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Abstract

We present a new finite volume scheme for anisotropic heterogeneous diffusion problems on
unstructured irregular grids, which simultaneously gives an approximation of the solution and
of its gradient. The approximate solution is shown to converge to the continuous one as the size
of the mesh tends to 0, and an error estimate is given. An easy implementation method is then
proposed, and the efficiency of the scheme is shown on various types of grids and for various
diffusion matrices.

Keywords. Finite volume scheme, unstructured grids, irregular grids, anisotropic heteroge-
neous diffusion problems.

1 Introduction

The computation of an approximate solution for equations involving a second order elliptic
operator is needed in so many physical and engineering areas, where the efficiency of some
discretization methods, such as finite difference, finite element or finite volume methods, has
been proved The use of finite volume methods is particularly popular in the oil engineering field,
since it allows for coupled physical phenomena in the same grids, for which the conservation of
various extensive quantities appears to be a main feature. However, it is more challenging to
define convergent finite volume schemes for second-order elliptic operators on refined, distorted
or irregular grids, designed for the purpose of another problem.

For example, in the framework of geological basin simulation, the grids are initially fitted on the
geological layers boundaries, which is a first reason for the loss of orthogonality. Then, these
grids are modified during the simulation, following the compaction of these layers (see [15]), thus
leading to irregular grids, as those proposed by [17]. As a consequence, it is no longer possible
to compute the fluxes resulting from a finite volume scheme for a second order operator by a
simple two-point difference across each interface between two neighboring control volumes. Such
a two-point scheme is consistent only in the case of an isotropic operator, using a grid such that
the lines connecting the centers of the control volumes are orthogonal to the edges of the mesh.
The problem of finding a consistent expression using only a small number of points, for the finite
volume fluxes in the general case of any grid and any anisotropic second order operator, has led
to many works (see [1], [2], [3], [15] and references therein; see also [21]). A recent finite volume
scheme has been proposed [12, 13], permitting to obtain a convergence property in the case of an
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lon, 34095 Montpellier cedex 5, France. email: droniou@math.univ-montp2.fr
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anisotropic heterogeneous diffusion problem on unstructured grids, which all the same satisfy the
above orthogonality condition. In the case where such an orthogonality condition is not satisfied,
a classical method is the mixed finite element method which also gives an approximation of the
fluxes and of the gradient of the unknown (see [4], [5], [6], [24] for example, among a very large
literature). Note that, although the Raviart-Thomas basis is not directly available on control
volumes which are not simplices or regular polyhedra, such a basis can be built on more general
irregular grids. In [18], such a construction is completed using decomposition into simplices and
a local elimination of the unknowns at the internal edges. In [10] and [14], such basis functions
are obtained from the resolution of a Neumann elliptic problem in each grid block. However,
it has been observed that the use of mixed finite element method could demand high refined
grids on some highly heterogeneous and anisotropic cases (see [20] and the numerical results
provided in the present paper). An improvement of the mixed finite element scheme is the
expanded mixed finite element scheme [7], where different discrete approximations are proposed
for the unknown, its gradient and the product of the diffusion matrix by the gradient of the
unknown; however, this last scheme seems to present the same restrictions on the meshes as the
mixed finite element scheme. [19] gives a review of different “mixed” methods, albeit mostly on
structured (or not very general) grids.

We thus propose in this paper an original finite volume method, called the mixed finite volume
method, which can be applied on any type of grids in any space dimension, with very few
restrictions on the control volumes. The implementation of this scheme is proved to be easy,
and no geometric complex shape function has to be computed. Accurate results are obtained on
coarse irregular grids in the case of highly heterogeneous anisotropic problems. In order to show
the mathematical and numerical properties of this scheme, we study here the following problem:
find an approximation of ū, weak solution to the following problem:

−div(Λ∇ū) = f in Ω,
ū = 0 on ∂Ω,

(1)

under the following assumptions:

Ω is an open bounded connected polygonal subset of R
d, d ≥ 1, (2)

Λ : Ω → Md(R) is a bounded measurable function such that
there exists α0 > 0 satisfying Λ(x)ξ · ξ ≥ α0|ξ|2 for a.e. x ∈ Ω and all ξ ∈ R

d,
(3)

(where Md(R) stands for the space of d × d real matrices) and

f ∈ L2(Ω). (4)

Thanks to Lax-Milgram theorem, there exists a unique weak solution to (1) in the sense that
ū ∈ H1

0 (Ω) and the equation is satisfied in the sense of distributions on Ω.

The principle of the mixed finite volume scheme, described in Section 2, is the following. We
simultaneously look for approximations uK and vK of ū and ∇ū in each control volume K, and
for approximations Fσ of

∫
σ Λ(x)∇ū(x) ·nσ dγ(x) at each edge σ of the mesh, where nσ is a unit

vector normal to σ. The values Fσ must then satisfy the conservation equation in each control
volume, and consistency relations are imposed on uK , vK and Fσ. After having investigated
in Section 3 the properties of a space associated with the scheme, we show in Section 4 that it
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leads to a linear system which has one and only one approximate solution u, v and F , and we
provide the mathematical analysis of its convergence and give an error estimate. In Section 5,
we propose an easy implementation procedure for the scheme, and we use it for the study of
some numerical examples. We thus obtain acceptable results on some grids for which it would
be complex to use other methods, or to which empirical methods apply but no mathematical
result of convergence nor stability has yet been obtained.

2 Definition of the mixed finite volume scheme and main results

We first present the notion of admissible discretization of the domain Ω, which is necessary to
give the expression of the mixed finite volume scheme.

Definition 2.1 [Admissible discretization] Let Ω be an open bounded polygonal subset of R
d

(d ≥ 1), and ∂Ω = Ω \ Ω its boundary. An admissible finite volume discretization of Ω is given
by D = (M, E ,P), where:

• M is a finite family of non empty open polygonal convex disjoint subsets of Ω (the “control
volumes”) such that Ω = ∪K∈MK.

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all
σ ∈ E, there exists an affine hyperplane E of R

d and K ∈ M with σ ⊂ ∂K ∩E and σ is a
non empty open convex subset of E. We assume that, for all K ∈ M, there exists a subset
EK of E such that ∂K = ∪σ∈EK

σ. We also assume that, for all σ ∈ E, either σ ⊂ ∂Ω or
σ = K ∩ L for some (K,L) ∈ M×M.

• P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M and such that, for
all K ∈ M, xK ∈ K.

Some examples of admissible meshes in the sense of the above definition are shown in Figures 1
and 2 in Section 5.

Remark 2.1 Though the elements of EK may not be the real edges of a control volume K (each
σ ∈ EK may be only a part of a full edge, see figure 2), we will in the following call “edges of K”
the elements of EK . Notice that we could also cut each intersection K ∩ L into more than one
edge without changing neither our study nor our results.

Remark 2.2 The whole mathematical study done in this paper applies whatever the choice of
the point xK in each K ∈ M. In particular, we do not impose any orthogonality condition
connecting the edges and the points xK . However, the magnitude of the numerical error (and,
for some regular or structured types of mesh, its order) does depend on this choice.
We could also extend our definition to non-planar edges, under some curvature condition. In
this case, it remains possible to use the mixed finite volume scheme and to prove its convergence.

The following notations are used. The measure of a control volume K is denoted by m(K); the
(d−1)-dimensional measure of an edge σ is m(σ). In the case where σ ∈ E is such that σ = K∩L
for (K,L) ∈ M×M, we denote σ = K|L. For all σ ∈ E , xσ is the barycenter of σ. If σ ∈ EK

then nK,σ is the unit normal to σ outward to K. The set of interior (resp. boundary) edges is
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denoted by Eint (resp. Eext), that is Eint = {σ ∈ E ; σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}). For
all K ∈ M, we denote by NK the subset of M of the neighboring control volumes (that is, the
L such that K ∩ L is an edge of the discretization).
To study the convergence of the scheme, we will need the following two quantities: the size of
the discretization

size(D) = sup{diam(K) ; K ∈ M}
and the regularity of the discretization

regul(D) = sup

{
max

(
diam(K)d

ρd
K

,Card(EK)

)
; K ∈ M

}
(5)

where, for K ∈ M, ρK is the supremum of the radius of the balls contained in K. Notice that,
for all K ∈ M,

diam(K)d ≤ regul(D)ρd
K ≤ regul(D)

ωd
m(K) (6)

where ωd is the volume of the unit ball in R
d. Note also that regul(D) does not increase in a

local refinement procedure, which will allow the scheme to handle such procedures.

We now define the mixed finite volume scheme. Let D be an admissible discretization of Ω in
the sense of Definition 2.1. Denote by HD the set of real functions on Ω which are constant on
each control volume K ∈ M (if h ∈ HD, we let hK be its value on K).
As said in the introduction, the idea is to consider three sets of unknowns, namely u ∈ HD

which approximates ū, v ∈ Hd
D which approximates ∇ū and a family of real numbers F =

(FK,σ)K∈M ,σ∈EK
(we denote by FD the set of such families) which approximates (

∫
σ Λ(x)∇ū(x) ·

nK,σ dγ(x))K∈M ,σ∈EK
.

Taking ν = (νK)K∈M a family of nonnegative numbers, we define Lν(D) as the space of
(u,v, F ) ∈ HD × Hd

D ×FD such that

vK · (xσ − xK) + vL · (xL − xσ) + νKm(K)FK,σ − νLm(L)FL,σ = uL − uK ,

∀K ∈ M, ∀L ∈ NK , with σ = K|L,

vK · (xσ − xK) + νKm(K)FK,σ = −uK , ∀K ∈ M, ∀σ ∈ EK ∩ Eext

(7)

and we define the mixed finite volume scheme as: find (u,v, F ) ∈ Lν(D) such that

FK,σ + FL,σ = 0, ∀σ = K|L ∈ Eint, (8)

m(K)ΛKvK =
∑

σ∈EK

FK,σ(xσ − xK), ∀K ∈ M (9)

(where ΛK = 1
m(K)

∫
K Λ(x) dx) and

−
∑

σ∈EK

FK,σ =

∫

K
f(x) dx, ∀K ∈ M. (10)

The origin of each of these equations is quite easy to understand. Since u and v stand for
approximate values of ū and ∇ū, equation (7) simply states, if we assume νK = 0, that v is
a discrete gradient of u: it is the discrete counterpart of u(xL) − u(xK) = u(xL) − u(xσ) +
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u(xσ) − u(xK) ≈ ∇u(xL) · (xL − xσ) + ∇u(xK) · (xσ − xK). This equation is slightly penalized
with the fluxes to ensure existence and estimates on the said fluxes (to study the convergence
of the scheme, we will assume νK > 0; see the theorems below). Notice that the boundary
condition ū = 0 is contained in the second line of (7). As FK,σ stands for an approximate value
of
∫
σ Λ∇(x)ū(x) · nK,σ dγ(x), it is natural to ask for the conservation property (8), and the

balance (10) simply comes from the integration of (1) on a control volume. Last, the link (9)
between Λv and its fluxes is justified by Lemma 6.1 in the appendix, which shows that one can
reconstruct a vector from its fluxes through the edges of a control volume.

Our main results on the mixed finite volume scheme are the following. The first one states
that there exists a unique solution to the scheme. The second one gives the convergence of this
solution to the solution of the continuous problem, as the size of the mesh tends to 0, and the
third one provides an error estimate in the case of smooth data.

Theorem 2.1 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω
in the sense of Definition 2.1. Let (νK)K∈M be a family of positive real numbers. Then there
exists one and only one (u,v, F ) solution to ((7),(8),(9),(10)).

Theorem 2.2 Let us assume Assumptions (2)-(4). Let (Dm)m≥1 be admissible discretizations
of Ω in the sense of Definition 2.1, such that size(Dm) → 0 as m → ∞ and (regul(Dm))m≥1

is bounded. Let ν0 > 0 and β ∈ (2 − 2d, 4 − 2d) be fixed. For all m ≥ 1, let (um,vm, Fm) be
the solution to ((7),(8),(9),(10)) for the discretization Dm, setting νK = ν0diam(K)β for all
K ∈ Mm. Let ū be the weak solution to (1).
Then, as m → ∞, vm → ∇ū strongly in L2(Ω)d and um → ū weakly in L2(Ω) and strongly in
Lq(Ω) for all q < 2.

Theorem 2.3 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω
in the sense of Definition 2.1, such that size(D) ≤ 1 and regul(D) ≤ θ for some θ > 0. We
take ν0 > 0 and β ∈ (2 − 2d, 4 − 2d) and, for all K ∈ M, we let νK = ν0diam(K)β . Let
(u,v, F ) be the solution to ((7),(8),(9),(10)). Let ū be the weak solution to (1). We assume that
Λ ∈ C1(Ω;Md(R)) and ū ∈ C2(Ω).
Then there exists C1 only depending on d, Ω, ū, Λ, θ and ν0 such that

‖v −∇ū‖L2(Ω)d ≤ C1size(D)
1

2
min(β+2d−2,4−2d−β) (11)

and
‖u − ū‖L2(Ω) ≤ C1size(D)

1

2
min(β+2d−2,4−2d−β) (12)

(note that the maximum value of 1
2 min(β + 2d − 2, 4 − 2d − β) is 1

2 , obtained for β = 3 − 2d).

Remark 2.3 These error estimates are not sharp, and the numerical results in Section 5 show
a much better order of convergence.

3 The discretization space

We investigate here some properties of the space Lν(D), which will be useful to study the mixed
finite volume scheme. Recall that Lν(D) is the space of (u,v, F ) which satisfy (7).
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Lemma 3.1 [Poincaré’s Inequality] Let us assume Assumption (2). Let D be an admissible
discretization of Ω in the sense of Definition 2.1, such that regul(D) ≤ θ for some θ > 0. Let
(νK)K∈M be a family of nonnegative real numbers. Then there exists C2 only depending on d,
Ω and θ such that, for all (u,v, F ) ∈ Lν(D),

‖u‖L2(Ω) ≤ C2

(
‖v‖L2(Ω)d + N2(D, ν, F )

)
, (13)

where we have noted N2(D, ν, F ) =
(∑

K∈M

∑
σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K)
)1/2

.

Proof.

Let R > 0 and x0 ∈ Ω be such that Ω ⊂ B(x0, R) (the open ball of center x0 and radius R).
We extend u by the value 0 in B(x0, R) \Ω, and we consider w ∈ H1

0 (B(x0, R)) ∩H2(B(x0, R))
such that −∆w(x) = u(x) for a.e. x ∈ B(x0, R). We multiply each equation of (7) by

∫
σ ∇w(x) ·

nK,σ dγ(x), and we sum on σ ∈ E ; since nK,σ = −nL,σ whenever σ = K|L, we find

∑

σ∈Eint ,σ=K|L

vK · (xσ − xK)

∫

σ
∇w(x) · nK,σ dγ(x) + vL · (xσ − xL)

∫

σ
∇w(x) · nL,σ dγ(x)

+
∑

σ∈Eext ,σ∈EK

vK · (xσ − xK)

∫

σ
∇w(x) · nK,σ dγ(x)

+
∑

σ∈Eint ,σ=K|L

νKm(K)FK,σ

∫

σ
∇w(x) · nK,σ dγ(x) + νLm(L)FL,σ

∫

σ
∇w(x) · nL,σ dγ(x)

+
∑

σ∈Eext ,σ∈EK

νKm(K)FK,σ

∫

σ
∇w(x) · nK,σ dγ(x)

= −
∑

σ∈Eint ,σ=K|L

uK

∫

σ
∇w(x) · nK,σ dγ(x) + uL

∫

σ
∇w(x) · nL,σ dγ(x)

−
∑

σ∈Eext ,σ∈EK

uK

∫

σ
∇w(x) · nK,σ dγ(x).

Gathering by control volumes, we find

∑

K∈M

vK ·
∑

σ∈EK

(xσ − xK)

∫

σ
∇w(x) · nK,σ dγ(x)

+
∑

K∈M

∑

σ∈EK

νKm(K)FK,σ

∫

σ
∇w(x) · nK,σ dγ(x) = −

∑

K∈M

uK

∑

σ∈EK

∫

σ
∇w(x) · nK,σ dγ(x)

= −
∑

K∈M

uK

∫

K
∆w(x) dx

=
∑

K∈M

m(K)u2
K = ||u||2L2(Ω). (14)

Let T1 and T2 be the two terms in the left-hand side of this equation.

Define T3 =
∫
Ω v(x) · ∇w(x) dx; we have

|T3| ≤ ‖v‖L2(Ω)d‖w‖H1(Ω) (15)
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and we want to compare T1 with T3. In order to do so, we apply Lemma 6.1 in the appendix to
the vector GK = 1

m(K)

∫
K ∇w(x) dx, which gives

∫

K
∇w(x) dx = m(K)GK =

∑

σ∈EK

m(σ)GK · nK,σ(xσ − xK)

and therefore
T3 =

∑

K∈M

vK ·
∑

σ∈EK

m(σ)GK · nK,σ(xσ − xK).

Hence, setting Gσ = 1
m(σ)

∫
σ ∇w(x) dγ(x), we get

|T1 − T3| ≤
∑

K∈M

|vK |
∑

σ∈EK

m(σ) |GK − Gσ| diam(K).

Thanks to the Cauchy-Schwarz inequality, we find

(T1 − T3)
2 ≤



∑

K∈M

|vK |2
∑

σ∈EK

m(σ)diam(K)





∑

K∈M

∑

σ∈EK

m(σ)diam(K)|GK − Gσ|2

 .

We now apply Lemma 6.3 in the appendix, which gives C3 only depending on d and θ such that

|GK − Gσ|2 ≤ C3
diam(K)

m(σ)
‖w‖2

H2(K) (16)

(notice that α := 1
2θ−1/d < regul(D)−1/d ≤ ρK/diam(K) is valid in Lemma 6.3). We also

have, for σ ∈ EK , m(σ) ≤ ωd−1diam(K)d−1, where ωd−1 is the volume of the unit ball in R
d−1.

Therefore, according to (6) and since regul(D) ≥ card(EK) for all K ∈ M,

(T1 − T3)
2 ≤



∑

K∈M

|vK |2
∑

σ∈EK

m(σ) diam(K)





∑

K∈M

∑

σ∈EK

C3diam(K)2||w||2H2(K)




≤
(

ωd−1regul(D)
∑

K∈M

|vK |2diam(K)d

)(
C3size(D)2regul(D)‖w‖2

H2(Ω)

)

≤ ωd−1regul(D)2

ωd
||v||2L2(Ω)dC3diam(Ω)2regul(D)‖w‖2

H2(Ω). (17)

Turning to T2, we have T2 =
∑

K∈M

∑
σ∈EK

νKm(K)FK,σm(σ)Gσ · nK,σ, which we compare
with T4 =

∑
K∈M

∑
σ∈EK

νKm(K)FK,σm(σ)GK · nK,σ thanks to (16):

(T2−T4)
2

≤



∑

K∈M

∑

σ∈EK

diam(K)m(σ)ν2
KF 2

K,σm(K)2





∑

K∈M

∑

σ∈EK

m(σ)

diam(K)
|GK − Gσ|2




≤


ωd−1ωd

∑

K∈M

∑

σ∈EK

diam(K)2dν2
KF 2

K,σm(K)


 regul(D)C3||w||2H2(Ω)

≤ ωd−1ωddiam(Ω)2N2(D, ν, F )2regul(D)C3||w||2H2(Ω). (18)
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On the other hand, we can write

T 2
4 ≤



∑

K∈M

∑

σ∈EK

m(σ)2ν2
KF 2

K,σm(K)





∑

K∈M

∑

σ∈EK

m(K)|GK |2



≤ ω2
d−1N2(D, ν, F )2

(
regul(D)

∑

K∈M

m(K)|GK |2
)

≤ ω2
d−1N2(D, ν, F )2regul(D)‖w‖2

H1(Ω). (19)

Thanks to (15), (17), (18) and (19), we can come back in (14) to find

||u||2L2(Ω) = T1 + T2

≤ |T1 − T3| + |T3| + |T2 − T4| + |T4|

≤
√

ωd−1C3θ3

ωd
diam(Ω)‖v‖L2(Ω)d ||w||H2(Ω) + ||v||L2(Ω)d ||w||H1(Ω)

+
√

ωd−1ωdC3θ diam(Ω)N2(D, ν, F )‖w‖H2(Ω) + ωd−1

√
θ N2(D, ν, F )‖w‖H1(Ω).

Since there exists C4 only depending on d and B(x0, R) (the ball chosen at the beginning of the
proof) such that ||w||H2(Ω) ≤ C4||u||L2(Ω), this concludes the proof. �

Lemma 3.2 [Equicontinuity of the translations] Let us assume Assumption (2). Let D
be an admissible discretization of Ω in the sense of Definition 2.1, such that regul(D) ≤ θ for
some θ > 0. Let (νK)K∈M be a family of nonnegative real numbers. Then there exists C5 only
depending on d, Ω and θ such that, for all (u,v, F ) ∈ Lν(D) and all ξ ∈ R

d,

‖u(· + ξ) − u‖L1(Rd) ≤ C5

(
‖v‖L1(Ω)d + N1(D, ν, F )

)
|ξ|, (20)

where N1(D, ν, F ) =
∑

K∈M

∑
σ∈EK

diam(K)d−1νK |FK,σ|m(K) (and u has been extended by 0
outside Ω).

Proof.

For all σ ∈ E , let us define Dσu = |uL − uK | if σ = K|L and Dσu = |uK | if σ ∈ EK ∩ Eext. For
(x, ξ) ∈ R

d × R
d and σ ∈ E , we define χ(x, ξ, σ) by 1 if σ ∩ [x, x + ξ] 6= ∅ and by 0 otherwise.

We then have, for all ξ ∈ R
d and a.e. x ∈ R

d (the x’s such that x and x + ξ do not belong to
∪K∈M∂K, and [x, x + ξ] does not intersect the relative boundary of any edge),

|u(x + ξ) − u(x)| ≤
∑

σ∈E

χ(x, ξ, σ)Dσu.

Applying (7), we get |u(x + ξ) − u(x)| ≤ T5(x) + T6(x) with

T5(x) =
∑

σ∈Eint,σ=K|L

χ(x, ξ, σ)(|vK ||xσ − xK | + |vL||xL − xσ|)

+
∑

σ∈Eext,σ∈EK

χ(x, ξ, σ)|vK ||xσ − xK |

≤
∑

K∈M

∑

σ∈EK

χ(x, ξ, σ)diam(K)|vK |

8



and

T6(x) =
∑

σ∈Eint,σ=K|L

χ(x, ξ, σ) (νKm(K)|FK,σ| + νLm(L)|FL,σ|)

+
∑

σ∈Eext,σ∈EK

χ(x, ξ, σ)νKm(K)|FK,σ|

=
∑

K∈M

∑

σ∈EK

χ(x, ξ, σ)νKm(K)|FK,σ|.

In order that χ(x, ξ, σ) 6= 0, x must lie in the set σ − [0, 1]ξ which has measure m(σ)|nσ · ξ|
(where nσ is a unit normal to σ). Hence,

∫

Rd

χ(x, ξ, σ) dx ≤ m(σ)|nσ · ξ| ≤ ωd−1diam(K)d−1|ξ| if σ ∈ EK .

Since Card(EK) ≤ regul(D), this gives
∫

Rd

T5(x) dx ≤ ωd−1regul(D)|ξ|
∑

K∈M

diam(K)d|vK |

and ∫

Rd

T6(x) dx ≤ ωd−1|ξ|
∑

K∈M

∑

σ∈EK

diam(K)d−1νK |FK,σ|m(K),

which concludes the proof thanks to (6). �

Remark 3.1 We could prove that ‖u(·+ ξ)− u‖2
L2(Rd)

≤ C(‖v‖2
L2(Ω)d + N2(D, ν, F )2) |ξ| (|ξ|+

size(D)) by assuming that max{diam(K)/ρL , (K,L) ∈ M×M} remains bounded. This would
give in Theorem 2.2 the strong convergence of um in L2(Ω), but this would also prevent from
considering locally refined mesh, so we prefer not to add this assumption. Notice however that
Theorem 2.3 states a strong convergence in L2(Ω) of the approximate solution u.

Lemma 3.3 [Compactness property] Let us assume Assumption (2). Let (Dm)m≥1 be
admissible discretizations of Ω in the sense of Definition 2.1, such that size(Dm) → 0 as
m → ∞ and (regul(Dm))m≥1 is bounded. Let (um,vm, Fm, νm)m≥1 be such that (um,vm, Fm) ∈
Lνm(Dm), (vm)m≥1 is bounded in L2(Ω)d and N2(Dm, νm, Fm) → 0 as m → ∞ (N2 has been
defined in Lemma 3.1).
Then there exists a subsequence of (Dm)m≥1 (still denoted by (Dm)m≥1) and ū ∈ H1

0 (Ω) such
that the corresponding sequence (um)m≥1 converges to ū weakly in L2(Ω) and strongly in Lq(Ω)
for all q < 2, and such that (vm)m≥1 converges to ∇ū weakly in L2(Ω)d.

Proof.

Notice first that, for all discretization D, for all ν = (νK)K∈M nonnegative numbers and for all
F = (FK,σ)K∈M , σ∈EK

,

N1(D, ν, F ) =
∑

K∈M

∑

σ∈EK

diam(K)d−1νK |FK,σ|m(K)

≤



∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K)




1/2

∑

K∈M

∑

σ∈EK

m(K)




1/2

≤ N2(D, ν, F )regul(D)1/2m(Ω)1/2. (21)
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Hence, if N2(D, ν, F ) and regul(D) are bounded, so is N1(D, ν, F ). Owing to this, the hypotheses,
Lemmas 3.1, 3.2 and Kolmogorov’s compactness theorem allow to extract a subsequence such
that vm → v̄ weakly in L2(Ω)d and um → ū weakly in L2(Ω) and strongly in L1(Ω) (which
implies the strong convergence in Lq(Ω) for all q < 2). We now extend um, ū, vm and v̄ by 0
outside Ω and we prove that v̄ = ∇ū in the distributional sense on R

d. This will conclude that
ū ∈ H1(Rd) and, since ū = 0 outside Ω, that ū ∈ H1

0 (Ω).

Let e ∈ R
d and ϕ ∈ C∞

c (Rd). For simplicity, we drop the index m for Dm, vm and um. We
multiply each equation of (7) by

∫
σ ϕ(x) dγ(x)e ·nK,σ , we sum all these equations and we gather

by control volumes, getting T7 + T8 = T9 with

T7 =
∑

K∈M

vK ·
∑

σ∈EK

∫

σ
ϕ(x) dγ(x) e · nK,σ(xσ − xK),

T8 =
∑

K∈M

∑

σ∈EK

νKm(K)FK,σ

∫

σ
ϕ(x) dγ(x)e · nK,σ

and

T9 = −
∑

K∈M

uK

∑

σ∈EK

∫

σ
ϕ(x) dγ(x) e · nK,σ = −

∫

Ω
u(x)div(ϕ(x)e) dx.

We want to compare T7 with T10 defined by

T10 =
∑

K∈M

vK ·
∑

σ∈EK

1

m(K)

∫

K
ϕ(x) dx m(σ) e · nK,σ(xσ − xK).

Since there exists C6 only depending on ϕ such that, for all σ ∈ EK ,
∣∣∣∣

1

m(σ)

∫

σ
ϕ(x) dγ(x) − 1

m(K)

∫

K
ϕ(x) dx

∣∣∣∣ ≤ C6size(D),

we get that

|T7 − T10| ≤ C6|e|size(D)
∑

K∈M

|vK |
∑

σ∈EK

m(σ)|xσ − xK |.

But m(σ)|xσ − xK | ≤ ωd−1diam(K)d ≤ ωd−1regul(D)
ωd

m(K) and, since card(EK) ≤ regul(D), we
obtain

|T7 − T10| ≤ C6|e|size(D)
ωd−1regul(D)2

ωd
‖v‖L1(Ω)

and thus limsize(D)→0 |T7−T10| = 0. Moreover, thanks to Lemma 6.1, we get T10 =
∫
Ω ϕ(x)v(x) ·

edx and so limsize(D)→0 T10 =
∫
Ω ϕ(x)v̄(x) · edx =

∫
Rd ϕ(x)v̄(x) · edx (v̄ has been extended by

0 outside Ω). This proves that

lim
size(D)→0

T7 =

∫

Rd

ϕ(x)v̄(x) · edx. (22)

Since ϕ is bounded, by (21) we find C7 only depending on ϕ and e such that

|T8| ≤ C7

∑

K∈M

∑

σ∈EK

m(σ)νK |FK,σ|m(K)

≤ C7ωd−1N1(D, ν, F )

≤ C7ωd−1regul(D)1/2m(Ω)1/2N2(D, ν, F )
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and therefore, by the assumptions,
lim

size(D)→0
T8 = 0. (23)

We clearly have

lim
size(D)→0

T9 = −
∫

Ω
ū(x)div(ϕ(x)e) dx = −

∫

Rd

ū(x)div(ϕ(x)e) dx

(recall that ū has been extended by 0 outside Ω). Gathering this limit with (22) and (23) in
T7 + T8 = T9, we obtain

∫

Rd

ϕ(x)v̄(x) · e dx = −
∫

Rd

ū(x)div(ϕ(x)e) dx,

which concludes the proof that v̄ = ∇ū in the distributional sense on R
d. �

4 Study of the mixed finite volume scheme

We first prove an a priori estimate on the solution to the scheme. This estimate shows in
particular that, if f = 0, then F = 0 and v = 0, and thus u = 0 by Lemma 3.1; since
((7),(8),(9),(10)) is square and linear in (u,v, F ), the existence and uniqueness of the solution to
the mixed finite volume scheme (i.e. Theorem 2.1) is an immediate consequence of this lemma.

Lemma 4.1 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω
in the sense of Definition 2.1. Let (νK)K∈M be a family of positive real numbers and (u,v, F )
be a solution of ((7),(8),(9),(10)). Then, for all ν0 > 0 and all β0 ≥ β ≥ 2 − 2d such that
νK ≤ ν0diam(K)β (∀K ∈ M), and for all θ ≥ regul(D), this solution satisfies

‖v‖2
L2(Ω)d +

∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) ≤ C8||f ||2L2(Ω) (24)

where C8 only depends on d, Ω, α0, θ, ν0 and β0.

Proof.

Multiply (10) by uK , sum on the control volumes and gather by edges using (8):

∑

σ∈Eint ,σ=K|L

FK,σ(uL − uK) +
∑

σ∈Eext ,σ∈EK

−FK,σuK =

∫

Ω
f(x)u(x) dx.

Using (7) and (8), and gathering by control volumes, this gives
∫

Ω
f(x)u(x) dx

=
∑

σ∈Eint ,σ=K|L

FK,σvK · (xσ − xK) + FL,σvL · (xσ − xL) +
∑

σ∈Eext ,σ∈EK

FK,σvK · (xσ − xK)

+
∑

σ∈Eint ,σ=K|L

νKm(K)F 2
K,σ + νLm(L)F 2

L,σ +
∑

σ∈Eext ,σ∈EK

νKm(K)F 2
K,σ

=
∑

K∈M

vK ·
∑

σ∈EK

FK,σ(xσ − xK) +
∑

K∈M

∑

σ∈EK

νKm(K)F 2
K,σ.
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Applying (9), we obtain
∫

Ω
v(x) · Λ(x)v(x) dx +

∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) =

∫

Ω
f(x)u(x) dx (25)

≤ ||f ||L2(Ω)||u||L2(Ω).

Using Young’s inequality and Lemma 3.1, we deduce that, for all ε > 0,

α0||v||2L2(Ω)d +
∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) ≤ 1

2ε
||f ||2L2(Ω) + εC2

2 ||v||2L2(Ω)d

+εC2
2

∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K). (26)

Since νK ≤ ν0diam(K)β, we have νKdiam(K)2d−2 ≤ ν0diam(K)β+2d−2 ≤ ν0diam(Ω)β+2d−2 ≤
ν0 sup(1,diam(Ω)β0+2d−2) (recall that β + 2d − 2 ≥ 0). Hence, (26) gives

α0||v||2L2(Ω)d +
∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K) ≤ 1

2ε
||f ||2L2(Ω) + εC2

2 ||v||2L2(Ω)d

+εν0 sup(1,diam(Ω)β0+2d−2)C2
2

∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K).

Taking ε = min( α0

2C2
2

, 1
2ν0 sup(1,diam(Ω)β0+2d−2)C2

2

) concludes the proof of the lemma. �

We now prove the convergence of the approximate solution toward the weak solution of (1).
Proof of Theorem 2.2.

For the simplicity of the notations, we omit the index m as in the proof of Lemma 3.3. We first
note that, thanks to Estimate (24) and since νK = ν0diam(K)β ,

N2(D, ν, F )2 =
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K)

= ν0

∑

K∈M

∑

σ∈EK

diam(K)β+2d−2νKF 2
K,σm(K)

≤ ν0size(D)β+2d−2C9

where C9 does not depend on the discretization D (recall that regul(D) is bounded). Since
β+2d−2 > 0, this last quantity tends to 0, and so does N2(D, ν, F ), as size(D) → 0. Hence, still
using (24), we see that the assumptions of Lemma 3.3 are satisfied; there exists thus ū ∈ H1

0 (Ω)
such that, up to a subsequence and as size(D) → 0, v → ∇ū weakly in L2(Ω)d and u → ū
weakly in L2(Ω) and strongly in Lq(Ω) for q < 2.
We now prove that the limit function ū is the weak solution to (1). Since any subsequence of
(u,v) has a subsequence which converges as above, and since the reasoning we are going to
make proves that any such limit of a subsequence is the (unique) weak solution to (1), this will
conclude the proof, except for the strong convergence of v.

Let ϕ ∈ C∞
c (Ω). We multiply (10) by ϕ(xK) and we sum on K. Gathering by edges thanks to

(8), we get
∑

σ∈Eint,σ=K|L

FK,σ(ϕ(xL) − ϕ(xK)) =
∑

K∈M

∫

K
ϕ(xK)f(x) dx

12



as long as size(D) is small enough (so that ϕ = 0 on the control volumes K such that ∂K∩∂Ω 6=
∅). We set, for σ = K|L,

ϕ(xL) − ϕ(xK) =
1

m(K)

∫

K
∇ϕ(x) dx · (xσ − xK) +

1

m(L)

∫

L
∇ϕ(x) dx · (xL − xσ) + RKL

and we have |RKL| ≤ Cϕ(diam(K)2 +diam(L)2). We then obtain, gathering by control volumes
and using (9) (and the fact that ϕ = 0 on the control volumes on the boundary of Ω),

∫

Ω
ΛDv(x) · ∇ϕ(x) dx =

∫

Ω
f(x)ϕD(x) dx + T11, (27)

where ΛD and ϕD are constant respectively equal to ΛK and ϕ(xK) on each mesh K, and

|T11| ≤ Cϕ

∑

σ∈Eint,σ=K|L

|FK,σ|(diam(K)2 + diam(L)2) ≤ Cϕ

∑

K∈M

∑

σ∈EK

diam(K)2|FK,σ|.

Let us estimate this term. We have

|T11|2 ≤ C2
ϕ



∑

K∈M

∑

σ∈EK

νKF 2
K,σm(K)





∑

K∈M

∑

σ∈EK

diam(K)4

νKm(K)




≤ C10

∑

K∈M

∑

σ∈EK

diam(K)4

νKm(K)2
m(K) (28)

where, according to (24), C10 does not depend on the mesh since regul(D) stays bounded. But

νK = ν0diam(K)β and diam(K)d ≤ regul(D)
ωd

m(K), so that

diam(K)4

νKm(K)2
≤ regul(D)2diam(K)4−β

ω2
dν0diam(K)2d

=
regul(D)2

ω2
dν0

diam(K)4−2d−β .

Since 4 − 2d − β > 0, we deduce from (28) that

|T11|2 ≤ C10
regul(D)2

ω2
dν0

size(D)4−2d−β
∑

K∈M

∑

σ∈EK

m(K) ≤ C10regul(D)3m(Ω)

ω2
dν0

size(D)4−2d−β

and this quantity tends to 0 as size(D) → 0. Hence, we can pass to the limit in (27) to see that
∫

Ω
Λ∇ū(x) · ∇ϕ(x) dx =

∫

Ω
f(x)ϕ(x) dx ,

which proves that ū is the weak solution to (1).

The strong convergence of v to ∇ū is a consequence of (25). From this equation, and defining
N(w)2 =

∫
Ω Λ(x)w(x) · w(x) dx, we have N(v)2 ≤

∫
Ω f(x)u(x) dx and thus

lim sup
size(D)→0

N(v)2 ≤ lim
size(D)→0

∫

Ω
f(x)u(x) dx =

∫

Ω
f(x)ū(x) dx = N(∇ū)2 (29)

(we use the fact that u → ū weakly in L2(Ω) and that ū is the weak solution to (1)). But
N is a norm on L2(Ω)d, equivalent to the usual norm and coming from the scalar product

〈w, z〉 =
∫
Ω

Λ(x)+Λ(x)T

2 w(x) · z(x) dx; since v → ∇ū weakly in L2(Ω)d as size(D) → 0, we
therefore also have N(∇ū) ≤ lim infsize(D)→0 N(v). We conclude with (29) that N(v) → N(∇ū)

as size(D) → 0, and thus that the weak convergence of v to ∇ū in L2(Ω)d is in fact strong. �
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Remark 4.1 As a consequence of (25) and the strong convergence of v to ∇ū, we see that∑
K∈M

∑
σ∈EK

νKF 2
K,σm(K) → 0 as size(D) → 0. This strengthens Lemma 4.1 which only

states that this quantity is bounded.

To conclude this section, we prove the error estimates. Note that these estimates could be
extended, for d ≤ 3, to the case ū ∈ H2(Ω) following some arguments of [16].
Proof of Theorem 2.3.

In this proof, we denote by Ci (for all integer i) various real numbers which can depend on d,
Ω, ū, Λ and θ, but not on size(D). We also denote, for all K ∈ M and σ ∈ EK , ūK = ū(xK),
ūσ = ū(xσ),

F̄K,σ =

∫

σ
Λ(x)∇ū(x) · nK,σ dγ(x),

v̄K =
1

m(K)
Λ−1

K

∑

σ∈EK

F̄K,σ(xσ − xK)

(notice that ΛK is indeed invertible since, from (3), ΛK ≥ α0Id). Thanks to Lemma 6.1, we
have

|v̄K −∇ū(x)| ≤ C11diam(K), ∀x ∈ K , ∀K ∈ M, (30)

which implies
v̄K · (xσ − xK) = ūσ − ūK + RK,σ, ∀K ∈ M, ∀σ ∈ EK ,

with |RK,σ| ≤ C12diam(K)2 for all K ∈ M and σ ∈ EK . Since ū is a classical solution to (1),
we have

−
∑

σ∈EK

F̄K,σ =

∫

K
f(x) dx, ∀K ∈ M.

Denoting, for all K ∈ M and all σ ∈ EK , ûK = uK−ūK , v̂K = vK−v̄K and F̂K,σ = FK,σ−F̄K,σ,
we see that

−
∑

σ∈EK

F̂K,σ = 0, ∀K ∈ M, (31)

F̂K,σ + F̂L,σ = 0, ∀σ = K|L ∈ Eint, (32)

m(K)ΛK v̂K =
∑

σ∈EK

F̂K,σ(xσ − xK), ∀K ∈ M, (33)

v̂K · (xσ − xK) + v̂L · (xL − xσ) + νKm(K)F̂K,σ + νKm(K)F̄K,σ + RK,σ

−νLm(L)F̂L,σ − νLm(L)F̄L,σ − RL,σ = ûL − ûK ,

∀K ∈ M, ∀L ∈ NK , with σ = K|L,

v̂K · (xσ − xK) + νKm(K)F̂K,σ + νKm(K)F̄K,σ + RK,σ = −ûK ,
∀K ∈ M, ∀σ ∈ EK ∩ Eext.

(34)

We then get, multiplying (31) by ûK , (34) by F̂K,σ and using (32), (33),

∑

K∈M

m(K)ΛK v̂K · v̂K +
∑

K∈M

∑

σ∈EK

νKm(K)F̂ 2
K,σ = T12 + T13, (35)
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where
T12 = −

∑

K∈M

∑

σ∈EK

νKm(K)F̄K,σF̂K,σ,

T13 = −
∑

K∈M

∑

σ∈EK

RK,σF̂K,σ.

Using Young’s inequality and the fact that |F̄K,σ| ≤ C13diam(K)d−1, we have

|T12| ≤ 1

2

∑

K∈M

∑

σ∈EK

νKm(K)F̄ 2
K,σ +

1

2

∑

K∈M

∑

σ∈EK

νKm(K)F̂ 2
K,σ

≤ C14size(D)β+2d−2 +
1

2

∑

K∈M

∑

σ∈EK

νKm(K)F̂ 2
K,σ.

Similarly, since |RK,σ| ≤ C12diam(K)2,

|T13| ≤ 1

2

∑

K∈M

∑

σ∈EK

R2
K,σ

νKm(K)
+

1

2

∑

K∈M

∑

σ∈EK

νKm(K)F̂ 2
K,σ

≤ C2
12

∑

K∈M

∑

σ∈EK

diam(K)4

νKm(K)2
m(K) +

1

2

∑

K∈M

∑

σ∈EK

νKm(K)F̂ 2
K,σ

≤ C15size(D)4−2d−β +
1

2

∑

K∈M

∑

σ∈EK

νKm(K)F̂ 2
K,σ.

Gathering these two estimates in (35), the terms involving F̂K,σ in the left-hand side and the
right-hand side compensate and we obtain

α0||v̂||2L2(Ω)d ≤ C16

(
size(D)β+2d−2 + size(D)4−2d−β

)
. (36)

Estimate (11) follows, using the fact that size(D) ≤ 1 and that ||v̄ −∇ū||L∞(Ω)d ≤ C11size(D).

We now set F̃K,σ = F̂K,σ + F̄K,σ +
RK,σ

νKm(K) = FK,σ +
RK,σ

νKm(K) for all K ∈ M and σ ∈ EK , and we

estimate N2(D, ν, F̃ ) the following way:

N2(D, ν, F̃ )2 =
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF̃ 2

K,σm(K)

≤ 2
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
KF 2

K,σm(K)

+2
∑

K∈M

∑

σ∈EK

diam(K)2d−2ν2
Km(K)

C2
12diam(K)4

(νKm(K))2

≤ C17(size(D)β+2d−2 + size(D)2) (37)

(we have used (24)). Since (34) implies that (û, v̂, F̃ ) ∈ Lν(D), Lemma 3.1 gives

‖û‖L2(Ω) ≤ C2

(
‖v̂‖L2(Ω)d + N2(D, ν, F̃ )

)

and (12) follows from (36), (37) and an easy estimate between ūK and the values of ū on K. �
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5 Implementation

We present the practical implementation in the case where Λ(x) is symmetric for a.e. x ∈ Ω,
though it is valid for any Λ (notice that, in the physical problems given in the introduction of
this paper, the diffusion tensor is always symmetric).

5.1 Resolution procedure

The size of System ((7),(8),(9),(10)) is equal to (d + 1)Card(M) + 2Card(Eint) + Card(Eext).
However, it is possible to proceed to an algebraic elimination which leads to a symmetric positive
definite sparse linear system with Card(Eint) unknowns, following the same principles as in the
hybrid resolution of a mixed finite element problem (see for example [23]). Indeed, for all
(u,v, F ) such that (7) and (9) hold, we define (uσ)σ∈E by

vK · (xσ − xK) + νKFK,σm(K) = uσ − uK , ∀K ∈ M, ∀σ ∈ EK .

We thus have uσ = 0 for all σ ∈ Eext. We can then express (v, F ) as a function of (uσ)σ∈E and
of u, since we have

1

m(K)

∑

σ′∈EK

FK,σ′Λ−1
K (xσ′ − xK) · (xσ − xK) + νKFK,σm(K) = uσ − uK ,

∀K ∈ M, ∀σ ∈ EK ,

which is, for all K ∈ M, an invertible linear system with unknown (FK,σ)σ∈EK
, under the form

BK(FK,σ)σ∈EK
= (uσ − uK)σ∈EK

where BK is a symmetric positive definite matrix (thanks to
the condition νK > 0). We can then write

FK,σ =
∑

σ′∈EK

(B−1
K )σσ′(uσ′ − uK), ∀K ∈ M, ∀σ ∈ EK . (38)

We then obtain from (10), denoting bK,σ′ =
∑

σ∈EK
(B−1

K )σσ′ and bK =
∑

σ′∈EK
bK,σ′ , that uK

satisfies the relation

−
∑

σ′∈EK

bK,σ′uσ′ + bKuK =

∫

K
f(x) dx. (39)

We have (bK,σ′)σ′∈EK
= B−1

K (1)σ′∈EK
and therefore we get bK = (1)σ′∈EK

·B−1
K (1)σ′∈EK

> 0 since
B−1

K is symmetric positive definite. Reporting the previous linear relations in (8), we find

∑

σ′∈EK

(
(B−1

K )σσ′ − bK,σbK,σ′

bK

)
uσ′ +

∑

σ′∈EL

(
(B−1

L )σσ′ − bL,σbL,σ′

bL

)
uσ′ =

bK,σ

bK

∫

K
f(x) dx +

bL,σ

bL

∫

L
f(x) dx, ∀σ = K|L ∈ Eint,

(40)

which is a symmetric linear system, whose unknowns are (uσ)σ∈Eint
. Let us show that its matrix

M is positive. We can write, for all family of real numbers (uσ)σ∈Eint
,

(uσ)σ∈Eint
· M (uσ)σ∈Eint

=
∑

K∈M



∑

σ∈EK

∑

σ′∈EK

(B−1
K )σσ′uσuσ′ −

(
∑

σ∈EK
bK,σuσ)2

bK


 .
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Thanks to the fact that B−1
K is symmetric positive definite, we get, using the Cauchy-Schwarz

inequality,

(
(1)σ∈EK

· B−1
K (uσ)σ∈EK

)2 ≤
(
(1)σ∈EK

· B−1
K (1)σ∈EK

) (
(uσ)σ∈EK

· B−1
K (uσ)σ∈EK

)
,

which is exactly 

∑

σ∈EK

bK,σuσ




2

≤ bK

∑

σ∈EK

∑

σ′∈EK

(B−1
K )σσ′uσuσ′ .

In order to show that M is definite, we simply remark that the preceding reasoning shows that
the systems ((7),(8),(9),(10)) and (40) are equivalent. Hence, since ((7),(8),(9),(10)) has a unique
solution, so must (40), which means that M is invertible.

Hence, we can first solve (uσ)σ∈Eint
from (40), and then compute (u, F ) thanks to relations (39)

and (38) and finally v by (9).

5.2 Numerical results

Taking νK = 0 for all K ∈ M, we could prove in the symmetric case, via a minimization
technique, that there exists at least one (u,v, F ) ∈ Lν(D) solution of ((7),(8),(9),(10)). In this
case, (u,v) is unique, but this is no longer true for F in the general case (see however section
6.2). Within such a choice, the proof of convergence of (u,v) to the continuous solution remains
an open problem. Nevertheless, this gives an indication that very small values of (νK)K∈M

can be considered. Hence we take νK = 10−9/m(K) in all the following computations. The
inversion of matrices BK arising in (38) and the solving of System (40) are then realized using
direct methods.

5.2.1 Case of a homogeneous isotropic problem

We consider here the case d = 2, Ω = (0, 1) × (0, 1), Λ = Id and ū(x) = x1(1− x1)x2(1− x2) for
all x = (x1, x2) ∈ Ω.
We first present in Figure 1 two different triangular discretizations Dt1 and Dt2 used for the
computation of an approximate solution for the problem. We also show in Figure 1 the error
eD, defined by

eK =
|uK − ū(xK)|
‖ū‖L∞(Ω)

, ∀K ∈ M,

using discretizations Dt1 and Dt2. Note that these discretizations do not respect the Delaunay
condition on a sub-domain of Ω, and that the 4-point finite volume scheme (see [11]) cannot be
used on these grids. The grids Dt2 and Dt3 (which is not represented here) have been obtained
from Dt1 (containing 400 control volumes) by the respective divisions by 2 and 4 of each edge
(there are 1600 control volumes in Dt2 and 6400 in Dt3). For all these discretizations, the points
xK have been located at the center of gravity of the control volumes. The errors in L2 norm
obtained with these grids are given in Table 1.
We observe that the numerical orders of convergence for ‖u − ū‖L2(Ω) and ‖v−∇ū‖L2(Ω)d both
seem to be near 1, and therefore no super-convergence property can reasonably be expected in
this case.
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grid Dt1 grid Dt2

error on Dt1 error on Dt2

black = 0, white = 2.2 10−2 black = 0, white = 8.9 10−3

Figure 1: Non-Delaunay triangular grids and error eD.
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Grid ‖u − ū‖L2(Ω) ‖v −∇ū‖L2(Ω)d

Dt1 5.1 10−4 1.8 10−2

Dt2 1.9 10−4 9.0 10−3

Dt3 8.2 10−5 4.5 10−3

order of convergence 1.3 1

Table 1: Errors on non-Delaunay triangular grids.

We then present in Figure 2 discretizations Dq1 and Dq2 and error eD using these grids. Such grids
could be obtained using a refinement procedure: for example, in the case of coupled systems, the
grid might have been refined in order to improve the convergence on another equation (thanks
to some a posteriori estimates maybe) and must then be used to solve (1) which is the second
part of the system. The grid Dq2 has been obtained from Dq1 by a uniform division of each
edge by 2, and Dq3 (not represented here) has been obtained from Dq2 in the same way. The
respective errors in L2 norm obtained with these grids are given in Table 2.

Grid ‖u − ū‖L2(Ω) ‖v −∇ū‖L2(Ω)d

Dq1 8.7 10−4 5.8 10−3

Dq2 1.7 10−4 1.3 10−3

Dq3 3.9 10−5 4.0 10−4

order of convergence 2.2 1.8

Table 2: Errors on rectangular locally refined grids.

We then observe that the numerical order convergence is better than 2 for ‖u − ū‖L2(Ω), which
corresponds to a case of a mainly structured grid (there is no significant additional error located
at the internal boundaries between the differently gridded subdomains, see Figure 2).
Finally, in Figure 3, we represent grids D♭ and D♯ and the error eD thus obtained. These meshes
(which have the same number of control volumes) could correspond to the case of moving meshes
(for example, due to a phenomenon of compaction, see [15]). The respective errors in L2 norm
obtained with these grids are given in Table 3.

Grid ‖u − ū‖L2(Ω) ‖v −∇ū‖L2(Ω)d

D♭ 2.0 10−4 6.7 10−4

D♯ 4.6 10−4 1.8 10−3

Table 3: Errors on “compacted” grids.

We observe that the error is mainly connected to the size of the control volumes, and maybe to
some effect of loss of regularity of the mesh.
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grid Dq1 grid Dq2

error on Dq1 error on Dq2

black = 0, white = 2.7 10−2 black = 0, white = 5.3 10−3

Figure 2: Rectangular locally refined grids and error eD.
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grid D♭ grid D♯

error on D♭ error on D♯

black = 0, white = 5.4 10−3 black = 0, white = 1.5 10−2

Figure 3: “Compacted” grids and error eD.
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5.2.2 Case of a heterogeneous anisotropic problem, comparison with mixed finite
element schemes

Let us now give some numerical results in a highly heterogeneous and anisotropic case, inspired
by [20]. With Ω = (0, 1) × (0, 1), let us define x̄ = (−0.1,−0.1) and ε = 10−4, and let us set

Λ(x) =




(x2 − x̄2)
2 + ε(x1 − x̄1)

2 −(1 − ε)(x1 − x̄1)(x2 − x̄2)

−(1 − ε)(x1 − x̄1)(x2 − x̄2) (x1 − x̄1)
2 + ε(x2 − x̄2)

2


 , ∀x ∈ Ω.

The eigenvalues of Λ(x) are equal to λ(x) = ε|x− x̄|2 and λ(x) = |x− x̄|2: the anisotropy ratio is
therefore 1/ε = 104 in the whole domain. Note that, thanks to the choice x̄ = (−0.1,−0.1), we
have infx∈Ω λ(x) = |x̄|2ε = 0.02ε and supx∈Ω λ(x) = |x̂− x̄|2ε = 2.42ε with x̂ = (1, 1). Therefore
λ(x)/λ(y) and λ(x)/λ(y) are in the range [1/121, 121] for all x, y ∈ Ω (note that in [20], these
ratios are in the range (0,+∞) since the author takes x̄ = (0, 0), but then (3) does not hold).
Since the directions of anisotropy are not constant, one cannot solve this problem by a classical
finite volume method on a tilted rectangular mesh. We assume that the solution of Problem (1)
is given by ū(x) = sin(πx1) sin(πx2); in this case, ‖ū‖L2(Ω) = 1/2 and the function f satisfies:

f(x) = π2(1 + ε) sin(πx1) sin(πx2)|x − x̄|2
+π(1 − 3ε) cos(πx1) sin(πx2)(x1 − x̄1)
+π(1 − 3ε) sin(πx1) cos(πx2)(x2 − x̄2)
+2π2(1 − ε) cos(πx1) cos(πx2)(x1 − x̄1)(x2 − x̄2), ∀x ∈ Ω.

We then compare on this problem the numerical solution given by the mixed finite volume
scheme (denoted by MFV below) with the one obtained using the low degree mixed finite element
scheme (denoted by MFE below) in the case of triangles or rectangles. We compute the solutions
with both schemes on the following grids: Dt4, including 5600 acute triangles, Dt5, including
4×5600 = 22400 acute triangles, Dt6, including 16×5600 = 89600 acute triangles, Dq4, including
1600 rectangles (in fact, squares), Dq5, including 4 × 1600 = 6400 rectangles, Dq6, including
25 × 1600 = 40000 rectangles. For the triangular grids Dt4, Dt5 and Dt6, the points xK have
been located at the circumcenter of the triangles.

Remark 5.1 Choosing for xK the circumcenter of the triangle instead of the center of gravity
leads to an error about ten percent lower on the grids Dt4, Dt5 and Dt6.

For the rectangular grids, the points xK have been located at the center of gravity of the
control volumes. We provide in Table 4 the error ‖u − ū‖L2(Ω), as well as the minimum value
umin = minK∈M uK and the maximum value umax = maxK∈M uK of the approximate solution
(note that the exact solution ū varies between 0 at the edges of Ω and 1 at its center), using
both schemes.
These results show a surprisingly bad performance for the MFE and MFV schemes on triangular
grids (this was pointed out for the MFE scheme in [20]). An order of convergence close to 2
is nevertheless observed for the L2(Ω) norm, with a very high multiplicative constant. But
this similarity between both schemes does no longer hold on the other grids: on the regular
rectangular grids (on which the MFE solution can be computed using the classical RT basis),
the MFV method provides accurate results where the MFE scheme is far from the exact solution.
Moreover, in the case of the MFV scheme, the bounds on the approximate solution are close to
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Grid
MFE

‖u − ū‖L2(Ω)

MFE
umin

MFE
umax

MFV
‖u − ū‖L2(Ω)

MFV
umin

MFV
umax

Dt4 1.53 -1.32 6.35 1.20 -2.46 4.68
Dt5 0.397 -0.344 2.20 0.315 -0.633 1.99
Dt6 0.101 -0.0867 1.20 0.0807 -0.163 1.25

order of
convergence 1.96 — — 1.95 — —

Dq4 0.795 -1.03 2.62 0.000912 0.000566 0.997
Dq5 0.200 -0.259 1.38 0.000162 0.000141 0.999
Dq6 0.0320 -0.0415 1.06 0.0000202 0.0000229 1.00

order of
convergence 2.3 — — 2.75 — —

Table 4: Comparison between the mixed finite element and mixed finite volume schemes on
triangular and rectangular grids for Le Potier’s test case.

MFE Dt4 MFE Dq4 MFE Dq6

MFV Dt4 MFV Dq4 MFV Dq6

Figure 4: Solutions of mixed finite element and mixed finite volume schemes for Le Potier’s test
case (black = umin, red = umax).
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MFV Dv MFV Dq1 MFV D♯

Figure 5: Solutions of the mixed finite volume scheme for Le Potier’s test case on irregular grids
(black = umin, red = umax).

that of the exact solution. These results are confirmed by Figure 4, where some of the numerical
solutions considered are plotted.
We give in Table 5 the values ‖u − ū‖L2(Ω), umin and umax in the case where the MFV scheme
is used on three irregular grids: the grid Dv which is a Voronöı tessellation with 105 control
volumes, the grid Dq1, already considered above, including 16 + 144 + 49 + 25 = 234 rectangles
(in fact again, squares) and the grid D♯ with 400 quadrangles, also considered above.

Grid
MFV

‖u − ū‖L2(Ω)

MFV
umin

MFV
umax

Dv 0.0929 0.0126 0.980
Dq1 0.0232 0.00259 1.00
D♯ 0.0217 -0.00890 0.999

Table 5: Errors and minima/maxima values of the MFV solution for Le Potier’s test case on
irregular grids.

These results show an acceptable convergence, confirmed by Figure 5 in which the corresponding
approximate solutions are drawn.

6 Appendix

6.1 Technical lemmas

Lemma 6.1 justifies the link (9) between the approximate gradient and the approximate fluxes.

Lemma 6.1 Let K be a non empty open convex polygonal set in R
d. For σ ∈ EK (the edges of

K, in the sense given in Definition 2.1), we let xσ be the center of gravity of σ; we also denote
nK,σ the unit normal to σ outward to K. Then, for all vector e ∈ R

d and for all point xK ∈ R
d,

we have
m(K)e =

∑

σ∈EK

m(σ)e · nK,σ(xσ − xK).
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Proof.

We denote by a superscript i the i-th coordinate of vectors and points in R
d. By Stokes formula,

we have

m(K)ei =

∫

K
div((xi − xi

K)e) dx =
∑

σ∈EK

∫

σ
(xi − xi

K)e · nK,σ dγ(x)

and the proof is concluded since, by definition of the center of gravity,
∫
σ(xi − xi

K) dγ(x) =∫
σ xi dγ(x) − m(σ)xi

K = m(σ)xi
σ − m(σ)xi

K . �

The following lemma is quite similar to [9, Lemma 7.2], but since the proof of Lemma 6.3 uses
this result with slightly more general hypotheses than in [9], we include the full proof of Lemma
6.2 for sake of completeness.

Lemma 6.2 Let K be a non empty open polygonal convex set in R
d. Let E be an affine hyper-

plane of R
d and σ be a non empty open subset of E contained in ∂K ∩E. We assume that there

exists α > 0 and pK ∈ K such that B(pK , αdiam(K)) ⊂ K. We denote △K,σ the convex hull
of σ and pK . Then there exists C18 only depending on d and α such that, for all v ∈ H1(K),

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ
v(ξ) dγ(ξ)

)2

≤ C18dist(pK , E)2

m(△K,σ)

∫

△K,σ

|∇v(x)|2 dx.

Proof.

The regular functions being dense in H1(K) (since K is convex), it is sufficient to prove the
lemma for v ∈ C1(Rd). By translation and rotation, we can assume that E = {0} × R

d−1,
σ = {0} × σ̃ with σ̃ ⊂ R

d−1 and that pK = (p1, 0) with p1 = dist(pK , E).
Notice that, since K is convex and ∂K ∩E contains a non empty open subset of E, K is on one
side of E. In particular, B(pK , αdiam(K)) is also on one side of E (it is contained in K) and

p1 = dist(pK , E) ≥ αdiam(K). (41)

For a ∈ [0, p1], we denote σ̃a = {z ∈ R
d−1 | (a, z) ∈ △K,σ}. By definition, (a, z) ∈ △K,σ if and

only if there exists t ∈ [0, 1] and y ∈ σ̃ such that t(p1, 0)+(1− t)(0, y) = (a, z); this is equivalent

to t = a
p1

and z = (1 − t)y =
(
1 − a

p1

)
y. Thus, σ̃a =

(
1 − a

p1

)
σ̃.

For all y ∈ σ̃ and all a ∈ [0, p1], we have

v(0, y) − v

(
a,

(
1 − a

p1

)
y

)
=

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dt.

Integrating on y ∈ σ̃ and using the change of variable z =
(
1 − a

p1

)
y, we find

∫

σ
v(ξ) dγ(ξ) − 1

(
1 − a

p1

)d−1

∫

eσa

v(a, z) dz =

∫

eσ

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dtdy.

Multiplying by
(
1 − a

p1

)d−1
and integrating on a ∈ [0, p1], we obtain

∫

σ
v(ξ) dγ(ξ)

∫ p1

0

(
1 − a

p1

)d−1

da −
∫ p1

0

∫

eσa

v(a, z) dzda

=

∫ p1

0

(
1 − a

p1

)d−1 ∫

eσ

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dtdyda.
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But
∫ p1

0

(
1 − a

p1

)d−1
da = p1

d and m(△K,σ) = m(σ)p1

d ; therefore, dividing by m(△K,σ), we find

1

m(σ)

∫

σ
v(ξ) dγ(ξ) − 1

m(△K,σ)

∫

△K,σ

v(x) dx

=
1

m(△K,σ)

∫ p1

0

(
1 − a

p1

)d−1 ∫

eσ

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dtdyda. (42)

For all y ∈ σ̃, we have |y| = |(0, y)| ≤ |(0, y) − pK | + |pK | ≤ diam(K) + p1 (because (0, y) and
pK belong to K). By (41), this implies |y| ≤ ( 1

α + 1)p1 and thus
∣∣∣∣∣

∫ p1

0

(
1 − a

p1

)d−1 ∫

eσ

∫ 1

0
∇v

(
ta,

(
1 − t

a

p1

)
y

)
·
(
−a,

a

p1
y

)
dtdyda

∣∣∣∣∣

≤ C19

∫ p1

0

(
1 − a

p1

)d−1 ∫

eσ

∫ 1

0

∣∣∣∣∇v

(
ta,

(
1 − t

a

p1

)
y

)∣∣∣∣ adtdyda

≤ C19

∫ p1

0

∫

eσ

∫ 1

0

∣∣∣∣∇v

(
ta,

(
1 − t

a

p1

)
y

)∣∣∣∣ a
(

1 − ta

p1

)d−1

dtdyda (43)

where C19 only depends on α (we have used the obvious fact that, for t ∈]0, 1[, 1− a
p1

≤ 1− ta
p1

).
But, for all a ∈]0, p1[, the change of variable

ϕa : (t, y) ∈]0, 1[×σ̃ → z =

(
ta,

(
1 − t

a

p1

)
y

)
∈ ϕa(]0, 1[×σ̃)

has Jacobian determinant equal to a
(
1 − ta

p1

)d−1
and therefore

∫

eσ

∫ 1

0

∣∣∣∣∇v

(
ta,

(
1 − t

a

p1

)
y

)∣∣∣∣ a
(

1 − ta

p1

)d−1

dtdy =

∫

ϕa(]0,1[×eσ)
|∇v(z)|dz.

Moreover, (ta, (1− t a
p1

)y) = ta
p1

(p1, 0)+(1− ta
p1

)(0, y) with ta
p1

∈]0, 1[; hence, ϕa(]0, 1[×σ̃) ⊂ △K,σ

and we obtain
∫ p1

0

∫

eσ

∫ 1

0

∣∣∣∣∇v

(
ta,

(
1 − t

a

p1

)
y

)∣∣∣∣ a
(

1 − ta

p1

)d−1

dtdyda ≤ p1

∫

△K,σ

|∇v(z)|dz.

We introduce this inequality in (43) and use the resulting estimate in (42) to obtain
∣∣∣∣∣

1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ
v(ξ) dγ(ξ)

∣∣∣∣∣ ≤
C19p1

m(△K,σ)

∫

△K,σ

|∇v(x)|dx

and the conclusion follows from the Cauchy-Schwarz inequality, recalling that p1 = dist(pK , E).
�

Lemma 6.3 Let K be a non empty open polygonal convex set in R
d such that, for some α > 0,

there exists a ball of radius αdiam(K) contained in K. Let E be an affine hyperplane of R
d and

σ be a non empty open subset of E contained in ∂K ∩ E. Then there exists C20 only depending
on d and α such that, for all v ∈ H1(K),

(
1

m(K)

∫

K
v(x) dx − 1

m(σ)

∫

σ
v(x) dγ(x)

)2

≤ C20diam(K)

m(σ)

∫

K
|∇v(x)|2 dx.
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Proof.

Let B(pK , αdiam(K)) ⊂ K and △K,σ be the convex hull of pK and σ. By Lemma 6.2, we have

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ
v(x) dγ(x)

)2

≤ C18dist(pK , E)2

m(△K,σ)

∫

K
|∇v(x)|2 dx.

But m(△K,σ) = m(σ)dist(pK ,E)
d and dist(pK , E) ≤ dist(pK , σ) ≤ diam(K). Therefore,

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ
v(x) dγ(x)

)2

≤ C18ddiam(K)

m(σ)

∫

K
|∇v(x)|2 dx. (44)

Using Lemma 7.1 in [9], we get C21 only depending on d such that

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(K)

∫

K
v(x) dx

)2

≤ C21diam(K)d+2

m(△K,σ)m(K)

∫

K
|∇v(x)|2 dx,

which implies

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(K)

∫

K
v(x) dx

)2

≤ C21ddiam(K)d+2

m(σ)dist(pK , E)m(K)

∫

K
|∇v(x)|2 dx.

But, as in the proof of Lemma 6.2, we have dist(pK , E) ≥ αdiam(K) (see (41)). Since m(K) ≥
ωdα

ddiam(K)d, we deduce that

(
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(K)

∫

K
v(x) dx

)2

≤ C21ddiam(K)

ωdαd+1m(σ)

∫

K
|∇v(x)|2 dx. (45)

The lemma follows from (44) and (45). �

6.2 Simplicial meshes

For some meshes, it is possible to completely drop the penalization on the fluxes, that is to say
to take νK = 0 in (7). This is for example the case if each control volume K of the mesh is
a simplex, i.e. if K is the interior of the convex hull of d + 1 points of R

d such that no affine
hyperplane of R

d contains all of them and if Card(EK) = d + 1. In this situation, the following
lemma is the key ingredient to the study of the mixed finite volume scheme with νK = 0.

Lemma 6.4 Let us assume Assumptions (2)-(4). Let D be an admissible discretization of Ω in
the sense of Definition 2.1, such that regul(D) ≤ θ for some θ > 0 and M is made of simplicial
control volumes. Let v ∈ Hd

D and a family of real numbers (FK,σ)K∈M , σ∈EK
be given such that

(9) and (10) hold. Then there exists C22 only depending on d, Ω, Λ and θ such that

∑

K∈M

∑

σ∈EK

diam(K)2−dF 2
K,σ ≤ C22(||f ||2L2(Ω) + ||v||2L2(Ω)d). (46)
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Proof.

For K ∈ M, let AK be the (d + 1)× (d + 1) matrix whose columns are (1,xσ − xK)Tσ∈EK
(since

K is simplicial, it has d + 1 edges and AK is indeed a square matrix). The equations (9)-(10)
can be written AKFK = EK , where FK = (FK,σ)σ∈EK

and

EK =

(
−
∫
K f(x) dx

m(K)ΛKvK

)
.

We now want to estimate ||A−1
K || (the matrix norm being induced by the euclidean norm on

R
d+1) and, in order to achieve this, we divide the rest of the proof in several steps.

Step 1 : this step is devoted to allow the assumption diam(K) = 1 in Steps 2 and 3.
Let K0 = diam(K)−1K. Then xK,0 = diam(K)−1xK ∈ K0 and the barycenters of the edges of
K0 are xσ,0 = diam(K)−1xσ. Notice also that, if ρK,0 is the supremum of the radius of the balls
included in K0, then

1

ρK,0
=

diam(K0)

ρK,0
=

diam(K)

ρK
≤ regul(D)1/d ≤ θ1/d. (47)

Let AK,0 be the (d + 1)× (d + 1) matrix corresponding to K0, that is to say whose columns are
(1,xσ,0 − xK,0)

T
σ∈EK

= (1,diam(K)−1(xσ − xK))Tσ∈EK
. Since

AK =




1 0 · · · 0

0 diam(K)
. . .

...
...

. . .
. . . 0

0 · · · 0 diam(K)




AK,0,

we have ||A−1
K || ≤ sup(1,diam(K)−1)||A−1

K,0||. Hence, an estimate on ||A−1
K,0|| gives an estimate

on ||A−1
K ||.

Step 2 : estimate on AK,0.
By (47), K0 contains a closed ball of radius 1

2θ−1/d. Up to a translation (which does not change
the vectors xσ,0−xK,0, and hence does not change AK,0), we can assume that this ball is centered
at 0. Since diam(K0) = 1, we have then B(0, 1

2θ−1/d) ⊂ K0 ⊂ B(0, 1).

Let Zθ be the set of couples (L,xL), where L is a simplex such that B(0, 1
2θ−1/d) ⊂ L ⊂ B(0, 1)

and xL ∈ L. Each simplex is defined by d + 1 vertices in R
d so Zθ can be considered as a

subset of P = (Rd)d+1/Sd+1 × R
d, where Sd+1 is the symmetric group acting on (Rd)d+1 by

permuting the vectors. As such, Zθ is compact in P : it is straightforward if we express the
condition “the adherence of a simplex contains B(0, 1

2θ−1/d)” as “any point of B(0, 1
2θ−1/d) is a

convex combination of the vertices of the simplex”, which is a closed condition with respect to
the vertices of the simplex.
For (L,xL) ∈ Zθ, let M(L,xL) be the set of (d + 1) × (d + 1) matrices whose columns are, up
to permutations, (1,xσ − xL)Tσ∈EL

(EL being the set of edges of L and xσ being the barycenter
of σ). M(L,xL) can be considered as an element of Md+1(R)/Sd+1 (Sd+1 acting by permuting
the columns) and the application (L,xL) ∈ Zθ → M(L,xL) ∈ Md+1(R)/Sd+1 is continuous: to
see this, just recall that the barycenter of an edge σ ∈ EL is xσ = 1

d

∑d
i=1 xi, where xi are the

vertices of σ (i.e. all vertices but one of L).
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If (L,xL) ∈ Zθ, all the matrices of M(L,xL) are invertible. Indeed, assume that such a matrix
has a non-trivial element (λ1, . . . , λd+1) in its kernel; this leads (denoting (σ1, . . . , σd+1) the
edges of L) to

∑d+1
i=1 λi = 0 and

∑d+1
i=1 λi(xσi

− xL) =
∑d+1

i=1 λixσi
= 0. Assuming λd+1 6= 0,

we then can write xσd+1
=
∑d

i=1 µixσi
with

∑d
i=1 µi = 1 (since µi = −λi/λd+1). This means

that xσd+1
is in the affine hyperplane H generated by the other barycenters of edges. Note that

H is parallel to σd+1 (this is a straightforward consequence of Thales’ theorem at the vertex
which does not belong to σd+1, and of the fact that the barycenters (xσ1

, . . . ,xσd
) of the edges

are in fact the barycenters of the vertices of the corresponding edge). Therefore H contains the
whole edge σd+1, because it contains xσd+1

∈ σd+1. Let a be the vertex of L which does not
belong to σd+1; a belongs to σ1 and we denote (b1, . . . ,bd−1) the other vertices of σ1 (which also
belong to σd+1 ⊂ H). We have xσ1

= 1
d (a +

∑d−1
i=1 bi), and therefore a = dxσ1

−∑d−1
i=1 bi; but

d −∑d−1
i=1 1 = 1 and thus a belongs to the affine hyperplane generated by (xσ1

,b1, . . . ,bd−1).
Since all these points belong to H, we have a ∈ H and, since σd+1 ⊂ H, all the vertices of L in
fact belong to H; L is thus contained in an hyperplane, which is a contradiction with the fact
that it contains a non-trivial ball. Thus, for (L,xL) ∈ Zθ, M(L,xL) is in fact an element of
Gld+1(R)/Sd+1.
The inversion inv : Gld+1(R) → Gld+1(R) is continuous; hence, ||inv(·)|| : Gld+1(R) → R is also
continuous. Permuting the columns of a matrix comes down to permuting the lines of its inverse,
which does not change the norm; therefore ||inv(·)|| : Gld+1(R)/Sd+1 → R is well defined and
also continuous.
We can now conclude this step. The application Zθ → Gld+1(R)/Sd+1 → R defined by (L,xL) →
M(L,xL) → ||inv(M(L,xL))|| is continuous. Since Zθ is compact, this application is bounded
by some C23 only depending on d and θ. As (K0,xK,0) ∈ Zθ, this shows that ||A−1

K,0|| ≤ C23.

Step 3 : conclusion.
Using the preceding steps, we find ||FK || ≤ ||A−1

K || ||EK || ≤ C23 sup(1,diam(K)−1)||EK ||. Hence,

∑

K∈M

diam(K)2−d||FK ||2 ≤ C2
23 sup(diam(Ω)2, 1)

∑

K∈M

diam(K)−d||EK ||2.

But ||EK ||2 ≤ m(K)
∫
K |f(x)|2 dx + C24m(K)2|vK |2 with C24 only depending on Λ. Since

m(K) ≤ ωddiam(K)d, this concludes the proof of (46). �

Let us now consider ((7),(8),(9),(10)) with νK = 0; notice that the results of Section 3 still hold
in this situation.
Equation (25) gives, if νK = 0, an estimate on v in L2(Ω)d which, thanks to Lemma 6.4,
translates into an estimate on the fluxes (this estimate replaces the one obtained before thanks to
the penalization), provided that the control volumes are simplicial. This gives, as in the penalized
case, existence and uniqueness of a solution to the non-penalized mixed finite volume scheme
(i.e. ((7),(8),(9),(10)) with νK = 0). From the estimate on the fluxes, it is straightforward to see
that the term T11 in the proof of Theorem 2.2 still tends to 0 as size(D) → 0. Hence, in the case
of simplicial control volumes, the solution to the mixed finite volume scheme ((7),(8),(9),(10))
with νK = 0 still converges toward the weak solution of (1).
It is also quite easy to establish, in this situation, error estimates in the case of smooth data Λ
and ū; these estimates are in fact quite better than the ones of Theorem 2.3: we can prove that

‖v −∇ū‖L2(Ω)d ≤ C25size(D) and ‖u − ū‖L2(Ω) ≤ C25size(D).
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To obtain such rates of convergence, one must simply bound T13 in (35) by using Lemma 6.4
with F = F̂ , v = v̂ and f = 0.

In the particular case where D is made of simplicial control volumes, and, for all K ∈ M,
νK = 0 and xK is the center of gravity of K, then the solution (u,v, F ) of ((7),(8),(9),(10)) is
also the solution of the following generalization of the expanded mixed finite element scheme
[7]: find (u,v,w =

∑
K∈M

∑
σ∈EK

FK,σWK,σ) ∈ HD ×Hd
D ×RT 0 (RT 0 denotes here the lowest

degree Raviart-Thomas basis (Wσ)σ∈E on the mesh M, such that, choosing for an internal edge
σ = K|L the orientation from K to L, then Wσ restricted to K is WK,σ and Wσ restricted to
L is −WL,σ — note that w ∈ RT 0 thanks to (8)) such that

∫

Ω
Λ(x)v(x) · v′(x) dx =

∫

Ω
w(x) · v′(x) dx, ∀v′ ∈ Hd

D,

which gives (9),

∫

Ω
v(x) · w′(x) dx +

∫

Ω
u(x)divw′(x) dx = 0,∀w′ ∈ RT 0,

which gives (7) with νK = 0, and

−
∫

Ω
u′(x)divw(x) dx =

∫

Ω
u′(x)f(x) dx, ∀u′ ∈ HD,

which gives (10). This formulation (an expanded version of [8]) differs from that of [7], in which
the restrictions of v and w on each control volume must belong to the same space. The proof
of convergence of the mixed finite volume scheme therefore gives at the same time that of this
particular version of the expanded mixed finite element scheme.
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