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Abstract. The Gradient Scheme framework provides a unified analysis set-

ting for many different families of numerical methods for diffusion equations.

We show in this paper that the Gradient Scheme framework can be adapted to
elasticity equations, and provides error estimates for linear elasticity and con-

vergence results for non-linear elasticity. We also establish that several classical

and modern numerical methods for elasticity are embedded in the Gradient
Scheme framework, which allows us to obtain convergence results for these

methods in cases where the solution does not satisfy the full H2-regularity or
for non-linear models.

1. Introduction

We are interested in the numerical approximation of the (possibly non-linear)
elasticity equation

(1.1)

−div(σ(x, ε(u)) = F , in Ω,

ε(u) = ∇u+(∇u)T

2 , in Ω,
u = 0 , on ΓD ,
σ(x, ε(u))n = g , on ΓN ,

where Ω ⊂ Rd is the body submitted to the force field F, n is the unit normal
to ∂Ω pointing outward Ω, ΓD and ΓN are subsets of ∂Ω on which the body is
respectively fixed and submitted to traction, σ and ε are the second-order stress
and strain tensors, u = (ūi)i=1,...,d : Ω→ Rd describes local displacements and the
gradient is written in columns: ∇u = (∂j ūi)i,j=1,...,d.

Although it does not include geometrically non-linear elasticity [33], Model (1.1)
covers a number of meaningful linear and non-linear elasticity models:

• the linear elasticity model with σ(x, ε(u)) = C(x)ε(u), in which C is a 4th
order stiffness tensor,
• the damage models of [9] with σ(x, ε(u)) = (1−D(ε(u)))C(x)ε(u), where

the damage index D is a scalar function,
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• the non-linear Hencky–von Mises elasticity model [35] in which σ(x, ε(u)) =

λ̃(dev(ε(u))) tr(ε(u))I + 2µ̃(dev(ε(u)))ε(u), where λ̃ and µ̃ are the non-
linear Lamé coefficients, tr is the trace operator and dev(τ ) = (τ− 1

d tr(τ )I) :

(τ − 1
d tr(τ )I) is the deviatoric operator.

Convergence of conforming Finite Element methods for the linear elasticity prob-
lem can be obtained by using standard techniques [6,10]. This convergence analysis
covers the case when the solution does not possess a full H2-regularity. However,
convergence analysis of non-conforming Finite Element methods for linear elas-
ticity is most often done using the full H2-regularity of the solution [4, 6–8, 31].
The situation is even more restricted when it comes to non-linear models. Con-
vergence analysis of numerical methods for non-linear elasticity has been mostly
carried out for conforming approximations, and assuming the full H2-regularity of
the solution [5, 25]. Conforming approximations are formulated by simply writ-
ting the weak formulation of the problem, in which the infinite-dimensional spaces
are replaced with finite-dimensional subspaces. A number of schemes for elasticity
are however non-conforming, either because the spaces of approximate solutions
are not subspaces of the spaces of continuous solutions, or because discrete pro-
jection/averaging operators are introduced in the weak formulation of the scheme.
This is in particular the case for the stabilised nodal strain formulation [24, 30, 38]
and the modified Hu-Washizu scheme [31], both designed to efficiently deal with
the nearly incompressible limit. The convergence of some non-conforming methods
for non-linear elasticity has been carried out in [37], using the minimisation formu-
lation of non-linear elasticity (see also [36] for the convergence of Crouzeix-Raviart
non-conforming finite elements for an elliptic minimisation problem). This analy-
sis is however conducted under strong regularity assumptions on the solution (it
must belong to H1+m for some m > d/2) which prevents its generalisation to cases
where σ is discontinuous with respect to x, a case which occurs in the modelling of
composite materials for example. Moreover, [37] does not cover methods, such as
the stabilised nodal strain formulation or the modified Hu-Washizu scheme men-
tioned above, that are of particular importance in the numerical approximation of
elasticity. For such methods, convergence analyses therefore seem to be limited to
linear models and H2 solutions. In practice, the full H2-regularity is not achieved
due to the non-convexity of the domain, corner singularities, discontinuities of the
stiffness tensor (e.g. in composite materials) and mixed boundary conditions.

The Gradient Scheme framework is a setting, based on a few discrete elements
and properties, which has been recently developed to analyse numerical methods
for a vast number of diffusion models: linear or non-linear, local or non-local,
stationary or transient models, etc. [15–17,20,21]. This framework is also currently
being extended to the linear poroelasticity equation, see [1]. It has been shown
that a number of well-known methods for diffusion equations are Gradient Schemes
[15, 16, 19, 22]: Galerkin methods (including conforming Finite Element methods),
Mixed Finite Element methods, Hybrid Mimetic Mixed methods (including Hybrid
Finite Volumes, Mimetic Finite Differences and Mixed Finite Volumes), Discrete
Duality Finite Volume methods, etc. The Gradient Scheme framework provides a
unified convergence analysis of conforming and non-conforming schemes, for linear
and non-linear diffusion equations, under assumptions on the data and solution
which are compatible with field applications (in particular, no restrictive regularity
assumption is required).

The aim of this paper is to extend the Gradient Scheme framework to linear and
non-linear elasticity models, thus showing that all the advantages of this analysis
framework can be applied to conforming and non-conforming numerical methods
developed for linear elasticity equations. Since Gradient Schemes are seamlessly
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applicable to linear and non-linear models, interpreting numerical methods as Gra-
dient Schemes also allows us to adapt these methods to non-linear elasticity equa-
tions, and to establish their convergence for such models.

The paper is organised as follows. In the next section, we introduce the notion of
Gradient Discretisations, used to define Gradient Schemes for (1.1). We also state
the three properties, consistency, limit-conformity and coercivity, that a Gradient
Discretisation must satisfy in order to lead to a stable and convergent numerical
scheme. In Section 3.1, we first analyse the convergence of Gradient Schemes for
linear elasticity equations, providing an error estimate under very weak regularity
assumptions on the data and solution. We then carry out the convergence analysis
for fully non-linear models, proving the convergence of the approximate solution
under the same unrestrictive assumptions. Section 4 is devoted to the study of
some examples of Gradient Scheme. We show in particular that several conforming
and non-conforming schemes for elasticity equations, including methods developed
to handle the nearly incompressible limit and acute bending, do fall in the frame-
work of Gradient Schemes and that our convergence analysis – for both linear and
non-linear models – therefore applies to them. Some conclusions of the paper are
summarised in the final section.

2. Definition of Gradient Schemes for elasticity equations

Our general assumptions on the data are as follows.

(2.1)
Ω is a connected open subset of Rd (d ≥ 1) with Lipschitz boundary,
ΓD and ΓN are disjoint subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN ,
ΓD has a non-zero (d− 1)-dimensional measure and ΓN is open in ∂Ω,

(2.2) F ∈ L2(Ω) , g ∈ L2(ΓN )

(where L2(X) = (L2(X))d) and, denoting by Sd×d the set of symmetric d × d
tensors,

(2.3)

σ : (x, τ ) ∈ Ω× Sd×d 7→ σ(x, τ ) ∈ Sd×d is a Caratheodory
function (i.e. measurable w.r.t. x and continuous w.r.t. τ ) and
∃σ∗, σ∗ > 0 such that, for a.e. x ∈ Ω , ∀τ ,ω ∈ Sd×d ,
|σ(x, τ )| ≤ σ∗|τ |+ σ∗ (growth),
σ(x, τ ) : τ ≥ σ∗|τ |2 (coercivity),
(σ(x, τ )− σ(x,ω)) : (τ − ω) ≥ 0 (monotonicity),

where, for τ ,ω ∈ Rd×d, τ : ω =
∑d

i,j=1 τ ijωij and |τ |2 = τ : τ . In the following,

we also denote by · and | · | the Euclidean product and norm on Rd.

Remark 2.1. Note that the linear elasticity and the Hencky–von Mises models both
satisfy these assumptions (see [2, Lemma 4.1] for a proof of the monotonicity of the
Hencky–von Mises model). One can also see that the damage model σ(x, ε(u)) =
(1−D(ε(u)))C(x)ε(u) satisfies (2.3) if 1−D(ξ) = f(|ξ|) where, for some 0 < d ≤ d,
f is continuous [0,∞)→ [d, d] and such that s ∈ [0,∞)→ sf(s) is non-decreasing.
However, this does not include geometrically non-linear elasticity [33].

Under these assumptions, and defining H1(Ω) = H1(Ω)d, γ : H1(Ω) → L2(∂Ω)
the trace operator and H1

ΓD
(Ω) = {v ∈ H1(Ω) : γ(v) = 0 on ΓD}, the weak

formulation of (1.1) is

(2.4)

Find u ∈ H1
ΓD

(Ω) such that, for any v ∈ H1
ΓD

(Ω),∫
Ω

σ(x, ε(u)(x)) : ε(v)(x)dx =

∫
Ω

F(x) · v(x)dx

+

∫
ΓN

g(x) · γ(v)(x)dS(x)
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where dS(x) denotes the (d− 1)-dimensional integral over ∂Ω.
Gradient Schemes for such equations are based on Gradient Discretisations,

which consist in introducing a discrete space, gradient, trace and reconstructed
function, and using those to approximate (2.4). The following definitions are
adapted to elasticity equations, and to non-homogeneous mixed boundary condi-
tions, from the theory developed in [16,21] for diffusion equations with homogeneous
Dirichlet boundary conditions.

Definition 2.2 (Gradient Discretisation for elasticity equations).
A Gradient Discretisation D for Problem (1.1) is D = (XD,ΓD

,ΠD, TD,∇D), where:

(1) the set of discrete unknowns XD,ΓD
is a finite dimensional vector space on

R, whose definition includes the null trace condition on ΓD,
(2) the linear mapping ΠD : XD,ΓD

→ L2(Ω) is the reconstruction of the
approximate function,

(3) the linear mapping TD : XD,ΓD
→ L2(ΓN ) is a discrete trace operator,

(4) the linear mapping ∇D : XD,ΓD
→ L2(Ω)d is the discrete gradient op-

erator. It must be chosen such that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm on
XD,ΓD

.

Once a Gradient Discretisation is available, the related Gradient Scheme consists
in writing the weak formulation (2.4) with the continuous spaces and operators
replaced with their discrete counterparts.

Definition 2.3 (Gradient Scheme for elasticity equations).
If D = (XD,ΓD

,ΠD, TD,∇D) is a Gradient Discretisation in the sense of Definition
2.2 then we define the related Gradient Scheme for (1.1) by

(2.5)

Find u ∈ XD,ΓD
such that, ∀v ∈ XD,ΓD

,∫
Ω

σ(x, εD(u)(x)) : εD(v)(x)dx =

∫
Ω

F(x) ·ΠDv(x)dx

+

∫
ΓN

g(x) · TD(v)(x)dS(x)

where εD(v) = ∇Dv+(∇Dv)T

2 .

The definitions of consistency, limit-conformity and compactness of Gradient
Discretisations for Equation (1.1) are the same as for diffusion equations, taking
into account the fact that functions are vector- or tensor-valued in the elasticity
model.

The consistency of a sequence of Gradient Discretisations ensure that any func-
tion in the energy space can be approximated, along with its gradient, by discrete
functions.

Definition 2.4 (Consistency). Let D be a Gradient Discretisation in the sense of
Definition 2.2, and let SD : H1

ΓD
(Ω)→ [0,+∞) be defined by

(2.6)
∀ϕ ∈ H1

ΓD
(Ω) ,

SD(ϕ) = min
v∈XD,ΓD

{
‖ΠDv −ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

}
.

A sequence (Dm)m∈N of Gradient Discretisations is said to be consistent if, for
all ϕ ∈ H1

ΓD
(Ω), SDm(ϕ)→ 0 as m→∞.

The limit-conformity of a sequence of Gradient Discretisations ensures that the
dual of the discrete gradient behaves as an approximation of the divergence opera-
tor. We let

Hdiv(Ω,ΓN ) = {τ ∈ L2(Ω)d : divτ ∈ L2(Ω) , γn(τ ) ∈ L2(ΓN )},
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where γn(τ ) is the normal trace of τ . This normal trace is well defined inH−1/2(∂Ω)d

if τ ∈ L2(Ω)d and div(τ ) ∈ L2(Ω) (1). The meaning of “γn(τ ) ∈ L2(ΓN )” is: there
exists h ∈ L2(ΓN ) such that, for any ϕ ∈ H1/2(∂Ω)d with ϕ = 0 on ΓD,

(2.7) 〈γn(τ ),ϕ〉H−1/2(∂Ω)d,H1/2(∂Ω)d =

∫
ΓN

h(x) ·ϕ(x) dS(x).

Since ΓN is open in ∂Ω, the restrictions to ΓN of functions ϕ as above form a
dense set in L2(ΓN ), and Relation (2.7) defines h uniquely; we can therefore use
the notation γn(τ ) for h.

Definition 2.5 (Limit-conformity). Let D be a Gradient Discretisation in the sense
of Definition 2.2. We define WD: Hdiv(Ω,ΓN )→ [0,+∞) by

(2.8)

∀τ ∈ Hdiv(Ω,ΓN ) ,

WD(τ ) = max
v∈XD,ΓD

v 6=0

1

‖v‖D

∣∣∣∣∣
∫

Ω

(
∇Dv(x) : τ (x) + ΠDv(x) · div(τ )(x)

)
dx

−
∫

ΓN

γn(τ )(x) · TD(v)(x)dS(x)

∣∣∣∣∣.
A sequence (Dm)m∈N of Gradient Discretisations is said to be limit-conforming
if, for all τ ∈ Hdiv(Ω,ΓN ), WDm

(τ )→ 0 as m→∞.

The definition of coercivity of Gradient Discretisations for the elasticity equation
starts in the same way as for diffusion equations. However, since the natural energy
estimate for elasticity equations is not on ∇u but on ε(u), as in the continuous case
we must add to it some discrete form of Körn’s inequality.

Definition 2.6 (Coercivity). Let D be a Gradient Discretisation in the sense of
Definition 2.2. We define CD (maximum of the norms of the linear mappings ΠD
and TD) by

(2.9) CD = max
v∈XD,ΓD

\{0}

(‖ΠDv‖L2(Ω)

‖v‖D
,
‖TDv‖L2(ΓN )

‖v‖D

)
.

and KD (constant of the discrete Körn inequality) by

(2.10) KD = max
v∈XD,ΓD

\{0}

‖v‖D
‖εD(v)‖L2(Ω)d

.

A sequence (Dm)m∈N of Gradient Discretisations is said to be coercive if there
exists CP > 0 such that CDm +KDm ≤ CP for all m ∈ N.

The definition of CD gives the following discrete Poincaré’s inequality:

(2.11) ∀v ∈ XD,ΓD
: ‖ΠDv‖L2(Ω) ≤ CD‖∇Dv‖L2(Ω)d .

Remark 2.7 (Non-homogeneous Dirichlet boundary conditions). Non-homogene-
ous Dirichlet boundary conditions u = w can also be considered in (1.1) and in the
framework of Gradient Schemes, upon introducing an interpolation operator and
modifying the definition of limit-conformity to take into account this interpolation
operator. See [15] for diffusion equations.

Remark 2.8. Although it does not seem to relate to any elasticity model we know
of, we could also handle a dependency of σ on u, i.e. σ = σ(x,u, ε(u)), upon
adding a compactness property of Gradient Discretisations (see [16] for the handling
of such lower order terms in diffusion equations).

1The divergence of a tensor τ is taken row by row, i.e. if τ = (τ i,j)i,j=1,...,d then div(τ ) =

(
∑d

j=1 ∂jτ i,j)i=1,...,d. This definition is consistent with our definition of ∇ by column: −div is

the formal dual operator of ∇.
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3. Convergence analysis

3.1. Linear case. We assume here that the relationship between the strain and
stress is linear, and thus given by a stiffness 4th order tensor:

(3.1)

There exists a measurable C : Ω→ Rd4

such that σ(x, τ ) = C(x)τ and
∃σ∗, σ∗ > 0 s.t., for a.e. x ∈ Ω , ∀τ ,ω ∈ Rd×d ,
C(x)τ : ω = τ : C(x)ω and (C(x)τ )T = C(x)τT , (symmetry),
|C(x)| ≤ σ∗ (bound),
C(x)τ : τ ≥ σ∗|τ |2 (coercivity).

Remark 3.1. These assumptions imply (2.3) and cover the classical linear elas-
ticity model σ(x, ε(u)) = λ tr(ε(u))I + 2µε(u) (i.e. the Hencky–von Mises model
with Lamé coefficients not depending on u).

In this linear setting, the Gradient Scheme (2.5) takes the form

(3.2)

Find u ∈ XD,ΓD
such that, ∀v ∈ XD,ΓD

,∫
Ω

C(x)εD(u)(x) : εD(v)(x)dx =

∫
Ω

F(x) ·ΠDv(x)dx

+

∫
ΓN

g(x) · TD(v)(x)dS(x).

The proof of the following error estimate is an adaptation of similar estimates
done in [21] for linear diffusion equations with homogeneous Dirichlet boundary
conditions.

Theorem 3.2 (Error estimate of Gradient Schemes for linear elasticity). We assu-
me that (2.1), (2.2) and (3.1) hold and we let u be the solution to (2.4) (note that
σ(x, ε(u)) = Cε(u) ∈ Hdiv(Ω,ΓN ) since F ∈ L2(Ω) and g ∈ L2(ΓN )).

If D is a Gradient Discretization in the sense of Definition 2.2 then the Gradient
Scheme (3.2) has a unique solution uD and it satisfies:

‖∇u−∇DuD‖L2(Ω)d ≤
K2
D
σ∗

WD(Cε(u)) +

(
K2
Dσ
∗

σ∗
+ 1

)
SD(u),(3.3)

‖u−ΠDuD‖L2(Ω) ≤
CDK

2
D

σ∗
WD(Cε(u)) +

(
CDK

2
Dσ
∗

σ∗
+ 1

)
SD(u),(3.4)

where SD, WD, CD and KD are defined by (2.6), (2.8), (2.9) and (2.10).

Proof Let us first notice that if we prove (3.3) for any solution uD to the Gradient
Scheme (3.2), then the existence and uniqueness of this solution follows. Indeed,
(3.2) defines a square linear system and if F = 0 and g = 0 (meaning that u = 0)
then (3.3) shows that the only solution to this system is 0, since ||∇D · ||L2(Ω)d is a
norm on XD,ΓD

. Hence, this system is invertible and (3.2) has a solution for any
right-hand side functions F and g satisfying (2.2).
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Let us now prove the error estimates. Since Cε(u) ∈ Hdiv(Ω,ΓN ), the definition
of WD gives, for any v ∈ XD,ΓD

,

(3.5)

||∇Dv||L2(Ω)dWD(Cε(u))

≥
∣∣∣∣∫

Ω

(
∇Dv(x) : C(x)ε(u)(x) + ΠDv(x) · div(Cε(u)

)
(x)dx

−
∫

ΓN

γn(Cε(u))(x) · TD(v)(x)dS(x)

∣∣∣∣
≥
∣∣∣∣∫

Ω

(
∇Dv(x) : C(x)ε(u)(x)−ΠDv(x) · F(x)

)
dx

−
∫

ΓN

g(x) · TD(v)(x)dS(x)

∣∣∣∣ .
By symmetry of C we have Cε(u) : ∇Dv = Cε(u) : εD(v) and (3.5) therefore

gives, since uD is a solution to (3.2),

(3.6) ||∇Dv||L2(Ω)dWD(Cε(u))

≥
∣∣∣∣∫

Ω

C(x)ε(u)(x) : εD(v)(x)− C(x)εD(uD) : εD(v)(x)dx

∣∣∣∣ .
Defining, for all ϕ ∈ H1

ΓD
(Ω),

(3.7) PDϕ = argmin
w∈XD,ΓD

{
‖ΠDw −ϕ‖L2(Ω) + ‖∇Dw −∇ϕ‖L2(Ω)d

}
and recalling the definition (2.6) of SD, we have

(3.8) ||ε(u)− εD(PDu)||L2(Ω)d ≤ ||∇u−∇D(PDu)||L2(Ω)d ≤ SD(u).

Using the bound of C in (3.1) and Estimate (3.6), we deduce

(3.9)

∣∣∣∣∣
∫

Ω

C(x)εD(PDu− uD)(x) : εD(v)(x)dx

∣∣∣∣∣
≤
∣∣∣∣∫

Ω

C(x)(εD(PDu)− ε(u))(x) : εD(v)(x)dx

∣∣∣∣
+

∣∣∣∣∫
Ω

C(x)(ε(u)− εD(uD))(x) : εD(v)(x)dx

∣∣∣∣
≤ σ∗SD(u)||εD(v)||L2(Ω)d + ||∇Dv||L2(Ω)dWD(Cε(u))

≤ ||∇Dv||L2(Ω)d
(
WD(Cε(u)) + σ∗SD(u)

)
.

Plugging v = PDu− uD ∈ XD,ΓD
in (3.9) and using the coercivity of C gives

(3.10) σ∗||εD(PDu− uD)||2L2(Ω)d

≤ ||∇D(PDu− uD)||L2(Ω)d
(
WD(Cε(u)) + σ∗SD(u)

)
.

By definition (2.10) of KD, we have

||∇D(PDu− uD)||L2(Ω)d ≤ KD||εD(PDu− uD)||L2(Ω)d

and (3.10) thus leads to

(3.11) ||∇D(PDu)−∇DuD||L2(Ω)d ≤
K2
D
σ∗

(
WD(Cε(u)) + σ∗SD(u)

)
and the proof of (3.3) is concluded thanks to (3.8). The Poincaré inequality (2.11)
and (3.11) also give

||ΠD(PDu)−ΠDuD||L2(Ω) ≤
CDK

2
D

σ∗

(
WD(Cε(u)) + σ∗SD(u)

)
,

and the estimate ||ΠD(PDu)− u||L2(Ω) ≤ SD(u) concludes the proof of (3.4). �
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The following corollary is a straightforward consequence of Theorem 3.2.

Corollary 3.3 (Convergence of Gradient Schemes for linear elasticity). We assume
that (2.1), (2.2) and (3.1) hold. We denote by u the solution to (2.4).

If (Dm)m∈N is a sequence of Gradient Discretizations in the sense of Defini-
tion 2.2, which is consistent (Definition 2.4), limit-conforming (Definition 2.5)
and coercive (Definition 2.6), and if um ∈ XDm,ΓD

is the solution to the Gradient
Scheme (3.2) with D = Dm, then, as m→∞, ΠDm

um → u strongly in L2(Ω) and
∇Dm

um → ∇u strongly in L2(Ω)d.

Remark 3.4. This result is valid under no additional regularity assumption on the
data or u. It holds in particular if ∂Ω has singularities or if C is discontinuous
with respect to x, which corresponds to a body made of several different materials
with interfaces (see e.g. [29]).

However, for most Gradient Schemes (and under reasonable assumptions on the
mesh/discretisation), there exists C > 0 not depending on D such that

∀ϕ ∈ H2(Ω) ∩H1
0(Ω) , SD(ϕ) ≤ ChD||ϕ||H2(Ω) ,

∀τ ∈ H1(Ω)d , WD(τ ) ≤ ChD||τ ||H1(Ω)d ,

where hD measures the scheme’s precision (e.g. some mesh size). For such Gradient
Schemes, if u ∈ H2(Ω) and C is Lipschitz continuous then Theorem 3.2 provides
O(hD) error estimate for the approximation of u and its gradient. We note that the
solution is H2-regular when we have a pure Dirichlet problem on a convex polygonal
or polyhedral domain [7, 28].

3.2. Non-linear case. In the non-linear case, error estimates cannot be provided
in general since Gradient Schemes are not necessarily conforming methods. How-
ever, their convergence can still be established without additional regularity as-
sumptions on the data.

Theorem 3.5 (Convergence of Gradient Schemes for non-linear elasticity). Assu-
me that (2.1), (2.2) and (2.3) hold and let (Dm)m∈N be a sequence of Gradient
Discretizations in the sense of Definition 2.2, which is consistent (Definition 2.4),
limit-conforming (Definition 2.5) and coercive (Definition 2.6).

Then, for any m ∈ N there exists at least one solution um ∈ XDm,ΓD
to the

Gradient Scheme (2.5) with D = Dm and, up to a subsequence, as m→∞, ΠDm
um

converges weakly in L2(Ω) to some u solution of (2.4) and ∇Dm
um converges weakly

in L2(Ω)d to ∇u.
Moreover, if we assume that σ is strictly monotone in the following sense:

(3.12) For a.e. x ∈ Ω, for all τ 6= ω in Sd×d , (σ(x, τ )− σ(x,ω)) : (τ − ω) > 0

then, along the same subsequence, ΠDm
um → u strongly in L2(Ω) and ∇Dm

um →
∇u strongly in L2(Ω)d.

Remark 3.6. If the sequence of Gradient Discretisations (Dm)m∈N is compact
as defined in [16], then the convergence of ΠDm

um is strong even if the strict
monotonicity (3.12) is not satisfied.

Remark 3.7. Should the solution to (2.4) be unique, classical arguments also show
that the convergences of (um)m∈N in the senses described in Theorem 3.5 hold for
the whole sequence, not only for a subsequence.

Remark 3.8. We do not need to assume the existence of a solution to the non-
linear elasticity model (2.4). The technique of convergence analysis we use estab-
lishes in fact this existence.
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Remark 3.9. The strict monotonicity assumption (3.12) is satisfied by the Hencky–
von Mises model (see [2, Lemma 4.1]), and by the damage model when the function
f defined in Remark 2.1 is such that s ∈ [0,∞)→ sf(s) is (strictly) increasing.

Note that the strict monotony is weaker than the strong monotony, which is used
to prove error estimates on a conforming method in [2].

Proof The proof follows the techniques used in [16] for the non-linear elliptic
problem with homogeneous Dirichlet boundary conditions. We adapt those tech-
niques to deal with the non-linear elasticity models with mixed non-homogeneous
boundary conditions. In the following steps, we sometimes drop the index m in Dm

to simplify the notations.
Step 1: A priori estimates and existence of a solution to the scheme.
Let us take a scalar product 〈·, ·〉 on XD,ΓD

, with associated norm N(·), and let
us define T : XD,ΓD

→ XD,ΓD
and L ∈ XD,ΓD

by: for all w,v ∈ XD,ΓD
,

〈T (w),v〉 =

∫
Ω

σ(x, εD(w)(x)) : εD(v)(x)dx

and

〈L,v〉 =

∫
Ω

F(x) ·ΠDv(x)dx+

∫
ΓN

g(x) · TD(v)(x)dS(x).

Then Assumption (2.3) ensures that T is continuous and that

(3.13) 〈T (w),w〉 ≥ σ∗||εD(w)||2L2(Ω)d ≥ σ∗K
−2
D ||w||

2
D.

Since all norms are equivalent on XD,ΓD
, we also have ||w||D ≥ mDN(w) for some

mD > 0 and this shows that limN(w)→∞
〈T (w),w〉

N(w) = +∞. By [12, Theorem 3.3

(p.19)] or [32, Theorem 1], we see that T is onto and therefore that there exists
u ∈ XD,ΓD

such that T (u) = L, which precisely states that u is a solution to (2.5).
From (3.13) and the definition (2.9) of CD, we also deduce that u satisfies

||u||2D ≤
K2
D
σ∗
〈T (u),u〉 =

K2
D
σ∗
〈L,u〉

≤ K2
D
σ∗
||F||L2(Ω)||ΠDu||L2(Ω) +

K2
D
σ∗
||g||L2(ΓN )||TDu||L2(ΓN )

≤
(
CDK

2
D

σ∗
||F||L2(Ω) +

CDK
2
D

σ∗
||g||L2(ΓN )

)
||u||D,

that is to say

(3.14) ||u||D ≤
CDK

2
D

σ∗
||F||L2(Ω) +

CDK
2
D

σ∗
||g||L2(ΓN ).

Step 2: Weak convergences.
By Estimate (3.14), (||um||Dm)m∈N is bounded and Lemma 3.11 below therefore

shows that there exists u ∈ H1
ΓD

(Ω) such that, up to a subsequence,

(3.15)
ΠDm

um → u weakly in L2(Ω) ,
∇Dm

um → ∇u weakly in L2(Ω)d and
TDm

um → γ(u) weakly in L2(ΓN ).

Let us now prove that u is a solution to (2.4). Assumptions (2.3) and the bound
on ∇Dm

um shows that (σ(·, εDm
(um))m∈N is symmetric-valued and bounded in

L2(Ω)d. There exists therefore a symmetric-valued τ ∈ L2(Ω)d such that, up to a
subsequence,

(3.16) σ(·, εDm
(um))→ τ weakly in L2(Ω)d.
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Let ϕ ∈ H1
ΓD

(Ω). Then PDm
ϕ defined by (3.7) belongs to XDm,ΓD

and, by

consistency of (Dm)m∈N, ΠDm
(PDm

ϕ)→ ϕ strongly in L2(Ω) and ∇Dm
(PDm

ϕ)→
∇ϕ strongly in L2(Ω)d. By Lemma 3.11, we also deduce that TDm

(PDm
ϕ)→ γ(ϕ)

weakly in L2(ΓN ). The convergence (3.16) then allows to pass to the limit in (2.5)
with v = PDmϕ as a test function and we obtain

(3.17)

∫
Ω

τ (x) : ε(ϕ)(x)dx =

∫
Ω

F(x) ·ϕ(x)dx+

∫
ΓN

g(x) · γ(ϕ)(x)dS(x).

We now use the monotonicity assumption on σ and Minty’s trick [32, 34] to
prove that τ = σ(x, ε(u)). We first notice that, plugging v = um in (2.5) and
using (3.15) and (3.17),

(3.18)

∫
Ω

σ(x, εDm(um)(x)) : εDm(um)(x)dx

=

∫
Ω

F(x) ·ΠDm
um(x)dx+

∫
ΓN

g(x) · TDm
um(x)dS(x)

−→
∫

Ω

F(x) · u(x)dx+

∫
ΓN

g(x) · γ(u)(x)dS(x) =

∫
Ω

τ (x) : ε(u)(x)dx.

Let us now take any symmetric-valued ω ∈ L2(Ω)d. The monotonicity of σ shows
that

Am :=

∫
Ω

[
σ(x, εDm(um)(x))− σ(x,ω(x))

]
:
[
εDm(um)(x)− ω(x)

]
dx ≥ 0.

After developing Am, we can use (3.15), (3.16) and (3.18) to pass to the limit and
we find

(3.19) lim
m→∞

Am =

∫
Ω

[
τ (x)− σ(x,ω(x))

]
:
[
ε(u)(x)− ω(x)

]
dx ≥ 0.

The Minty trick then concludes the proof. Applying this inequality to ω = ε(u) +
α∆ for some symmetric-valued ∆ ∈ L2(Ω)d, dividing by α and letting α → 0±

(thanks to Assumption (2.3)), we obtain∫
Ω

[
τ (x)− σ(x, ε(u)(x))

]
: ∆(x)dx = 0,

which proves, with ∆ = τ − σ(·, ε(u)), that

(3.20) τ = σ(·, ε(u)).

Together with (3.17) this shows that u satisfies (2.4).

Step 3: Strong convergences under strict monotonicity.
We now assume that (3.12) holds and we first prove the strong convergence of

the strain tensors. We define

fm =
[
σ(·, εDm

(um))− σ(·, ε(u))
]

:
[
εDm

(um)− ε(u)
]
.

The function fm is non-negative and, by (3.19) with ω = ε(u) and the identity
(3.20), we see that limm→∞

∫
Ω
fm(x)dx = 0. (fm)m∈N thus converges to 0 in

L1(Ω), and therefore also a.e. on Ω up to a subsequence.
Let us take x ∈ Ω such that the above mentioned convergence hold at x. From

the coercivity and growth of σ, developing the products in fm(x) gives

fm(x) ≥ σ∗|εDm(um)(x)|2 − 2σ∗|εDm(um)(x)| |ε(u)(x)|
− |σ(x, ε(u)(x)| |ε(u)(x)|.

Since the right-hand side is quadratic in |εDm
(um)(x)| and (fm(x))m∈N is bounded,

we deduce that the sequence (εDm
(um)(x))m∈N is bounded. If Lx is one of its
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adherence values then, by passing to the limit in the definition of fm(x), we see
that

0 =
[
σ(x,Lx)− σ(x, ε(u)(x))

]
:
[
Lx − ε(u)(x)

]
.

By (3.12), this forces Lx = ε(u)(x). The bounded sequence (εDm
(um)(x))m∈N only

has ε(u)(x) as adherence value and therefore converges in whole to this value. We
have therefore established that εDm(um)→ ε(u) a.e. on Ω.

Using then (3.18) and (3.20) and defining

Fm = σ(·, εDm
(um)) : εDm

(um) ≥ 0,

we see that

lim
m→∞

∫
Ω

Fm(x)dx =

∫
Ω

σ(x, ε(u)(x)) : ε(u)(x)dx.

But since Fm → σ(·, ε(u)) : ε(u) a.e. on Ω and is non-negative, we can apply
Lemma 3.12 below to deduce that (Fm)m∈N converges in L1(Ω). This sequence is
therefore equi-integrable in L1(Ω) and, by the coercivity property of σ, this proves
that (εDm

(um))m∈N is equi-integrable in L2(Ω)d. As this sequence converges a.e.
on Ω to ε(u), Vitali’s theorem shows that

(3.21) εDm(um)→ ε(u) strongly in L2(Ω)d.

We then consider PDm
u ∈ XDm,ΓD

and write, by definition (2.10) of KD,

||∇Dm
um −∇Dm

(PDm
u)||L2(Ω)d ≤ KDm

||εDm
(um)− εDm

(PDm
u)||L2(Ω)d .

Since ∇Dm
(PDm

u) and εDm
(PDm

u) strongly converge in L2(Ω)d to ∇u and ε(u),
we can pass to the limit in this estimate by using the coercivity of (Dm)m∈N and
(3.21) and we deduce that ∇Dmum → ∇u strongly in L2(Ω)d. The definition (2.9)
of CDm then gives

||ΠDm
um −ΠDm

(PDm
u)||L2(Ω) ≤ CDm

||∇Dm
um −∇Dm

(PDm
u)||L2(Ω)d

and, since ΠDm(PDmu)→ u strongly in L2(Ω), passing to the limit in this estimate
proves the strong convergence in L2(Ω)d of ΠDmum to u. �

Remark 3.10. We saw in the proof that TDm
um → γ(u) weakly in L2(ΓN ). If the

interpolation PD defined by (3.7) satisfies, for any ϕ ∈ H1
ΓD

(Ω), TDm
(PDm

ϕ) →
γ(ϕ) strongly in L2(ΓN ) as m → ∞, the same reasoning as the one used at the
end of the proof shows that, in case of strict monotonicity of σ, TDm

um → γ(u)
strongly in L2(ΓN ).

Lemma 3.11. Let (Dm)m∈N be a sequence of Gradient Discretizations in the sense
of Definition 2.2, which is limit-conforming (Definition 2.5) and coercive (Defini-
tion 2.6). For any m ∈ N we take vm ∈ XDm,ΓD

.
If (||vm||Dm

)m∈N is bounded then there exists v ∈ H1
ΓD

(Ω) such that, up to a

subsequence, ΠDmvm → v weakly in L2(Ω), ∇Dmvm → ∇v weakly in L2(Ω)d and
TDm

vm → γ(v) weakly in L2(ΓN ).

Proof The coercivity of (Dm)m∈N and the bound on ||vm||Dm
show that the

sequences ||ΠDmvm||L2(Ω), ||∇Dmvm||L2(Ω)d and ||TDmvm||L2(ΓN ) remain bounded.

There exists therefore v ∈ L2(Ω), ω ∈ L2(Ω)d and w ∈ L2(ΓN ) such that, up to a
subsequence,

(3.22)
ΠDmvm → v weakly in L2(Ω) , ∇Dmvm → ω weakly in L2(Ω)d and
TDm

vm → w weakly in L2(ΓN ).
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These convergences and the limit-conformity of (Dm)m∈N show that, for any τ ∈
Hdiv(Ω,ΓN ),∣∣∣∣∫

Ω

ω(x) : τ (x) + v(x) · div(τ )(x)dx−
∫

ΓN

γn(τ )(x) ·w(x)dS(x)

∣∣∣∣
= lim

m→∞

∣∣∣∣∫
Ω

∇Dm
vm(x) : τ (x) + ΠDm

vm(x) · div(τ )(x)dx

−
∫

ΓN

γn(τ )(x) · TDm
(vm)(x)dS(x)

∣∣∣∣
≤ lim

m→∞

[
||vm||Dm

WDm
(τ )
]

= 0.

Hence, for any τ ∈ Hdiv(Ω,ΓN ),

(3.23)

∫
Ω

ω(x) : τ (x) + v(x) · div(τ )(x)dx−
∫

ΓN

γn(τ )(x) ·w(x)dS(x) = 0.

Applied with τ ∈ C∞c (Ω)d×d, this relation shows that

(3.24) ∇v = ω in the sense of distributions on Ω,

and thus that v ∈ H1(Ω). By using (3.23) with τ ∈ H1(Ω)d ⊂ Hdiv(Ω,ΓN ) and by
integrating by parts, we obtain∫

∂Ω

γn(τ )(x) · γ(v)(x)dS(x)−
∫

ΓN

γn(τ )(x) ·w(x)dS(x) = 0.

As the set {γn(τ ) : τ ∈ H1(Ω)d} is dense in L2(∂Ω), we deduce from this that
γ(v) = 0 on ΓD and that

(3.25) γ(v) = w on ΓN .

Thus, v ∈ H1
ΓD

and (3.22), (3.24) and (3.25) conclude the proof. �
The proof of the following lemma is classical [14, 18].

Lemma 3.12. Let (Fm)m∈N be a sequence of non-negative measurable functions
on Ω which converges a.e. on Ω to F and such that

∫
Ω
Fm(x)dx →

∫
Ω
F (x)dx.

Then Fm → F in L1(Ω).

4. Examples of Gradient Schemes

In all the following examples, we assume that ΓD has non-zero measure and is
such that a Körn’s inequality holds on H1

ΓD
(Ω) [6,11]. This is actually a necessary

condition for coercive and consistent sequences of Gradient Discretisations to exist.

4.1. Standard displacement-based formulation. All (conforming) Galerkin
methods are Gradient Schemes. If (Vn)n≥1 is a sequence of finite dimensional
subspaces of H1

ΓD
(Ω) such that ∪n≥1Vn is dense in H1

ΓD
(Ω), then by letting

XDn,ΓD
= Vn, ΠDn

= Id, TDn
= γ and ∇Dn

= ∇, we obtain a sequence of Gra-
dient Discretisations whose corresponding Gradient Schemes are Galerkin approxi-
mations of (1.1). This sequence of Gradient Discretisations is obviously consistent
(this is ∪n∈NVn = H1

ΓD
(Ω)), limit-conforming (as it is a conforming approxima-

tion, WDn
= 0 for any n) and coercive (since Poincaré’s and Körn’s inequalities

hold in H1
ΓD

(Ω)).
This is in particular the case for conforming Finite Element approximations based

on spaces Vh built on quasi-uniform partitions Th of Ω (made of quadrilaterals,
hexahedra or simplices [3, 39]).

But non-conforming methods are also included in the framework of Gradient
Schemes. For example, the classical nonconforming finite element scheme (often
denoted quite improperly as the Crouzeix-Raviart scheme) falls in this framework,
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with the discrete gradient defined as the classical “broken gradient”. Consistency,
limit-conformity and the Poincaré’s inequality for this scheme are established in
[15], and it is known that if ΓD = ∂Ω then a uniform Körn’s inequality holds.
This inequality fails for general ΓD [23] but it is satisfied for higher order non-
conforming methods (whose continuity conditions through the edges involve both
the zero-th and first order moments) [27]. The consistency, limit-conformity and
Poincaré’s inequality for such methods can be easily established as for the classical
nonconforming method.

4.2. Stabilised nodal strain formulation. We consider a nodal strain formula-
tion as presented in [24,30,38] and built on a conforming Finite Element space Vh.
Associated with the primal mesh Th we let T ∗h be the dual mesh consisting of dual
volumes, where a dual volume is associated with a vertex of Th and is constructed
as follows. Let {Txi

j }
Mi
j=1 ⊂ Th be the set of all elements touching the vertex xi, and

{Exi
j }

Ni
j=1 the set of edges or faces touching xi. Then the dual volume associated

with the vertex xi is the polygonal or polyhedral region joining all the bary-centres
of {Txi

j }
Mi
j=1 and {Exi

j }
Ni
j=1 . Let S∗h be the space of vector-valued piecewise constant

functions with respect to the dual mesh T ∗h .
Defining the linear form

`(vh) =

∫
Ω

F(x) · vh(x)dx+

∫
ΓN

g(x) · γ(vh)(x)dS(x),

the stabilised nodal strain formulation, for a constant stiffness tensor C, is to find
uh ∈ Vh such that, for any vh ∈ Vh,∫

Ω

Π∗hε(uh)(x) : Cε(vh)(x)dx+

∫
Ω

D(ε(uh)−Π∗hε(uh))(x) : ε(vh)(x)dx = `(vh)

where Π∗h is the orthogonal projection onto S∗h and D is a constant stabilisation
(symmetric positive definite) tensor. By the properties of the orthogonal projection
and since C and D are constant, this can be recast as

(4.1)

Find uh ∈ Vh such that, ∀vh ∈ Vh,∫
Ω

CΠ∗hε(uh)(x) : Π∗hε(vh)(x)dx

+

∫
Ω

D(ε(uh)−Π∗hε(uh))(x) : (ε(vh)−Π∗hε(vh))(x)dx = `(vh).

We will take this formulation as definition of the stabilised nodal strain formulation
in the case where C and D are not constant (in which case we assume that D satisfies
Assumption (3.1)).

Let us now construct a Gradient Discretisation D = (XD,ΓD
,ΠD, TD,∇D) such

that this formulation is identical to the corresponding Gradient Scheme (3.2). We
start by defining XD,ΓD

and the operators ΠD : XD,ΓD
→ L2(Ω) and TD : XD,ΓD

→
L2(ΓN ) by

(4.2) XD,ΓD
= Vh , ΠDvh = vh and TDvh = γ(vh)|ΓN

for all vh ∈ XD,ΓD
.

With these choices, `(vh) is the right-hand side of (3.2) and we therefore just need
to find a discrete gradient ∇D such that the left-hand side of (3.2) is equal to the
left-hand side of (4.1).

We first notice that, by (3.1) on C and D, for a.e. x the linear mappings
C(x),D(x) : Rd×d → Rd×d are symmetric positive definite with respect to the
inner product “:” and thus C(x)−1/2 and D(x)1/2 make sense. We can therefore
define ∇D : XD,ΓD

→ L2(Ω)d by

(4.3) ∇Dvh = Π∗h∇vh + C−1/2D1/2(∇vh −Π∗h∇vh).
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By assumptions on C and D and Lemma 4.10, this gives

εD(vh) = Π∗hε(vh) + C−1/2D1/2(ε(vh)−Π∗hε(vh)).

Assuming that C and D are piecewise constant on T ∗h , we can then compute∫
Ω

C(x)εD(uh)(x) : εD(vh)(x)dx

=

∫
Ω

C(x)Π∗hε(uh)(x) : Π∗hε(vh)(x)dx

+

∫
Ω

C(x)Π∗hε(uh)(x) : C−1/2(x)D1/2(x)(ε(vh)(x)−Π∗hε(vh)(x))dx(4.4)

+

∫
Ω

C(x)C−1/2(x)D1/2(x)(ε(uh)(x)−Π∗hε(uh)(x)) : Π∗hε(vh)(x)dx(4.5)

+

∫
Ω

C(x)C−1/2(x)D1/2(x)(ε(uh)(x)−Π∗hε(uh)(x))

: C−1/2(x)D1/2(x)(ε(vh)(x)−Π∗hε(vh)(x))dx.

But, since C, D and Π∗hε(uh) are constant on each cell in T ∗h and since

Π∗hε(vh) =
1

meas(K)

∫
K

ε(vh)(x)dx

on K ∈ T ∗h , we have

(4.4) =
∑

K∈T ∗h

C|KΠ∗hε(uh)|K : C−1/2
|K D1/2

|K

∫
K

(ε(vh)(x)−Π∗hε(vh)(x)) dx = 0.

Similarly, (4.5) vanishes and, by using the symmetry of C and D, we end up with∫
Ω

C(x)εD(uh)(x) : εD(vh)(x)dx

=

∫
Ω

C(x)Π∗hε(uh)(x) : Π∗hε(vh)(x)

+

∫
Ω

D(x)(ε(uh)(x)−Π∗hε(uh)(x)) : (ε(vh)(x)−Π∗hε(vh)(x))dx,

which precisely states that the left-hand sides of (3.2) and (4.1) coincide. Thus, un-
der the assumption that C and D are piecewise constant on T ∗h , the stabilised nodal
strain formulation (4.1) is the Gradient Scheme, for the linear elasticity equation,
corresponding to the Gradient Discretisation defined by (4.2)–(4.3).

Remark 4.1. If C or D are not piecewise constant on T ∗h , then by replacing them
with Π∗hC and Π∗hD in the stabilised nodal strain formulation (4.1) and the definition
(4.3) of the discrete gradient, the stabilised nodal strain formulation is the Gradient
Scheme (3.2) in which C is replaced with Π∗hC.

4.2.1. Consistency, limit-conformity and coercivity. Let us consider (Vhn
)n∈N a

sequence of conforming Finite Element spaces on meshes (Thn
)n∈N with hn → 0.

We prove here that if Dn is the Gradient Discretisation given by (4.2)–(4.3) for
Vhn then, under the classical quasi-uniform assumptions on (Thn)n∈N, the sequence
(Dn)n∈N is consistent, limit-conforming and coercive. The key point is to notice
that the definition (4.3) of the discrete gradient can be recast as

(4.6) ∇Dvh = ∇vh + (C−1/2D1/2 − Id)(∇vh −Π∗h∇vh) = ∇vh + Lh∇vh

where Lh = (C−1/2D1/2 − Id)(Id − Π∗h) : L2(Ω)d → L2(Ω)d has a norm bounded
independently on h and converges pointwise to 0.
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Let us first consider the consistency property. For any ϕ ∈ H1
ΓD

(Ω), by quasi-
uniformity of the sequence of meshes, there exists vn ∈ Vhn

= XDn,ΓD
such that

vn = ΠDn
vn → ϕ in L2(Ω) and ∇vn → ∇ϕ in L2(Ω)d. We have

||Lhn
∇vn||L2(Ω)d ≤ ||Lhn

||L2(Ω)d→L2(Ω)d ||∇vn −∇ϕ||L2(Ω)d + ||Lhn
∇ϕ||L2(Ω)d

and, by the properties of Lhn , both terms in the right-hand side tend to 0. Com-
bined with (4.6) this proves that ∇Dnvn → ∇ϕ in L2(Ω)d, which concludes the
proof of the consistency of (Dn)n∈N.

Coercivity follows from the following comparisons between ∇, ∇Dn
and ε, εDn

:
there exists C1, C2 > 0 not depending on n such that, for any v ∈ Vhn

= XDn,ΓD
,

C1||∇Dnv||L2(Ω)d ≤ ||∇v||L2(Ω)d ≤ C2||∇Dnv||L2(Ω)d ,(4.7)

C1||εDn
(v)||L2(Ω)d ≤ ||ε(v)||L2(Ω)d ≤ C2||εDn

(v)||L2(Ω)d .(4.8)

Indeed, with these two estimates, the coercivity of (Dn)n∈N is a straightforward
consequence of the Poincaré, trace and Körn’s inequalities in H1

ΓD
(Ω). Since

the proofs of (4.7) and (4.8) are similar, we only consider the first one. Us-
ing ||Π∗hn

∇v||L2(Ω)d ≤ ||∇v||L2(Ω)d , (4.6) immediately gives the first inequality
in (4.7). To establish the second one, we just notice, applying Π∗hn

to (4.3) that
Π∗hn
∇Dnv = Π∗hn

∇v, which gives, plugged into (4.3),

∇v = Π∗hn
∇Dn

v + D−1/2C1/2
(
∇Dn

v −Π∗hn
∇Dn

v
)
.

The second estimate of (4.7) follows by taking the L2(Ω)d norm of this equality
and using once more the fact that the orthogonal projection Π∗hn

has norm 1.
Limit-conformity is then easy to establish. For any τ ∈ Hdiv(Ω,ΓN ) and any

v ∈ Vhn
= XDn,ΓD

, by using (4.6) we have∣∣∣∣∣
∫

Ω

(
∇Dnv(x) : τ (x) + ΠDnv(x) · div(τ )(x)

)
dx−

∫
ΓN

γn(τ )(x) · TDn(v)(x)dS(x)

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Ω

(
∇v(x) : τ (x) + v(x) · div(τ )(x)

)
dx−

∫
ΓN

γn(τ )(x) · γ(v)(x)dS(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫

Ω

Lhn
∇v(x) : τ (x)dx

∣∣∣∣∣ = T1 + T2.(4.9)

By conformity of Vhn
we have T1 = 0. Thanks to (4.7) and denoting by L?

hn
=

(Id−Π∗h)(D1/2C−1/2 − Id) the dual operator of Lhn , we can write

T2 =

∣∣∣∣∣
∫

Ω

∇v(x) : L?
hn
τ (x)dx

∣∣∣∣∣
≤ ||∇v||L2(Ω)d ||L?

hn
τ ||L2(Ω)d ≤ C2||∇Dnv||L2(Ω)d ||L?

hn
τ ||L2(Ω)d .

Plugged into (4.9), this estimate on T2 shows that WDn(τ ) ≤ C2||L?
hn
τ ||L2(Ω)d . As

L?
hn
→ 0 pointwise as n → ∞, this concludes the proof of the limit-conformity of

(Dn)n∈N.

Remark 4.2. Reference [38] provides an O(h) error estimate for (4.1) under
very strong assumptions on the solution to the continuous equation (1.1), namely
u ∈ C2(Ω). Embedding (4.1) into the Gradient Scheme framework allowed us to
establish the same error estimate under no regularity assumption on the exact so-
lution (see Theorem 3.2) and that, contrary to what is written in [38, p848], the
smoothness of the solution is not required for conducting the error analysis of the
method.
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Remark 4.3. As a consequence of these properties and of Theorem 3.5, we deduce
that the Gradient Scheme discretisation (4.2)–(4.3) coming from the stabilised nodal
strain formulation of the linear elasticity equations can be used to define a “stabilised
nodal strain formulation for non-linear elasiticity” (2.5), and gives a converging
scheme for these equations. In this case, the tensors C and D in (4.3) should
be chosen accordingly to the considered non-linear equation, e.g. by selecting linear
tensors with Lamé’s coefficients of the correct order of magnitude with respect to the
non-linear model. If we consider for example the Hencky–von Mises stress σ(x, τ ) =

λ̃(dev(τ )) tr(τ )I + 2µ̃(dev(τ ))τ , then C can be given by Cτ = λ tr(τ )I + 2µε(τ ),

where λ and µ are within the range of λ̃ and µ̃ (see [2] for assumptions on this
range), and D can be taken diagonal equal to 1 or 2µ (see [30]).

Remark 4.4. We can also construct the “nodal stabilised” Gradient Discretisation
D by (4.2)–(4.3) starting from a non-conforming Finite Element discretisation Vh

(or, for that matter, any initial Gradient Discretisation built on a polygonal discreti-
sation of Ω as defined in [15]). In this case, the preceding reasoning shows that if
(Vhn

)n∈N is consistent, limit-conforming and coercive then the corresponding nodal
stabilised Gradient Discretisation (Dn)n∈N is also consistent, limit-conforming and
coercive.

4.3. Hu-Washizu-based formulation on quadrilateral meshes. We now con-
sider a Finite Element method based on a modified Hu-Washizu formulation [31] for
quadrilateral meshes. We start with the statically condensed displacement-based
formulation in [31] of the following form: find uh ∈ Vh such that

(4.10)

∫
Ω

PSh
ε(vh)(x) : ChPSh

ε(uh)(x)dx = `(vh), vh ∈ Vh ,

where Vh is the standard conforming Finite Element space constructed from piece-
wise bilinear polynomials on a reference element, PSh

is the L2 orthogonal projec-
tion onto the discrete space of stress Sh, and Ch is some positive-definite symmetric
operator approximating the classical linear elasticity tensor C with constant Lamé
coefficients, Cτ = λ tr(τ )I + 2µτ . We note that the space of stress Sh ⊂ L2(Ω)d

is defined element-wise, and there is no continuity condition for its element across
the boundary of cell in Th. Various Finite Element methods used in alleviating
locking effects are derived using this formulation [13, 31]. Among them, the most
popular methods are the assumed enhanced strain method of Simo and Rifai [41],
the strain gap method of Romano, Marrotti de Sciarra and Diaco [40], and the
mixed enhanced strain method of Kasper and Taylor [26]. We now consider the
action of the operator Ch on a tensor dh = PSh

ε(uh) as derived in [31]. We use an
orthogonal decomposition of Sh in the form

Sh = Sc
h ⊕ St

h ,

where

Sc
h := {τ ∈ Sh | Cτ ∈ Sh}

and St
h is the orthogonal complement of Sc

h. We consider the case where the ope-
rator Ch is expressed as [31]

(4.11) Chdh = CPSc
h
dh + θPSt

h
dh

where PSc
h

and PSt
h

are the orthogonal projections onto Sc
h and St

h and θ > 0 is
a constant only depending upon the Lamé coefficients λ, µ of C and upon the pa-
rameter α > 0 of the modified three-field Hu-Washizu formulation [31]. When the
modified Hu-Washizu formulation is equivalent to the Hellinger-Reissner formula-
tion, θ does not depend on α.
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Remark 4.5. The expression for the action of Ch is obtained in [31] using Voigt
notation for tensors. However, we give here the expression for the discrete space of
stress using the full tensor notation so that we have

PSh
ε(uh) =

1

2

(
PSh

(∇uh) + PSh
(∇uh)T

)
.

We restrict ourselves, for simplicity of presentation, to the two-dimensional case,
where dh is a 2 by 2 tensor. We consider three choices for Sh, where this space
is generated (through conformal transformations) from bases S� defined on K̂ :=
(−1, 1)2. Let these three choices be denoted by Si

h and Si
�, 1 ≤ i ≤ 3.

S1
� :=

[
span{1, ŷ} span{1}
span{1} span{1, x̂}

]
, S2

� :=

[
span{1, ŷ} span{1, x̂, ŷ}

span{1, x̂, ŷ} span{1, x̂}

]
,

and

S3
� :=

[
span{1} span{1, x̂, ŷ}

span{1, x̂, ŷ} span{1}

]
While the spherical part of the stress might be polluted by checkerboard modes
as in the case of the Q1 − P0 element, it is proved that the error in displacement
satisfies a λ-independent a priori error estimate [31].

Let us now prove that if Sh = Si
h for some 1 ≤ i ≤ 3 then (4.10) is a Gradient

Scheme. We define

(4.12)
XD,ΓD

= Vh , ΠDvh = vh , TDvh = γ(vh)|ΓN
and

∇Dvh = PSc
h
∇vh +

√
θC−1/2PSt

h
∇vh.

We note that, by symmetry of C, Sc
h and St

h are closed under transposition and
therefore the projections onto those spaces commute with the transposition. By
Lemma 4.10, the definition of ∇D thus shows that

(4.13) εD(vh) = PSc
h
ε(vh) +

√
θC−1/2PSt

h
ε(vh).

We now prove that the Gradient Scheme corresponding to the Gradient Discreti-
sation D = (XD,ΓD

,ΠD, TD,∇D) is precisely the Hu-Washizu scheme (4.10). Let
us first start with a lemma.

Lemma 4.6. For any of the choices Si
h (1 ≤ i ≤ 3) described above and for any

linear elasticity tensor D, (Si
h)c is closed under D, that is Dτ ∈ (Si

h)c whenever
τ ∈ (Si

h)c. In particular,

(4.14) ∀τ ,ω ∈ L2(Ω)d ,

∫
Ω

DP(Si
h)cτ (x) : P(Si

h)tω(x)dx = 0.

Proof If τ ∈ (Si
h)c then tr(τ )I = λ−1(Cτ − 2µτ ) ∈ Si

h. The definitions of Si
h

then shows, by examining the coefficients (1, 1) and (2, 2) of tr(τ )I, that tr(τ ) ∈
span{1, ŷ} ∩ span{1, x̂} = span{1} and thus that tr(τ ) is constant.

By Lemma 4.9, we see that CD is a linear elasticity tensor with some Lamé
coefficients (α, β) and therefore CDτ = α tr(τ )I + 2βτ . The second term in this
right-hand side clearly belongs to Si

h and, since tr(τ ) is constant, it is equally
obvious that the first term in the right-hand side belongs to Si

h (which contains
span{I}). Hence, Dτ ∈ (Si

h)c whenever τ ∈ (Si
h)c. Formula (4.14) is a consequence

of this and of the orthogonality of Sc
h and St

h. �

We now consider the left-hand side of (3.2). Using (4.14) with D = C1/2 (which
is a linear elasticity tensor by Lemma 4.9), the cross-products involving C1/2PSc

h
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and PSt
h

which appear when plugging (4.13) into (3.2) vanish and we obtain

(4.15)

∫
Ω

C(x)εD(uh)(x) : εD(vh)(x)dx

=

∫
Ω

C(x)PSc
h
ε(uh)(x) : PSc

h
ε(uh)(x)dx+

∫
Ω

θPSt
h
ε(uh)(x) : PSt

h
ε(uh)(x)dx.

Using now the definition (4.11) of Ch and the orthogonality property (4.14) with
D = C, the left-hand side of (4.10) can be written

(4.16)

∫
Ω

ChPSh
ε(uh)(x) : PSh

ε(vh)(x)dx

=

∫
Ω

[
C(x)PSc

h
ε(uh)(x) + θPSt

h
ε(uh)(x)

]
:
[
PSc

h
ε(vh)(x) + PSt

h
ε(vh)(x)

]
dx

=

∫
Ω

C(x)PSc
h
ε(uh)(x) : PSc

h
ε(vh)(x)dx+

∫
Ω

θPSt
h
ε(uh)(x) : PSt

h
ε(vh)(x)dx.

Equations (4.15) and (4.16) show that the left-hand sides of the Gradient Scheme
(3.2) and of the Hu-Washizu formulation (4.10) are identical. As the right-hand
sides of these equations are trivially identical (by definition of ΠD and TD), this
shows that the statically condensed Hu-Washizu formulation [31] is the Gradient
Scheme corresponding to the Gradient Discretisation defined by (4.12).

Let us now see that the Gradient Discretisation (4.12) satisfies the properties
defined in Section 2. The coercivity is again a consequence of (4.7) and (4.8)
that we can prove in the following way. First, since the norms of PSc

h
and PSt

h
are

bounded by 1, the definition (4.12) of∇D and the property (4.13) of εD immediately
give the first inequalities in (4.7) and (4.8). We then write, from (4.13),

(4.17) C1/2εD(vh) = C1/2PSc
h
ε(vh) +

√
θ PSt

h
ε(vh).

By Lemmas 4.6 and 4.9, we have C1/2PSc
h
∇vh ∈ Sc

h and (4.17) thus shows that

PSc
h
C1/2εD(vh) = C1/2PSc

h
ε(vh) and PSt

h
C1/2εD(vh) =

√
θ PSt

h
ε(vh). This allows

us to write

PSh
ε(vh) = PSc

h
ε(vh) + PSt

h
ε(vh)

= C−1/2PSc
h
C1/2εD(vh) +

√
θ
−1
PSt

h
C1/2εD(vh).

This relation shows that ||PSh
ε(vh)||L2(Ω)d ≤ C3||εD(vh)||L2(Ω)d with C3 not de-

pending on h or vh. Since it can be proved (see [31]) that ||ε(vh)||L2(Ω)d ≤
C4||PSh

ε(vh)||L2(Ω)d with C4 not depending on h or vh, the second inequality in
(4.8) follows immediately. The second inequality in (4.7) can then be established
by using the continuous Körn inequality ||∇vh||L2(Ω)d ≤ C5||ε(vh)||L2(Ω)d and the
second inequality of (4.8) that we just established.

To establish the consistency and limit-conformity of the Gradient Discretisation,
we notice that

(4.18) ∇Dvh = ∇vh + (PSc
h
− Id)∇vh +

√
θC−1/2PSt

h
∇vh = ∇vh + Lh∇vh

where Lh = PSc
h
− Id +

√
θC−1/2PSt

h
: L2(Ω)d → L2(Ω)d is a self-adjoint operator

(because
√
θC−1/2 is constant) whose norm is bounded independently on h. As Sc

h

always contains the set of constant tensors S0
h and PS0

h
→ Id as h → 0, we have

PSc
h

= PSc
h
(Id−PS0

h
)+PS0

h
→ Id and PSt

h
= PSt

h
(Id−PS0

h
)→ 0 pointwise as h→ 0.

Hence, Lh → 0 pointwise as h → 0. Expression (4.18) then allows us to prove the
consistency and limit-conformity of the Gradient Discretisation (4.12) by using the
same techniques as in Section 4.2.1.
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Remark 4.7. The same construction can be made when C is only piecewise con-
stant on Th.

Remark 4.8. In contrast to [4, 31], the convergence result of Theorem 3.2 is ob-
tained for the Hu-Washizu scheme without assuming the full H2-regularity of the
solution. Moreover, as in Remark 4.3, this construction also gives a converging Hu-
Washizu-based scheme for non-linear elasticity equations; this scheme is obtained
by plugging the discrete elements (4.12), with C chosen for example as in Remark
4.3, in Gradient Scheme (2.5).

4.4. Technical lemmas.

Lemma 4.9. If C1 and C2 are linear elasticity tensors in Rd with Lamé coefficients
(λ1, µ1) and (λ2, µ2), then, for any τ ∈ Rd×d,

(4.19) C1C2τ = (λ1λ2d+ 2µ1λ2 + 2µ2λ1) tr(τ )I + 4µ1µ2τ .

If C is a linear elasticity tensor with Lamé coefficients (λ, µ), then

(4.20) C1/2τ =

√
2µ+ λd−

√
2µ

d
tr(τ )I +

√
2µτ .

Proof Formula (4.19) is obtained by straightforward computation, and Formula
(4.20) by looking for C1/2 as a linear elasticity tensor with coefficients (α, β) such
that C1/2C1/2 = C, which boils down from (4.19) to solving α2d + 4αβ = λ and
4β2 = 2µ. �

Lemma 4.10. If E : (Rd×d, :) → (Rd×d, :) is symmetric positive definite and
satisfies, for all τ ∈ Rd×d, (Eτ )T = EτT , then E1/2 also satisfies this property.

Proof Let L : Rd×d → Rd×d be the endomorphism Lτ = (E1/2τT )T . Using
τ : ω = τT : ωT and the symmetric positive definite character of E1/2, it is easy
to check that L is symmetric positive definite. Moreover, by assumption on E,
L2τ = (E1/2[(E1/2τT )T ]T )T = (E1/2E1/2τT )T = (EτT )T = Eτ . Henceforth, L is
the symmetric positive definite square root E1/2 of E and thus E1/2τT = L(τT ) =
(E1/2τ )T , which completes the proof. �

5. Conclusion

In this work, we developed the Gradient Scheme framework for linear and non-
linear elasticity equations. We proved that this framework makes possible error
estimates (for linear equations) and convergence analysis (for non-linear equations)
of numerical methods under very few assumptions. In particular, these results
hold for conforming as well as non-conforming methods, without assuming the full
H2-regularity of the exact solution (which can be lost in the cases of composite
materials or non-linear models).

We showed that many classical and modern numerical schemes developed in the
literature for elasticity equations are actually Gradient Schemes. We even estab-
lished that some three-field schemes, based on a modified Hu-Washizu formula-
tion and designed to be stable in the quasi-incompressible limit, are also Gradient
Schemes after being recast in a displacement-only formulation by static condensa-
tion.

Since Gradient Schemes are seamlessly applicable to both linear and non-linear
equations, the embedding into this framework of numerical methods developed for
linear elasticity also allowed us to adapt those methods to non-linear elasticity,
while retaining nice stability and convergence properties.



20 GRADIENT SCHEMES FOR LINEAR AND NON-LINEAR ELASTICITY EQUATIONS

References
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