A uniformly converging scheme for fractal
conservation laws
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Abstract The fractal conservation lawu + dx(f(u)) + (—A)%/?u = 0 changes
characteristics ag — 2 from non-local and weakly diffusive to local and strongly
diffusive. In this paper we present a corrected finite differe quadrature method
for (—A)?/2 with a € [0, 2], combined with usual finite volume methods for the hy-
perbolic term, that automatically adjusts to this changkiamniformly convergent
with respect tax € [n,2] for anyn > 0. We provide numerical results which illus-
trate this asymptotic-preserving property as well as theuwaiformity of previous
finite difference or finite volume type of methods.

1 Introduction

We consider the following fractional conservation law

OiUg + Ox(f(Ug)) + Zulug] =0, t >0, XER, )
Ug (0,X) = Uini (X), XER,
wherea € [0,2], Ly = (—A)9/2,

Uini € L”(R)NBV(R) and f:R — Rislocally Lipschitz-continuous (2)

Such models appear for example in mathematical finance,efagation or semi-
conductor growth [23, 26, 11, 1]. The fractional Laplacigh = (—A)O’/2 can be
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defined e.g. as a Fourier multiplier, but for our purpose tilesing equivalent def-
inition, valid for any¢ € CZ’(R) (set of smooth compactly supported functions), is
more useful:

Z0/81X) = B, a=o
Zal9)0) = —cq [ LELEIRAE Gz ac 02, @
L18]() = -2 (), a=2

wherel _ j is the characteristic function ¢f-1,1], cg = (ZH)UW
I" is the Euler function [15]. :

As a — 2, the operatot?, changes nature and properties. Fore (0,2),

%y is anon-localpseudo-differential operator of order2, and it has relatively
weak diffusive properties since the decay at infinity of thedamental solution of
ou+ %4 [u] = 0is polynomial. Ata = 2, 4y = —A is alocal operator with strong
diffusive properties and a fundamental solution with stggronential decay. When
a vary over|0,2], the qualitative behaviour of the solutiol of (1) also changes.
In the case thadr = 2, it is well-known thatu, becomes instantly smooth for- 0
even when the initial data is discontinuous. On the contfarya = 0, the solu-
tion may develop shocks and uniqueness of the solutionresjadditional entropy
conditions and the corresponding notion of entropy sotufz?]. The study of the
fractional casex € (0,2) dates back to [6], with some restrictions arand f. The
first complete study in the case> 1 for any locally LipschitzZf and bounded initial
datau;n; can be found in [14]. Here it is proved that the solution beesinstantly
smooth even ifl,; is only bounded (see also [15]).df < 1, then the solution can
develop shocks [4] and the weak solution need not be uniquelf@ notion of
entropy solution of [2] is therefore required to obtain alvpelsed formulation.

There exists a vast literature on the numerical approxomatif scalar conser-
vation laws (i.e. (1) without%), see e.g. [17, 18, 19] and references therein. The
study of numerical methods for fractal conservation lawsigh more recent with
a corresponding less extensive literature. Probabiliséithods have been studied in
[21, 24], but must be applied to the equation satisfie@joy; in order to avoid noisy
results, and recovering from this a numerical approxinmatitu, may be challeng-
ing in dimension greater than 1. Deterministic methods Ipfike finite difference,
volume, and element methods (discontinuous Galerkin) arengn [13, 8, 10],
while a high order spectral vanishing viscosity method isiduced in [9]. The lat-
ter method and its analysis is very different from the foritieee methods, with
convergence and (non-optimal) error estimates that amperdent obx € (0,2).

As opposed to the spectral method, the other methods aretoraor have low
order monotone variants.

Surprisingly,for all the non-spectral monotone methods the convergeate d
riorates asa — 2, and the schemes themselves are not even defined in the limit
o = 2. The purpose of this paper is to presentaagmptotic-preserving monotone
scheme for (1) defined for any € [0,2], i.e. a scheme that provides a monotone
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approximation ofug which is uniform with respect tar € [0,2]. In particular, our
scheme naturally adapts to the change of behavioupfasa — 2 anda — 0
and its convergence properties do not deteriorate in thdasenee cases. The idea
behind our scheme is to add a correction term in the form oftatsy chosen van-
ishing local viscosity term. Similar ideas have been usedttoer equations before,
see e.g. [12] for linear equations and [20] for fully nonAnequations. A stochastic
interpretation can be found in [5].

This paper is organised as follows. The numerical methoteisgmted in Section
2, and its asymptotic-preserving characteristics areaudsed. Due to lack of space
and the technical nature of the proofs, we skip them and ieftead to [16]. In
Sections 3 and 4, we define precisely what asymptotic preggmveans and the we
give a couple numerical simulations to illustrate this gndyp of the method.

2 The scheme

The new scheme is based on monotone convervative finitereliite approxima-

tions of the local terms combined with quadrature, trumeatf —+— near the sin-

ZTra

gularity, and a second order correction term (vanishingo&iiety‘)‘for the non-local
term. Except for the correction term, the scheme is simildhé schemes of [13, 8]
and of [10] with Py-elements. It is monotone, conservative, and converge%gn
uniformly ina € [n,2] forall n > 0.

For given space and time steps, 6t > 0, we introduce the grith := ndt and
X = 10X+ 5—2X for n € Np andi € Z. We identify sequencg®; )iz of numbers with
piecewise constant functionfs;, : R — R equal to¢; on [idx, (i + 1)dx) for all
i € Z. Similarly, (¢")n>0,icz is identified with@sy 5t : [0,%0) x R — R equal tog"
on [ndt, (N4 1)dt) x [idx, (i + 1)dx) for all n > 0 andi € Z. The discretisation of
(1) can then we written as: fing, 54 5t = (U")n>0,icz such that

1
0 .
U == Up(X)dx foralli e Z, 4
: 5X/[i6x,(i+1)6x) o) @

umtl g0

'Tti + Zox(UN)i + Ly 5 Ui =0 foralln>0andalli € Z. (5)

where.Zs, is any monotone consistent and consevative discretizafieR(f(u))
(see e.g [17, 18, 19]), and}; 5« is @ monotone discretisation ¢f, to be defined.
Note that the scheme has explicit convection and impli¢itgion terms.

The first and simplest idea to obtain a monotone discretizadf %, for a €
(0,2) is to discretize the integral in (3) using a simple (weighteddpoint type
quadrature rule, see e.g. [13, 10, 8]. oe CZ’(R) and lettingg, = ¢ (x) if | € Z,
this leads to

~ Ca
L )~ Ly sxldli = — iri — O ——d 6
[¢](x) x[9] jGZE\{O} (¢+J ¢)/(j6szx,j6x+52x) Za z (6)
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However, asa — 2 we havecy, — 0 and thereforei’za’(gx — 0 for fixed éx. In the
limit o — 2 the scheme then converges to

n+1

Yi

_ u{"
ot

which is a discretisation ofu+ dy(f(u)) = 0 and notgu+ dx(f(u)) — Au = 0.
Hence the limitsa — 2 and dx — 0 do not commute and the scheme is not
asymptotic-preserving.

Note that.Z; 54 vanishes in the limit because the measéﬁéé concentrates
around 0 asa — 2, while in the above midpoint rule the integral in (3) over
(—9%, 9X) will always be zero by symmetry. We therefore need to replaeenid-
point rule on this interval by a more accurate rule based ensdtond order in-
terpolation polynomiaR of ¢ around the node;. We find that this polynomial
satisfiesP (x +2) — R(x) — P/(x)2= 317 (Z¢i-1— 22°¢i + Z¢i-1) and the new
discretization therefore becomes

+ Zsx(UMi =0 foralln>0andalli € Z,

o)

% ¥ P +2) - Px) -P(x)z

ga,éx[d’]i = _Ca/ dx ( I ) |Z|l(+a) ( I) dZ-l—fa,éx[‘P]i
VT

_ 912+ ¢ia calzt ~ |

B T /(%’%) sz"' ga,éx[ml-

We can check that the new approximation has the followingdation error [16]:

|Lal9)(%) ~ Za.ox()i]
< C(119 o8 +[14" a3 + ) 3K + ¢/ 6x),

which is O(3x?) + o(1) asa — 2 and therefore does not deteriorate in this limit.

Note that ifa = 1, thenﬁ SxMin(L2=@) myst be replaced withx| In(3x)|.

In order to obtain an approximation which uses only a finitsmbar of discrete
values, we also truncate the sum in (6) as in [13] at some idglex 0 (which may
depend upour) whereJs,0x — 0 asdx — 0. The final approximate operatéfy sx
is therefore '

Lol dli = — g W) (B — 6) —Woos (B35, 1— 1)
O<” SJéx

’Wc?,ax di1— ;f;r ¢’i—1, @

Jsxt+1
W5 (i as1— i)

with weights
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1-a
CalZ]
Wl = ———dz
o,0X )
' -%.% 2
i Ca .
w) :/ dz  for 0<|j|<J ®)
a,o . . 1 = Jox»
X Jox- 8 joxr ) |2
Jsy+1 Ca Ca
W 3% :/ ——dz= ———dz
o
a,ox Z>35X5X+%X |Z|l+a z<—J5X5x7%X |Z|1+a

The last term in (7) contains the classical discretizatibg’¢(x;) and is the new
correction term compared with the discretisations of [18,8]. This discretisations
fit with the generic framework of [13] from which we can condtu

Theorem 1 ([16]). Under a standard CFL condition for the convection term,

1. There is a unique solution,y 5 of the scheme defined B4), (5), (7) and(8),
satisfying||uq sx st l[L= < |[Uini[|L= and|Ug sx st (t,-)[BV < [Uini|Bv for allt > 0.

2. For fixeda, ug sx 5t CONVerges in @0,);Lt ) as(dx,8t) — 0 to the unique
entropy solution g of (1).

Remark 1We set% sy[li = —(§i+1 — 261 + ¢i—1)/5xX° andZ 5,[@]i = ¢i. This
consists in fixingdx and sendingr — 2 or a — 0 in (7). Taking the limits in the
scheme (5), we obtain the classical implicit scheme for thevith o =2 ora = 0.

3 The asymptotic-preserving property

The scheme is asymptotic-preserving if its solutigny, 5 satisfies the following
uniform approximation result away from= 0 (see [16] for the case = 0):

vn >0, S[UDZ] dL&)C([O,oo)xR)(ua,(Sx,éta Uq) — 0 as(dx,6t) — 0 9)
agln,

wheredec([oym)XR)(u,v) =Y 127 "min(, |[u— V|| 10 )« (—nn))) IS the usual dis-
tance defining the topology dlfoc([o, ) x R). Here and elsewhere, the convergence
(0x,0t) — 0 is always taken under a standard CFL condition dependirigeodef-
inition of the convective flux# in (5) (see e.g. [13, 10, 8]). That this formulation of
the asymptotic-preserving property is very general and caé require an explicit
error estimate independent on Such an estimate seems particularly challenging
to obtain in the absence of regularity of the solutiot as0.

Theorem 2 ([16]). Under a standard CFL for the convection part, the numerical
scheme defined t{¢) (5), (7) and(8) is asymptotic-preserving.

Next we want to illustrate this property numerically. Assformulated now, this
would require us to have access to the exact solutigrwhich is not the case. We
overcome this difficulty by using instead the following ecalent reformulation of
(9) (see [16]), which can be checked by computing approxérealutions only:
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Vo € (0,2], forany sequencx, Otk)ken converging to O:

SUdell ([o,m)XR)(ua,éxk,étka uao,éxk,étk> —0asa — ap.  (10)
k>1 et

Remark 2The matrix of.Z; 5 defined by (7) is a semi-definite Toepliz matrix as in
[13, 10, 8]. Implementation of the scheme thus takes adgerté super-fast mul-
tiplication and inversion algorithms for these matrices4%]. Computing several
approximate solutions, as required in (10), is therefoteraoy expensive.

4 Numerical results

In all these tests, we take the Burgers flixi) = “—22 and.Zsy given by a MUSCL
method. The final time i¥ = 1 and the spatial computational domain-idl, 1]. We
use the same truncation parameters (in particlggras in [13, Section 4.1.2].

For each test, we choose the discretisation s{@pg, Sti) = (355 Fo50)
for k =1,...,4, which all satisfy the CFL for (5). We also select four vaue
(dm)m=1,...4 = (1.8,1.9,1.99,1.999) which are neatg = 2, the difficult case in as-

sessing the uniformity of the convergence in (10) and theaeahy we introduced
the correction term in (7). We then indicate, foe=1,. .. 4, the value of

Em=sUp [[Ugy,sxt (1) = Uag,ox.at ()| |L1(—1,1)):
te[0,1]

that is theL®(L') norm Of Ugy, 6% 6t — Uag,sx,5t ON the computational domain. This
is a stronger norm that the" (L) norm used in (10). Henc&y, approaching 0 as
increases is an even better indication that the schemerispstic-preserving.

Test 1 (rarefaction): we select a Riemann initial conditiony,; = —1 if x < 0
anduini = 1 if x > 0. In this case both convection and diffusion work to smoath o
the intial data. Table 1 shows the values(Bf)m=1,... 4 for both the uncorrected
scheme from [13] based on (6) and our corrected scheme bag&dl.o

Table 1 Comparison be-
tween the uncorrected scheme
of [13] and our corrected
schemeynyi = —1 on(—e,0),

Uini = 1 on (0, ).

Uncorrected schemel.8E-1 | 3E-1 | 8.8E-1 | 9.1E-1
Corrected scheme| 5.1E-2 (2.2E-2| 1.7E-4 | 1.7E-5

Test 2 (smooth shock): the initial condition isuini(X) = 1 if X < 0 anduip;(x) =
—1if x > 0. Here the hyperbolic and non-local terms in (1) compete &mntain
or diffuse the initial shock. Sincey, is near 2 however, any solution is instantly
smooth, but has much larger gradients near0 than the solution in Test 1.

Both tests confirm that the scheme defined by (4), (5), (7) 8his @symptotic-
preserving. They also confirm that, without the order 2 adioa in (7), the scheme
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Table 2 Comparison be-
tween the uncorrected scheme

= = = Eq
of [13] and our corrected
schemepiyi = 1 on (—w, 0), Uncorrected scheme2.1E-1 | 3.9E-1| 13 | 1.3
N Corrected scheme| 5.3E-2 | 2.3E-2 |3.2E-44.2E-
Uini = —1 on (0, ).

deteriorates asr — 2 and does not provide a correct numerical solution at any
reasonable resolution. This is also illustrated in FigyneHere we plot the solutions

of both schemes foor = 1.99 for the initial condition of Test 2 andx, ot) =
(3555 7—555)- Even at this very high resolution, the uncorrected schereiges

an incorrect approximate solution which, as expected,dseslto the solution of
Giu—+ d«(f(u)) than to the solution of (1).

\ Fig. 1 Approximate solutions

; ; : ; ; provided atT = 1 by the
-1 -0.5 \ 0.5 1 corrected (continuous) and
uncorrected (dashed) schemes
-0.5+1 for (1) with a = 1.99. The
" dotted line is both the initial

AN condition and the solution to
—1 g T diu+ dx(f(u)) =0.

5 Conclusion

We have presented a monotone numerical method for fra¢tbmmservation laws
which is asymptotic-preserving with respect to the frawdiioppower of the Lapla-
cian. The scheme automatically adjusts to the change ofaafithe equation as
the power of the Laplacian goes to 1 (ice— 2 in (1)) and therefore provides accu-
rate approximate solutions for any power of the fractioreglllacian. We have given
numerical results to illustrate the asymptotic-presagyiroperty of our method, as
well as the necessity of modifying previously studied mometmethods to obtain
this property.

The complete theoretical study of such monotone asymppoéiserving schemes
will be presented in the forthcomming paper [16]. Here a galrdass of fractional
degenerate parabolic equations are considered that sn¢l)és a special case.
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