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ABSTRACT. We prove the convergence of a finite volume scheme for convection-

diffusion equations with right-hand sides in H
−1; the convection terms we consider

are non-regular and can entail the loss of coercivity of the operator associated to the

equation.
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1. Introduction

Let Ω be a polygonal open subset of Rd (d = 2 or 3). The problem under
study is

{

−∆u+ div(vu) = L in Ω,
u = 0 on ∂Ω

[1]

with v ∈ (Lp(Ω))d for some p > d and L ∈ H−1(Ω). We consider solutions to
[1] in the classical weak sense (for which existence and uniqueness have been
proved in [DRO 01]).

There are numerous works about the discretization of convection-diffusion
problems with finite volumes methods, either on structured or unstructured
meshes (see e.g. [GAL 00], [EYM 00]). We intend here to define (and of course
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prove the convergence of) a finite volume discretization of [1], using the same
grids as in [EYM 00] (see next section).

Our work contains two main originalities. First, we consider right-hand
sides with little regularity; previous papers take in general this right-hand
side in L2(Ω), but H−1(Ω) is, both mathematically and physically speaking, a
natural space for L. The second originality is in the convection term of [1]: v
has little regularity too, but, above all, we impose no hypothesis on this datum
(such as “div(v) ≥ 0”) to ensure that the problem is coercitive; to handle this
last point, we adapt to the discrete setting the techniques of [DRO 01].

2. Definition of the scheme and main result

The idea of finite volumes methods is to integrate [1] on the elements of a
discretization mesh of Ω and to find suitable approximations of the quantities
appearing in this integration. Let us first give the geometrical properties we
impose on the discretization mesh.

Definition 2.1 An admissible mesh T of Ω is a finite family of polygonal open
convex subsets of Ω (the “control volumes”), together with a finite family E of
disjoint subsets of Ω contained in affine hyperplanes (the “edges”) and a family
P = (xK)K∈T of points in Ω such that

i) Ω =
⋃

K∈T K,

ii) each σ ∈ E is a non-empty open subset of ∂K for some K ∈ T ,

iii) denoting EK = {σ ∈ E | σ ⊂ ∂K}, we have ∂K = ∪σ∈EK
σ for all K ∈ T ,

iv) for all K 6= L in T , either the (d − 1)-dimensional measure of K ∩ L is
null, or K ∩ L = σ for some σ ∈ E, that we denote then σ = K|L,

v) for all K ∈ T , xK ∈ K,

vi) for all σ = K|L ∈ E, the line (xK , xL) intersects and is orthogonal to σ,

vii) for all σ ∈ E, σ ⊂ ∂Ω ∩ ∂K, the line which is orthogonal to σ and going
through xK intersects σ.

We define the size of the mesh by size(T ) = supK∈T diam(K). nK,σ is the
unit normal to σ ∈ EK outward to K. We let Eint = {σ ∈ E | σ 6⊂ ∂Ω}
and Eext = E\Eint. If σ ∈ E, m(σ) is the (d − 1)-dimensional measure of σ; if
σ = K|L ∈ Eint, dσ is the distance between the points (xK , xL) and dK,σ denotes
the distance between xK and σ; if σ ∈ Eext ∩ EK , dσ = dK,σ is the distance

between xK and σ. The transmissibility through an edge σ is τσ = m(σ)
dσ

. The
following quantity measures the “regularity” of the mesh:

reg(T ) = inf
K∈T

(

inf
σ∈EK

dK,σ

dσ

)

.
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Since L ∈ H−1(Ω), we can write L = f + div(G) with f ∈ L2(Ω) and
G ∈ (L2(Ω))d (in models of physical problems, L naturally appears in this
form, see e.g. [FIA 94] — this is why we have kept f which, theoritically,
can be taken equal to 0). Formally integrating L on a control volume K and
using Stokes’ formula, we find

∫

K f(x) dx −
∑

σ∈EK

∫

σ G(x) · nK,σ dγ(x) (γ is
the (d − 1)-dimensional measure on ∂K). The first term is not a problem to
define since f ∈ L2(Ω), but G is not regular enough for the second term to
make sense; so we must introduce a suitable approximation of G on σ.

Let T be an admissible mesh; if K ∈ T and σ ∈ EK , the “half-diamond”
△K,σ is defined by △K,σ = {txK + (1− t)x , t ∈ [0, 1] , x ∈ σ}. Denoting

vK,σ =

(

1

meas(△K,σ)

∫

△K,σ

v(x) dx

)

· nK,σ , fK =
1

meas(K)

∫

K

f(x) dx

and GK,σ =

(

1

meas(△K,σ)

∫

△K,σ

G(x) dx

)

· nK,σ ,

a finite volume dicretization of [1] is written

∀K ∈ T ,
∑

σ∈EK

FK,σ +m(σ)vK,σuK,σ,+ = meas(K)fK +
∑

σ∈EK

m(σ)GK,σ , [2]

∀K ∈ T , ∀σ ∈ EK , FK,σ = −m(σ)
dK,σ

(uσ − uK) , [3]

∀σ = K|L ∈ Eint , FK,σ +m(σ)vK,σuK,σ,+ −m(σ)GK,σ

= −(FL,σ +m(σ)vL,σuL,σ,+ −m(σ)GL,σ) ,

∀σ ∈ Eext , uσ = 0 ,

[4]

∀σ = K|L ∈ Eint , uK,σ,+ = uK if vK,σ ≥ 0 , uK,σ,+ = uL otherwise,

∀σ ∈ Eext ∩ EK , uK,σ,+ = uK if vK,σ ≥ 0 , uK,σ,+ = 0 otherwise.
[5]

Using [4] (conservativity of the fluxes) to eliminate the unknowns (uσ)σ∈E ,
we see that [2]—[5] is a linear square system in (uK)K∈T ∈ R

Card(T ) (we
identify the set R

Card(T ) to the set X(T ) of functions defined a.e. on Ω and
constant on each control volume K ∈ T ).

Our main result is the following.

Theorem 2.1 If T is an admissible mesh, then there exists a unique solution
to [2]—[5]. Moreover, let α > 0; denoting by uT ∈ X(T ) the solution to
[2]—[5], uT converges, as size(T ) → 0 with reg(T ) ≥ α, and in Lq(Ω) for all
q < 2d

d−2 , to the unique weak solution of [1].

Due to lack of room, we only give, in the following proofs, the main argu-
ments; for more details, we refer the reader to [DRO 02].
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3. A Priori Estimates

Let us first prove some a priori estimates on the solutions to [2]—[5], which
will entail existence and uniqueness of a solution to this system as well as the
convergence result, thanks to some compactness arguments.

These estimates are obtained in the discrete H1-norm on X(T ), defined for

vT ∈ X(T ) by ||vT ||1,T =
(
∑

σ∈E τσ(Dσv)
2
)1/2

, where DσvT = |vK − vL| if
σ = K|L ∈ Eint and DσvT = |vK | if σ ∈ Eext∩EK . Let us notice two important
properties of this norm (see [EYM 00]):

– Poincaré’s inequality: on X(T ), we have || · ||L2(Ω) ≤ diam(Ω)|| · ||1,T .
– Sobolev’s inequality: if 0 < ζ ≤ reg(T ), there exists C only depending on

ζ such that, on X(T ) and for all q < 2d
d−2 , we have || · ||Lq(Ω) ≤ Cq|| · ||1,T .

Proposition 3.1 (Estimate on ln(1 + |uT |)) There exists C > 0 such that, if
T is an admissible mesh and uT = (uK)K∈T is a solution to [2]—[5], then

|| ln(1 + |uT |)||1,T ≤ C
(

||f ||L1(Ω) + ||G||(L2(Ω))d + ||v||(L2(Ω))d
)

.

Proof. Let ϕ(s) =
∫ s

0
dt

(1+|t|)2 . We multiply [2] by ϕ(uK) and sum on the

meshes K ∈ T . Gathering by edges, using the Cauchy-Schwarz inequality and
since ϕ is bounded by 1, we find

∑

σ∈E

τσ(uK − uL)(ϕ(uK)− ϕ(uL)) [6]

≤ ||f ||L1(Ω) + C||G||(L2(Ω))d

(

∑

σ∈E

τσ(ϕ(uK)− ϕ(uL))
2

)1/2

[7]

+
∑

σ∈E

m(σ)

(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)

(ϕ(uK)− ϕ(uL)) [8]

(with the notations — which we also use in the sequel of this paper — σ = K|L
if σ ∈ Eint and uL = uL,σ,+ = vL,σ = dL,σ = GL,σ = 0 if σ ∈ Eext ∩ EK).

ϕ being nondecreasing and Lipschitz-continuous with Lipschitz constant 1,
we have (ϕ(uK)−ϕ(uL))

2 ≤ (uK−uL)(ϕ(uK)−ϕ(uL)) and, thanks to Young’s
inequality, the second term of [7] is bounded by C2||G||2(L2(Ω))d/2 plus one half

of [6].

To estimate [8], we first notice that all σ ∈ Eext in this sum give non-
positive terms. Studying then, for σ = K|L ∈ Eint, each case (according
to the signs of vK,σ and vL,σ), we notice that the contribution of σ to this

sum is bounded from above by 0 if uKuL ≤ 0 and by m(σ)(|dL,σ

dσ
vL,σ| +
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|dK,σ

dσ
vK,σ|) inf(|uK |, |uL|)|ϕ(uK) − ϕ(uL)| otherwise. Thus, by denoting A =

{σ = K|L ∈ Eint | uKuL > 0}, [8] is bounded from above by

C||v||(L2(Ω))d

(

∑

σ∈A

τσ inf(|uK |, |uL|)2(ϕ(uK)− ϕ(uL))
2

)1/2

.

But it is easy to see that, if uK and uL have the same sign, then

inf(|uK |, |uL|)2(ϕ(uK)− ϕ(uL))
2 ≤ (uK − uL)(ϕ(uK)− ϕ(uL)).

Thus, thanks to Young’s inequality, [6] is bounded by C′(||f ||1+||G||2+||v||2)2.
By construction of ϕ we have (ln(1+|uK |)−ln(1+|uL|))2 ≤ (uK−uL)(ϕ(uK)−
ϕ(uL)) and this concludes the proof.

Proposition 3.2 (Estimate on ||uT ||1,T ). Let T be an admissible mesh and
0 < ζ ≤ reg(T ). There exists C > 0 only depending on (Ω,v, ζ) such that, if
uT is a solution to [2]—[5], then ||uT ||1,T ≤ C(||f ||L2(Ω) + ||G||(L2(Ω))d).

Proof. [2]—[5] being a linear system, it is sufficient to bound uT in the case
||f ||L2(Ω) + || |G| ||L2(Ω) ≤ 1. We denote, for k > 0, Tk(s) = max(−k,min(s, k))
and Sk(s) = s− Tk(s).

Let us first estimate Sk(uT ) for k large enough. We have (Sk(uK) −
Sk(uL))

2 ≤ (uK − uL)(Sk(uK) − Sk(uL)); thus, multiplying [2] by Sk(uT ),
gathering by edges and using the Cauchy-Schwarz inequality, we find

||Sk(uT )||21,T ≤ ||f ||L2(Ω)||Sk(uT )||L2(Ω) + C||G||(L2(Ω))d ||Sk(uT )||1,T [9]

+
∑

σ∈E

m(σ)

(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)

(Sk(uK)− Sk(uL)). [10]

Thanks again to the Cauchy-Schwarz inequality, [10] is bounded by

(

∑

σ∈E

m(σ)dσ

(

dL,σ

dσ
vL,σuL,σ,+ − dK,σ

dσ
vK,σuK,σ,+

)2
)1/2

||Sk(uT )||1,T . [11]

Gathering by control volumes and using Hölder’s inequality (with p/2 > 1 and
p/(p− 2)), we notice that the first factor of [11] is bounded by

C0||v||Lp(Ω)

(

∑

K∈T

∑

σ∈EK

m(σ)dK,σ|uK,σ,+|
2p

p−2

)

p−2

2p

. [12]

Using the definition of ζ and the fact that
∑

σ∈EK
m(σ)dK,σ = dmeas(K), we

have
∑

K∈T

∑

σ∈EK

m(σ)dK,σ|uK,σ,+|
2p

p−2 ≤ d

ζ
||uT ||

2p

p−2

L
2p

p−2 (Ω)
. [13]
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Let q ∈] 2p
p−2 ,

2d
d−2 [ (recall that p > d). Since |uT | ≤ k+|Sk(uT )| and Sk(uT ) = 0

outside Ek = {|uT | ≥ k}, we have, thanks to Hölder’s inequality and to the
discrete Sobolev’s inequalities, by denoting θ = p−2

2p − 1
q > 0,

||uT ||
L

2p
p−2 (Ω)

≤ C1k+C1||Sk(uT )||
L

2p
p−2 (Ω)

≤ C1k+C2meas(Ek)
θ||Sk(uT )||1,T

where C1 and C2 do not depend on k nor T . Using this last inequality in [13]
and gathering with [9]-[10], [11] and [12], we deduce

||Sk(uT )||21,T ≤ ||Sk(uT )||L2(Ω) + C3||Sk(uT )||1,T
+C3||v||(Lp(Ω))d

(

k||Sk(uT )||1,T +meas(Ek)
θ||Sk(uT )||21,T

)

. [14]

But thanks to proposition 3.1, to the discrete Poincaré inequality and to
Tchebycheff’s inequality, meas(Ek) ≤ C4

ln(1+|k|)2 (where C4 does not depend

on k nor T ). Thus, taking k large enough (not depending on T ) in [14], we
can bound ||Sk(uT )||1,T .

The estimate on Tk(uT ) is quite straightforward (multiply [2] by Tk(uK),
sum on K ∈ T , gather by edges, use the fact that Tk(uK) is bounded by k,
that |uT | ≤ k + |Sk(uT )| and that we have a bound on ||Sk(uT )||1,T ), and the
proof is completed by writing uT = Tk(uT ) + Sk(uT ).

4. Proof of Theorem 2.1

The existence an uniqueness of a solution to [2]—[5] is an immediate con-
sequence of proposition 3.2, which shows that the square matrix defining this
system is injective, thus bijective.

Using the same methods as in [EYM 00], we prove that a subsequence of the
solutions to [2]—[5], corresponding to meshes (Tn)n≥1 such that size(Tn) → 0
and infn(reg(Tn)) > 0, converges in Lq(Ω), for all q < 2d

d−2 , to a weak solution
of [1]. Since this weak solution is unique (see [DRO 01]), this proves theorem
2.1. To handle the difficulties brought by the non-regularity of v and G (in
[EYM 00], v is C1-continuous), we approximate these functions by regular ones.

5. Another scheme

We present here a variant of the preceding scheme, but in which we discretize
v and G in a conservative way.

Let T be an admissible mesh. If σ = K|L ∈ Eint, we define the “full-
diamond” around σ by △σ = △K,σ∪△L,σ; if σ ∈ Eext∩EK , the “full-diamond”
around σ is simply △σ = △K,σ. We let, for K ∈ T and σ ∈ E ,

vσ =
1

meas(△σ)

∫

△σ

v(x) dx and Gσ =
1

meas(△σ)

∫

△σ

G(x) dx.
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(fK)K∈T being defined as before, the new scheme for [1] is

∀K ∈ T ,
∑

σ∈EK

FK,σ +m(σ)vσ · nK,σuσ,+ = meas(K)fK +
∑

σ∈EK

m(σ)Gσ · nK,σ , [15]

∀K ∈ T , ∀σ = K|L ∈ EK ∩ Eint , FK,σ = m(σ)
dσ

(uK − uL) ,

∀K ∈ T , ∀σ ∈ EK ∩ Eext , FK,σ = m(σ)
dσ

uK ,
[16]

∀σ = K|L ∈ Eint , uσ,+ = uK if vσ · nK,σ ≥ 0 , uσ,+ = uL otherwise,
∀σ ∈ Eext ∩ EK , uσ,+ = uK if vσ · nK,σ ≥ 0 , uσ,+ = 0 otherwise.

[17]

Notice that [15]—[17] is exactly [2]—[5], provided that we define vK,σ = vσ ·
nK,σ, GK,σ = Gσ · nK,σ and uK,σ,+ = uσ,+; thus, the techniques used before
prove the existence and uniqueness of the solution to [15]—[17] as well as the
convergence of this approximation to the weak solution of [1].

6. Numerical results

All the results we present here concern the scheme of section 5, and the
open set is Ω =]− 1, 1[2.

We consider first the equation −∆u = div(G), with u(x, y) = (1 − |x|)(1 −
|y|), and we use an unstructured discretization of Ω. The L2-norm of the error
converges in

√
h, but the discrete H1-norm does not seem to converge.
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Figure 1: Convergence results, unstructured mesh

We then use structured (cartesian) meshes. The second numerical experi-
ment still concerns the equation −∆u = div(G), but with u(x, y) = A(x)A(y),

where A(t) = (1 + w − (t− w)− + (1+w)(t−w)+

1−w ) and w = 1/
√
2 (the preceding

function, corresponding to w = 0, gives, because of symetries between the func-
tion and the grid, too good convergence results); notice that u ∈ H

3
2
−ǫ(Ω) for

all ǫ > 0 but that u 6∈ H
3
2 (Ω). The convergence is still a bit chaotic (certainly

because some meshes have more symetries with the function than others), but
we notice a rate of convergence of order 1 in L2-norm and 1/2 in discrete
H1-norm (this also shows a super-convergence result in the L2-norm).
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Figure 2: Convergence results, structured mesh

Considering the same function and discretization grid, we finally add a
convection term div(vu) with v = −6(x, y) (the problem is thus not coercive).
The convergence is harder to obtain (we must discretize on quite thin meshes,
comparing to the preceding cases), but a rate of convergence is still noticeable.
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Figure 3: Convergence results, structured mesh, non-coercive problem
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