A finite volume scheme for noncoercive Dirichlet problems with right-hand sides in H^{-1}

Jérôme Droniou^{*} – Thierry Gallouët^{**}

*UMPA, ENS Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France. jdroniou@umpa.ens-lyon.fr

**CMI, Université de Provence, Technopôle de Château Gombert, 39 rue F.Joliot Curie, 13453 Marseille Cedex 13, France. gallouet@cmi.univ-mrs.fr

ABSTRACT. We prove the convergence of a finite volume scheme for convectiondiffusion equations with right-hand sides in H^{-1} ; the convection terms we consider are non-regular and can entail the loss of coercivity of the operator associated to the equation.

KEYWORDS: finite volume methods, noncoercive elliptic equations, little regular data.

1. Introduction

Let Ω be a polygonal open subset of \mathbb{R}^d (d = 2 or 3). The problem under study is

$$\begin{cases} -\Delta u + \operatorname{div}(\mathbf{v}u) = L & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
[1]

with $\mathbf{v} \in (L^p(\Omega))^d$ for some p > d and $L \in H^{-1}(\Omega)$. We consider solutions to [1] in the classical weak sense (for which existence and uniqueness have been proved in [DRO 01]).

There are numerous works about the discretization of convection-diffusion problems with finite volumes methods, either on structured or unstructured meshes (see e.g. [GAL 00], [EYM 00]). We intend here to define (and of course prove the convergence of) a finite volume discretization of [1], using the same grids as in [EYM 00] (see next section).

Our work contains two main originalities. First, we consider right-hand sides with little regularity; previous papers take in general this right-hand side in $L^2(\Omega)$, but $H^{-1}(\Omega)$ is, both mathematically and physically speaking, a natural space for L. The second originality is in the convection term of [1]: **v** has little regularity too, but, above all, we impose no hypothesis on this datum (such as "div(**v**) ≥ 0 ") to ensure that the problem is coercitive; to handle this last point, we adapt to the discrete setting the techniques of [DRO 01].

2. Definition of the scheme and main result

The idea of finite volumes methods is to integrate [1] on the elements of a discretization mesh of Ω and to find suitable approximations of the quantities appearing in this integration. Let us first give the geometrical properties we impose on the discretization mesh.

Definition 2.1 An admissible mesh \mathcal{T} of Ω is a finite family of polygonal open convex subsets of Ω (the "control volumes"), together with a finite family \mathcal{E} of disjoint subsets of $\overline{\Omega}$ contained in affine hyperplanes (the "edges") and a family $\mathcal{P} = (x_K)_{K \in \mathcal{T}}$ of points in Ω such that

 $i) \ \overline{\Omega} = \bigcup_{K \in \mathcal{T}} \overline{K},$

ii) each $\sigma \in \mathcal{E}$ is a non-empty open subset of ∂K for some $K \in \mathcal{T}$,

iii) denoting $\mathcal{E}_K = \{ \sigma \in \mathcal{E} \mid \sigma \subset \partial K \}$, we have $\partial K = \bigcup_{\sigma \in \mathcal{E}_K} \overline{\sigma}$ for all $K \in \mathcal{T}$, iv) for all $K \neq L$ in \mathcal{T} , either the (d-1)-dimensional measure of $\overline{K} \cap \overline{L}$ is null, or $\overline{K} \cap \overline{L} = \overline{\sigma}$ for some $\sigma \in \mathcal{E}$, that we denote then $\sigma = K \mid L$,

v) for all $K \in \mathcal{T}, x_K \in K$,

vi) for all $\sigma = K | L \in \mathcal{E}$, the line (x_K, x_L) intersects and is orthogonal to σ ,

vii) for all $\sigma \in \mathcal{E}$, $\sigma \subset \partial \Omega \cap \partial K$, the line which is orthogonal to σ and going through x_K intersects σ .

We define the size of the mesh by $\operatorname{size}(\mathcal{T}) = \sup_{K \in \mathcal{T}} \operatorname{diam}(K)$. $\mathbf{n}_{K,\sigma}$ is the unit normal to $\sigma \in \mathcal{E}_K$ outward to K. We let $\mathcal{E}_{\operatorname{int}} = \{\sigma \in \mathcal{E} \mid \sigma \notin \partial\Omega\}$ and $\mathcal{E}_{\operatorname{ext}} = \mathcal{E} \setminus \mathcal{E}_{\operatorname{int}}$. If $\sigma \in \mathcal{E}$, $m(\sigma)$ is the (d-1)-dimensional measure of σ ; if $\sigma = K \mid L \in \mathcal{E}_{\operatorname{int}}, d_{\sigma}$ is the distance between the points (x_K, x_L) and $d_{K,\sigma}$ denotes the distance between x_K and σ ; if $\sigma \in \mathcal{E}_{\operatorname{ext}} \cap \mathcal{E}_K, d_{\sigma} = d_{K,\sigma}$ is the distance between x_K and σ . The transmissibility through an edge σ is $\tau_{\sigma} = \frac{m(\sigma)}{d_{\sigma}}$. The following quantity measures the "regularity" of the mesh:

$$\operatorname{reg}(\mathcal{T}) = \inf_{K \in \mathcal{T}} \left(\inf_{\sigma \in \mathcal{E}_K} \frac{d_{K,\sigma}}{d_{\sigma}} \right).$$

Since $L \in H^{-1}(\Omega)$, we can write $L = f + \operatorname{div}(G)$ with $f \in L^2(\Omega)$ and $G \in (L^2(\Omega))^d$ (in models of physical problems, L naturally appears in this form, see e.g. [FIA 94] — this is why we have kept f which, theoritically, can be taken equal to 0). Formally integrating L on a control volume K and using Stokes' formula, we find $\int_K f(x) dx - \sum_{\sigma \in \mathcal{E}_K} \int_{\sigma} G(x) \cdot \mathbf{n}_{K,\sigma} d\gamma(x)$ (γ is the (d-1)-dimensional measure on ∂K). The first term is not a problem to define since $f \in L^2(\Omega)$, but G is not regular enough for the second term to make sense; so we must introduce a suitable approximation of G on σ .

Let T be an admissible mesh; if $K \in \mathcal{T}$ and $\sigma \in \mathcal{E}_K$, the "half-diamond" $\triangle_{K,\sigma}$ is defined by $\triangle_{K,\sigma} = \{tx_K + (1-t)x, t \in [0,1], x \in \sigma\}$. Denoting

$$v_{K,\sigma} = \left(\frac{1}{\operatorname{meas}(\triangle_{K,\sigma})} \int_{\triangle_{K,\sigma}} \mathbf{v}(x) \, dx\right) \cdot \mathbf{n}_{K,\sigma} \,, \quad f_K = \frac{1}{\operatorname{meas}(K)} \int_K f(x) \, dx$$

and
$$G_{K,\sigma} = \left(\frac{1}{\operatorname{meas}(\triangle_{K,\sigma})} \int_{\triangle_{K,\sigma}} G(x) \, dx\right) \cdot \mathbf{n}_{K,\sigma} \,,$$

a finite volume dicretization of [1] is written

$$\forall K \in \mathcal{T}, \\ \sum_{\sigma \in \mathcal{E}_K} F_{K,\sigma} + m(\sigma) v_{K,\sigma} u_{K,\sigma,+} = \operatorname{meas}(K) f_K + \sum_{\sigma \in \mathcal{E}_K} m(\sigma) G_{K,\sigma}, \qquad [2]$$

$$\forall K \in \mathcal{T}, \forall \sigma \in \mathcal{E}_K, \quad F_{K,\sigma} = -\frac{m(\sigma)}{d_{K,\sigma}} (u_\sigma - u_K), \quad [3]$$

$$\begin{aligned} \forall \sigma &= K | L \in \mathcal{E}_{\text{int}}, \quad F_{K,\sigma} + m(\sigma) v_{K,\sigma} u_{K,\sigma,+} - m(\sigma) G_{K,\sigma} \\ &= -(F_{L,\sigma} + m(\sigma) v_{L,\sigma} u_{L,\sigma,+} - m(\sigma) G_{L,\sigma}), \qquad [4] \\ \forall \sigma \in \mathcal{E}_{\text{ext}}, \qquad u_{\sigma} &= 0, \end{aligned}$$

$$\forall \sigma \in \mathcal{E}_{\text{ext}} \cap \mathcal{E}_K, \quad u_{K,\sigma,+} = u_K \text{ if } v_{K,\sigma} \ge 0, \ u_{K,\sigma,+} = 0 \text{ otherwise.}$$
^[5]

Using [4] (conservativity of the fluxes) to eliminate the unknowns $(u_{\sigma})_{\sigma \in \mathcal{E}}$, we see that [2]—[5] is a linear square system in $(u_K)_{K \in \mathcal{T}} \in \mathbb{R}^{\operatorname{Card}(\mathcal{T})}$ (we identify the set $\mathbb{R}^{\operatorname{Card}(\mathcal{T})}$ to the set $X(\mathcal{T})$ of functions defined a.e. on Ω and constant on each control volume $K \in \mathcal{T}$).

Our main result is the following.

 $\forall \sigma$

Theorem 2.1 If \mathcal{T} is an admissible mesh, then there exists a unique solution to [2]–[5]. Moreover, let $\alpha > 0$; denoting by $u_{\mathcal{T}} \in X(\mathcal{T})$ the solution to [2]–[5], $u_{\mathcal{T}}$ converges, as size $(\mathcal{T}) \to 0$ with reg $(\mathcal{T}) \ge \alpha$, and in $L^q(\Omega)$ for all $q < \frac{2d}{d-2}$, to the unique weak solution of [1].

Due to lack of room, we only give, in the following proofs, the main arguments; for more details, we refer the reader to [DRO 02].

4 Finite volumes for complex applications

3. A Priori Estimates

Let us first prove some *a priori* estimates on the solutions to [2]—[5], which will entail existence and uniqueness of a solution to this system as well as the convergence result, thanks to some compactness arguments.

These estimates are obtained in the discrete H^1 -norm on $X(\mathcal{T})$, defined for $v_{\mathcal{T}} \in X(\mathcal{T})$ by $||v_{\mathcal{T}}||_{1,\mathcal{T}} = \left(\sum_{\sigma \in \mathcal{E}} \tau_{\sigma} (D_{\sigma} v)^2\right)^{1/2}$, where $D_{\sigma} v_{\mathcal{T}} = |v_K - v_L|$ if $\sigma = K | L \in \mathcal{E}_{int}$ and $D_{\sigma} v_{\mathcal{T}} = |v_K|$ if $\sigma \in \mathcal{E}_{ext} \cap \mathcal{E}_K$. Let us notice two important properties of this norm (see [EYM 00]):

– Poincaré's inequality: on $X(\mathcal{T})$, we have $\|\cdot\|_{L^2(\Omega)} \leq \operatorname{diam}(\Omega)\|\cdot\|_{1,\mathcal{T}}$.

– Sobolev's inequality: if $0 < \zeta \leq \operatorname{reg}(\mathcal{T})$, there exists C only depending on ζ such that, on $X(\mathcal{T})$ and for all $q < \frac{2d}{d-2}$, we have $|| \cdot ||_{L^q(\Omega)} \leq Cq|| \cdot ||_{1,\mathcal{T}}$.

Proposition 3.1 (Estimate on $\ln(1 + |u_{\mathcal{T}}|)$) There exists C > 0 such that, if \mathcal{T} is an admissible mesh and $u_{\mathcal{T}} = (u_K)_{K \in \mathcal{T}}$ is a solution to [2]–[5], then

$$||\ln(1+|u_{\mathcal{T}}|)||_{1,\mathcal{T}} \le C \left(||f||_{L^{1}(\Omega)} + ||G||_{(L^{2}(\Omega))^{d}} + ||\mathbf{v}||_{(L^{2}(\Omega))^{d}} \right).$$

PROOF. Let $\varphi(s) = \int_0^s \frac{dt}{(1+|t|)^2}$. We multiply [2] by $\varphi(u_K)$ and sum on the meshes $K \in \mathcal{T}$. Gathering by edges, using the Cauchy-Schwarz inequality and since φ is bounded by 1, we find

$$\sum_{\sigma \in \mathcal{E}} \tau_{\sigma}(u_K - u_L)(\varphi(u_K) - \varphi(u_L))$$
[6]

$$\leq ||f||_{L^1(\Omega)} + C||G||_{(L^2(\Omega))^d} \left(\sum_{\sigma \in \mathcal{E}} \tau_\sigma(\varphi(u_K) - \varphi(u_L))^2\right)^{1/2}$$
[7]

$$+\sum_{\sigma\in\mathcal{E}}m(\sigma)\left(\frac{d_{L,\sigma}}{d_{\sigma}}v_{L,\sigma}u_{L,\sigma,+}-\frac{d_{K,\sigma}}{d_{\sigma}}v_{K,\sigma}u_{K,\sigma,+}\right)\left(\varphi(u_{K})-\varphi(u_{L})\right)[8]$$

(with the notations — which we also use in the sequel of this paper — $\sigma = K|L$ if $\sigma \in \mathcal{E}_{int}$ and $u_L = u_{L,\sigma,+} = v_{L,\sigma} = d_{L,\sigma} = G_{L,\sigma} = 0$ if $\sigma \in \mathcal{E}_{ext} \cap \mathcal{E}_K$).

 φ being nondecreasing and Lipschitz-continuous with Lipschitz constant 1, we have $(\varphi(u_K) - \varphi(u_L))^2 \leq (u_K - u_L)(\varphi(u_K) - \varphi(u_L))$ and, thanks to Young's inequality, the second term of [7] is bounded by $C^2 ||G||^2_{(L^2(\Omega))^d}/2$ plus one half of [6].

To estimate [8], we first notice that all $\sigma \in \mathcal{E}_{ext}$ in this sum give nonpositive terms. Studying then, for $\sigma = K|L \in \mathcal{E}_{int}$, each case (according to the signs of $v_{K,\sigma}$ and $v_{L,\sigma}$), we notice that the contribution of σ to this sum is bounded from above by 0 if $u_K u_L \leq 0$ and by $m(\sigma)(|\frac{d_{L,\sigma}}{d_{\sigma}}v_{L,\sigma}| +$ $\begin{aligned} |\frac{d_{K,\sigma}}{d_{\sigma}}v_{K,\sigma}|)\inf(|u_{K}|,|u_{L}|)|\varphi(u_{K})-\varphi(u_{L})| \text{ otherwise. Thus, by denoting } \mathcal{A} = \\ \{\sigma = K|L \in \mathcal{E}_{\text{int}} \mid u_{K}u_{L} > 0\}, [8] \text{ is bounded from above by} \end{aligned}$

$$C||\mathbf{v}||_{(L^2(\Omega))^d} \left(\sum_{\sigma \in \mathcal{A}} \tau_\sigma \inf(|u_K|, |u_L|)^2 (\varphi(u_K) - \varphi(u_L))^2\right)^{1/2}.$$

But it is easy to see that, if u_K and u_L have the same sign, then

$$\inf(|u_K|, |u_L|)^2(\varphi(u_K) - \varphi(u_L))^2 \le (u_K - u_L)(\varphi(u_K) - \varphi(u_L)).$$

Thus, thanks to Young's inequality, [6] is bounded by $C'(||f||_1 + ||G||_2 + ||\mathbf{v}||_2)^2$. By construction of φ we have $(\ln(1+|u_K|) - \ln(1+|u_L|))^2 \leq (u_K - u_L)(\varphi(u_K) - \varphi(u_L))$ and this concludes the proof.

Proposition 3.2 (Estimate on $||u_{\mathcal{T}}||_{1,\mathcal{T}}$). Let \mathcal{T} be an admissible mesh and $0 < \zeta \leq \operatorname{reg}(\mathcal{T})$. There exists C > 0 only depending on $(\Omega, \mathbf{v}, \zeta)$ such that, if $u_{\mathcal{T}}$ is a solution to [2]-[5], then $||u_{\mathcal{T}}||_{1,\mathcal{T}} \leq C(||f||_{L^2(\Omega)} + ||G||_{(L^2(\Omega))^d})$.

PROOF. [2]—[5] being a linear system, it is sufficient to bound $u_{\mathcal{T}}$ in the case $||f||_{L^2(\Omega)} + ||G||_{L^2(\Omega)} \leq 1$. We denote, for k > 0, $T_k(s) = \max(-k, \min(s, k))$ and $S_k(s) = s - T_k(s)$.

Let us first estimate $S_k(u_{\mathcal{T}})$ for k large enough. We have $(S_k(u_K) - S_k(u_L))^2 \leq (u_K - u_L)(S_k(u_K) - S_k(u_L))$; thus, multiplying [2] by $S_k(u_{\mathcal{T}})$, gathering by edges and using the Cauchy-Schwarz inequality, we find

$$||S_k(u_{\mathcal{T}})||_{1,\mathcal{T}}^2 \le ||f||_{L^2(\Omega)} ||S_k(u_{\mathcal{T}})||_{L^2(\Omega)} + C||G||_{(L^2(\Omega))^d} ||S_k(u_{\mathcal{T}})||_{1,\mathcal{T}}$$
[9]

$$+\sum_{\sigma\in\mathcal{E}}m(\sigma)\left(\frac{d_{L,\sigma}}{d_{\sigma}}v_{L,\sigma}u_{L,\sigma,+}-\frac{d_{K,\sigma}}{d_{\sigma}}v_{K,\sigma}u_{K,\sigma,+}\right)(S_{k}(u_{K})-S_{k}(u_{L})).$$
 [10]

Thanks again to the Cauchy-Schwarz inequality, [10] is bounded by

$$\left(\sum_{\sigma\in\mathcal{E}}m(\sigma)d_{\sigma}\left(\frac{d_{L,\sigma}}{d_{\sigma}}v_{L,\sigma}u_{L,\sigma,+}-\frac{d_{K,\sigma}}{d_{\sigma}}v_{K,\sigma}u_{K,\sigma,+}\right)^{2}\right)^{1/2}||S_{k}(u_{\mathcal{T}})||_{1,\mathcal{T}}.$$
 [11]

Gathering by control volumes and using Hölder's inequality (with p/2 > 1 and p/(p-2)), we notice that the first factor of [11] is bounded by

$$C_0||\mathbf{v}||_{L^p(\Omega)} \left(\sum_{K\in\mathcal{T}}\sum_{\sigma\in\mathcal{E}_K} m(\sigma)d_{K,\sigma}|u_{K,\sigma,+}|^{\frac{2p}{p-2}}\right)^{\frac{p-2}{2p}}.$$
 [12]

Using the definition of ζ and the fact that $\sum_{\sigma \in \mathcal{E}_K} m(\sigma) d_{K,\sigma} = d \operatorname{meas}(K)$, we have

$$\sum_{K\in\mathcal{T}}\sum_{\sigma\in\mathcal{E}_K} m(\sigma)d_{K,\sigma}|u_{K,\sigma,+}|^{\frac{2p}{p-2}} \le \frac{d}{\zeta}||u_{\mathcal{T}}||^{\frac{2p}{p-2}}_{L^{\frac{2p}{p-2}}(\Omega)}.$$
[13]

6 Finite volumes for complex applications

Let $q \in \left]\frac{2p}{p-2}, \frac{2d}{d-2}\right[$ (recall that p > d). Since $|u_{\mathcal{T}}| \le k + |S_k(u_{\mathcal{T}})|$ and $S_k(u_{\mathcal{T}}) = 0$ outside $E_k = \{|u_{\mathcal{T}}| \ge k\}$, we have, thanks to Hölder's inequality and to the discrete Sobolev's inequalities, by denoting $\theta = \frac{p-2}{2p} - \frac{1}{q} > 0$,

$$||u_{\mathcal{T}}||_{L^{\frac{2p}{p-2}}(\Omega)} \le C_1 k + C_1 ||S_k(u_{\mathcal{T}})||_{L^{\frac{2p}{p-2}}(\Omega)} \le C_1 k + C_2 \operatorname{meas}(E_k)^{\theta} ||S_k(u_{\mathcal{T}})||_{1,\mathcal{T}}$$

where C_1 and C_2 do not depend on k nor \mathcal{T} . Using this last inequality in [13] and gathering with [9]-[10], [11] and [12], we deduce

$$||S_{k}(u_{\mathcal{T}})||_{1,\mathcal{T}}^{2} \leq ||S_{k}(u_{\mathcal{T}})||_{L^{2}(\Omega)} + C_{3}||S_{k}(u_{\mathcal{T}})||_{1,\mathcal{T}} + C_{3}||\mathbf{v}||_{(L^{p}(\Omega))^{d}} \left(k||S_{k}(u_{\mathcal{T}})||_{1,\mathcal{T}} + \max(E_{k})^{\theta}||S_{k}(u_{\mathcal{T}})||_{1,\mathcal{T}}^{2}\right).$$
[14]

But thanks to proposition 3.1, to the discrete Poincaré inequality and to Tchebycheff's inequality, $\operatorname{meas}(E_k) \leq \frac{C_4}{\ln(1+|k|)^2}$ (where C_4 does not depend on k nor \mathcal{T}). Thus, taking k large enough (not depending on \mathcal{T}) in [14], we can bound $||S_k(u_{\mathcal{T}})||_{1,\mathcal{T}}$.

The estimate on $T_k(u_{\mathcal{T}})$ is quite straightforward (multiply [2] by $T_k(u_K)$, sum on $K \in \mathcal{T}$, gather by edges, use the fact that $T_k(u_K)$ is bounded by k, that $|u_{\mathcal{T}}| \leq k + |S_k(u_{\mathcal{T}})|$ and that we have a bound on $||S_k(u_{\mathcal{T}})||_{1,\mathcal{T}}$), and the proof is completed by writing $u_{\mathcal{T}} = T_k(u_{\mathcal{T}}) + S_k(u_{\mathcal{T}})$.

4. Proof of Theorem 2.1

The existence an uniqueness of a solution to [2]—[5] is an immediate consequence of proposition 3.2, which shows that the square matrix defining this system is injective, thus bijective.

Using the same methods as in [EYM 00], we prove that a subsequence of the solutions to [2]—[5], corresponding to meshes $(\mathcal{T}_n)_{n\geq 1}$ such that size $(\mathcal{T}_n) \to 0$ and $\inf_n(\operatorname{reg}(\mathcal{T}_n)) > 0$, converges in $L^q(\Omega)$, for all $q < \frac{2d}{d-2}$, to a weak solution of [1]. Since this weak solution is unique (see [DRO 01]), this proves theorem 2.1. To handle the difficulties brought by the non-regularity of \mathbf{v} and G (in [EYM 00], \mathbf{v} is C^1 -continuous), we approximate these functions by regular ones.

5. Another scheme

We present here a variant of the preceding scheme, but in which we discretize \mathbf{v} and G in a conservative way.

Let \mathcal{T} be an admissible mesh. If $\sigma = K | L \in \mathcal{E}_{int}$, we define the "fulldiamond" around σ by $\Delta_{\sigma} = \Delta_{K,\sigma} \cup \Delta_{L,\sigma}$; if $\sigma \in \mathcal{E}_{ext} \cap \mathcal{E}_K$, the "full-diamond" around σ is simply $\Delta_{\sigma} = \Delta_{K,\sigma}$. We let, for $K \in \mathcal{T}$ and $\sigma \in \mathcal{E}$,

$$\mathbf{v}_{\sigma} = \frac{1}{\operatorname{meas}(\triangle_{\sigma})} \int_{\triangle_{\sigma}} \mathbf{v}(x) \, dx \quad \text{and} \quad G_{\sigma} = \frac{1}{\operatorname{meas}(\triangle_{\sigma})} \int_{\triangle_{\sigma}} G(x) \, dx$$

 $(f_K)_{K\in\mathcal{T}}$ being defined as before, the new scheme for [1] is

$$\forall K \in \mathcal{T}, \\ \sum_{\sigma \in \mathcal{E}_K} F_{K,\sigma} + m(\sigma) \mathbf{v}_{\sigma} \cdot \mathbf{n}_{K,\sigma} u_{\sigma,+} = \operatorname{meas}(K) f_K + \sum_{\sigma \in \mathcal{E}_K} m(\sigma) G_{\sigma} \cdot \mathbf{n}_{K,\sigma}, \quad [15]$$

$$\forall K \in \mathcal{T}, \forall \sigma = K | L \in \mathcal{E}_K \cap \mathcal{E}_{int}, \quad F_{K,\sigma} = \frac{m(\sigma)}{d_{\sigma}} (u_K - u_L), \\ \forall K \in \mathcal{T}, \forall \sigma \in \mathcal{E}_K \cap \mathcal{E}_{ext}, \qquad F_{K,\sigma} = \frac{m(\sigma)}{d_{\sigma}} u_K,$$
 [16]

 $\forall \sigma = K | L \in \mathcal{E}_{\text{int}}, \ u_{\sigma,+} = u_K \text{ if } \mathbf{v}_{\sigma} \cdot \mathbf{n}_{K,\sigma} \ge 0, \ u_{\sigma,+} = u_L \text{ otherwise,}$ $\forall \sigma \in \mathcal{E}_{\text{ext}} \cap \mathcal{E}_K, \ u_{\sigma,+} = u_K \text{ if } \mathbf{v}_{\sigma} \cdot \mathbf{n}_{K,\sigma} \ge 0, \ u_{\sigma,+} = 0 \text{ otherwise.}$ [17]

Notice that [15]—[17] is exactly [2]—[5], provided that we define $v_{K,\sigma} = \mathbf{v}_{\sigma} \cdot \mathbf{n}_{K,\sigma}$, $G_{K,\sigma} = G_{\sigma} \cdot \mathbf{n}_{K,\sigma}$ and $u_{K,\sigma,+} = u_{\sigma,+}$; thus, the techniques used before prove the existence and uniqueness of the solution to [15]—[17] as well as the convergence of this approximation to the weak solution of [1].

6. Numerical results

All the results we present here concern the scheme of section 5, and the open set is $\Omega =]-1, 1[^2$.

We consider first the equation $-\Delta u = \operatorname{div}(G)$, with u(x, y) = (1 - |x|)(1 - |y|), and we use an unstructured discretization of Ω . The L^2 -norm of the error converges in \sqrt{h} , but the discrete H^1 -norm does not seem to converge.

Figure 1: Convergence results, unstructured mesh

We then use structured (cartesian) meshes. The second numerical experiment still concerns the equation $-\Delta u = \operatorname{div}(G)$, but with u(x, y) = A(x)A(y), where $A(t) = (1 + w - (t - w)^{-} + \frac{(1+w)(t-w)^{+}}{1-w})$ and $w = 1/\sqrt{2}$ (the preceding function, corresponding to w = 0, gives, because of symetries between the function and the grid, too good convergence results); notice that $u \in H^{\frac{3}{2}-\epsilon}(\Omega)$ for all $\epsilon > 0$ but that $u \notin H^{\frac{3}{2}}(\Omega)$. The convergence is still a bit chaotic (certainly because some meshes have more symetries with the function than others), but we notice a rate of convergence of order 1 in L^2 -norm and 1/2 in discrete H^1 -norm (this also shows a super-convergence result in the L^2 -norm).

8 Finite volumes for complex applications

Figure 2: Convergence results, structured mesh

Considering the same function and discretization grid, we finally add a convection term $\operatorname{div}(\mathbf{v}u)$ with $\mathbf{v} = -6(x, y)$ (the problem is thus not coercive). The convergence is harder to obtain (we must discretize on quite thin meshes, comparing to the preceding cases), but a rate of convergence is still noticeable.

Figure 3: Convergence results, structured mesh, non-coercive problem

References

- [DRO 01] DRONIOU J., Non Coercive Linear Elliptic Problems, to appear in *Potential Analysis*.
- [DRO 02] DRONIOU J., GALLOUËT T., Finite volume methods for convectiondiffusion equations with right-hand side in H^{-1} , to appear in *Mathematical Modelling and Numerical Analysis*.
- [EYM 00] EYMARD R., GALLOUËT T., HERBIN R., Finite Volume Methods, Handbook of Numerical Analysis, Vol. VII, 2000, p. 713-1020. Editors: P.G. Ciarlet and J.L. Lions.
- [FIA 94] FIARD J., HERBIN R., Comparison between finite volume finite element methods for the numerical simulation of an elliptic problem arising in electrochemical engineering, *Comput. Meth. Appl. Mech. Engin.*, vol. 115, 1994, p. 315-338.
- [GAL 00] GALLOUËT T., HERBIN R., VIGNAL M.-H., Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions, SIAM J. Numer. Anal., 2000.