
A uniformly converging scheme for fractal
conservation laws
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Abstract The fractal conservation law∂tu+ ∂x( f (u)) + (−∆)α/2u = 0 changes
characteristics asα → 2 from non-local and weakly diffusive to local and strongly
diffusive. In this paper we present a corrected finite difference quadrature method
for (−∆)α/2 with α ∈ [0,2], combined with usual finite volume methods for the hy-
perbolic term, that automatically adjusts to this change and is uniformly convergent
with respect toα ∈ [η ,2] for anyη > 0. We provide numerical results which illus-
trate this asymptotic-preserving property as well as the non-uniformity of previous
finite difference or finite volume type of methods.

1 Introduction

We consider the following fractional conservation law

∂tuα + ∂x( f (uα))+Lα [uα ] = 0, t > 0, x∈ R ,
uα(0,x) = uini(x) , x∈ R ,

(1)

whereα ∈ [0,2], Lα = (−∆)α/2,

uini ∈ L∞(R)∩BV(R) and f : R→R is locally Lipschitz-continuous. (2)

Such models appear for example in mathematical finance, gas detonation or semi-
conductor growth [23, 26, 11, 1]. The fractional LaplacianLα = (−∆)α/2 can be
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defined e.g. as a Fourier multiplier, but for our purpose the following equivalent def-
inition, valid for anyϕ ∈C∞

c (R) (set of smooth compactly supported functions), is
more useful:















L0[ϕ ](x) = ϕ(x), α = 0,

Lα [ϕ ](x) =−cα

∫

R

ϕ(x+z)−ϕ(x)−ϕ ′(x)z1[−1,1](z)

|z|1+α dz, α ∈ (0,2),

L2[ϕ ](x) =−∆ϕ(x), α = 2,

(3)

where1[−1,1] is the characteristic function of[−1,1], cα = (2π)α αΓ ( 1+α
2 )

2π
1
2+αΓ (1− α

2 )
and

Γ is the Euler function [15].
As α → 2, the operatorLα changes nature and properties. Forα ∈ (0,2),

Lα is a non-localpseudo-differential operator of order< 2, and it has relatively
weak diffusive properties since the decay at infinity of the fundamental solution of
∂tu+Lα [u] = 0 is polynomial. Atα = 2,Lα =−∆ is a local operator with strong
diffusive properties and a fundamental solution with super-exponential decay. When
α vary over[0,2], the qualitative behaviour of the solutionuα of (1) also changes.
In the case thatα = 2, it is well-known thatuα becomes instantly smooth fort > 0
even when the initial data is discontinuous. On the contrary, for α = 0, the solu-
tion may develop shocks and uniqueness of the solution requires additional entropy
conditions and the corresponding notion of entropy solution [22]. The study of the
fractional caseα ∈ (0,2) dates back to [6], with some restrictions onα and f . The
first complete study in the caseα > 1 for any locally Lipschitzf and bounded initial
datauini can be found in [14]. Here it is proved that the solution becomes instantly
smooth even ifuini is only bounded (see also [15]). Ifα < 1, then the solution can
develop shocks [4] and the weak solution need not be unique [3]. The notion of
entropy solution of [2] is therefore required to obtain a well-posed formulation.

There exists a vast literature on the numerical approximation of scalar conser-
vation laws (i.e. (1) withoutLα), see e.g. [17, 18, 19] and references therein. The
study of numerical methods for fractal conservation laws ismuch more recent with
a corresponding less extensive literature. Probabilisticmethods have been studied in
[21, 24], but must be applied to the equation satisfied by∂xuα in order to avoid noisy
results, and recovering from this a numerical approximation of uα may be challeng-
ing in dimension greater than 1. Deterministic methods for (1) like finite difference,
volume, and element methods (discontinuous Galerkin) are given in [13, 8, 10],
while a high order spectral vanishing viscosity method is introduced in [9]. The lat-
ter method and its analysis is very different from the formerthree methods, with
convergence and (non-optimal) error estimates that are independent ofα ∈ (0,2).
As opposed to the spectral method, the other methods are monotone or have low
order monotone variants.

Surprisingly,for all the non-spectral monotone methods the convergence dete-
riorates asα → 2, and the schemes themselves are not even defined in the limit
α = 2. The purpose of this paper is to present anasymptotic-preserving monotone
scheme for (1) defined for anyα ∈ [0,2], i.e. a scheme that provides a monotone
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approximation ofuα which is uniform with respect toα ∈ [0,2]. In particular, our
scheme naturally adapts to the change of behaviour ofLα asα → 2 andα → 0
and its convergence properties do not deteriorate in these extreme cases. The idea
behind our scheme is to add a correction term in the form of a suitably chosen van-
ishing local viscosity term. Similar ideas have been used for other equations before,
see e.g. [12] for linear equations and [20] for fully nonlinear equations. A stochastic
interpretation can be found in [5].

This paper is organised as follows. The numerical method is presented in Section
2, and its asymptotic-preserving characteristics are discussed. Due to lack of space
and the technical nature of the proofs, we skip them and referinstead to [16]. In
Sections 3 and 4, we define precisely what asymptotic preserving means and the we
give a couple numerical simulations to illustrate this property of the method.

2 The scheme

The new scheme is based on monotone convervative finite difference approxima-
tions of the local terms combined with quadrature, truncation of 1

|z|1+α near the sin-
gularity, and a second order correction term (vanishing viscosity) for the non-local
term. Except for the correction term, the scheme is similar to the schemes of [13, 8]
and of [10] withP0-elements. It is monotone, conservative, and converges inL1

loc
uniformly in α ∈ [η ,2] for all η > 0.

For given space and time stepsδx,δ t > 0, we introduce the gridtn := nδ t and
xi := iδx+ δ x

2 for n∈N0 andi ∈ Z. We identify sequences(ϕi)i∈Z of numbers with
piecewise constant functionsϕδ x : R → R equal toϕi on [iδx,(i + 1)δx) for all
i ∈ Z. Similarly, (ϕn

i )n≥0, i∈Z is identified withϕδ x,δ t : [0,∞)×R→ R equal toϕn
i

on [nδ t,(n+1)δ t)× [iδx,(i +1)δx) for all n ≥ 0 andi ∈ Z. The discretisation of
(1) can then we written as: finduα ,δ x,δ t = (un

i )n≥0, i∈Z such that

u0
i =

1
δx

∫

[iδ x,(i+1)δ x)
u0(x)dx for all i ∈ Z, (4)

un+1
i −un

i

δ t
+Fδ x(u

n)i +Lα ,δ x[u
n+1]i = 0 for all n≥ 0 and alli ∈ Z. (5)

whereFδ x is any monotone consistent and consevative discretizationof ∂x( f (u))
(see e.g [17, 18, 19]), andLα ,δ x is a monotone discretisation ofLα to be defined.
Note that the scheme has explicit convection and implicit diffusion terms.

The first and simplest idea to obtain a monotone discretization of Lα for α ∈
(0,2) is to discretize the integral in (3) using a simple (weighted) midpoint type
quadrature rule, see e.g. [13, 10, 8]. Forϕ ∈C∞

c (R) and lettingϕl = ϕ(xl ) if l ∈ Z,
this leads to

Lα [ϕ ](xi)≈ L̃α ,δ x[ϕ ]i :=− ∑
j∈Z\{0}

(

ϕi+ j −ϕi

)

∫

( jδ x− δ x
2 , jδ x+ δ x

2 )

cα
|z|1+α dz. (6)
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However, asα → 2 we havecα → 0 and thereforeL̃α ,δ x → 0 for fixedδx. In the
limit α → 2 the scheme then converges to

un+1
i −un

i

δ t
+Fδ x(u

n)i = 0 for all n≥ 0 and alli ∈ Z,

which is a discretisation of∂tu+ ∂x( f (u)) = 0 and not∂tu+ ∂x( f (u))−∆u = 0.
Hence the limitsα → 2 and δx → 0 do not commute and the scheme is not
asymptotic-preserving.

Note thatL̃α ,δ x vanishes in the limit because the measurecα dz
|z|1+α concentrates

around 0 asα → 2, while in the above midpoint rule the integral in (3) over
(− δ x

2 , δ x
2 ) will always be zero by symmetry. We therefore need to replacethe mid-

point rule on this interval by a more accurate rule based on the second order in-
terpolation polynomialPi of ϕ around the nodexi . We find that this polynomial
satisfiesPi(xi + z)−Pi(xi)−P′

i (xi)z= 1
2δ x2

(

z2ϕi−1−2z2ϕi + z2ϕi+1
)

and the new
discretization therefore becomes

L̂α ,δ x[ϕ ]i :=−cα

∫ δ x
2

− δ x
2

P(xi + z)−P(xi)−P′(xi)z
|z|1+α dz+ L̃α ,δ x[ϕ ]i

=
ϕi+1−2ϕi +ϕi−1

δx2

∫

(− δ x
2 , δ x

2 )

cα |z|1−α

2
dz+ L̃α ,δ x[ϕ ]i .

We can check that the new approximation has the following truncation error [16]:

|Lα [ϕ ](xi)− L̂α ,δ x[ϕ ]i |

≤ C
(

‖ϕ(4)‖L∞ δx4−α + ‖ϕ ′′‖L∞cα(
1
α + 1

|1−α |)δxmin(1,2−α)+ ‖ϕ ′‖L∞ δx
)

,

which is O(δx2)+ o(1) asα → 2 and therefore does not deteriorate in this limit.
Note that ifα = 1, then 1

|1−α |δxmin(1,2−α) must be replaced withδx| ln(δx)|.

In order to obtain an approximation which uses only a finite number of discrete
values, we also truncate the sum in (6) as in [13] at some indexJδ x > 0 (which may
depend uponα) whereJδ xδx→ ∞ asδx→ 0. The final approximate operatorLα ,δ x
is therefore

Lα ,δ x[ϕ ]i =− ∑
0<| j |≤Jδ x

W j
α ,δ x(ϕi+ j −ϕi)−WJδ x+1

α ,δ x

(

ϕi−Jδ x−1−ϕi
)

−WJδ x+1
α ,δ x

(

ϕi+Jδ x+1−ϕi
)

−W0
α ,δ x

ϕi+1−2ϕi +ϕi−1

δx2 , (7)

with weights
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W0
α ,δ x =

∫

(− δ x
2 , δ x

2 )

cα |z|1−α

2
dz,

W j
α ,δ x =

∫

( jδ x− δ x
2 , jδ x+ δ x

2 )

cα

|z|1+α dz for 0< | j| ≤ Jδ x,

WJδ x+1
α ,δ x =

∫

z>Jδ xδ x+ δ x
2

cα
|z|1+α dz=

∫

z<−Jδ xδ x− δ x
2

cα
|z|1+α dz.

(8)

The last term in (7) contains the classical discretization of ϕ ′′(xi) and is the new
correction term compared with the discretisations of [13, 10, 8]. This discretisations
fit with the generic framework of [13] from which we can conclude:

Theorem 1 ([16]). Under a standard CFL condition for the convection term,

1. There is a unique solution uα ,δ x,δ t of the scheme defined by(4), (5), (7) and (8),
satisfying‖uα ,δ x,δ t‖L∞ ≤ ‖uini‖L∞ and|uα ,δ x,δ t (t, ·)|BV ≤ |uini |BV for all t > 0.

2. For fixedα, uα ,δ x,δ t converges in C([0,∞);L1
loc) as (δx,δ t) → 0 to the unique

entropy solution uα of (1).

Remark 1.We setL2,δ x[ϕ ]i = −(ϕi+1−2ϕi +ϕi−1)/δx2 andL0,δ x[ϕ ]i = ϕi . This
consists in fixingδx and sendingα → 2 or α → 0 in (7). Taking the limits in the
scheme (5), we obtain the classical implicit scheme for the (1) with α = 2 orα = 0.

3 The asymptotic-preserving property

The scheme is asymptotic-preserving if its solutionuα ,δ x,δ t satisfies the following
uniform approximation result away fromα = 0 (see [16] for the caseα = 0):

∀η > 0, sup
α∈[η,2]

dL1
loc([0,∞)×R)(uα ,δ x,δ t ,uα)→ 0 as(δx,δ t)→ 0 (9)

wheredL1
loc([0,∞)×R)(u,v) = ∑∞

n=12−nmin(1, ||u− v||L1([0,n)×(−n,n))) is the usual dis-

tance defining the topology ofL1
loc([0,∞)×R). Here and elsewhere, the convergence

(δx,δ t)→ 0 is always taken under a standard CFL condition depending onthe def-
inition of the convective fluxF in (5) (see e.g. [13, 10, 8]). That this formulation of
the asymptotic-preserving property is very general and does not require an explicit
error estimate independent onα. Such an estimate seems particularly challenging
to obtain in the absence of regularity of the solution ast → 0.

Theorem 2 ([16]). Under a standard CFL for the convection part, the numerical
scheme defined by(4) (5), (7) and(8) is asymptotic-preserving.

Next we want to illustrate this property numerically. As it is formulated now, this
would require us to have access to the exact solutionuα , which is not the case. We
overcome this difficulty by using instead the following equivalent reformulation of
(9) (see [16]), which can be checked by computing approximate solutions only:
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∀α0 ∈ (0,2] , for any sequence(δxk,δ tk)k∈N converging to 0:

sup
k≥1

dL1
loc([0,∞)×R)(uα ,δ xk,δ tk

,uα0,δ xk,δ tk
)→ 0 asα → α0. (10)

Remark 2.The matrix ofLα ,δ x defined by (7) is a semi-definite Toepliz matrix as in
[13, 10, 8]. Implementation of the scheme thus takes advantage of super-fast mul-
tiplication and inversion algorithms for these matrices [7, 25]. Computing several
approximate solutions, as required in (10), is therefore not very expensive.

4 Numerical results

In all these tests, we take the Burgers fluxf (u) = u2

2 andFδ x given by a MUSCL
method. The final time isT = 1 and the spatial computational domain is[−1,1]. We
use the same truncation parameters (in particularJδ x) as in [13, Section 4.1.2].

For each test, we choose the discretisation steps(δxk,δ tk) = ( 1
2k×50

, 1
2k×100

)
for k = 1, . . . ,4, which all satisfy the CFL for (5). We also select four values
(αm)m=1,...,4 = (1.8,1.9,1.99,1.999)which are nearα0 = 2, the difficult case in as-
sessing the uniformity of the convergence in (10) and the reason why we introduced
the correction term in (7). We then indicate, form= 1, . . . ,4, the value of

Em = sup
t∈[0,1]

||uαm,δ x,δ t (·, t)−uα0,δ x,δ t(·, t)||L1([−1,1]),

that is theL∞(L1) norm ofuαm,δ x,δ t −uα0,δ x,δ t on the computational domain. This
is a stronger norm that theL1(L1) norm used in (10). Hence,Em approaching 0 asm
increases is an even better indication that the scheme is asymptotic-preserving.

Test 1 (rarefaction): we select a Riemann initial condition,uini = −1 if x < 0
anduini = 1 if x> 0. In this case both convection and diffusion work to smooth out
the intial data. Table 1 shows the values of(Em)m=1,...,4 for both the uncorrected
scheme from [13] based on (6) and our corrected scheme based on (7).

Table 1 Comparison be-
tween the uncorrected scheme
of [13] and our corrected
scheme,uini =−1 on(−∞,0),
uini = 1 on(0,∞).

E1 E2 E3 E4

Uncorrected scheme1.8E-1 3E-1 8.8E-1 9.1E-1
Corrected scheme 5.1E-2 2.2E-2 1.7E-4 1.7E-5

Test 2 (smooth shock): the initial condition isuini(x) = 1 if x< 0 anduini(x) =
−1 if x > 0. Here the hyperbolic and non-local terms in (1) compete to maintain
or diffuse the initial shock. Sinceαm is near 2 however, any solution is instantly
smooth, but has much larger gradients nearx= 0 than the solution in Test 1.

Both tests confirm that the scheme defined by (4), (5), (7) and (8) is asymptotic-
preserving. They also confirm that, without the order 2 correction in (7), the scheme
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Table 2 Comparison be-
tween the uncorrected scheme
of [13] and our corrected
scheme,uini = 1 on (−∞,0),
uini =−1 on(0,∞).

E1 E2 E3 E4

Uncorrected scheme2.1E-1 3.9E-1 1.3 1.3
Corrected scheme 5.3E-2 2.3E-2 3.2E-44.2E-5

deteriorates asα → 2 and does not provide a correct numerical solution at any
reasonable resolution. This is also illustrated in Figure 1, where we plot the solutions
of both schemes forα = 1.99 for the initial condition of Test 2 and(δx,δ t) =
( 1

24×50
, 1

24×100
). Even at this very high resolution, the uncorrected scheme provides

an incorrect approximate solution which, as expected, is closer to the solution of
∂tu+ ∂x( f (u)) than to the solution of (1).

−1 −0.5 0.5 1

−1  

−0.5

0.5 

1   

Fig. 1 Approximate solutions
provided atT = 1 by the
corrected (continuous) and
uncorrected (dashed) schemes
for (1) with α = 1.99. The
dotted line is both the initial
condition and the solution to
∂tu+∂x( f (u)) = 0.

5 Conclusion

We have presented a monotone numerical method for fractional conservation laws
which is asymptotic-preserving with respect to the fractional power of the Lapla-
cian. The scheme automatically adjusts to the change of nature of the equation as
the power of the Laplacian goes to 1 (i.e.α → 2 in (1)) and therefore provides accu-
rate approximate solutions for any power of the fractional Laplacian. We have given
numerical results to illustrate the asymptotic-preserving property of our method, as
well as the necessity of modifying previously studied monotone methods to obtain
this property.

The complete theoretical study of such monotone asymptotic-preserving schemes
will be presented in the forthcomming paper [16]. Here a general class of fractional
degenerate parabolic equations are considered that include (1) as a special case.
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17. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: P.G. Ciarlet, J.L. Lions

(eds.) Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, VII,
pp. 713–1020. North-Holland, Amsterdam (2000)

18. Godlewski, E., Raviart, P.A.: Numerical approximationof hyperbolic systems of conservation
laws,Applied Mathematematical Sciences, vol. 118. Springer, New-York (1996)

19. Holden, H., H., R.N.: Front tracking for Hyperbolic Conservation Laws. Springer (2002)
20. Jakobsen, E.R., Karlsen, K.H., La Chioma, C.: Error estimates for approximate solutions to

Bellman equations associated with controlled jump-diffusions. Numer. Math.110(2), 221–255
(2008)
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