(in fact again, squares) and the grid Dy with 400 quadrangles, also considered above.

Grid _
Hu - u||L2 (Q) Umin Umax
D, 0.0929 0.0126 0.980
Dy 0.0232 0.00259 1.00
Dy 0.0217 -0.00890 | 0.999

Table 5: Errors and minima/maxima values of the MFV solution for Le Potier’s test case on
irregular grids.

These results show an acceptable convergence, confirmed by Figure 5 in which the corresponding
approximate solutions are drawn.

6 Appendix

6.1 Technical lemmas

Lemma 6.1 justifies the link (9) between the approximate gradient and the approximate fluxes.

Lemma 6.1 Let K be a non empty open convex polygonal set in RY. For o € Ex (the edges of
K, in the sense given in Definition 2.1), we let X, be the center of gravity of o; we also denote
ng o the unit normal to o outward to K. Then, for all vector e € R? and for all point xx € RY,
we have

m(K)e= Y m(o)e-ngq(xs — Xg).

o€€K
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ProoF.
We denote by a superscript i the i-th coordinate of vectors and points in R%. By Stokes formula,
we have

m(K)e' —/Kdlv((a: —xt)e)dx = Z / ' — x5 )e ng., dy(x)

oefi

and the proof is concluded since, by definition of the center of gravity, [ (z' —x%)dy(z) =
[, 2" dy(z) — m(o)xY = m(o)x, — m(o)xy. O

The following lemma is quite similar to [9, Lemma 7.2], but since the proof of Lemma 6.3 uses
this result with slightly more general hypotheses than in [9], we include the full proof of Lemma
6.2 for sake of completeness.

Lemma 6.2 Let K be a non empty open polygonal convex set in R%. Let E be an affine hyper-
plane of R? and o be a non empty open subset of E contained in 0K NE. We assume that there
exists « > 0 and pxg € K such that B(pk,adiam(K)) C K. We denote Ak, the convex hull
of o and px. Then there exists C1g only depending on d and « such that, for all v € H'(K),

’ is 2
(—m@l o) /AK,(, N CIA dm) < /AK,U Vela)f dz

ProoF.

The regular functions being dense in H!(K) (since K is convex), it is sufficient to prove the
lemma for v € C'(R?). By translation and rotation, we can assume that £ = {0} x R9~1,
o= {0} x & with ¢ C R%"! and that px = (p1,0) with p; = dist(pg, F).

Notice that, since K is convex and 0K N E contains a non empty open subset of F, K is on one
side of E. In particular, B(px,adiam(K)) is also on one side of E' (it is contained in K') and

p1 = dist(pk, F) > adiam(K). (41)

For a € [0,p1], we denote G, = {z € R4 | (a,2) € Ak} By definition, (a,2) € A, if and
only if there exists ¢t € [0,1] and y € o such that ¢(p1,0) + (1 —1)(0,y) = (a, 2); this is equivalent

tot:pilandz:(l—t)y:(l—pil)y. Thus,aa:<1_p_l)a

For all y € o and all a € [0,p;], we have

oo (1= )0 = [ oo fin (102)) ()

Integrating on y € o and using the change of variable z = (1 — i) y, we find

/UU(O dvy () — ﬁ/ﬁ a,z)dz _// Vv <ta <1—t—) y) : <—a,pily) dtdy.

P1

d—1
Multiplying by (1 - pil) and integrating on a € [0, p1], we obtain

/Uv(f)d'y(f)/opl (1——>d 1 da—/pl/ (a, 2) dzda
_ /Opl (1——>d 1// Vo (ta <1—t—) y) . <—a, p%y) dtdyda.
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d—1
But [} (1 - p%) da =8 and m(Ag,) = %; therefore, dividing by m(Ak ), we find

/U v(€) d(€) - (%K) /A )

_ In(%m/()m( )d 1// Vo <ta <1—t—> y) . <—a,pily) dtdyda. (42)

For all y € 7, we have [y[ = [(0,y)[ < [(0,y) — pk| + [px| < diam(K) + p1 (because (0,y) and
pk belong to K). By (41), this implies |y| < (1 + 1)p; and thus

L2 L5 2)s) (o

m(o)

D1 d—1
< 019/ <1 - —> // Vv (ta (1 —t—) y) adtdyda
P1 ta d—1
< 019 Vo (ta (1 - t—) y) a (1 — —) dtdyda (43)
b1

where C'9 only depends on « (We have used the obvious fact that, for ¢ €]0,1[, 1 — -+ <1— p—l)
But, for all a €]0, p1[, the change of variable

va : (t,y) €]0,1[x0 — 2z = <ta, <1 — tpi> y> € va(]0,1[x0T)
1
d—1
has Jacobian determinant equal to a (1 — ;—‘i) and therefore

d—1
// Vv (ta (1 - t—> y> a <1 — t_a> dtdy = / |Vu(z)|dz.
P ©a(]0,1[x5)

Moreover, (ta, (1—t.-)y) = p—‘:(pl,O) +(1— ;—‘I)(O,y) with ;—‘I €]0, 1[; hence, ¢4(]0,1[x0) C Ak~

et

We introduce this inequality in (43) and use the resulting estimate in (42) to obtain
~Cup1

1 1
m(TKﬂ)/AK,U v(z)de — m(U)/U v(§) dv(§)| < ) /AK,U‘VU(I‘)‘dJ}

and the conclusion follows from the Cauchy-Schwarz inequality, recalling that p; = dist(px, F).
]

d—1
a <1 - t_a> dtdyda < p; / |Vou(z)|dz.
p1 Ao

Lemma 6.3 Let K be a non empty open polygonal convex set in R? such that, for some o > 0,
there exists a ball of radius adiam(K) contained in K. Let E be an affine hyperplane of R? and
o be a non empty open subset of E contained in 0K N E. Then there exists Coy only depending
on d and o such that, for allv € H'(K),

(ﬁ/}(u(l‘)dm—ﬁ/{jv(@dv(i))Q < C”fni?i;“)(m/l(wv(x)pdx.
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PROOF.
Let B(pk,adiam(K)) C K and Ak, be the convex hull of px and 0. By Lemma 6.2, we have

2
(m(AlKa/A e)ds = i | ”<$)d7($)> < QT [ e

But m(Ag,) = w and dist(px, F) < dist(px, o) < diam(K). Therefore,

2 .
(@/A o() dx—ﬁ/v(az) dfy(g;)> < %ﬁ;m/}(wmwdx. (44)

Using Lemma 7.1 in [9], we get C2; only depending on d such that

2
1 1 Cyrdiam (K )4+2 )
<m(AK70) /AK,U V() ds - m(K) /Kv(x) da:) : m(Ag o )m(K) /K [Vole) dz,

which implies

2
1 B 1 o(2) da Cglddlam d+2 v 2 .
(m(AK,A foy, 9= i |, ”d> < ot EJ(E) J 7o

But, as in the proof of Lemma 6.2, we have dist(px, F) > adiam(K) (see (41)). Since m(K) >
wgaldiam(K )¢, we deduce that

2
1 1 Cy1d diam (K
<m(AK,a)/A vlz)de = o /K”(x) d$> < C;M—lm((a)) /K Vo(z)[Pde. (45)

The lemma follows from (44) and (45). O

6.2 Simplicial meshes

For some meshes, it is possible to completely drop the penalization on the fluxes, that is to say
to take v = 0 in (7). This is for example the case if each control volume K of the mesh is
a simplex, i.e. if K is the interior of the convex hull of d + 1 points of R? such that no affine
hyperplane of R? contains all of them and if Card(€x) = d + 1. In this situation, the following
lemma is the key ingredient to the study of the mixed finite volume scheme with v = 0.

Lemma 6.4 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of 0 in
the sense of Definition 2.1, such that regul(D) < 6 for some 6 > 0 and M is made of simplicial
control volumes. Let v € H% and a family of real numbers (Fk o)kem, oegy be given such that
(9) and (10) hold. Then there exists Cao only depending on d, Q, A and 0 such that

S S diam(K)? R, < Con(llf Bay + IV By (46)
KeMoelk
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PROOF.

For K € M, let Ak be the (d+ 1) x (d 4+ 1) matrix whose columns are (1,x, — XK)ZeeK (since
K is simplicial, it has d 4+ 1 edges and A is indeed a square matrix). The equations (9)-(10)
can be written Ax Fx = Ex, where Fg = (Fg 5 )oce, and

EK:(JKf@)dx)

m(K)AKVK

We now want to estimate ||[A.'|| (the matrix norm being induced by the euclidean norm on
R4*1) and, in order to achieve this, we divide the rest of the proof in several steps.

Step 1: this step is devoted to allow the assumption diam(K) = 1 in Steps 2 and 3.
Let Ky = diam(K) !K. Then x o = diam(K) 'xx € Kj and the barycenters of the edges of
Ky are x4, = diam(K )~ 'x,. Notice also that, if pK 0 is the supremum of the radius of the balls
included in K, then

1 diam(Ko) diam(K)

— — < regul(D)V/4 < g1/, (47)
PK,0 PK,0 PK

Let Ak o be the (d+ 1) x (d + 1) matrix corresponding to Ky, that is to say whose columns are
(1, %50 — XK,O)ZGSK = (1,diam(K) " (x, — XK));I;GSK' Since

1 0 . 0
Ap = 0 diam(K) Ao,
: . . 0
0 e 0 diam(K)

we have ||A']| < sup(1,diam(K)~1)||AR)||. Hence, an estimate on ||Ay|| gives an estimate
on || A% -

Step 2: estimate on A .

By (47), Ky contains a closed ball of radius %9_1/ 4 Up to a translation (which does not change
the vectors x,,0—Xk 0, and hence does not change Ak o), we can assume that this ball is centered
at 0. Since diam(Kjp) = 1, we have then B(0, %9_1/61) C Ko C B(0,1).

Let Zy be the set of couples (L, xy), where L is a simplex such that B(0, %Hfl/d) c L c B(0,1)
and x; € L. Bach simplex is defined by d + 1 vertices in R? so Zg can be considered as a
subset of P = (R))9*+1/S;,1 x RY, where S;,; is the symmetric group acting on (RY)%+! by
permuting the vectors. As such, Zy is compact in P: it is straightforward if we express the
condition “the adherence of a simplex contains B(0, %9_1/‘1)” as “any point of B(0, %H_I/d) is a
convex combination of the vertices of the simplex”, which is a closed condition with respect to
the vertices of the simplex.

For (L,x1) € Zy, let M(L,xy,) be the set of (d + 1) x (d + 1) matrices whose columns are, up
to permutations, (1,x, — XL)ZeeL (€1 being the set of edges of L and x, being the barycenter
of o). M(L,xy) can be considered as an element of My 1(R)/Sg1 (Sq41 acting by permuting
the columns) and the application (L,x1) € Zyg — M(L,xr1) € Mg11(R)/S441 is continuous: to
see this, just recall that the barycenter of an edge o € &, is x, = éZz‘:l X;, where x; are the
vertices of o (i.e. all vertices but one of L).
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If (L,x1) € Zy, all the matrices of M(L,xy) are invertible. Indeed, assume that such a matrix

has a non-trivial element (A1,...,Ag+1) in its kernel; this leads (denoting (o1,...,044+1) the
edges of L) to Zd+1 Ai = 0 and Zd+1 Ni(Xp, — x1) = Zd+1 AiXgy, = 0. Assuming A\j4q1 # 0,
we then can write X,,,, = Z?Zl HiXy, With Z’Ll wi = 1 (since p; = —X;/Ag+1). This means

that x5, is in the affine hyperplane H generated by the other barycenters of edges. Note that
H is parallel to o441 (this is a straightforward consequence of Thales’ theorem at the vertex
which does not belong to o441, and of the fact that the barycenters (x4,,...,X,,) of the edges
are in fact the barycenters of the vertices of the corresponding edge). Therefore H contains the
whole edge o441, because it contains x,,,, € o4y1. Let a be the vertex of L which does not
belong to 044 1; a belongs to o1 and we denote (by,...,bg_1) the other vertices of o1 (which also
belong to 0411 C H). We have x,, = J(a+ Z?;ll b;), and therefore a = dx,, — > | b;; but
d— Z?;ll 1 = 1 and thus a belongs to the affine hyperplane generated by (x,,,b1,...,bg_1).
Since all these points belong to H, we have a € H and, since o431 C H, all the vertices of L in
fact belong to H; L is thus contained in an hyperplane, which is a contradiction with the fact
that it contains a non-trivial ball. Thus, for (L,x1) € Zy, M(L,xr) is in fact an element of
Glat1(R)/Sa+1-

The inversion inv : Glgy1(R) — Glg41(R) is continuous; hence, ||inv(-)|| : Glg+1(R) — R is also
continuous. Permuting the columns of a matrix comes down to permuting the lines of its inverse,
which does not change the norm; therefore ||inv(-)|| : Glg4+1(R)/Si+1 — R is well defined and
also continuous.

We can now conclude this step. The application Zg — Glg11(R)/Sq+1 — R defined by (L,x1,) —
M(L,xr) — |linv(M(L,xr))|| is continuous. Since Zy is compact, this application is bounded
by some Co3 only depending on d and 0. As (Ko, Xx,0) € Zp, this shows that HA;(}OH < (Cog.

Step &: conclusion.
Using the preceding steps, we find || Fie|| < ||AR*||||Ex|| < Cazsup(1, diam(K)~")||E||. Hence,

Z diam(K)?~?||Fg||*> < C%; sup(diam(Q Z diam(K) 4| Ek||%.
KeM KeM

But ||Ex|]* < m(K) [ |f(2)]*dz + Coam(K)?|vg|* with Ch4 only depending on A. Since
m(K) < wgdiam(K )9, this concludes the proof of (46). O

Let us now consider ((7),(8),(9),(10)) with vx = 0; notice that the results of Section 3 still hold
in this situation.

Equation (25) gives, if vx = 0, an estimate on v in L?(92)? which, thanks to Lemma 6.4,
translates into an estimate on the fluxes (this estimate replaces the one obtained before thanks to
the penalization), provided that the control volumes are simplicial. This gives, as in the penalized
case, existence and uniqueness of a solution to the non-penalized mixed finite volume scheme
(i.e. ((7),(8),(9),(10)) with v = 0). From the estimate on the fluxes, it is straightforward to see
that the term 7' in the proof of Theorem 2.2 still tends to 0 as size(D) — 0. Hence, in the case
of simplicial control volumes, the solution to the mixed finite volume scheme ((7),(8),(9),(10))
with vg = 0 still converges toward the weak solution of (1).

It is also quite easy to establish, in this situation, error estimates in the case of smooth data A
and u; these estimates are in fact quite better than the ones of Theorem 2.3: we can prove that

v — Vil L2 (qya < Cassize(D) and |u — @l 12y < Cossize(D).
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To obtain such rates of convergence, one must simply bound T3 in (35) by using Lemma 6.4
with ' =F,v=v and f =0.

In the particular case where D is made of simplicial control volumes, and, for all K € M,
vk = 0 and xx is the center of gravity of K, then the solution (u, v, F) of ((7),(8),(9),(10)) is
also the solution of the following generalization of the expanded mixed finite element scheme
[7]: find (u, v, W =3 g rg D peey FrRoWEKo) € Hp X HE x RT? (RT denotes here the lowest
degree Raviart-Thomas basis (W ),cg on the mesh M, such that, choosing for an internal edge
o = K|L the orientation from K to L, then W, restricted to K is Wk , and W, restricted to
Lis =W, — note that w € RT thanks to (8)) such that

/ Az)v(z) - v (z)de = / w(z) -V (z)dz, VW € HS,
Q Q

which gives (9),

/ v(z) - w'(z)dx —I—/ u(z)divw’(z) dz = 0,¥w’ € RT°,
Q Q

which gives (7) with v = 0, and

—/ o (z)divw (z) dr = / o' (z)f(xz)dz, Vu' € Hp,

Q Q

which gives (10). This formulation (an expanded version of [8]) differs from that of [7], in which
the restrictions of v and w on each control volume must belong to the same space. The proof
of convergence of the mixed finite volume scheme therefore gives at the same time that of this
particular version of the expanded mixed finite element scheme.

References

[1] I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids.
Locally conservative numerical methods for flow in porous media. Comput. Geosci. 6, 405—
432 (2002).

[2] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on unstructured grids for
inhomogeneous, anisotropic media. Part I: Derivation of the methods. Journal on Scientific
Computing, 19, 1700-1716 (1998).

[3] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on unstructured grids
for inhomogeneous, anisotropic media. Part II: Discussion and numerical results. SIAM
Journal on Scientific Computing, 19, 1717-1736 (1998).

[4] T. Arbogast, L.C. Cowsar, M.F. Wheeler and I. Yotov, Mixed finite element methods on
nonmatching multiblock grids. STAM J. Numer. Anal. 37, No.4, 1295-1315 (2000).

[5] T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with
tensor coefficients as cell-centered finite differences. STAM J. Numer. Anal. 34, No.2, 828-
852 (1997).

30



[6]

[14]

[15]

[16]

[17]

18]

[19]

G. Chavent, G. Cohen and J. Jaffré, Discontinuous upwinding and mixed finite elements
for two-phase flows in reservoir simulation. Comput. Methods Appl. Mech. Eng. 47, 93-118
(1984).

7. Chen, Expanded mixed finite element methods for linear second-order elliptic problems.
I. RATRO, Modélisation Math. Anal. Numér. 32, No.4, 479-499 (1998).

Expanded mixed finite element methods for quasilinear second order elliptic problems. II.
RAIRO, Modélisation Math. Anal. Numér. 32, No.4, 501-520 (1998).

J-P. Croisille, Finite volume box-schemes and mixed methods, Math. Model. and Numer.
Anal., 34, No.5, 1087-1106 (2000).

J. Droniou, Error estimates for the convergence of a finite volume discretization of
convection-diffusion equations. J. Numer. Math. 11, 1-32 (2003).

J. Droniou, R. Eymard, D. Hilhorst and X. D. Zhou, Convergence of a finite volume - mixed
finite element method for a system of a hyperbolic and an elliptic equations. IMA Journal
of Numerical Analysis 23, 507-538 (2003).

R. Eymard, T. Gallouét and R. Herbin, Finite Volume Methods. Handbook of Numerical
Analysis, Edited by P.G. Ciarlet and J.L. Lions, North Holland 7, 713-1020 (2000).

R. Eymard, T. Gallouét and R. Herbin, A finite volume for anisotropic diffusion problems.
Comptes Rendus de I’Académie des Sciences 339, 299-302 (2004).

R. Eymard, T. Gallouét and R. Herbin, A cell-centred finite-volume approximation for
anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. of
Num. Anal. Advance Access (2005). doi:10.1093/imanum /dri036

R. Eymard, T. Gallouét and R. Herbin, Finite volume approximation of elliptic problems
and convergence of an approximate gradient. Appl. Num. Math. 37, 31-53 (2001).

I. Faille, A control volume method to solve an elliptic equation on a two- dimensional
irregular mesh. Comput. Methods Appl. Mech. Eng. 100, 275-290 (1992).

T. Gallouét, R. Herbin and M.H. Vignal, Error estimate for the approximate finite volume
solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary
conditions, STAM J. Numer. Anal., 37, No. 6, 1935-1972 (2000).

D.S. Kershaw, Differencing of the diffusion equation in Lagrangian hydrodynamic codes. J.
Comput. Phys. 39, 375-395 (1981).

Y. Kuznetsov and S. Repin, Convergence analysis and error estimates for mixed finite
element method on distorted meshes. J. Numer. Math. 13, No.1, 33-51 (2005).

R.A. Klausen and T.F. Russell, Relationships among some locally conservative discretiza-
tion methods which handle discontinuous coefficients, Computational Geosciences, 8, 341—
377 (2004).

31



[20]

C. Le Potier, A finite volume method for the approximation of highly anisotropic diffusion
operators on unstructured meshes, Finite Volumes for Complex Applications IV, Marrakesh,
Marocco, (2005).

K. Lipnikov, J. Morel and M. Shashkov, Mimetic finite difference methods for diffusion
equations on non-orthogonal non-conformal meshes. (English) J. Comput. Phys. 199, 589—
597 (2004).

P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic prob-
lems. Math. Aspects Finite Elem. Meth., Proc. Conf. Rome 1975, Lect. Notes Math. 606,
292-315 (1977).

J.E. Roberts and J.M. Thomas, Mixed and hybrid methods. Ciarlet, P. G. (ed.) et al.
Handbook of numerical analysis. North-Holland 2, 523-639 (1991).

A. Younes, P. Ackerer and G. Chavent, From mixed finite elements to finite volumes for
elliptic PDEs in two and three dimensions. Int. J. Numer. Methods Eng. 59, 365-388 (2004).

32



