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ABSTRACT. We prove the convergence of a finite volume scheme for convection-
diffusion equations with right-hand sides in H™'; the convection terms we consider
are non-regular and can entail the loss of coercivity of the operator associated to the
equation.
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1. Introduction

Let Q be a polygonal open subset of R (d = 2 or 3). The problem under
study is
—Au+div(vu) =L in Q, ]
u=20 on 0f)

with v € (LP(Q))? for some p > d and L € H~1(Q). We consider solutions to
[1] in the classical weak sense (for which existence and uniqueness have been
proved in [DRO 01]).

There are numerous works about the discretization of convection-diffusion
problems with finite volumes methods, either on structured or unstructured
meshes (see e.g. [GAL 00], [EYM 00]). We intend here to define (and of course
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prove the convergence of) a finite volume discretization of [1], using the same
grids as in [EYM 00] (see next section).

Our work contains two main originalities. First, we consider right-hand
sides with little regularity; previous papers take in general this right-hand
side in L?(92), but H~1(Q) is, both mathematically and physically speaking, a
natural space for L. The second originality is in the convection term of [1]: v
has little regularity too, but, above all, we impose no hypothesis on this datum
(such as “div(v) > 0”) to ensure that the problem is coercitive; to handle this
last point, we adapt to the discrete setting the techniques of [DRO 01].

2. Definition of the scheme and main result

The idea of finite volumes methods is to integrate [1] on the elements of a
discretization mesh of €2 and to find suitable approximations of the quantities
appearing in this integration. Let us first give the geometrical properties we
impose on the discretization mesh.

Definition 2.1 An admissible mesh T of Q is a finite family of polygonal open
convex subsets of Q0 (the “control volumes”), together with a finite family £ of
disjoint subsets of Q0 contained in affine hyperplanes (the “edges”) and a family
P = (xk)keT of points in Q such that

Z) 0= UKETF’
ii) each o € £ is a non-empty open subset of OK for some K € T,
1i1) denoting Ex = {oc € £ | o C OK}, we have OK = Uyeg, T for all K € T,
w) for all K # L in T, either the (d — 1)-dimensional measure of KN'L is
null, or KN L =7 for some o € &, that we denote then o = K|L,
v)foral KeT, zx € K,
vi) for all 0 = K|L € &, the line (xi,x1) intersects and is orthogonal to o,

vii) for all 0 € £, 0 C NN OK, the line which is orthogonal to o and going
through x g intersects o.

We define the size of the mesh by size(T) = supgcydiam(K). ng, is the
unit normal to o € Ex outward to K. We let Eny = {0 € € | 0 ¢ 90}
and Eext = E\Emt- If 0 € €, m(o) is the (d — 1)-dimensional measure of o; if
o= K|L € &, dy is the distance between the points (x i, xr) and dk,» denotes
the distance between xx and o; if 0 € Ext N Ek, dy = di s 15 the distance
between xx and o. The transmissibility through an edge o is 7, = Wfi(:). The
following quantity measures the “regularity” of the mesh:

KeT \o€éx ds

reg(7T) = inf ( inf dK’U) .
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Since L € H™Y(Q), we can write L = f + div(G) with f € L?(Q) and
G € (L?(Q))¢ (in models of physical problems, L naturally appears in this
form, see e.g. [FIA 94] — this is why we have kept f which, theoritically,
can be taken equal to 0). Formally integrating L on a control volume K and
using Stokes’ formula, we find [, f(z)dz — Y cc, [ G(x) -ng o dy(z) (v is
the (d — 1)-dimensional measure on 0K). The first term is not a problem to
define since f € L?(2), but G is not regular enough for the second term to
make sense; so we must introduce a suitable approximation of G on o.

Let T be an admissible mesh; if K € T and o € £k, the “half-diamond”
Ak o is defined by Ay, = {tex + (1 —t)z, t € [0,1], 2 € o}. Denoting

1

1
VKo = (m /AK,U V(x)d$> ‘MNgo, [xk= m/}(f(@ dx

and Gg, = <;/ G(x) dm) ‘MK,
Ak, o

meas(Ag o)

a finite volume dicretization of [1] is written

VK €T,
D Fro+ m(0)vkotix o =meas(K) fx + Y m(0)Gro 2]
cEEK o€l
VK €T Yo €€k, Fro=—22(uy —ug), [3]
Vo =K|L € &n, Fro+m(o)vkotuke+—m(o)Gko
= —(Fr,o + m(o)vr otur,o+ —m(0)GLs), [4]
Vo € Eext us =0,

Vo =KI|L € &gy Uk,o+ = Uk if Vo >0, Uk, 4+ = ur otherwise, 5]

Vo € Eext NEK UKo+ = Uk if Vg s >0, ug s+ =0 otherwise.

Using [4] (conservativity of the fluxes) to eliminate the unknowns (us)sece,
we see that [2]—[5] is a linear square system in (ug)xer € RET) (we
identify the set R€24(7) to the set X (7) of functions defined a.e. on Q and
constant on each control volume K € T).

Our main result is the following.

Theorem 2.1 If T is an admissible mesh, then there exists a unique solution
to [2]—[5]. Moreover, let a« > 0; denoting by ur € X(T) the solution to
[2]—[5], wr converges, as size(T) — 0 with reg(T) > «, and in L1(Q) for all

q< d2:i2, to the unique weak solution of [1].

Due to lack of room, we only give, in the following proofs, the main argu-
ments; for more details, we refer the reader to [DRO 02].



4 Finite volumes for complex applications

3. A Priori Estimates

Let us first prove some a priori estimates on the solutions to [2]—[5], which
will entail existence and uniqueness of a solution to this system as well as the
convergence result, thanks to some compactness arguments.

These estimates are obtained in the discrete H'-norm on X (7), defined for
1/2 :
vr € X(T) by [lvrllir = (Xoee To(Dov)?) ? Where Dyvy = lvg — wvp| if
0 =K|L € &y and Dyvy = vk | if 0 € Eext NEK . Let us notice two important
properties of this norm (see [EYM 00]):
— Poincaré’s inequality: on X (7), we have || - || 2(q) < diam(Q)|[ - 1,7

— Sobolev’s inequality: if 0 < ¢ < reg(T), there exists C' only depending on
¢ such that, on X (7) and for all ¢ < 2%, we have || - ||pa(q) < Cql| - ||1,7-

Proposition 3.1 (Estimate on In(1 + |ur]|)) There exists C > 0 such that, if
T is an admissible mesh and ur = (ug) ket 5 a solution to [2]—[5], then

(1 + [ur )17 < C (IflLr) + Gl 2@y + 1VIp2@))) -

PROOF. Let ¢(s) = [ (NgW' We multiply [2] by ¢(uk) and sum on the
meshes K € T. Gathering by edges, using the Cauchy-Schwarz inequality and
since ¢ is bounded by 1, we find

Y Tolur —ur)(p(ur) — olur)) (6]
o€l
1/2
< lfllzr) + ClIGI (L2 (0))e (Z 7o (p(ur) — @(UL))2> (7]
o€

dr & dK. o
+ X m(o) (B vn s~ Aok e ) (olur) - plun)) B
oc€e€ 7 7

(with the notations — which we also use in the sequel of this paper — o = K|L
if o €&y and up, = UL,0,+ = VL,o = d[”g = GLJ =0if o € Ext N SK)

¢ being nondecreasing and Lipschitz-continuous with Lipschitz constant 1,
we have (p(ux)—p(ur))? < (ux —ur)(e(ur) —e(ur)) and, thanks to Young’s
inequality, the second term of [7] is bounded by C?||G]| |?L2(Q))d /2 plus one half
of [6].

To estimate [8], we first notice that all ¢ € Eex in this sum give non-

positive terms. Studying then, for ¢ = K|L € &y, each case (according
to the signs of vk, and vy ), we notice that the contribution of ¢ to this
dL,a'

sum is bounded from above by 0 if ugur < 0 and by m(o)(|Z5Zvr.o| +
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|dK,o

2k o|) inf(lu], [ur|)|p(ur) — p(ur)| otherwise. Thus, by denoting A =
{o0 = K|L € &t | ugur > 0}, [8] is bounded from above by

1/2
ClIvlfz2 @) <Z 7o inf (Jug, [ur|)*(p(uk) — sﬁ(um)Q) -

ccA

But it is easy to see that, if ux and uy, have the same sign, then

inf(Jux|, [ur])®(e(ux) — e(ur))?® < (ug —ur)(p(ur) — @(ur)).

Thus, thanks to Young’s inequality, [6] is bounded by C’(||f]|1+]|G|l2+]|v]]2)?.
By construction of ¢ we have (In(1+ |ux|) —In(1+|ur|))? < (ux —ur)(p(ur)—
©(ur,)) and this concludes the proof.

Proposition 3.2 (Estimate on ||ur]||1,7). Let T be an admissible mesh and
0 < ¢ <reg(T). There exists C > 0 only depending on (Q,v,() such that, if
ut is a solution to [2]—[5], then ||lur||1,7 < C(||f|lL2(0) + ||G||(L2(Q))d).

PROOF. [2]—[5] being a linear system, it is sufficient to bound w7 in the case
I[f1l2() + 1| 1G] ||22(0) < 1. We denote, for k > 0, Ty(s) = max(—k, min(s, k))
and Si(s) = s — Ti(s).

Let us first estimate Si(ur) for k large enough. We have (Si(ug) —
Sk(ur))? < (ux — ur)(Sk(ur) — Sk(ur)); thus, multiplying [2] by Sk(ur),
gathering by edges and using the Cauchy-Schwarz inequality, we find

1Sk ()T 7 < 1f1lL2@ 1Sk (wr)| 2y + ClGI 2@l ISk(ur) |l r 9]

dL.o di o
+Zm(o)( TIUL UL ok~ 7 vK,auK,H) (Sk(ux) — Sk(ur)).  [10]
o€e& 7 7

Thanks again to the Cauchy-Schwarz inequality, [10] is bounded by

d d 9 1/2
<Z m(o)dy (ﬂvL,auL,a,ﬁ- - %UK,UUK,U,Jr) ) 1Sk (ur)ll1, 7 [11]

c€e€ do

Gathering by control volumes and using Holder’s inequality (with p/2 > 1 and
p/(p — 2)), we notice that the first factor of [11] is bounded by

p—2

Collvlzr (e (Z > m(U)dK,a|UK,cr,+|"_pZ> : [12]

KeT o€k

Using the definition of ¢ and the fact that ) .. m(0)dk , = dmeas(K), we
have

2 d 2p,
> 2 mlo)icolurosl ™ < Gllurl 72, 13]
KeT oelk Le= (Q)
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Let g €], 245 (vecall that p > d). Since |ur| < k+|Sk(ur)| and Sy (u7) = 0
outside Er = {|ur| > k}, we have, thanks to Holder’s inequality and to the

discrete Sobolev’s inequalities, by denoting 6 = p2—;2 — % >0,

||UT||L%(Q) < Clk/"‘rClHSk(UT) ) < Clkr—l—Cgmeas(Ek)‘gHSk(uT)HLT

22 @
where Cy and Cs do not depend on k nor 7. Using this last inequality in [13]
and gathering with [9]-[10], [11] and [12], we deduce

1Sk (w13 7 < 1Sk (ur )l L2y + CallSk(ur)|l1,7

+Cs|Ivl[ Loy (lISk(ur)ll,7 + meas(Ex)°||Se(ur)l|f ) . [14]

But thanks to proposition 3.1, to the discrete Poincaré inequality and to
Tchebycheft’s inequality, meas(Ey) < ln(ﬁw (where C4 does not depend
on k nor 7). Thus, taking k large enough (not depending on 7) in [14], we
can bound [|Sk(ur)||1,7-

The estimate on Ty (ur) is quite straightforward (multiply [2] by Tk(uk),
sum on K € T, gather by edges, use the fact that Ty (ug) is bounded by k,
that |ur| < k + |Sk(ur)| and that we have a bound on ||Sk(ur)||1,7), and the
proof is completed by writing uyr = Tk (ur) + Sk(ur).

4. Proof of Theorem 2.1

The existence an uniqueness of a solution to [2]—[5] is an immediate con-
sequence of proposition 3.2, which shows that the square matrix defining this
system is injective, thus bijective.

Using the same methods as in [EYM 00], we prove that a subsequence of the
solutions to [2]—[5], corresponding to meshes (7,),>1 such that size(7,) — 0
and inf, (reg(7,)) > 0, converges in L(9), for all ¢ < 2%, to a weak solution
of [1]. Since this weak solution is unique (see [DRO 01]), this proves theorem
2.1. To handle the difficulties brought by the non-regularity of v and G (in
[EYM 00], v is C!-continuous), we approximate these functions by regular ones.

5. Another scheme

We present here a variant of the preceding scheme, but in which we discretize
v and G in a conservative way.

Let T be an admissible mesh. If ¢ = K|L € &y, we define the “full-
diamond” around o by A, = Ag s UAL o; if 0 € Eext NER, the “full-diamond”
around o is simply A, = Ak ,. We let, for K € T and 0 € €,

1 1
Vo = m /AU V(SC) dx and Ga- = m /AU G(SC) dx.
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(fK)ke7 being defined as before, the new scheme for [1] is

VK €T,
Z Fr o +m(0)Vy - N oo+ = meas(K) fx + Z m(0)Gy Nk, [15]
c€EEK o€l

VKGT,VO':K|L€5Kﬂgim, FKJ = %(UK—UL),

& [16]
VKGT,VO'ESngextv FKJT* do UK ,

Vo =K|L € &int, o+ =uk if Vo -nge >0, us4 =uy otherwise, [17]
Vo € Ext NEK, Ug+ =ur if Vo -ngs >0, Uy =0 otherwise.

Notice that [15]—[17] is exactly [2]—[5], provided that we define vk , = Vo -
ng o, Gko = G - Ng o and uk s+ = Ue +; thus, the techniques used before
prove the existence and uniqueness of the solution to [15]—[17] as well as the
convergence of this approximation to the weak solution of [1].

6. Numerical results

All the results we present here concern the scheme of section 5, and the
open set is Q =] —1,1[2.

We consider first the equation —Au = div(G), with u(z,y) = (1 — |2])(1 —
ly|), and we use an unstructured discretization of Q2. The L?-norm of the error
converges in VA, but the discrete H'-norm does not seem to converge.
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Figure 1: Convergence results, unstructured mesh

We then use structured (cartesian) meshes. The second numerical experi-
ment still concerns the equation —Au = div(G), but with u(z,y) = A(x)A(y),

where A(t) = (1+w— (t —w)” + W) and w = 1/v/2 (the preceding
function, corresponding to w = 0, gives, because of symetries between the func-
tion and the grid, too good convergence results); notice that v € H2~¢(Q) for
all € > 0 but that u ¢ H?(Q). The convergence is still a bit chaotic (certainly
because some meshes have more symetries with the function than others), but
we notice a rate of convergence of order 1 in L2%norm and 1/2 in discrete

H'-norm (this also shows a super-convergence result in the L?-norm).
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Figure 2: Convergence results, structured mesh

Considering the same function and discretization grid, we finally add a
convection term div(vu) with v = —6(z,y) (the problem is thus not coercive).
The convergence is harder to obtain (we must discretize on quite thin meshes,
comparing to the preceding cases), but a rate of convergence is still noticeable.
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Figure 3: Convergence results, structured mesh, non-coercive problem
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